101
|
Hernandez-Escribano L, Visser EA, Iturritxa E, Raposo R, Naidoo S. The transcriptome of Pinus pinaster under Fusarium circinatum challenge. BMC Genomics 2020; 21:28. [PMID: 31914917 PMCID: PMC6950806 DOI: 10.1186/s12864-019-6444-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/30/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Fusarium circinatum, the causal agent of pitch canker disease, poses a serious threat to several Pinus species affecting plantations and nurseries. Although Pinus pinaster has shown moderate resistance to F. circinatum, the molecular mechanisms of defense in this host are still unknown. Phytohormones produced by the plant and by the pathogen are known to play a crucial role in determining the outcome of plant-pathogen interactions. Therefore, the aim of this study was to determine the role of phytohormones in F. circinatum virulence, that compromise host resistance. RESULTS A high quality P. pinaster de novo transcriptome assembly was generated, represented by 24,375 sequences from which 17,593 were full length genes, and utilized to determine the expression profiles of both organisms during the infection process at 3, 5 and 10 days post-inoculation using a dual RNA-sequencing approach. The moderate resistance shown by Pinus pinaster at the early time points may be explained by the expression profiles pertaining to early recognition of the pathogen, the induction of pathogenesis-related proteins and the activation of complex phytohormone signaling pathways that involves crosstalk between salicylic acid, jasmonic acid, ethylene and possibly auxins. Moreover, the expression of F. circinatum genes related to hormone biosynthesis suggests manipulation of the host phytohormone balance to its own benefit. CONCLUSIONS We hypothesize three key steps of host manipulation: perturbing ethylene homeostasis by fungal expression of genes related to ethylene biosynthesis, blocking jasmonic acid signaling by coronatine insensitive 1 (COI1) suppression, and preventing salicylic acid biosynthesis from the chorismate pathway by the synthesis of isochorismatase family hydrolase (ICSH) genes. These results warrant further testing in F. circinatum mutants to confirm the mechanism behind perturbing host phytohormone homeostasis.
Collapse
Affiliation(s)
- Laura Hernandez-Escribano
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal (INIA-CIFOR), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Erik A Visser
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Eugenia Iturritxa
- NEIKER, Granja Modelo de Arkaute, Apdo 46, 01080, Vitoria-Gasteiz, Spain
| | - Rosa Raposo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal (INIA-CIFOR), Madrid, Spain
- Instituto de Gestión Forestal Sostenible (iuFOR), Universidad de Valladolid/INIA, Valladolid, Spain
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
102
|
Lv B, Yu Q, Liu J, Wen X, Yan Z, Hu K, Li H, Kong X, Li C, Tian H, De Smet I, Zhang X, Ding Z. Non-canonical AUX/IAA protein IAA33 competes with canonical AUX/IAA repressor IAA5 to negatively regulate auxin signaling. EMBO J 2020; 39:e101515. [PMID: 31617603 PMCID: PMC6939196 DOI: 10.15252/embj.2019101515] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 11/09/2022] Open
Abstract
The phytohormone auxin controls plant growth and development via TIR1-dependent protein degradation of canonical AUX/IAA proteins, which normally repress the activity of auxin response transcription factors (ARFs). IAA33 is a non-canonical AUX/IAA protein lacking a TIR1-binding domain, and its role in auxin signaling and plant development is not well understood. Here, we show that IAA33 maintains root distal stem cell identity and negatively regulates auxin signaling by interacting with ARF10 and ARF16. IAA33 competes with the canonical AUX/IAA repressor IAA5 for binding to ARF10/16 to protect them from IAA5-mediated inhibition. In contrast to auxin-dependent degradation of canonical AUX/IAA proteins, auxin stabilizes IAA33 protein via MITOGEN-ACTIVATED PROTEIN KINASE 14 (MPK14) and does not affect IAA33 gene expression. Taken together, this study provides insight into the molecular functions of non-canonical AUX/IAA proteins in auxin signaling transduction.
Collapse
Affiliation(s)
- Bingsheng Lv
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| | - Qianqian Yu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
- College of Life SciencesLiaocheng UniversityLiaochengShandongChina
| | - Jiajia Liu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| | - Xuejing Wen
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| | - Zhenwei Yan
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| | - Kongqin Hu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| | - Hanbing Li
- Department of BiochemistryUniversity of MissouriColumbiaMOUSA
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| | - Cuiling Li
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| | - Ive De Smet
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Xian‐Sheng Zhang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTai’ anShandongChina
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoShandongChina
| |
Collapse
|
103
|
Huang D, Wang Q, Duan D, Dong Q, Zhao S, Zhang M, Jing G, Liu C, van Nocker S, Ma F, Li C. Overexpression of MdIAA9 confers high tolerance to osmotic stress in transgenic tobacco. PeerJ 2019; 7:e7935. [PMID: 31687272 PMCID: PMC6825743 DOI: 10.7717/peerj.7935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022] Open
Abstract
Auxin is a plant hormone that takes part in a series of developmental and physiological processes. There are three major gene families that play a role in the early response of auxin and auxin/indole-3-acetic acid (Aux/IAA) is one of these. Although the genomic organization and function of Aux/IAA genes have been recognized in reference plants there have only been a few focused studies conducted with non-model crop plants, especially in the woody perennial species. We conducted a genomic census and expression analysis of Aux/IAA genes in the cultivated apple (Malus × domestica Borkh.). The Aux/IAA gene family of the apple genome was identified and analyzed in this study. Phylogenetic analysis showed that MdIAAs could be categorized into nine subfamilies and that these MdIAA proteins contained four whole or partially conserved domains of the MdIAA family. The spatio-specific expression profiles showed that most of the MdIAAs were preferentially expressed in specific tissues. Some of these genes were significantly induced by treatments with one or more abiotic stresses. The overexpression of MdIAA9 in tobacco (Nicotiana tabacum L.) plants significantly increased their tolerance to osmotic stresses. Our cumulative data supports the interactions between abiotic stresses and plant hormones and provides a theoretical basis for the mechanism of Aux/IAA and drought resistance in apples.
Collapse
Affiliation(s)
- Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Dingyue Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Maoxue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Guangquan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
104
|
Yamauchi T, Tanaka A, Inahashi H, Nishizawa NK, Tsutsumi N, Inukai Y, Nakazono M. Fine control of aerenchyma and lateral root development through AUX/IAA- and ARF-dependent auxin signaling. Proc Natl Acad Sci U S A 2019; 116:20770-20775. [PMID: 31548376 PMCID: PMC6789968 DOI: 10.1073/pnas.1907181116] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lateral roots (LRs) are derived from a parental root and contribute to water and nutrient uptake from the soil. Auxin/indole-3-acetic acid protein (AUX/IAA; IAA) and auxin response factor (ARF)-mediated signaling are essential for LR formation. Lysigenous aerenchyma, a gas space created by cortical cell death, aids internal oxygen transport within plants. Rice (Oryza sativa) forms lysigenous aerenchyma constitutively under aerobic conditions and increases its formation under oxygen-deficient conditions; however, the molecular mechanisms regulating constitutive aerenchyma (CA) formation remain unclear. LR number is reduced by the dominant-negative effect of a mutated AUX/IAA protein in the iaa13 mutant. We found that CA formation is also reduced in iaa13 We have identified ARF19 as an interactor of IAA13 and identified a lateral organ boundary domain (LBD)-containing protein (LBD1-8) as a target of ARF19. IAA13, ARF19, and LBD1-8 were highly expressed in the cortex and LR primordia, suggesting that these genes function in the initiation of CA and LR formation. Restoration of LBD1-8 expression recovered aerenchyma formation and partly recovered LR formation in the iaa13 background, in which LBD1-8 expression was reduced. An auxin transport inhibitor suppressed CA and LR formation, and a natural auxin stimulated CA formation in the presence of the auxin transport inhibitor. Our findings suggest that CA and LR formation are both regulated through AUX/IAA- and ARF-dependent auxin signaling. The initiation of CA formation lagged that of LR formation, which indicates that the formation of CA and LR are regulated differently by auxin signaling during root development in rice.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Aichi, Japan;
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, 332-0012 Saitama, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, 113-8657 Tokyo, Japan
| | - Akihiro Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Aichi, Japan
| | - Hiroki Inahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Aichi, Japan
| | - Naoko K Nishizawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, 113-8657 Tokyo, Japan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, 921-8836 Ishikawa, Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, 113-8657 Tokyo, Japan
| | - Yoshiaki Inukai
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, 332-0012 Saitama, Japan
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, 464-8601 Aichi, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Aichi, Japan;
- The UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
105
|
Li S, Li Z, Zhang J, Wei D, Wang Z, Tang Q. Flowering signal integrator AGL24 interacts with K domain of AGL18 in Brassica juncea. Biochem Biophys Res Commun 2019; 518:148-153. [DOI: 10.1016/j.bbrc.2019.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 01/16/2023]
|
106
|
Zhang Y, He P, Ma X, Yang Z, Pang C, Yu J, Wang G, Friml J, Xiao G. Auxin-mediated statolith production for root gravitropism. THE NEW PHYTOLOGIST 2019; 224:761-774. [PMID: 31111487 DOI: 10.1111/nph.15932] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/11/2019] [Indexed: 05/11/2023]
Abstract
Root gravitropism is one of the most important processes allowing plant adaptation to the land environment. Auxin plays a central role in mediating root gravitropism, but how auxin contributes to gravitational perception and the subsequent response are still unclear. Here, we showed that the local auxin maximum/gradient within the root apex, which is generated by the PIN directional auxin transporters, regulates the expression of three key starch granule synthesis genes, SS4, PGM and ADG1, which in turn influence the accumulation of starch granules that serve as a statolith perceiving gravity. Moreover, using the cvxIAA-ccvTIR1 system, we also showed that TIR1-mediated auxin signaling is required for starch granule formation and gravitropic response within root tips. In addition, axr3 mutants showed reduced auxin-mediated starch granule accumulation and disruption of gravitropism within the root apex. Our results indicate that auxin-mediated statolith production relies on the TIR1/AFB-AXR3-mediated auxin signaling pathway. In summary, we propose a dual role for auxin in gravitropism: the regulation of both gravity perception and response.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, China
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria
| | - Peng He
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, China
| | - Xiongfeng Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, China
- Cotton Research Institute, Chinese Academy of Agricultural Sciences, No. 38 Yellow River Avenue, Anyang, 455000, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, China
- Cotton Research Institute, Chinese Academy of Agricultural Sciences, No. 38 Yellow River Avenue, Anyang, 455000, China
| | - Chaoyou Pang
- Cotton Research Institute, Chinese Academy of Agricultural Sciences, No. 38 Yellow River Avenue, Anyang, 455000, China
| | - Jianing Yu
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, China
| | - Guodong Wang
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, China
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria
| | - Guanghui Xiao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, China
| |
Collapse
|
107
|
Guan D, Hu X, Diao D, Wang F, Liu Y. Genome-Wide Analysis and Identification of the Aux/IAA Gene Family in Peach. Int J Mol Sci 2019; 20:E4703. [PMID: 31547521 PMCID: PMC6801721 DOI: 10.3390/ijms20194703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 01/13/2023] Open
Abstract
The Auxin/indole-3-acetic acid (Aux/IAA) repressor genes down-regulate the auxin response pathway during many stages of plant and fruit development. In order to determine if and how Aux/IAAs participate in governing texture and hardness in stone fruit maturation, we identified 23 Aux/IAA genes in peach, confirmed by the presence of four conserved domains. In this work, we used fluorescence microscopy with PpIAA-GFP fusion reporters to observe their nuclear localization. We then conducted PCR-based differential expression analysis in "melting" and "stony hard" varieties of peach, and found that in the "melting" variety, nine PpIAAs exhibited peak expression in the S4-3 stage of fruit maturation, with PpIAA33 showing the highest (>120-fold) induction. The expression of six PpIAAs peaked in the S4-2 stage, with PpIAA14 expressed the most highly. Only PpIAA15/16 showed higher expression in the "stony hard" variety than in the "melting" variety, both peaking in the S3 stage. In contrast, PpIAA32 had the highest relative expression in buds, flowers, young and mature leaves, and roots. Our study provides insights into the expression patterns of Aux/IAA developmental regulators in response to auxin during fruit maturation, thus providing insight into their potential development as useful markers for quantitative traits associated with fruit phenotype.
Collapse
Affiliation(s)
- Dan Guan
- Beijing Key Laboratory of New Technique in Agricultural Application, Beijing University of Agriculture, Beijing 102206, China.
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| | - Xiao Hu
- Beijing Key Laboratory of New Technique in Agricultural Application, Beijing University of Agriculture, Beijing 102206, China.
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| | - Donghui Diao
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China.
| | - Fang Wang
- Food science and Engineering College, Beijing University of Agriculture, Beijing 102206, China.
| | - Yueping Liu
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China.
- Key Laboratory for Northern Urban Agriculture Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
108
|
Sathyan KM, McKenna BD, Anderson WD, Duarte FM, Core L, Guertin MJ. An improved auxin-inducible degron system preserves native protein levels and enables rapid and specific protein depletion. Genes Dev 2019; 33:1441-1455. [PMID: 31467088 PMCID: PMC6771385 DOI: 10.1101/gad.328237.119] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
Rapid perturbation of protein function permits the ability to define primary molecular responses while avoiding downstream cumulative effects of protein dysregulation. The auxin-inducible degron (AID) system was developed as a tool to achieve rapid and inducible protein degradation in nonplant systems. However, tagging proteins at their endogenous loci results in chronic auxin-independent degradation by the proteasome. To correct this deficiency, we expressed the auxin response transcription factor (ARF) in an improved inducible degron system. ARF is absent from previously engineered AID systems but is a critical component of native auxin signaling. In plants, ARF directly interacts with AID in the absence of auxin, and we found that expression of the ARF PB1 (Phox and Bem1) domain suppresses constitutive degradation of AID-tagged proteins. Moreover, the rate of auxin-induced AID degradation is substantially faster in the ARF-AID system. To test the ARF-AID system in a quantitative and sensitive manner, we measured genome-wide changes in nascent transcription after rapidly depleting the ZNF143 transcription factor. Transcriptional profiling indicates that ZNF143 activates transcription in cis and regulates promoter-proximal paused RNA polymerase density. Rapidly inducible degradation systems that preserve the target protein's native expression levels and patterns will revolutionize the study of biological systems by enabling specific and temporally defined protein dysregulation.
Collapse
Affiliation(s)
- Kizhakke Mattada Sathyan
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Brian D McKenna
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Warren D Anderson
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Fabiana M Duarte
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Leighton Core
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Michael J Guertin
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia 22908, USA.,Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA.,Cancer Center, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
109
|
PtrARF2.1 Is Involved in Regulation of Leaf Development and Lignin Biosynthesis in Poplar Trees. Int J Mol Sci 2019; 20:ijms20174141. [PMID: 31450644 PMCID: PMC6747521 DOI: 10.3390/ijms20174141] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
Auxin response factors (ARFs) are important regulators modulating the expression of auxin-responsive genes in various biological processes in plants. In the Populus genome, a total of 39 ARF members have been identified, but their detailed functions are still unclear. In this study, six poplar auxin response factor 2 (PtrARF2) members were isolated from P. trichocarpa. Expression pattern analysis showed that PtrARF2.1 is highly expressed in leaf tissues compared with other PtrARF2 genes and significantly repressed by exogenous auxin treatment. PtrARF2.1 is a nuclear-localized protein without transcriptional activation activity. Knockdown of PtrARF2.1 by RNA interference (RNAi) in poplars led to the dwarf plant, altered leaf shape, and reduced size of the leaf blade, while overexpression of PtrARF2.1 resulted in a slight reduction in plant height and the similar leaf phenotype in contrast to the wildtype. Furthermore, histological staining analysis revealed an ectopic deposition of lignin in leaf veins and petioles of PtrARF2.1-RNAi lines. RNA-Seq analysis showed that 74 differential expression genes (DEGs) belonging to 12 transcription factor families, such as NAM, ATAF and CUC (NAC), v-myb avian myeloblastosis viral oncogene homolog (MYB), ethylene response factors (ERF) and basic helix–loop–helix (bHLH), were identified in PtrARF2.1-RNAi leaves and other 24 DEGs were associated with the lignin biosynthetic pathway. Altogether, the data indicate that PtrARF2.1 plays an important role in regulating leaf development and influences the lignin biosynthesis in poplars.
Collapse
|
110
|
Zheng M, Hu M, Yang H, Tang M, Zhang L, Liu H, Li X, Liu J, Sun X, Fan S, Zhang J, Terzaghi W, Pu H, Hua W. Three BnaIAA7 homologs are involved in auxin/brassinosteroid-mediated plant morphogenesis in rapeseed (Brassica napus L.). PLANT CELL REPORTS 2019; 38:883-897. [PMID: 31011789 PMCID: PMC6647246 DOI: 10.1007/s00299-019-02410-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/01/2019] [Indexed: 05/19/2023]
Abstract
BnaIAA7 crosstalk with BR signaling is mediated by the interaction between BnaARF8 and BnaBZR1 to regulate rapeseed plant morphogenesis. Auxin (indole-3-acetic acid, IAA) and brassinosteroids (BRs) are essential regulators of plant morphogenesis. However, their roles in rapeseed have not been reported. Here, we identified an extremely dwarf1 (ed1) mutant of rapeseed that displays reduced stature, short hypocotyls, as well as wavy and curled leaves. We isolated ED1 by map-based cloning, and found that it encodes a protein homologous to AtIAA7. ED1 acts as a repressor of IAA signaling, and IAA induces its degradation through its degron motif. A genomic-synteny analysis revealed that ED1 has four homologs in rapeseed, but two were not expressed. Analyses of transcriptomes and of various mutant BnaIAA7s in transgenic plants revealed that the three expressed BnaIAA7 homologs had diverse expression patterns. ED1/BnaC05.IAA7 predominantly functioned in stem elongation, BnaA05.IAA7 was essential for reproduction, while BnaA03.IAA7 had the potential to reduce plant height. Physical interaction assays revealed that the three BnaIAA7 homologs interacted in different ways with BnaTIRs/AFBs and BnaARFs, which may regulate the development of specific organs. Furthermore, BnaARF8 could directly interact with the BnaIAA7s and BnaBZR1. We propose that BnaIAA7s interact with BR signaling via BnaARF8 and BnaBZR1 to regulate stem elongation in rapeseed.
Collapse
Affiliation(s)
- Ming Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Maolong Hu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hongli Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Min Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Liang Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Hongfang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Xiaokang Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Jinglin Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Xingchao Sun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Shihang Fan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Jiefu Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA, 18766, USA
| | - Huiming Pu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.
| |
Collapse
|
111
|
Gu H, Yang Y, Xing M, Yue C, Wei F, Zhang Y, Zhao W, Huang J. Physiological and transcriptome analyses of Opisthopappus taihangensis in response to drought stress. Cell Biosci 2019; 9:56. [PMID: 31312427 PMCID: PMC6611040 DOI: 10.1186/s13578-019-0318-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/25/2019] [Indexed: 11/15/2022] Open
Abstract
Background Water scarcity is considered to be a severe environmental constraint to plant survival and productivity. Studies on drought-tolerant plants would definitely promote a better understanding of the regulatory mechanism lying behind the adaptive response of plants to drought. Opisthopappus taihangensis (ling) shih is a typical drought-tolerant perennial plant species endemically distributed across the Taihang Mountains in China, but the underlying mechanism for drought tolerance of this particular species remains elusive. Results To mimic natural drought stress, O. taihangensis plants were treated with two different concentrations (25% and 5%) of polyethylene glycol (PEG6000), which represent the H group (high salinity) and the L group (low salinity), respectively. The physiological characteristics of these two groups of plants, including relative water content maintenance (RWC), proline content and chlorophyll content were assessed and compared with plants in the control group (CK), which had normal irrigation. There was not a significant difference in RWC when comparing plants in the L group with the control group. Proline was accumulated to a higher level, and chlorophyll content was decreased slightly in plants under low drought stress. In plants from the H group, a lower RWC was observed. Proline was accumulated to an even higher level when compared with plants from the L group, and chlorophyll content was further reduced in plants under high drought stress. Transcriptomic analysis was carried out to look for genes that are differentially expressed (DEGs) in O. taihangensis plants coping adaptively with the two levels of drought stress. A total of 23,056 genes are differentially expressed between CK and L, among which 12,180 genes are up-regulated and 10,876 genes are down-regulated. Between H and L, 6182 genes are up-regulated and 1850 genes are down-regulated, which gives a total of 8032 genes. The highest number of genes, that are differentially expressed, was obtained when a comparison was made between CK and H. A total of 43,074 genes were found to be differentially expressed with 26,977 genes up-regulated and 16,097 genes down-regulated. Further analysis of these genes suggests that many of the up-regulated genes are enriched in pathways involved in amino acid metabolism. Besides, 39 transcription factors (TFs) were found to be continuously up-regulated with the increase of drought stress level. Conclusion Taken together, the results indicate that O. taihangensis plants are able to live adaptively under drought stress by responding physiologically and regulating the expression of a substantial number of drought-responsive genes and TFs to avoid adverse effects. Electronic supplementary material The online version of this article (10.1186/s13578-019-0318-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huihui Gu
- 1School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China.,2School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Yan Yang
- 2School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China.,3School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Minghui Xing
- 2School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Caipeng Yue
- 3School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Fang Wei
- 3School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Yanjie Zhang
- 3School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Wenen Zhao
- 1School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Jinyong Huang
- 3School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| |
Collapse
|
112
|
Jiang M, Hu H, Kai J, Traw MB, Yang S, Zhang X. Different knockout genotypes of OsIAA23 in rice using CRISPR/Cas9 generating different phenotypes. PLANT MOLECULAR BIOLOGY 2019; 100:467-479. [PMID: 31004275 PMCID: PMC6586719 DOI: 10.1007/s11103-019-00871-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/11/2019] [Indexed: 05/07/2023]
Abstract
We have isolated several Osiaa23 rice mutants with different knockout genotypes, resulting in different phenotypes, which suggested that different genetic backgrounds or mutation types influence gene function. The Auxin/Indole-3-Acetic Acid (Aux/IAA) gene family performs critical roles in auxin signal transduction in plants. In rice, the gene OsIAA23 (Os06t0597000) is known to affect development of roots and shoots, but previous knockouts in OsIAA23 have been sterile and difficult for research continuously. Here, we isolate new Osiaa23 mutants using the CRISPR/Cas9 system in japonica (Wuyunjing24) and indica (Kasalath) rice, with extensive genome re-sequencing to confirm the absence of off-target effects. In Kasalath, mutants with a 13-amino acid deletion showed profoundly greater dwarfing, lateral root developmental disorder, and fertility deficiency, relative to mutants with a single amino acid deletion, demonstrating that those 13 amino acids in Kasalath are essential to gene function. In Wuyunjing24, we predicted that mutants with a single base-pair frameshift insertion would experience premature termination and strong phenotypic defects, but instead these lines exhibited negligible phenotypic difference and normal fertility. Through RNA-seq, we show here that new mosaic transcripts of OsIAA23 were produced de novo, which circumvented the premature termination and thereby preserved the wild-type phenotype. This finding is a notable demonstration in plants that mutants can mask loss of function CRISPR/Cas9 editing of the target gene through de novo changes in alternative splicing.
Collapse
Affiliation(s)
- Mengmeng Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Huaying Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Kai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Milton Brian Traw
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
113
|
Ke Y, Abbas F, Zhou Y, Yu R, Yue Y, Li X, Yu Y, Fan Y. Genome-Wide Analysis and Characterization of the Aux/IAA Family Genes Related to Floral Scent Formation in Hedychium coronarium. Int J Mol Sci 2019; 20:E3235. [PMID: 31266179 PMCID: PMC6651449 DOI: 10.3390/ijms20133235] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 01/14/2023] Open
Abstract
Auxin plays a key role in different plant growth and development processes, including flower opening and development. The perception and signaling of auxin depend on the cooperative action of various components, among which auxin/indole-3-acetic acid (Aux/IAA) proteins play an imperative role. In a recent study, the entire Aux/IAA gene family was identified and comprehensively analyzed in Hedychium coronarium, a scented species used as an ornamental plant for cut flowers. Phylogenetic analysis showed that the Aux/IAA gene family in H. coronarium is slightly contracted compared to Arabidopsis, with low levels of non-canonical proteins. Sequence analysis of promoters showed numerous cis-regulatory elements related to various phytohormones. HcIAA genes showed distinct expression patterns in different tissues and flower developmental stages, and some HcIAA genes showed significant responses to auxin and ethylene, indicating that Aux/IAAs may play an important role in linking hormone signaling pathways. Based on the expression profiles, HcIAA2, HcIAA4, HcIAA6 and HcIAA12, were selected as candidate genes and HcIAA2 and HcIAA4 were screened for further characterization. Downregulation of HcIAA2 and HcIAA4 by virus-induced gene silencing in H. coronarium flowers modified the total volatile compound content, suggesting that HcIAA2 and HcIAA4 play important roles in H. coronarium floral scent formation. The results presented here will provide insights into the putative roles of HcIAA genes and will assist the elucidation of their precise roles during floral scent formation.
Collapse
Affiliation(s)
- Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
114
|
Hamm MO, Moss BL, Leydon AR, Gala HP, Lanctot A, Ramos R, Klaeser H, Lemmex AC, Zahler ML, Nemhauser JL, Wright RC. Accelerating structure-function mapping using the ViVa webtool to mine natural variation. PLANT DIRECT 2019; 3:e00147. [PMID: 31372596 PMCID: PMC6658840 DOI: 10.1002/pld3.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/20/2019] [Accepted: 04/29/2019] [Indexed: 05/13/2023]
Abstract
Thousands of sequenced genomes are now publicly available capturing a significant amount of natural variation within plant species; yet, much of these data remain inaccessible to researchers without significant bioinformatics experience. Here, we present a webtool called ViVa (Visualizing Variation) which aims to empower any researcher to take advantage of the amazing genetic resource collected in the Arabidopsis thaliana 1001 Genomes Project (http://1001genomes.org). ViVa facilitates data mining on the gene, gene family, or gene network level. To test the utility and accessibility of ViVa, we assembled a team with a range of expertise within biology and bioinformatics to analyze the natural variation within the well-studied nuclear auxin signaling pathway. Our analysis has provided further confirmation of existing knowledge and has also helped generate new hypotheses regarding this well-studied pathway. These results highlight how natural variation could be used to generate and test hypotheses about less-studied gene families and networks, especially when paired with biochemical and genetic characterization. ViVa is also readily extensible to databases of interspecific genetic variation in plants as well as other organisms, such as the 3,000 Rice Genomes Project ( http://snp-seek.irri.org/) and human genetic variation ( https://www.ncbi.nlm.nih.gov/clinvar/).
Collapse
Affiliation(s)
- Morgan O. Hamm
- Department of BiologyUniversity of WashingtonSeattleWashington
| | | | | | - Hardik P. Gala
- Department of BiologyUniversity of WashingtonSeattleWashington
| | - Amy Lanctot
- Department of BiologyUniversity of WashingtonSeattleWashington
| | - Román Ramos
- Department of BiologyUniversity of WashingtonSeattleWashington
| | - Hannah Klaeser
- Department of BiologyWhitman CollegeWalla WallaWashington
| | | | | | | | - R. Clay Wright
- Biological Systems EngineeringVirginia TechBlacksburgVirginia
| |
Collapse
|
115
|
Wang L, Xu K, Li Y, Cai W, Zhao Y, Yu B, Zhu Y. Genome-Wide Identification of the Aux/IAA Family Genes (MdIAA) and Functional Analysis of MdIAA18 for Apple Tree Ideotype. Biochem Genet 2019; 57:709-733. [PMID: 30997626 DOI: 10.1007/s10528-019-09919-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 04/01/2019] [Indexed: 11/26/2022]
Abstract
The Aux/IAA (auxin/indole-3-acetic acid) gene family is one of the early auxin-responsive gene families, which play a central role in auxin response. Few reports are involved in Aux/IAA genes in fruit trees, especially in apple (Malus × domestica Borkh.). A total of 33 MdIAA members were identified, of which 27 members contained four conserved domains, whereas the others lost one or two conserved domains. Several cis-elements in promoters of MdIAAs were predicted responsive to hormones and abiotic stress. Tissue-specific expression patterns of MdIAAs in different apple tree ideotypes were investigated by quantitative real-time PCR. A large number of MdIAAs were highly expressed in leaf buds and reproductive organs, and MdIAAs clustered in same group showed similar expression profiles. Overexpression of MdIAA18 in Arabidopsis resulted in compact phenotype. These results indicated that MdIAA genes may be involved in vegetative and reproductive growth of apple. Taken together, the results provide useful clues to reveal the function of MdIAAs in apple and control apple tree architecture by manipulation of MdIAAs.
Collapse
Affiliation(s)
- Limin Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Ke Xu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongzhou Li
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Wenbo Cai
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yanan Zhao
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Boyang Yu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yuandi Zhu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
116
|
Singh P, Mathew IE, Verma A, Tyagi AK, Agarwal P. Analysis of Rice Proteins with DLN Repressor Motif/S. Int J Mol Sci 2019; 20:ijms20071600. [PMID: 30935059 PMCID: PMC6479872 DOI: 10.3390/ijms20071600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
Transcriptional regulation includes both activation and repression of downstream genes. In plants, a well-established class of repressors are proteins with an ERF-associated amphiphilic repression/EAR domain. They contain either DLNxxP or LxLxL as the identifying hexapeptide motif. In rice (Oryza sativa), we have identified a total of 266 DLN repressor proteins, with the former motif and its modifications thereof comprising 227 transcription factors and 39 transcriptional regulators. Apart from DLNxxP motif conservation, DLNxP and DLNxxxP motifs with variable numbers/positions of proline and those without any proline conservation have been identified. Most of the DLN repressome proteins have a single DLN motif, with higher relative percentage in the C-terminal region. We have designed a simple yeast-based experiment wherein a DLN motif can successfully cause strong repression of downstream reporter genes, when fused to a transcriptional activator of rice or yeast. The DLN hexapeptide motif is essential for repression, and at least two “DLN” residues cause maximal repression. Comparatively, rice has more DLN repressor encoding genes than Arabidopsis, and DLNSPP motif from rice is 40% stronger than the known Arabidopsis SRDX motif. The study reports a straightforward assay to analyze repressor activity, along with the identification of a strong DLN repressor from rice.
Collapse
Affiliation(s)
- Purnima Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | - Iny Elizebeth Mathew
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | - Ankit Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, South Campus Delhi University, New Delhi-110021, India.
| | - Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| |
Collapse
|
117
|
Chung Y, Zhu Y, Wu MF, Simonini S, Kuhn A, Armenta-Medina A, Jin R, Østergaard L, Gillmor CS, Wagner D. Auxin Response Factors promote organogenesis by chromatin-mediated repression of the pluripotency gene SHOOTMERISTEMLESS. Nat Commun 2019; 10:886. [PMID: 30792395 PMCID: PMC6385194 DOI: 10.1038/s41467-019-08861-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022] Open
Abstract
Specification of new organs from transit amplifying cells is critical for higher eukaryote development. In plants, a central stem cell pool maintained by the pluripotency factor SHOOTMERISTEMLESS (STM), is surrounded by transit amplifying cells competent to respond to auxin hormone maxima by giving rise to new organs. Auxin triggers flower initiation through Auxin Response Factor (ARF) MONOPTEROS (MP) and recruitment of chromatin remodelers to activate genes promoting floral fate. The contribution of gene repression to reproductive primordium initiation is poorly understood. Here we show that downregulation of the STM pluripotency gene promotes initiation of flowers and uncover the mechanism for STM silencing. The ARFs ETTIN (ETT) and ARF4 promote organogenesis at the reproductive shoot apex in parallel with MP via histone-deacetylation mediated transcriptional silencing of STM. ETT and ARF4 directly repress STM, while MP acts indirectly, through its target FILAMENTOUS FLOWER (FIL). Our data suggest that - as in animals- downregulation of the pluripotency program is important for organogenesis in plants.
Collapse
Affiliation(s)
- Yuhee Chung
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Zhu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Miin-Feng Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Bayer Crop Science, St. Louis, MO, 63146, USA
| | - Sara Simonini
- Crop Genetics Dept, John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, Norfolk, UK
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Andre Kuhn
- Crop Genetics Dept, John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, Norfolk, UK
| | - Alma Armenta-Medina
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato C.P., 36824, Guanajuato, Mexico
| | - Run Jin
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lars Østergaard
- Crop Genetics Dept, John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, Norfolk, UK
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato C.P., 36824, Guanajuato, Mexico
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
118
|
Genome-wide Identification, Expression Profiling and Evolutionary Analysis of Auxin Response Factor Gene Family in Potato (Solanum tuberosum Group Phureja). Sci Rep 2019; 9:1755. [PMID: 30742001 PMCID: PMC6370904 DOI: 10.1038/s41598-018-37923-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/13/2018] [Indexed: 01/02/2023] Open
Abstract
Auxin response factors (ARFs) play central roles in conferring auxin-mediated responses through selection of target genes in plants. Despite their physiological importance, systematic analysis of ARF genes in potato have not been investigated yet. Our genome-wide analysis identified 20 StARF (Solanum tuberosum ARF) genes from potato and found that they are unevenly distributed in all the potato chromosomes except chromosome X. Sequence alignment and conserved motif analysis suggested the presence of all typical domains in all but StARF18c that lacks B3 DNA-binding domain. Phylogenetic analysis indicated that potato ARF could be clustered into 3 distinct subgroups, a result supported by exon-intron structure, consensus motifs, and domain architecture. In silico expression analysis and quantitative real-time PCR experiments revealed that several StARFs were expressed in tissue-specific, biotic/abiotic stress-responsive or hormone-inducible manners, which reflected their potential roles in plant growth, development or under various stress adaptions. Strikingly, most StARFs were identified as highly abiotic stress responsive, indicating that auxin signaling might be implicated in mediating environmental stress-adaptation responses. Taken together, this analysis provides molecular insights into StARF gene family, which paves the way to functional analysis of StARF members and will facilitate potato breeding programs.
Collapse
|
119
|
Pomares-Viciana T, Del Río-Celestino M, Román B, Die J, Pico B, Gómez P. First RNA-seq approach to study fruit set and parthenocarpy in zucchini (Cucurbita pepo L.). BMC PLANT BIOLOGY 2019; 19:61. [PMID: 30727959 PMCID: PMC6366093 DOI: 10.1186/s12870-019-1632-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/04/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Zucchini fruit set can be limited due to unfavourable environmental conditions in off-seasons crops that caused ineffective pollination/fertilization. Parthenocarpy, the natural or artificial fruit development without fertilization, has been recognized as an important trait to avoid this problem, and is related to auxin signalling. Nevertheless, differences found in transcriptome analysis during early fruit development of zucchini suggest that other complementary pathways could regulate fruit formation in parthenocarpic cultivars of this species. The development of next-generation sequencing technologies (NGS) as RNA-sequencing (RNA-seq) opens a new horizon for mapping and quantifying transcriptome to understand the molecular basis of pathways that could regulate parthenocarpy in this species. The aim of the current study was to analyze fruit transcriptome of two cultivars of zucchini, a non-parthenocarpic cultivar and a parthenocarpic cultivar, in an attempt to identify key genes involved in parthenocarpy. RESULTS RNA-seq analysis of six libraries (unpollinated, pollinated and auxin treated fruit in a non-parthenocarpic and parthenocarpic cultivar) was performed mapping to a new version of C. pepo transcriptome, with a mean of 92% success rate of mapping. In the non-parthenocarpic cultivar, 6479 and 2186 genes were differentially expressed (DEGs) in pollinated fruit and auxin treated fruit, respectively. In the parthenocarpic cultivar, 10,497 in pollinated fruit and 5718 in auxin treated fruit. A comparison between transcriptome of the unpollinated fruit for each cultivar has been performed determining that 6120 genes were differentially expressed. Annotation analysis of these DEGs revealed that cell cycle, regulation of transcription, carbohydrate metabolism and coordination between auxin, ethylene and gibberellin were enriched biological processes during pollinated and parthenocarpic fruit set. CONCLUSION This analysis revealed the important role of hormones during fruit set, establishing the activating role of auxins and gibberellins against the inhibitory role of ethylene and different candidate genes that could be useful as markers for parthenocarpic selection in the current breeding programs of zucchini.
Collapse
Affiliation(s)
- Teresa Pomares-Viciana
- Genomics and Biotechnology Department, IFAPA Research Centre La Mojonera, Camino de San Nicolás, 1, 04745 La Mojonera, Almería, Spain
| | - Mercedes Del Río-Celestino
- Genomics and Biotechnology Department, IFAPA Research Centre La Mojonera, Camino de San Nicolás, 1, 04745 La Mojonera, Almería, Spain
| | - Belén Román
- Genomics and Biotechnology Department, IFAPA Research Centre Alameda del Obispo, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Jose Die
- Genetics Department, University of Cordoba, Av. de Medina Azahara, 5, 14071 Córdoba, Spain
| | - Belén Pico
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Pedro Gómez
- Genomics and Biotechnology Department, IFAPA Research Centre La Mojonera, Camino de San Nicolás, 1, 04745 La Mojonera, Almería, Spain
| |
Collapse
|
120
|
Affiliation(s)
- Ricardo F H Giehl
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany.
| |
Collapse
|
121
|
Singh M, Mas P. A Functional Connection between the Circadian Clock and Hormonal Timing in Arabidopsis. Genes (Basel) 2018; 9:E567. [PMID: 30477118 PMCID: PMC6315462 DOI: 10.3390/genes9120567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 02/04/2023] Open
Abstract
The rotation of the Earth entails changes in environmental conditions that pervasively influence an organism's physiology and metabolism. An internal cellular mechanism known as the circadian clock acts as an internal timekeeper that is able to perceive the changes in environmental cues to generate 24-h rhythms in synchronization with daily and seasonal fluctuations. In plants, the circadian clock function is particularly important and regulates nearly every aspect of plant growth and development as well as proper responses to stresses. The circadian clock does not function in isolation but rather interconnects with an intricate network of different pathways, including those of phytohormones. Here, we describe the interplay of the circadian clock with a subset of hormones in Arabidopsis. The molecular components directly connecting the circadian and hormone pathways are described, highlighting the biological significance of such connections in the control of growth, development, fitness, and survival. We focus on the overlapping as well as contrasting circadian and hormonal functions that together provide a glimpse on how the Arabidopsis circadian system regulates hormone function in response to endogenous and exogenous cues. Examples of feedback regulation from hormone signaling to the clock are also discussed.
Collapse
Affiliation(s)
- Manjul Singh
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Paloma Mas
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain.
| |
Collapse
|
122
|
Chen SH, Zhou LJ, Xu P, Xue HW. SPOC domain-containing protein Leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling. PLoS Genet 2018; 14:e1007829. [PMID: 30496185 PMCID: PMC6289470 DOI: 10.1371/journal.pgen.1007829] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/11/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022] Open
Abstract
Leaf angle is an important agronomic trait and influences crop architecture and yield. Studies have demonstrated the roles of phytohormones, particularly auxin and brassinosteroids, and various factors in controlling leaf inclination. However, the underlying mechanism especially the upstream regulatory networks still need being clarified. Here we report the functional characterization of rice leaf inclination3 (LC3), a SPOC domain-containing transcription suppressor, in regulating leaf inclination through interacting with LIP1 (LC3-interacting protein 1), a HIT zinc finger domain-containing protein. LC3 deficiency results in increased leaf inclination and enhanced expressions of OsIAA12 and OsGH3.2. Being consistent, transgenic plants with OsIAA12 overexpression or deficiency of OsARF17 which interacts with OsIAA12 do present enlarged leaf inclination. LIP1 directly binds to promoter regions of OsIAA12 and OsGH3.2, and interacts with LC3 to synergistically suppress auxin signaling. Our study demonstrate the distinct effects of IAA12-ARF17 interactions in leaf inclination regulation, and provide informative clues to elucidate the functional mechanism of SPOC domain-containing transcription suppressor and fine-controlled network of lamina joint development by LC3-regulated auxin homeostasis and auxin signaling through.
Collapse
Affiliation(s)
- Su-Hui Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Juan Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
123
|
Reed JW, Wu MF, Reeves PH, Hodgens C, Yadav V, Hayes S, Pierik R. Three Auxin Response Factors Promote Hypocotyl Elongation. PLANT PHYSIOLOGY 2018; 178:864-875. [PMID: 30139794 PMCID: PMC6181040 DOI: 10.1104/pp.18.00718] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/09/2018] [Indexed: 05/18/2023]
Abstract
The hormone auxin regulates growth largely by affecting gene expression. By studying Arabidopsis (Arabidopsis thaliana) mutants deficient in AUXIN RESPONSE FACTORS (ARFs), we have identified three ARF proteins that are required for auxin-responsive hypocotyl elongation. Plants deficient in these factors have reduced responses to environmental conditions that increase auxin levels, including far-red-enriched light and high temperature. Despite having decreased auxin responses, the ARF-deficient plants responded to brassinosteroid and gibberellin, indicating that different hormones can act partially independently. Aux/IAA proteins, encoded by IAA genes, interact with ARF proteins to repress auxin response. Silencing expression of multiple IAA genes increased hypocotyl elongation, suggesting that Aux/IAA proteins modulate ARF activity in hypocotyls in a potential negative feedback loop.
Collapse
Affiliation(s)
- Jason W Reed
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Miin-Feng Wu
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Paul H Reeves
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Charles Hodgens
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Vandana Yadav
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Scott Hayes
- Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ronald Pierik
- Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
124
|
Barnes SN, Wram CL, Mitchum MG, Baum TJ. The plant-parasitic cyst nematode effector GLAND4 is a DNA-binding protein. MOLECULAR PLANT PATHOLOGY 2018; 19:2263-2276. [PMID: 29719112 PMCID: PMC6637993 DOI: 10.1111/mpp.12697] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 05/24/2023]
Abstract
Cyst nematodes are plant pathogens that infect a wide range of economically important crops. One parasitic mechanism employed by cyst nematodes is the production and in planta delivery of effector proteins to modify plant cells and suppress defences to favour parasitism. This study focuses on GLAND4, an effector of Heterodera glycines and H. schachtii, the soybean and sugar beet cyst nematodes, respectively. We show that GLAND4 is recognized by the plant cellular machinery and is transported to the plant nucleus, an organelle for which little is known about plant nematode effector functions. We show that GLAND4 has DNA-binding ability and represses reporter gene expression in a plant transcriptional assay. One DNA fragment that binds to GLAND4 is localized in an Arabidopsis chromosomal region associated with the promoters of two lipid transfer protein genes (LTP). These LTPs have known defence functions and are down-regulated in the nematode feeding site. When expressed in Arabidopsis, the presence of GLAND4 causes the down-regulation of the two LTP genes in question, which is also associated with increased susceptibility to the plant-pathogenic bacterium Pseudomonas syringae. Furthermore, overexpression of one of the LTP genes reduces plant susceptibility to H. schachtii and P. syringae, confirming that LTP repression probably suppresses plant defences. This study makes GLAND4 one of a small subset of characterized plant nematode nuclear effectors and identifies GLAND4 as the first DNA-binding, plant-parasitic nematode effector.
Collapse
Affiliation(s)
- Stacey N. Barnes
- Plant Pathology & Microbiology DepartmentIowa State UniversityAmesIA 50011USA
| | - Catherine L. Wram
- Plant Pathology & Microbiology DepartmentIowa State UniversityAmesIA 50011USA
- Present address:
Department of Botany and Plant PathologyOregon State UniversityCorvallisOR 97330USA
| | - Melissa G. Mitchum
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMO 65211USA
| | - Thomas J. Baum
- Plant Pathology & Microbiology DepartmentIowa State UniversityAmesIA 50011USA
| |
Collapse
|
125
|
Waseem M, Ahmad F, Habib S, Li Z. Genome-wide identification of the auxin/indole-3-acetic acid (Aux/IAA) gene family in pepper, its characterisation, and comprehensive expression profiling under environmental and phytohormones stress. Sci Rep 2018; 8:12008. [PMID: 30104758 PMCID: PMC6089902 DOI: 10.1038/s41598-018-30468-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/31/2018] [Indexed: 12/23/2022] Open
Abstract
Auxin is an essential phytohormone that plays a crucial role in the growth and development of plants in stressful environments. Here, we analysed the auxin/indole-3-acetic acid (Aux/IAA) gene family, which produces auxin in pepper, and succeeded in identifying 27 putative members containing four conserved domains (I. II. III and IV) in their protein sequences. Sequence analysis, chromosomal mapping and motif prediction of all identified CaAux/IAA genes were performed. It was observed that these genes contained four conserved motifs divided into nine different groups and distributed across nine chromosomes in pepper plants. RNA-seq analysis revealed the organ specific expression of many CaAux/IAA genes. However, the majority of genes were expressed with high expression levels in the early stages of fruit development. However, the maximum expression level of the CA03g34540 gene was observed in the breaker stage. Moreover, thirteen CaAux/IAA genes were labelled as early responsive genes to various phytohormone and abiotic stresses. Furthermore, RNA-seq analysis in response to pathogen inoculation (PepMoV, TMV strains P0/P1, and Phytophthora capsici) showed distinct expression profiles of all identified genes, suggesting the diverse expression nature of genes under these stress conditions. Overall, this study provides insight into the dynamic response of CaAux/IAA genes under environmental and phytohormones stress conditions, providing bases to further explore the importance of these genes through mutant/transgenic analysis in pepper.
Collapse
Affiliation(s)
- Muhammad Waseem
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Fiaz Ahmad
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Sidra Habib
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| |
Collapse
|
126
|
Zhang L, Sun L, Zhang X, Zhang S, Xie D, Liang C, Huang W, Fan L, Fang Y, Chang Y. OFP1 Interaction with ATH1 Regulates Stem Growth, Flowering Time and Flower Basal Boundary Formation in Arabidopsis. Genes (Basel) 2018; 9:genes9080399. [PMID: 30082666 PMCID: PMC6116164 DOI: 10.3390/genes9080399] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 11/16/2022] Open
Abstract
Ovate Family Protein1 (OFP1) is a regulator, and it is suspected to be involved in plant growth and development. Meanwhile, Arabidopsis Thaliana Homeobox (ATH1), a BEL1-like homeodomain (HD) transcription factor, is known to be involved in regulating stem growth, flowering time and flower basal boundary development in Arabidopsis. Previous large-scale yeast two-hybrid studies suggest that ATH1 possibly interact with OFP1, but this interaction is yet unverified. In our study, the interaction of OFP1 with ATH1 was verified using a directional yeast two-hybrid system and bimolecular fluorescence complementation (BiFC). Our results also demonstrated that the OFP1-ATH1 interaction is mainly controlled by the HD domain of ATH1. Meanwhile, we found that ATH1 plays the role of transcriptional repressor to regulate plant development and that OFP1 can enhance ATH1 repression function. Regardless of the mechanism, a putative functional role of ATH1-OFP1 may be to regulate the expression of the both the GA20ox1 gene, which is involved in gibberellin (GA) biosynthesis and control of stem elongation, and the Flowering Locus C (FLC) gene, which inhibits transition to flowering. Ultimately, the regulatory functional mechanism of OFP1-ATH1 may be complicated and diverse according to our results, and this work lays groundwork for further understanding of a unique and important protein⁻protein interaction that influences flowering time, stem development, and flower basal boundary development in plants.
Collapse
Affiliation(s)
- Liguo Zhang
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Lili Sun
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Xiaofei Zhang
- College of Mathematics and Information Sciences, Guangxi University, Nanning 530004, China.
| | - Shuquan Zhang
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Dongwei Xie
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Chunbo Liang
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Wengong Huang
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Lijuan Fan
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Yuyan Fang
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Ying Chang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
127
|
Liu M, Chen Y, Chen Y, Shin JH, Mila I, Audran C, Zouine M, Pirrello J, Bouzayen M. The tomato Ethylene Response Factor Sl-ERF.B3 integrates ethylene and auxin signaling via direct regulation of Sl-Aux/IAA27. THE NEW PHYTOLOGIST 2018; 219:631-640. [PMID: 29701899 DOI: 10.1111/nph.15165] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/14/2018] [Indexed: 05/02/2023]
Abstract
Plant growth and development is coordinated by complex networks of interacting hormones, and cross-talk between ethylene and auxin signaling is essential for a wide range of plant developmental processes. Nevertheless, the molecular links underlying the interaction between the two hormones remain poorly understood. In order to decipher the cross-talk between the Ethylene Response Factor Sl-ERF.B3 and Sl-IAA27, mediating ethylene and auxin signaling, respectively, we combined reverse genetic approaches, physiological methods, transactivation experiments and electrophoretic mobility shift assays. Sl-ERF.B3 is responsive to both ethylene and auxin and ectopic expression of its dominant repressor version (ERF.B3-SRDX) results in impaired sensitivity to auxin with phenotypes recalling those previously reported for Sl-IAA27 downregulated tomato lines. The expression of Sl-IAA27 is dramatically reduced in the ERF.B3-SRDX lines and Sl-ERF.B3 is shown to regulate the expression of Sl-IAA27 via direct binding to its promoter. The data support a model in which the ethylene-responsive Sl-ERF.B3 integrates ethylene and auxin signaling via regulation of the expression of the auxin signaling component Sl-IAA27. The study uncovers a molecular mechanism that links ethylene and auxin signaling in tomato.
Collapse
Affiliation(s)
- Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ya Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jun-Hye Shin
- INP-ENSA Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Université de Toulouse, Avenue de l'Agrobiopole, Castanet-Tolosan, CS, 32607, F-31326, France
- UMR990 Génomique et Biotechnologie des Fruits, INRA, 24 Chemin de Borde Rouge, Castanet-Tolosan, CS, 52627, F-31326, France
| | - Isabelle Mila
- INP-ENSA Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Université de Toulouse, Avenue de l'Agrobiopole, Castanet-Tolosan, CS, 32607, F-31326, France
- UMR990 Génomique et Biotechnologie des Fruits, INRA, 24 Chemin de Borde Rouge, Castanet-Tolosan, CS, 52627, F-31326, France
| | - Corinne Audran
- LIPM, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, CS, 31326, France
| | - Mohamed Zouine
- INP-ENSA Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Université de Toulouse, Avenue de l'Agrobiopole, Castanet-Tolosan, CS, 32607, F-31326, France
- UMR990 Génomique et Biotechnologie des Fruits, INRA, 24 Chemin de Borde Rouge, Castanet-Tolosan, CS, 52627, F-31326, France
| | - Julien Pirrello
- INP-ENSA Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Université de Toulouse, Avenue de l'Agrobiopole, Castanet-Tolosan, CS, 32607, F-31326, France
- UMR990 Génomique et Biotechnologie des Fruits, INRA, 24 Chemin de Borde Rouge, Castanet-Tolosan, CS, 52627, F-31326, France
| | - Mondher Bouzayen
- INP-ENSA Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Université de Toulouse, Avenue de l'Agrobiopole, Castanet-Tolosan, CS, 32607, F-31326, France
- UMR990 Génomique et Biotechnologie des Fruits, INRA, 24 Chemin de Borde Rouge, Castanet-Tolosan, CS, 52627, F-31326, France
| |
Collapse
|
128
|
Yuan H, Zhao L, Chen J, Yang Y, Xu D, Tao S, Zheng S, Shen Y, He Y, Shen C, Yan D, Zheng B. Identification and expression profiling of the Aux/IAA gene family in Chinese hickory (Carya cathayensis Sarg.) during the grafting process. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:55-63. [PMID: 29549758 DOI: 10.1016/j.plaphy.2018.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Auxin is an essential regulator in various aspects of organism growth and development. Members of the Aux/IAA family of genes encode short-lived nuclear proteins and mediate the responses of auxin-regulated gene expression. Here, the first identification and characterization of 22 cDNAs encoding the open reading frame of the Aux/IAA family in Chinese hickory (named as CcIAA) has been performed. The proteins encoded by these genes contain four whole or partially conserved domains of the Aux/IAA family. Phylogenetic analysis indicated that CcIAAs were unevenly distributed among eight different subgroups. The spatio-specific expression profiles showed that most of the CcIAAs preferentially expressed in specific tissues. Three CcIAA genes, including CcIAA11, CcIAA27a2 and CcIAAx, were predominantly expressed in stem. The predominant expression of CcIAA genes in stems might play important roles in vascular reconnection during the graft process. Furthermore, expression profiles of Aux/IAA genes during the grafting process of Chinese hickory have been analysed. Our data suggested that 19 CcIAAs were down-regulated and 3 CcIAAs (including CcIAA28, CcIAA8a and CcIAA27b) were induced, indicating their specializations during the grafting process. The involvement of CcIAA genes at the early stage after grafting gives us an opportunity to understand the role of auxin signalling in the grafting process.
Collapse
Affiliation(s)
- Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Liang Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Juanjuan Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Dongbin Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Shenchen Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Yirui Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou, 311300, China; Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Linan, Hangzhou, 311300, China.
| |
Collapse
|
129
|
Xie M, Chen H, Huang L, O'Neil RC, Shokhirev MN, Ecker JR. A B-ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development. Nat Commun 2018; 9:1604. [PMID: 29686312 PMCID: PMC5913131 DOI: 10.1038/s41467-018-03921-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 03/22/2018] [Indexed: 11/08/2022] Open
Abstract
Cytokinin fulfills its diverse roles in planta through a series of transcriptional responses. We identify the in vivo DNA binding site profiles for three genetically redundant type-B ARABIDOPSIS RESPONSE REGULATORS (B-ARRs): ARR1, ARR10, and ARR12. The expression and genome-wide DNA binding locations of the three B-ARRs extensively overlap. Constructing a primary cytokinin response transcriptional network reveals a recurring theme of widespread cross-regulation between the components of the cytokinin pathway and other plant hormone pathways. The B-ARRs are found to have similar DNA binding motifs, though sequences flanking the core motif were degenerate. Cytokinin treatments amalgamate the three different B-ARRs motifs to identical DNA binding signatures (AGATHY, H(a/t/c), Y(t/c)) which suggests cytokinin may regulate binding activity of B-ARR family members. Furthermore, we find that WUSCHEL, a key gene required for apical meristem maintenance, is a cytokinin-dependent B-ARR target gene, demonstrating the importance of the cytokinin transcription factor network in shoot development.
Collapse
Affiliation(s)
- Mingtang Xie
- Plant Biology Laboratory, and Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Hongyu Chen
- Department of Computer Science, Dartmouth College, Hanover, NH, 03755, USA
| | - Ling Huang
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ryan C O'Neil
- Plant Biology Laboratory, and Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Bioinformatics Program, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Maxim N Shokhirev
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Joseph R Ecker
- Plant Biology Laboratory, and Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
130
|
Wang J, Tian Y, Li J, Yang K, Xing S, Han X, Xu D, Wang Y. Transcriptome sequencing of active buds from Populus deltoides CL. and Populus × zhaiguanheibaiyang reveals phytohormones involved in branching. Genomics 2018; 111:700-709. [PMID: 29660475 DOI: 10.1016/j.ygeno.2018.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/22/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Branching in woody plants affects their ecological benefits and impacts wood formation. To obtain genome-wide insights into the transcriptome changes and regulatory mechanisms associated with branching, we performed high-throughput RNA sequencing to characterize cDNA libraries generated from active buds of Populus deltoides CL. 'zhonglin2025' (BC) and Populus × zhaiguanheibaiyang (NC). NC has more branches than BC and rapid growth. We obtained a total of 198.2 million high-quality clean reads from the NC and BC libraries. We detected 3543 differentially expressed genes (DEGs) between the NC and BC libraries; 1418 were down-regulated and 2125 were up-regulated. Gene ontology functional classification of the DEGs indicated that they included 89 genes that encoded proteins related to hormone biosynthesis, 364 genes related to hormone signaling transduction, and 104 related to the auxin efflux transmembrane transporter. We validated the expression profiles of 16° by real-time quantitative PCR and found that their expression patterns were similar to those obtained from the high-throughput RNA sequencing data. We also measured the hormone content in young buds of BC and NC by high-pressure liquid chromatography. In this study, we identified global hormone regulatory patterns and differences in gene expression between NC and BC, and constructed a hormone regulatory network to explain branching in Populus buds. In addition, candidate genes that may be useful for molecular breeding of particular plant types were identified. Our results will provide a starting point for future investigations into the molecular mechanisms of branching in Populus.
Collapse
Affiliation(s)
- Jinnan Wang
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Silviculture Key Lab of Shandong Province Forestry, College of Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yanting Tian
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Silviculture Key Lab of Shandong Province Forestry, College of Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jihong Li
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Silviculture Key Lab of Shandong Province Forestry, College of Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Keqiang Yang
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Silviculture Key Lab of Shandong Province Forestry, College of Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Shiyan Xing
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Silviculture Key Lab of Shandong Province Forestry, College of Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiaojiao Han
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China.
| | - Dong Xu
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Silviculture Key Lab of Shandong Province Forestry, College of Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yiwei Wang
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Silviculture Key Lab of Shandong Province Forestry, College of Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| |
Collapse
|
131
|
Zhang N, Yang L, Luo S, Wang X, Wang W, Cheng Y, Tian H, Zheng K, Cai L, Wang S. Genetic evidence suggests that GIS functions downstream of TCL1 to regulate trichome formation in Arabidopsis. BMC PLANT BIOLOGY 2018; 18:63. [PMID: 29653514 PMCID: PMC5899377 DOI: 10.1186/s12870-018-1271-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 03/26/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Trichome formation in Arabidopsis is regulated by a MBW complex formed by MYB, bHLH and WD40 transcriptional factors, which can activate GLABRA2 (GL2) and the R3 MYB transcription factor genes. GL2 promotes trichome formation, whereas R3 MYBs are able to block the formation of the MBW complex. It has been reported that the C2H2 transcription factor GIS (GLABROUS INFLORESCENCE STEMS) functions upstream of the MBW activator complex to regulate trichome formation, and that the expression of TCL1 is not regulated by the MBW complex. However, gis and the R3 MYB gene mutant tcl1 (trichomeless 1) have opposite inflorescence trichome phenotypes, but their relationship in regulating trichome formation remained unknown. RESULTS By generating and characterization of the gis tcl1 double mutant, we found that trichome formation in the gis tcl1double and the tcl1 single mutants were largely indistinguishable, but the trichome formation in the 35S:TCL1/gis transgenic plant was similar to that in the gis mutant. By using quantitative RT-PCR analysis, we showed that expression level of GIS was increased in the triple mutant tcl1 try cpc, but the expression level of TCL1 was not affected in the gis mutant. On the other hand, trichome morphology in both gis tcl1 and 35S:TCL1/gis plants was similar to that in the gis mutant. CONCLUSIONS In summary, our results indicate that GIS may work downstream of TCL1 to regulate trichome formation, and GIS has a dominant role in controlling trichome morphology.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Li Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Sha Luo
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Xutong Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Wei Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Ling Cai
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| |
Collapse
|
132
|
E3 ubiquitin ligase SOR1 regulates ethylene response in rice root by modulating stability of Aux/IAA protein. Proc Natl Acad Sci U S A 2018; 115:4513-4518. [PMID: 29632179 PMCID: PMC5924906 DOI: 10.1073/pnas.1719387115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Auxin signaling components participate in ethylene-mediated inhibition of root elongation. However, the interplay between TIR1/AFB2-auxin-Aux/indole acetic acid (IAA) signaling and ethylene response remains to be elucidated in detail. In this study, we report an E3 ubiquitin ligase soil-surface rooting 1 (SOR1), which targets a noncanonical Aux/IAA protein OsIAA26 for 26S proteasome-mediated degradation. The E3 ligase activity of SOR1 can be repressed by the canonical Aux/IAA protein OsIAA9, which is the target of OsTIR1/AFB2. Our study identifies a potential regulator that modulates auxin-mediated ethylene response at the auxin signaling level. Plant hormones ethylene and auxin synergistically regulate plant root growth and development. Ubiquitin-mediated proteolysis of Aux/IAA transcriptional repressors by the E3 ubiquitin ligase SCFTIR1/AFB triggers a transcription-based auxin signaling. Here we show that rice (Oryza sativa L.) soil-surface rooting 1 (SOR1), which is a RING finger E3 ubiquitin ligase identified from analysis of a rice ethylene-insensitive mutant mhz2/sor1-2, controls root-specific ethylene responses by modulating Aux/IAA protein stability. SOR1 physically interacts with OsIAA26 and OsIAA9, which are atypical and canonical Aux/IAA proteins, respectively. SOR1 targets OsIAA26 for ubiquitin/26S proteasome-mediated degradation, whereas OsIAA9 protects the OsIAA26 protein from degradation by inhibiting the E3 activity of SOR1. Auxin promotes SOR1-dependent degradation of OsIAA26 by facilitating SCFOsTIR1/AFB2-mediated and SOR1-assisted destabilization of OsIAA9 protein. Our study provides a candidate mechanism by which the SOR1-OsIAA26 module acts downstream of the OsTIR1/AFB2-auxin-OsIAA9 signaling to modulate ethylene inhibition of root growth in rice seedlings.
Collapse
|
133
|
Yamamoto T, Yoshida Y, Nakajima K, Tominaga M, Gyohda A, Suzuki H, Okamoto T, Nishimura T, Yokotani N, Minami E, Nishizawa Y, Miyamoto K, Yamane H, Okada K, Koshiba T. Expression of RSOsPR10 in rice roots is antagonistically regulated by jasmonate/ethylene and salicylic acid via the activator OsERF87 and the repressor OsWRKY76, respectively. PLANT DIRECT 2018; 2:e00049. [PMID: 31245715 PMCID: PMC6508531 DOI: 10.1002/pld3.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/29/2018] [Accepted: 02/28/2018] [Indexed: 05/08/2023]
Abstract
Plant roots play important roles in absorbing water and nutrients, and in tolerance against environmental stresses. Previously, we identified a rice root-specific pathogenesis-related protein (RSOsPR10) induced by drought, salt, and wounding. RSOsPR10 expression is strongly induced by jasmonate (JA)/ethylene (ET), but suppressed by salicylic acid (SA). Here, we analyzed the promoter activity of RSOsPR10. Analyses of transgenic rice lines harboring different-length promoter::β-glucuronidase (GUS) constructs showed that the 3-kb promoter region is indispensable for JA/ET induction, SA repression, and root-specific expression. In the JA-treated 3K-promoter::GUS line, GUS activity was mainly observed at lateral root primordia. Transient expression in roots using a dual luciferase (LUC) assay with different-length promoter::LUC constructs demonstrated that the novel transcription factor OsERF87 induced 3K-promoter::LUC expression through binding to GCC-cis elements. In contrast, the SA-inducible OsWRKY76 transcription factor strongly repressed the JA-inducible and OsERF87-dependent expression of RSOsPR10. RSOsPR10 was expressed at lower levels in OsWRKY76-overexpressing rice, but at higher levels in OsWRKY76-knockout rice, compared with wild type. These results show that two transcription factors, OsERF87 and OsWRKY76, antagonistically regulate RSOsPR10 expression through binding to the same promoter. This mechanism represents a fine-tuning system to sense the balance between JA/ET and SA signaling in plants under environmental stress.
Collapse
Affiliation(s)
- Takahiro Yamamoto
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Yuri Yoshida
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
- Biotechnology Research CenterThe University of TokyoBunkyo‐kuTokyoJapan
| | - Kazunari Nakajima
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Makiko Tominaga
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Atsuko Gyohda
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Hiromi Suzuki
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Takashi Okamoto
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Takeshi Nishimura
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
- Bioagric SciNagoya UniversityNagoyaAichiJapan
| | - Naoki Yokotani
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
- Kazusa DNA Research InstituteKisarazuChibaJapan
| | - Eiichi Minami
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
| | - Yoko Nishizawa
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
| | - Koji Miyamoto
- Biotechnology Research CenterThe University of TokyoBunkyo‐kuTokyoJapan
- Department of BiosciencesTeikyo UniversityUtsunomiyaTochigiJapan
| | - Hisakazu Yamane
- Biotechnology Research CenterThe University of TokyoBunkyo‐kuTokyoJapan
- Department of BiosciencesTeikyo UniversityUtsunomiyaTochigiJapan
| | - Kazunori Okada
- Biotechnology Research CenterThe University of TokyoBunkyo‐kuTokyoJapan
| | - Tomokazu Koshiba
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| |
Collapse
|
134
|
Jiang L, Chen Y, Luo L, Peck SC. Central Roles and Regulatory Mechanisms of Dual-Specificity MAPK Phosphatases in Developmental and Stress Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:1697. [PMID: 30515185 PMCID: PMC6255987 DOI: 10.3389/fpls.2018.01697] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/31/2018] [Indexed: 05/09/2023]
Abstract
Mitogen-Activated Protein Kinase (MAPK) cascades are conserved signaling modules that integrate multiple signaling pathways. One level of control on the activity of MAPKs is through their negative regulators, MAPK phosphatases (MKPs). Therefore, MKPs also play an integrative role for plants responding to diverse environmental stimulus; but the mechanism(s) by which these phosphatases contribute to specific signals remains largely unknown. In this review, we summarize recent advances in characterizing the biological functions of a sub-class of MKPs, dual-specificity phosphatases (DSPs), ranging from controlling plant growth and development to modulating stress adaptation. We also discuss putative regulatory mechanisms of DSP-type MKPs, which plants may use to control the correct level of responses at the right place and time. We highlight insights into potential regulation of cross-talk between different signaling pathways, facilitating the development of strategies for targeting such cross-talk and to help improve plant resistance against adverse environmental conditions without affecting the growth and development.
Collapse
Affiliation(s)
- Lingyan Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- *Correspondence: Lingyan Jiang
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Lijuan Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Scott C. Peck
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
- Scott C. Peck
| |
Collapse
|
135
|
Hong L, Ye C, Lin J, Fu H, Wu X, Li QQ. Alternative polyadenylation is involved in auxin-based plant growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:246-258. [PMID: 29155478 DOI: 10.1111/tpj.13771] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 05/24/2023]
Abstract
Auxin is widely involved in plant growth and development. However, the molecular mechanism on how auxin carries out this work is unclear. In particular, the effect of auxin on pre-mRNA post-transcriptional regulation is mostly unknown. By using a poly(A) tag (PAT) sequencing approach, mRNA alternative polyadenylation (APA) profiles after auxin treatment were revealed. We showed that hundreds of poly(A) site clusters (PACs) are affected by auxin at the transcriptome level, where auxin reduces PAC distribution in 5'-untranslated region (UTR), but increases in the 3'UTR. APA site usage frequencies of 42 genes were switched by auxin, suggesting that auxin affects the choice of poly(A) sites. Furthermore, poly(A) signal selection was altered after auxin treatment. For example, a mutant of poly(A) signal binding protein CPSF30 showed altered sensitivity to auxin treatment, indicating interactions between auxin and the poly(A) signal recognition machinery. We also found that auxin activity on lateral root development is likely mediated by altered expression of ARF7, ARF19 and IAA14 through poly(A) site switches. Our results shed light on the molecular mechanisms of auxin responses relative to its interactions with mRNA polyadenylation.
Collapse
Affiliation(s)
- Liwei Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Haihui Fu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| |
Collapse
|
136
|
Wang YC, Wang N, Xu HF, Jiang SH, Fang HC, Su MY, Zhang ZY, Zhang TL, Chen XS. Auxin regulates anthocyanin biosynthesis through the Aux/IAA-ARF signaling pathway in apple. HORTICULTURE RESEARCH 2018; 5:59. [PMID: 30534386 PMCID: PMC6269505 DOI: 10.1038/s41438-018-0068-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 05/19/2023]
Abstract
Auxin signaling, which is crucial for normal plant growth and development, mainly depends on ARF-Aux/IAA interactions. However, little is known regarding the regulatory effects of auxin signaling on anthocyanin metabolism in apple (Malus domestica). We investigated the functions of MdARF13, which contains a repression domain and is localized to the nucleus. This protein was observed to interact with the Aux/IAA repressor, MdIAA121, through its C-terminal dimerization domain. Protein degradation experiments proved that MdIAA121 is an unstable protein that is degraded by the 26S proteasome. Additionally, MdIAA121 stability is affected by the application of exogenous auxin. Furthermore, the overexpression of MdIAA121 and MdARF13 in transgenic red-fleshed apple calli weakened the inhibitory effect of MdARF13 on anthocyanin biosynthesis. These results indicate that the degradation of MdIAA121 induced by auxin treatment can release MdARF13, which acts as a negative regulator of the anthocyanin metabolic pathway. Additionally, yeast two-hybrid, bimolecular fluorescence complementation, and pull-down assays confirmed that MdMYB10 interacts with MdARF13. A subsequent electrophoretic mobility shift assay and yeast one-hybrid assay demonstrated that MdARF13 directly binds to the promoter of MdDFR, which is an anthocyanin pathway structural gene. Interestingly, chromatin immunoprecipitation-quantitative real-time PCR results indicated that the overexpression of MdIAA121 clearly inhibits the recruitment of MdARF13 to the MdDFR promoter. Our findings further characterized the mechanism underlying the regulation of anthocyanin biosynthesis via Aux/IAA-ARF signaling.
Collapse
Affiliation(s)
- Yi-cheng Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai-An, Shandong China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai-An, Shandong China
| | - Hai-feng Xu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai-An, Shandong China
| | - Sheng-hui Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai-An, Shandong China
| | - Hong-cheng Fang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai-An, Shandong China
| | - Meng-yu Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai-An, Shandong China
| | - Zong-ying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai-An, Shandong China
| | - Tian-liang Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai-An, Shandong China
| | - Xue-sen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai-An, Shandong China
| |
Collapse
|
137
|
Sasaki K. Utilization of transcription factors for controlling floral morphogenesis in horticultural plants. BREEDING SCIENCE 2018; 68:88-98. [PMID: 29681751 PMCID: PMC5903982 DOI: 10.1270/jsbbs.17114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/07/2017] [Indexed: 05/26/2023]
Abstract
Transcription factors play important roles not only in the development of floral organs but also in the formation of floral characteristics in various plant species. Therefore, transcription factors are reasonable targets for modifying these floral traits and generating new flower cultivars. However, it has been difficult to control the functions of transcription factors because most plant genes, including those encoding transcription factors, exhibit redundancy. In particular, it has been difficult to understand the functions of these redundant genes by genetic analysis. Thus, a breakthrough silencing method called chimeric repressor gene silencing technology (CRES-T) was developed specifically for plant transcription factors. This method transforms transcriptional activators into dominant repressors, and the artificial chimeric repressors suppress the function of transcription factors regardless of their redundancy. Among these chimeric repressors, some were found to be inappropriate for expression throughout the plant body because they resulted in deformities. For these chimeric repressors, utilization of floral organ-specific promoters overcomes this problem by avoiding expression throughout the plant body. In contrast, attachment of viral activation domain VP16 to transcriptional repressors effectively alters into transcriptional activators. This review presents the importance of transcription factors for characterizing floral traits, describes techniques for controlling the functions of transcription factors.
Collapse
|
138
|
Abstract
Auxin triggers diverse responses in plants, and this is reflected in quantitative and qualitative diversity in the auxin signaling machinery.
Collapse
Affiliation(s)
- Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| |
Collapse
|
139
|
Tian H, Chen S, Yang W, Wang T, Zheng K, Wang Y, Cheng Y, Zhang N, Liu S, Li D, Liu B, Wang S. A novel family of transcription factors conserved in angiosperms is required for ABA signalling. PLANT, CELL & ENVIRONMENT 2017; 40:2958-2971. [PMID: 28857190 DOI: 10.1111/pce.13058] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 05/18/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a crucial role in regulating plant responses to environmental stresses. Interplay of several different proteins including the PYR/PYL/RCAR receptors, A-group PP2C protein phosphatases, SnRK2 protein kinases, and downstream transcription factors regulates ABA signalling. We report here the identification of a family of ABA-induced transcription repressors (AITRs) that act as feedback regulators in ABA signalling. We found that the expression of all the 6 Arabidopsis AITR genes was induced by exogenously ABA, and their expression levels were decreased in ABA biosynthesis mutant aba1-5. BLAST searches showed that AITRs are exclusively present in angiosperms. When recruited to the promoter region of a reporter gene by a fused DNA binding domain, all AITRs inhibited reporter gene expression in transfected protoplasts. In Arabidopsis, aitr mutants showed reduced sensitivity to ABA and to stresses such as salt and drought. Quantitative RT-PCR analysis demonstrated that the ABA-induced response of PP2C and some PYR/PYL/RCAR genes was reduced in AITR5 transgenic plants but increased in an aitr2 aitr5 aitr6 triple mutant. These results provide important new insights into the regulation of ABA signalling in plants, and such information may lead to the production of plants with enhanced resistance to environmental stresses.
Collapse
Affiliation(s)
- Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Siyu Chen
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Wenting Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Shanda Liu
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Dongqiu Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
140
|
Li H, Wang B, Zhang Q, Wang J, King GJ, Liu K. Genome-wide analysis of the auxin/indoleacetic acid (Aux/IAA) gene family in allotetraploid rapeseed (Brassica napus L.). BMC PLANT BIOLOGY 2017; 17:204. [PMID: 29145811 PMCID: PMC5691854 DOI: 10.1186/s12870-017-1165-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 11/08/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND Auxin/Indoleacetic acid (Aux/IAA) genes participate in the auxin signaling pathway and play key roles in plant growth and development. Although the Aux/IAA gene family has been identified in many plants, within allotetraploid Brassica napus little is known. RESULTS In this study, a total of 119 Aux/IAA genes were found in the genome of B. napus. They were distributed non-randomly across all 19 chromosomes and other non-anchored random scaffolds, with a symmetric distribution in the A and C subgenomes. Evolutionary and comparative analysis revealed that 111 (94.1%) B. napus Aux/IAA genes were multiplied due to ancestral Brassica genome triplication and recent allotetraploidy from B. rapa and B. oleracea. Phylogenetic analysis indicated seven subgroups containing 29 orthologous gene sets and two Brassica-specific gene sets. Structures of genes and proteins varied across different genes but were conserved among homologous genes in B. napus. Furthermore, analysis of transcriptional profiles revealed that the expression patterns of Aux/IAA genes in B. napus were tissue dependent. Auxin-responsive elements tend to be distributed in the proximal region of promoters, and are significantly associated with early exogenous auxin up-regulation. CONCLUSIONS Members of the Aux/IAA gene family were identified and analyzed comprehensively in the allotetraploid B. napus genome. This analysis provides a deeper understanding of diversification of the Aux/IAA gene family and will facilitate further dissection of Aux/IAA gene function in B. napus.
Collapse
Affiliation(s)
- Haitao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480 Australia
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
141
|
Chen Y, Yang Q, Sang S, Wei Z, Wang P. Rice Inositol Polyphosphate Kinase (OsIPK2) Directly Interacts with OsIAA11 to Regulate Lateral Root Formation. PLANT & CELL PHYSIOLOGY 2017; 58:1891-1900. [PMID: 29016933 DOI: 10.1093/pcp/pcx125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
The plant hormone auxin controls many aspects of plant growth and development by promoting the degradation of Auxin/Indole-3-acetic acid (Aux/IAA) proteins. The domain II (DII) of Aux/IAA proteins is sufficient for eliciting the degradation by directly interacting with the auxin receptor F-box protein TIR1 to form a TIR1/AFBs-Aux/IAA complex in an auxin-dependent manner. However, the underlying mechanisms of fine-tuning Aux/IAA degradation by auxin stimuli remain to be elucidated. Here, we show that OsIPK2, a rice (Oryza sativa) inositol polyphosphate kinase, directly interacts with an Aux/IAA protein OsIAA11 to repress its degradation. In a rice protoplast transient expression system, the auxin-induced degradation of Myc-OsIAA11 fusion was delayed by co-expressed GFP-OsIPK2 proteins. Furthermore, expressing additional OsIPK2 or its N-terminal amino acid sequence enhanced the accumulation of OsIAA11 proteins in transgenic plants, which in turn caused defects in lateral root formation and auxin response. Taken together, we identify a novel co-factor of Aux/IAA in auxin signaling and demonstrate its role in regulating lateral root development.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Qiaofeng Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Sihong Sang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhaoyun Wei
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Peng Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
142
|
Wu W, Liu Y, Wang Y, Li H, Liu J, Tan J, He J, Bai J, Ma H. Evolution Analysis of the Aux/IAA Gene Family in Plants Shows Dual Origins and Variable Nuclear Localization Signals. Int J Mol Sci 2017; 18:E2107. [PMID: 28991190 PMCID: PMC5666789 DOI: 10.3390/ijms18102107] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/27/2017] [Accepted: 10/01/2017] [Indexed: 11/28/2022] Open
Abstract
The plant hormone auxin plays pivotal roles in many aspects of plant growth and development. The auxin/indole-3-acetic acid (Aux/IAA) gene family encodes short-lived nuclear proteins acting on auxin perception and signaling, but the evolutionary history of this gene family remains to be elucidated. In this study, the Aux/IAA gene family in 17 plant species covering all major lineages of plants is identified and analyzed by using multiple bioinformatics methods. A total of 434 Aux/IAA genes was found among these plant species, and the gene copy number ranges from three (Physcomitrella patens) to 63 (Glycine max). The phylogenetic analysis shows that the canonical Aux/IAA proteins can be generally divided into five major clades, and the origin of Aux/IAA proteins could be traced back to the common ancestor of land plants and green algae. Many truncated Aux/IAA proteins were found, and some of these truncated Aux/IAA proteins may be generated from the C-terminal truncation of auxin response factor (ARF) proteins. Our results indicate that tandem and segmental duplications play dominant roles for the expansion of the Aux/IAA gene family mainly under purifying selection. The putative nuclear localization signals (NLSs) in Aux/IAA proteins are conservative, and two kinds of new primordial bipartite NLSs in P. patens and Selaginella moellendorffii were discovered. Our findings not only give insights into the origin and expansion of the Aux/IAA gene family, but also provide a basis for understanding their functions during the course of evolution.
Collapse
Affiliation(s)
- Wentao Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
- Innovation Experimental College, Northwest A&F University, Xianyang 712100, China.
| | - Yaxue Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
- Innovation Experimental College, Northwest A&F University, Xianyang 712100, China.
| | - Yuqian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
- Innovation Experimental College, Northwest A&F University, Xianyang 712100, China.
| | - Huimin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
- Innovation Experimental College, Northwest A&F University, Xianyang 712100, China.
| | - Jiaxi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
- Innovation Experimental College, Northwest A&F University, Xianyang 712100, China.
| | - Jiaxin Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
- Innovation Experimental College, Northwest A&F University, Xianyang 712100, China.
| | - Jiadai He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
- Innovation Experimental College, Northwest A&F University, Xianyang 712100, China.
| | - Jingwen Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
- Innovation Experimental College, Northwest A&F University, Xianyang 712100, China.
| | - Haoli Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China.
| |
Collapse
|
143
|
Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nat Genet 2017; 49:1546-1552. [DOI: 10.1038/ng.3937] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/21/2017] [Indexed: 12/12/2022]
|
144
|
Tian H, Wang X, Guo H, Cheng Y, Hou C, Chen JG, Wang S. NTL8 Regulates Trichome Formation in Arabidopsis by Directly Activating R3 MYB Genes TRY and TCL1. PLANT PHYSIOLOGY 2017; 174:2363-2375. [PMID: 28649093 PMCID: PMC5543959 DOI: 10.1104/pp.17.00510] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/19/2017] [Indexed: 05/17/2023]
Abstract
The NAM, ATAF1/2, and CUC (NAC) are plant-specific transcription factors that regulate multiple aspects of plant growth and development and plant response to environmental stimuli. We report here the identification of NTM1-LIKE8 (NTL8), a membrane-associated NAC transcription factor, as a novel regulator of trichome formation in Arabidopsis (Arabidopsis thaliana). From an activation-tagged Arabidopsis population, we identified a dominant, gain-of-function mutant with glabrous inflorescence stem. By using plasmid rescue and RT-PCR analyses, we found that NTL8 was tagged; thus, the mutant was named ntl8-1 Dominant (ntl8-1D). Recapitulation experiment further confirmed that the phenotype observed in the ntl8-1D mutant was caused by elevated expression of NTL8 Quantitative RT-PCR results showed that the expression level of the single-repeat R3 MYB genes TRIPTYCHON (TRY) and TRICHOMELESS1 (TCL1) was elevated in the ntl8-1D mutant. Genetic analyses demonstrated that NTL8 acts upstream of TRY and TCL1 in the regulation of trichome formation. When recruited to the promoter region of the reporter gene Gal4:GUS by a fused GAL4 DNA-binding domain, NTL8 activated the expression of the reporter gene. Chromatin immunoprecipitation results indicated that TRY and TCL1 are direct targets of NTL8. However, NTL8 did not interact with SQUAMOSA PROMOTER BINDING PROTEIN LIKE9, another transcription factor that regulates the expression of TRY and TCL1, in yeast and plant cells. Taken together, our results suggest that NTL8 negatively regulates trichome formation in Arabidopsis by directly activating the expression of TRY and TCL1.
Collapse
Affiliation(s)
- Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Xianling Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Hongyan Guo
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Chunjiang Hou
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
145
|
Comprehensive transcriptomics and proteomics analyses of pollinated and parthenocarpic litchi (Litchi chinensis Sonn.) fruits during early development. Sci Rep 2017; 7:5401. [PMID: 28710486 PMCID: PMC5511223 DOI: 10.1038/s41598-017-05724-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/02/2017] [Indexed: 12/17/2022] Open
Abstract
Litchi (Litchi chinensis Sonn.) is an important fruit that is widely cultivated in tropical and subtropical areas. In this study, we used RNA-Seq and iTRAQ technologies to compare the transcriptomes and proteomes of pollinated (polLFs) and parthenocarpic (parLFs) litchi fruits during early development (1 day, 2 days, 4 days and 6 days). We identified 4,864 DEGs in polLFs and 3,672 in parLFs, of which 2,835 were shared and 1,051 were specifically identified in parLFs. Compared to po1LFs, 768 DEGs were identified in parLFs. iTRAQ analysis identified 551 DEPs in polLFs and 1,021 in parLFs, of which 305 were shared and 526 were exclusively identified in parLFs. We found 1,127 DEPs in parLFs compared to polLFs at different stages. Further analysis revealed some DEGs/DEPs associated with abscisic acid, auxin, ethylene, gibberellin, heat shock protein (HSP), histone, ribosomal protein, transcription factor and zinc finger protein (ZFP). WGCNA identified a large set of co-expressed genes/proteins in polLFs and parLFs. In addition, a cross-comparison of transcriptomic and proteomic data identified 357 consistent DEGs/DEPs in polLFs and parLFs. This is the first time that protein/gene changes have been studied in polLFs and parLFs, and the findings improve our understanding of litchi parthenocarpy.
Collapse
|
146
|
Li J, Liu H, Xia W, Mu J, Feng Y, Liu R, Yan P, Wang A, Lin Z, Guo Y, Zhu J, Chen X. De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments. Int J Mol Sci 2017; 18:E1155. [PMID: 28590406 PMCID: PMC5485979 DOI: 10.3390/ijms18061155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 11/16/2022] Open
Abstract
Saussurea involucrata grows in high mountain areas covered by snow throughout the year. The temperature of this habitat can change drastically in one day. To gain a better understanding of the cold response signaling pathways and molecular metabolic reactions involved in cold stress tolerance, genome-wide transcriptional analyses were performed using RNA-Seq technologies. A total of 199,758 transcripts were assembled, producing 138,540 unigenes with 46.8 Gb clean data. Overall, 184,416 (92.32%) transcripts were successfully annotated. The 365 transcription factors identified (292 unigenes) belonged to 49 transcription factor families associated with cold stress responses. A total of 343 transcripts on the signal transduction (132 upregulated and 212 downregulated in at least any one of the conditions) were strongly affected by cold temperature, such as the CBL-interacting serine/threonine-protein kinase (CIPKs), receptor-like protein kinases, and protein kinases. The circadian rhythm pathway was activated by cold adaptation, which was necessary to endure the severe temperature changes within a day. There were 346 differentially expressed genes (DEGs) related to transport, of which 138 were upregulated and 22 were downregulated in at least any one of the conditions. Under cold stress conditions, transcriptional regulation, molecular transport, and signal transduction were involved in the adaptation to low temperature in S. involucrata. These findings contribute to our understanding of the adaptation of plants to harsh environments and the survival traits of S. involucrata. In addition, the present study provides insight into the molecular mechanisms of chilling and freezing tolerance.
Collapse
Affiliation(s)
- Jin Li
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
| | - Hailiang Liu
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai 200065, China.
| | - Wenwen Xia
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
| | - Jianqiang Mu
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
| | - Yujie Feng
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
| | - Ruina Liu
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
| | - Panyao Yan
- ShengTing Bioinformatics Institute, Christiansburg, VA 24073, USA.
| | - Aiying Wang
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
| | - Zhongping Lin
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
- College of Life Sciences, Perking University, Beijing 100871, China.
| | - Yong Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
| | - Xianfeng Chen
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
- ShengTing Bioinformatics Institute, Christiansburg, VA 24073, USA.
| |
Collapse
|
147
|
Denisov Y, Glick S, Zviran T, Ish-Shalom M, Levin A, Faigenboim A, Cohen Y, Irihimovitch V. Distinct organ-specific and temporal expression profiles of auxin-related genes during mango fruitlet drop. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:439-448. [PMID: 28456120 DOI: 10.1016/j.plaphy.2017.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/26/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
In mango, fruitlet abscission initiates with a decrease in polar auxin transport through the abscission zone (AZ), triggered by ethylene. To explore the molecular components affecting this process, we initially conducted experiments with developing fruitlet explants in which fruitlet drop was induced by ethephon, and monitored the expression patterns of distinct indole-3-acetic acid (IAA)-related genes, comparing control vs. ethephon-treated pericarp and AZ profiles. Over the examined time period (48 h), the accumulation of MiPIN1 and MiLAX2 IAA-efflux and influx genes decreased in both control and treated tissues. Nevertheless, ethephon-treated tissues displayed significantly lower levels of these transcripts within 18-24 h. An opposite pattern was observed for MiLAX3, which overall exhibited up-regulation in treated fruitlet tissues. Ethephon treatment also induced an early and pronounced down-regulation of five out of six IAA-responsive genes, and a substantial reduction in the accumulation of two IAA-synthesis related transcripts, contrasting with significant up-regulation of Gretchen Hagen3 transcript (MiGH3.1) encoding an IAA-amino synthetase. Furthermore, for both control and treated AZ, the decrease in IAA-carrier transcripts was associated with a decrease in IAA content and an increase in IAA-Asp:IAA ratio, suggesting that fruitlet drop is accompanied by formation of this non-hydrolyzed IAA-amino acid conjugate. Despite these similarities, ethephon-treated AZ displayed a sharper decrease in IAA content and higher IAA-Asp:IAA ratio within 18 h. Lastly, the response of IAA-related genes to exogenous IAA treatment was also examined. Our results are discussed, highlighting the roles that distinct IAA-related genes might assume during mango fruitlet drop.
Collapse
Affiliation(s)
- Youlia Denisov
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan 50250, Israel
| | - Shani Glick
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan 50250, Israel; Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tali Zviran
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan 50250, Israel
| | - Mazal Ish-Shalom
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan 50250, Israel
| | - Adolfo Levin
- Migal - Galilee Technology Center, P.O. Box 831, Kiryat Shemona 11016, Israel
| | - Adi Faigenboim
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan 50250, Israel
| | - Yuval Cohen
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan 50250, Israel
| | - Vered Irihimovitch
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan 50250, Israel.
| |
Collapse
|
148
|
Rast-Somssich MI, Žádníková P, Schmid S, Kieffer M, Kepinski S, Simon R. The Arabidopsis JAGGED LATERAL ORGANS (JLO) gene sensitizes plants to auxin. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2741-2755. [PMID: 28472464 PMCID: PMC5853575 DOI: 10.1093/jxb/erx131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
Plant growth and development of new organs depend on the continuous activity of the meristems. In the shoot, patterns of organ initiation are determined by PINFORMED (PIN)-dependent auxin distribution, while the undifferentiated state of meristem cells requires activity of KNOTTED LIKE HOMEOBOX (KNOX) transcription factors. Cell proliferation and differentiation of the root meristem are regulated by the largely antagonistic functions of auxin and cytokinins. It has previously been shown that the transcription factor JAGGED LATERAL ORGANS (JLO), a member of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) family, coordinates KNOX and PIN expression in the shoot and promotes root meristem growth. Here we show that JLO is required for the establishment of the root stem cell niche, where it interacts with the auxin/PLETHORA pathway. Auxin signaling involves the AUX/IAA co-repressor proteins, ARF transcription factors and F-box receptors of the TIR1/AFB1-5 family. Because jlo mutants fail to degrade the AUX/IAA protein BODENLOS, root meristem development is inhibited. We also demonstrate that the expression levels of two auxin receptors, TIR1 and AFB1, are controlled by JLO dosage, and that the shoot and root defects of jlo mutants are alleviated in jlo plants expressing TIR1 and AFB1 from a transgene. The finding that the auxin sensitivity of a plant can be differentially regulated through control of auxin receptor expression can explain how different developmental processes can be integrated by the activity of a key transcription factor.
Collapse
Affiliation(s)
- Madlen I Rast-Somssich
- Institute for Developmental Genetics, Cluster of Excellence in Plant Sciences (CEPLAS), Heinrich Heine Universität, Universitätstrasse, Düsseldorf, Germany
| | - Petra Žádníková
- Institute for Developmental Genetics, Cluster of Excellence in Plant Sciences (CEPLAS), Heinrich Heine Universität, Universitätstrasse, Düsseldorf, Germany
| | - Stephan Schmid
- Institute for Developmental Genetics, Cluster of Excellence in Plant Sciences (CEPLAS), Heinrich Heine Universität, Universitätstrasse, Düsseldorf, Germany
| | - Martin Kieffer
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Rüdiger Simon
- Institute for Developmental Genetics, Cluster of Excellence in Plant Sciences (CEPLAS), Heinrich Heine Universität, Universitätstrasse, Düsseldorf, Germany
| |
Collapse
|
149
|
Liu K, Yuan C, Feng S, Zhong S, Li H, Zhong J, Shen C, Liu J. Genome-wide analysis and characterization of Aux/IAA family genes related to fruit ripening in papaya (Carica papaya L.). BMC Genomics 2017; 18:351. [PMID: 28476147 PMCID: PMC5420106 DOI: 10.1186/s12864-017-3722-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Background Auxin/indole-3-acetic acid (Aux/IAA) family genes encode short-lived nuclear proteins that mediate the responses of auxin-related genes and are involved in several plant developmental and growth processes. However, how Aux/IAA genes function in the fruit development and ripening of papaya (Carica papaya L.) is largely unknown. Results In this study, a comprehensive identification and a distinctive expression analysis of 18 C. papaya Aux/IAA (CpIAA) genes were performed using newly updated papaya reference genome data. The Aux/IAA gene family in papaya is slightly smaller than that in Arabidopsis, but all of the phylogenetic subfamilies are represented. Most of the CpIAA genes are responsive to various phytohormones and expressed in a tissues-specific manner. To understand the putative biological functions of the CpIAA genes involved in fruit development and ripening, quantitative real-time PCR was used to test the expression profiling of CpIAA genes at different stages. Furthermore, an IAA treatment significantly delayed the ripening process in papaya fruit at the early stages. The expression changes of CpIAA genes in ACC and 1-MCP treatments suggested a crosstalk between auxin and ethylene during the fruit ripening process of papaya. Conclusions Our study provided comprehensive information on the Aux/IAA family in papaya, including gene structures, phylogenetic relationships and expression profiles. The involvement of CpIAA gene expression changes in fruit development and ripening gives us an opportunity to understand the roles of auxin signaling in the maturation of papaya reproductive organs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3722-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China.
| | - Changchun Yuan
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China.
| | - Shaoxian Feng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Shuting Zhong
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Haili Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Jundi Zhong
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Chenjia Shen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jinxiang Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| |
Collapse
|
150
|
Chen Z, Yuan Y, Fu D, Shen C, Yang Y. Identification and Expression Profiling of the Auxin Response Factors in Dendrobium officinale under Abiotic Stresses. Int J Mol Sci 2017; 18:E927. [PMID: 28471373 PMCID: PMC5454840 DOI: 10.3390/ijms18050927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/18/2023] Open
Abstract
Auxin response factor (ARF) proteins play roles in plant responses to diverse environmental stresses by binding specifically to the auxin response element in the promoters of target genes. Using our latest public Dendrobium transcriptomes, a comprehensive characterization and analysis of 14 DnARF genes were performed. Three selected DnARFs, including DnARF1, DnARF4, and DnARF6, were confirmed to be nuclear proteins according to their transient expression in epidermal cells of Nicotiana benthamiana leaves. Furthermore, the transcription activation abilities of DnARF1, DnARF4, and DnARF6 were tested in a yeast system. Our data showed that DnARF6 is a transcriptional activator in Dendrobium officinale. To uncover the basic information of DnARF gene responses to abiotic stresses, we analyzed their expression patterns under various hormones and abiotic treatments. Based on our data, several hormones and significant stress responsive DnARF genes have been identified. Since auxin and ARF genes have been identified in many plant species, our data is imperative to reveal the function of ARF mediated auxin signaling in the adaptation to the challenging Dendrobium environment.
Collapse
Affiliation(s)
- Zhehao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Ye Yuan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Di Fu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China.
| | - Yanjun Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|