101
|
Sonah H, Deshmukh RK, Labbé C, Bélanger RR. Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Sci Rep 2017; 7:2771. [PMID: 28584277 PMCID: PMC5459863 DOI: 10.1038/s41598-017-02877-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/19/2017] [Indexed: 01/11/2023] Open
Abstract
Aquaporins (AQPs) are of vital importance in the cellular transport system of all living organisms. In this study, genome-wide identification, distribution, and characterization of AQPs were determined in Arabidopsis lyrata, Capsella grandiflora, C. rubella, Eutrema salsugineum, Brassica rapa, B. oleracea, and B. napus (canola). Classification and phylogeny of AQPs revealed the loss of XIPs and NIP-IIIs in all species. Characterization of distinctive AQP features showed a high level of conservation in spacing between NPA-domains, and selectivity filters. Interestingly, TIP3s were found to be highly expressed in developing seeds, suggesting their role in seed desiccation. Analysis of available RNA-seq data obtained under biotic and abiotic stresses led to the identification of AQPs involved in stress tolerance mechanisms in canola. In addition, analysis of the effect of ploidy level, and resulting gene dose effect performed with the different combinations of Brassica A and C genomes revealed that more than 70% of AQPs expression were dose-independent, thereby supporting their role in stress alleviation. This first in-depth characterization of Brassicaceae AQPs highlights transport mechanisms and related physiological processes that could be exploited in breeding programs of stress-tolerant cultivars.
Collapse
Affiliation(s)
- Humira Sonah
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada
| | - Rupesh K Deshmukh
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada
| | - Caroline Labbé
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada
| | - Richard R Bélanger
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
102
|
Bryksa BC, Grahame DA, Yada RY. Comparative structure-function characterization of the saposin-like domains from potato, barley, cardoon and Arabidopsis aspartic proteases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1008-1018. [DOI: 10.1016/j.bbamem.2017.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
|
103
|
Raikhel NV. Firmly Planted, Always Moving. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:1-27. [PMID: 27860488 DOI: 10.1146/annurev-arplant-042916-040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
I was a budding pianist immersed in music in Leningrad, in the Soviet Union (now Saint Petersburg, Russia), when I started over, giving up sheet music for the study of ciliates. In a second starting-over story, I emigrated to the United States, where I switched to studying carbohydrate-binding plant lectin proteins, dissecting plant vesicular trafficking, and isolating novel glycosyltransferases responsible for making cell wall polysaccharides. I track my journey as a plant biologist from student to principal investigator to founding director of the Center for Plant Cell Biology and then director of the Institute for Integrative Genome Biology at the University of California, Riverside. I discuss implementing a new vision as the first and (so far) only female editor in chief of Plant Physiology, as well as how my laboratory helped develop chemical genomics tools to study the functions of essential plant proteins. Always wanting to give back what I received, I discuss my present efforts to develop female scientist leadership in Chinese universities and a constant theme throughout my life: a love of art and travel.
Collapse
Affiliation(s)
- Natasha V Raikhel
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, California 92521;
| |
Collapse
|
104
|
Konopka-Postupolska D, Clark G. Annexins as Overlooked Regulators of Membrane Trafficking in Plant Cells. Int J Mol Sci 2017; 18:E863. [PMID: 28422051 PMCID: PMC5412444 DOI: 10.3390/ijms18040863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
Annexins are an evolutionary conserved superfamily of proteins able to bind membrane phospholipids in a calcium-dependent manner. Their physiological roles are still being intensively examined and it seems that, despite their general structural similarity, individual proteins are specialized toward specific functions. However, due to their general ability to coordinate membranes in a calcium-sensitive fashion they are thought to participate in membrane flow. In this review, we present a summary of the current understanding of cellular transport in plant cells and consider the possible roles of annexins in different stages of vesicular transport.
Collapse
Affiliation(s)
- Dorota Konopka-Postupolska
- Plant Biochemistry Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Greg Clark
- Molecular, Cell, and Developmental Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
105
|
D'Ippólito S, Arias LA, Casalongué CA, Pagnussat GC, Fiol DF. The DC1-domain protein VACUOLELESS GAMETOPHYTES is essential for development of female and male gametophytes in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:261-275. [PMID: 28107777 DOI: 10.1111/tpj.13486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
In this work we identified VACUOLELESS GAMETOPHYTES (VLG) as a DC1 domain-containing protein present in the endomembrane system and essential for development of both female and male gametophytes. VLG was originally annotated as a gene coding for a protein of unknown function containing DC1 domains. DC1 domains are cysteine- and histidine-rich zinc finger domains found exclusively in the plant kingdom that have been named on the basis of similarity with the C1 domain present in protein kinase C (PKC). In Arabidopsis, both male and female gametophytes are characterized by the formation of a large vacuole early in development; this is absent in vlg mutant plants. As a consequence, development is arrested in embryo sacs and pollen grains at the first mitotic division. VLG is specifically located in multivesicular bodies or pre-vacuolar compartments, and our results suggest that vesicular fusion is affected in the mutants, disrupting vacuole formation. Supporting this idea, AtPVA12 - a member of the SNARE vesicle-associated protein family and previously related to a sterol-binding protein, was identified as a VLG interactor. A role for VLG is proposed mediating vesicular fusion in plants as part of the sterol trafficking machinery required for vacuole biogenesis in plants.
Collapse
Affiliation(s)
- Sebastián D'Ippólito
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Leonardo Agustín Arias
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Claudia Anahí Casalongué
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Diego Fernando Fiol
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| |
Collapse
|
106
|
Candidate genes for adaptation to an aquatic habitat recovered from Ranunculus bungei and Ranunculus sceleratus. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
107
|
Roberts IN, Veliz CG, Criado MV, Signorini A, Simonetti E, Caputo C. Identification and expression analysis of 11 subtilase genes during natural and induced senescence of barley plants. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:70-80. [PMID: 28167368 DOI: 10.1016/j.jplph.2017.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Subtilases are one of the largest groups of the serine protease family and are involved in many aspects of plant development including senescence. In wheat, previous reports demonstrate an active participation of two senescence-induced subtilases, denominated P1 and P2, in nitrogen remobilization during whole plant senescence. The aim of the present study was to examine the participation of subtilases in senescence-associated proteolysis of barley leaves while comparing different senescence types. With this purpose, subtilase enzymatic activity, immunodetection with a heterologous antiserum and gene expression of 11 subtilase sequences identified in barley databases by homology to P1 were analyzed in barley leaves undergoing dark-induced or natural senescence at the vegetative or reproductive growth phase. Results showed that subtilase specific activity as well as two inmunoreactive bands representing putative subtilases increased in barley leaves submitted to natural and dark-induced senescence. Gene expression analysis showed that two of the eleven subtilase genes analyzed, HvSBT3 and HvSBT6, were up-regulated in all the senescence conditions tested while HvSBT2 was expressed and up-regulated only during dark-induced senescence. On the other hand, HvSBT1, HvSBT4 and HvSBT7 were down-regulated during senescence and two other subtilase genes (HvSBT10 and HvSBT11) showed no significant changes. The remaining subtilase genes were not detected. Results demonstrate an active participation of subtilases in protein degradation during dark-induced and natural leaf senescence of barley plants both at the vegetative and reproductive stage, and, based on their expression profile, postulate HvSBT3 and HvSBT6 as key components of senescence-associated proteolysis.
Collapse
Affiliation(s)
- Irma N Roberts
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| | - Cintia G Veliz
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - María Victoria Criado
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Ana Signorini
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Ester Simonetti
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Carla Caputo
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| |
Collapse
|
108
|
Floyd BE, Mugume Y, Morriss SC, MacIntosh GC, Bassham DC. Localization of RNS2 ribonuclease to the vacuole is required for its role in cellular homeostasis. PLANTA 2017; 245:779-792. [PMID: 28025674 DOI: 10.1007/s00425-016-2644-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 05/28/2023]
Abstract
Localization of the RNase RNS2 to the vacuole via a C-terminal targeting signal is essential for its function in rRNA degradation and homeostasis. RNase T2 ribonucleases are highly conserved enzymes present in the genomes of nearly all eukaryotes and many microorganisms. Their constitutive expression in different tissues and cell types of many organisms suggests a housekeeping role in RNA homeostasis. The Arabidopsis thaliana class II RNase T2, RNS2, is encoded by a single gene and functions in rRNA degradation. Loss of RNS2 results in RNA accumulation and constitutive activation of autophagy, possibly as a compensatory mechanism. While the majority of RNase T2 enzymes is secreted, RNS2 is located within the vacuole and in the endoplasmic reticulum (ER), possibly within ER bodies. As RNS2 has a neutral pH optimum, and the endomembrane organelles are connected by vesicle transport, the site within the endomembrane system at which RNS2 functions is unclear. Here we demonstrate that localization to the vacuole is essential for the physiological function of RNS2. A mutant allele of RNS2, rns2-1, results in production of an active RNS2 RNase but with a mutation that removes a putative C-terminal vacuolar targeting signal. The mutant protein is, therefore, secreted from the cell. This results in a constitutive autophagy phenotype similar to that observed in rns2 null mutants. These findings illustrate that the intracellular retention of RNS2 and localization within the vacuole are critical for its cellular function.
Collapse
Affiliation(s)
- Brice E Floyd
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Yosia Mugume
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Stephanie C Morriss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Gustavo C MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
109
|
Liu H, Wu M, Zhu D, Pan F, Wang Y, Wang Y, Xiang Y. Genome-Wide analysis of the AAAP gene family in moso bamboo (Phyllostachys edulis). BMC PLANT BIOLOGY 2017; 17:29. [PMID: 28143411 PMCID: PMC5282885 DOI: 10.1186/s12870-017-0980-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 01/19/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Members of the amino acid/auxin permease (AAAP) gene family play indispensable roles in various plant metabolism and biosynthesis processes. Comprehensive analysis of AAAP genes has been conducted in Arabidopsis, rice, maize and poplar, but has not been reported from moso bamboo. Phylogenetics, evolutionary patterns and further expression profiles analysis of the AAAP gene family in moso bamboo (Phyllostachys edulis) will increase our understanding of this important gene family. RESULTS In this current study, we conducted phylogenetic, gene structure, promoter region, divergence time, expression patterns and qRT-PCR analysis of the 55 predicted AAAP genes in moso bamboo based on the availability of the moso bamboo genome sequence. We identified 55 putative AAAP (PeAAAP1-55) genes, which were divided into eight distinct subfamilies based on comparative phylogenetic analysis using 184 full-length protein sequences, including 55 sequences from moso bamboo, 58 sequences from rice and 71 sequences from maize. Analysis of evolutionary patterns and divergence showed that the PeAAAP genes have undergone a extensive duplication event approximately 12 million years ago (MYA) and that the split between AAAP family genes in moso bamboo and rice occurred approximately 27 MYA. The microarray analysis suggested that some genes play considerable roles in moso bamboo growth and development. We investigated the expression levels of the 16 AAP subfamily genes under abiotic stress (drought, salt and cold) by qRT-PCR to explore the potential contributions to stress response of individual PeAAAP genes in moso bamboo. CONCLUSIONS The results of this study suggest that PeAAAP genes play crucial roles in moso bamboo growth and development, especially in response to abiotic stress conditions. Our comprehensive, systematic study of the AAAPs gene family in moso bamboo will facilitate further analysis of the functions and evolution of AAAP genes in plants.
Collapse
Affiliation(s)
- Huanlong Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036 China
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036 China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| | - Dongyue Zhu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036 China
| | - Feng Pan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036 China
| | - Yujiao Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036 China
| | - Yue Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036 China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036 China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
110
|
Sharma D, Jamra G, Singh UM, Sood S, Kumar A. Calcium Biofortification: Three Pronged Molecular Approaches for Dissecting Complex Trait of Calcium Nutrition in Finger Millet ( Eleusine coracana) for Devising Strategies of Enrichment of Food Crops. FRONTIERS IN PLANT SCIENCE 2017; 7:2028. [PMID: 28144246 PMCID: PMC5239788 DOI: 10.3389/fpls.2016.02028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/19/2016] [Indexed: 05/07/2023]
Abstract
Calcium is an essential macronutrient for plants and animals and plays an indispensable role in structure and signaling. Low dietary intake of calcium in humans has been epidemiologically linked to various diseases which can have serious health consequences over time. Major staple food-grains are poor source of calcium, however, finger millet [Eleusine coracana (L.) Gaertn.], an orphan crop has an immense potential as a nutritional security crop due to its exceptionally high calcium content. Understanding the existing genetic variation as well as molecular mechanisms underlying the uptake, transport, accumulation of calcium ions (Ca2+) in grains is of utmost importance for development of calcium bio-fortified crops. In this review, we have discussed molecular mechanisms involved in calcium accumulation and transport thoroughly, emphasized the role of molecular breeding, functional genomics and transgenic approaches to understand the intricate mechanism of calcium nutrition in finger millet. The objective is to provide a comprehensive up to date account of molecular mechanisms regulating calcium nutrition and highlight the significance of bio-fortification through identification of potential candidate genes and regulatory elements from finger millet to alleviate calcium malnutrition. Hence, finger millet could be used as a model system for explaining the mechanism of elevated calcium (Ca2+) accumulation in its grains and could pave way for development of nutraceuticals or designer crops.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and TechnologyPantnagar, India
| | - Gautam Jamra
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and TechnologyPantnagar, India
| | - Uma M. Singh
- International Rice Research Institute Division, International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Salej Sood
- Indian Council of Agricultural Research-Vivekananda Institute of Hill AgricultureAlmora, India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and TechnologyPantnagar, India
| |
Collapse
|
111
|
Payne RME, Xu D, Foureau E, Teto Carqueijeiro MIS, Oudin A, de Bernonville TD, Novak V, Burow M, Olsen CE, Jones DM, Tatsis EC, Pendle A, Halkier BA, Geu-Flores F, Courdavault V, Nour-Eldin HH, O’Connor SE. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. NATURE PLANTS 2017; 3:16208. [PMID: 28085153 PMCID: PMC5238941 DOI: 10.1038/nplants.2016.208] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/29/2016] [Indexed: 05/17/2023]
Abstract
Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that includes the anticancer agent vincristine, antimalarial quinine and neurotoxin strychnine, are synthesized in several different cellular locations. However, the transporters that control the movement of these biosynthetic intermediates within cellular compartments have not been discovered. Here we present the discovery of a tonoplast localized nitrate/peptide family (NPF) transporter from Catharanthus roseus, CrNPF2.9, that exports strictosidine, the central intermediate of this pathway, into the cytosol from the vacuole. This discovery highlights the role that intracellular localization plays in specialized metabolism, and sets the stage for understanding and controlling the central branch point of this pharmacologically important group of compounds.
Collapse
Affiliation(s)
- Richard M. E. Payne
- The John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich NR4 7UK, UK
| | - Deyang Xu
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Emilien Foureau
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Parc de Grandmont 37200 Tours, France
| | - Marta Ines Soares Teto Carqueijeiro
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Parc de Grandmont 37200 Tours, France
| | - Audrey Oudin
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Parc de Grandmont 37200 Tours, France
| | - Thomas Dugé de Bernonville
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Parc de Grandmont 37200 Tours, France
| | - Vlastimil Novak
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Carl-Erik Olsen
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - D. Marc Jones
- The John Innes Centre, Department of Computational and Systems Biology, Norwich Research Park, Norwich NR4 7UK, UK
| | - Evangelos C. Tatsis
- The John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich NR4 7UK, UK
| | - Ali Pendle
- The John Innes Centre, Department of Cell and Developmental Biology, Norwich Research Park, Norwich NR4 7UK, UK
| | - Barbara Ann Halkier
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Fernando Geu-Flores
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Parc de Grandmont 37200 Tours, France
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Sarah E. O’Connor
- The John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich NR4 7UK, UK
- To whom correspondence should be addressed: Sarah E. O’Connor ()
| |
Collapse
|
112
|
Hanano A, Almousally I, Shaban M, Rahman F, Hassan M, Murphy DJ. Specific Caleosin/Peroxygenase and Lipoxygenase Activities Are Tissue-Differentially Expressed in Date Palm ( Phoenix dactylifera L.) Seedlings and Are Further Induced Following Exposure to the Toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin. FRONTIERS IN PLANT SCIENCE 2017; 7:2025. [PMID: 28111588 PMCID: PMC5216026 DOI: 10.3389/fpls.2016.02025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/19/2016] [Indexed: 06/02/2023]
Abstract
Two caleosin/peroxygenase isoforms from date palm, Phoenix dactylifera L., PdCLO2 and PdCLO4, were characterized with respect to their tissue expression, subcellular localization, and oxylipin pathway substrate specificities in developing seedlings. Both PdCLO2 and PdCLO4 had peroxygenase activities that peaked at the mid-stage (radicle length of 2.5 cm) of seedling growth and were associated with the lipid droplet (LD) and microsomal fractions. Recombinant PdCLO2 and PdCLO4 proteins heterologously expressed in yeast cells were localized in both LD and microsomal fractions. Each of the purified recombinant proteins exhibited peroxygenase activity but they were catalytically distinct with respect to their specificity and product formation from fatty acid epoxide and hydroxide substrates. We recently showed that date palm CLO genes were upregulated following exposure to the potent toxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (Hanano et al., 2016), and we show here that transcripts of 9- and 13-lipoxygenase (LOX) genes were also induced by TCDD exposure. At the enzyme level, 9-LOX and 13-LOX activities were present in a range of seedling tissues and responded differently to TCDD exposure, as did the 9- and 13-fatty acid hydroperoxide reductase activities. This demonstrates that at least two branches of the oxylipin pathway are involved in responses to the environmental organic toxin, TCDD in date palm.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of SyriaDamascus, Syria
| | - Ibrahem Almousally
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of SyriaDamascus, Syria
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of SyriaDamascus, Syria
| | - Farzana Rahman
- Genomics and Computational Biology Group, University of South WalesWales, UK
| | - Mehedi Hassan
- Genomics and Computational Biology Group, University of South WalesWales, UK
| | - Denis J. Murphy
- Genomics and Computational Biology Group, University of South WalesWales, UK
| |
Collapse
|
113
|
Angelovici R, Batushansky A, Deason N, Gonzalez-Jorge S, Gore MA, Fait A, DellaPenna D. Network-Guided GWAS Improves Identification of Genes Affecting Free Amino Acids. PLANT PHYSIOLOGY 2017; 173:872-886. [PMID: 27872244 PMCID: PMC5210728 DOI: 10.1104/pp.16.01287] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/16/2016] [Indexed: 05/18/2023]
Abstract
Amino acids are essential for proper growth and development in plants. Amino acids serve as building blocks for proteins but also are important for responses to stress and the biosynthesis of numerous essential compounds. In seed, the pool of free amino acids (FAAs) also contributes to alternative energy, desiccation, and seed vigor; thus, manipulating FAA levels can significantly impact a seed's nutritional qualities. While genome-wide association studies (GWAS) on branched-chain amino acids have identified some regulatory genes controlling seed FAAs, the genetic regulation of FAA levels, composition, and homeostasis in seeds remains mostly unresolved. Hence, we performed GWAS on 18 FAAs from a 313-ecotype Arabidopsis (Arabidopsis thaliana) association panel. Specifically, GWAS was performed on 98 traits derived from known amino acid metabolic pathways (approach 1) and then on 92 traits generated from an unbiased correlation-based metabolic network analysis (approach 2), and the results were compared. The latter approach facilitated the discovery of additional novel metabolic interactions and single-nucleotide polymorphism-trait associations not identified by the former approach. The most prominent network-guided GWAS signal was for a histidine (His)-related trait in a region containing two genes: a cationic amino acid transporter (CAT4) and a polynucleotide phosphorylase resistant to inhibition with fosmidomycin. A reverse genetics approach confirmed CAT4 to be responsible for the natural variation of His-related traits across the association panel. Given that His is a semiessential amino acid and a potent metal chelator, CAT4 orthologs could be considered as candidate genes for seed quality biofortification in crop plants.
Collapse
Affiliation(s)
- Ruthie Angelovici
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.);
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.);
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.);
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Albert Batushansky
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Nicholas Deason
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Sabrina Gonzalez-Jorge
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Michael A Gore
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Aaron Fait
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Dean DellaPenna
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| |
Collapse
|
114
|
Abstract
Isolation of various subcellular compartments followed by a high-coverage proteomic analysis provides an unparalleled foundation for the functional analyses of proteins. Analyses of tonoplast preparations free of major contaminants provide insights into vesicular fusion machinery, solute transport, and the vacuole association with the cytoskeleton, whereas analyses of the vacuolar lumen have yielded numerous soluble glycosidases, proteases, and proteins involved in stress responses. In addition, vacuolar lumen preparations have also allowed characterization of a luminal solute content in response to various abiotic stresses. Here, I revisit and update one of the most successful methodologies for vacuole and tonoplast isolation.
Collapse
Affiliation(s)
- Jan Zouhar
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, I.N.I.A. Parque Científico y Tecnológico, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Spain.
| |
Collapse
|
115
|
Fujiki Y, Teshima H, Kashiwao S, Kawano-Kawada M, Ohsumi Y, Kakinuma Y, Sekito T. Functional identification ofAtAVT3, a family of vacuolar amino acid transporters, inArabidopsis. FEBS Lett 2016; 591:5-15. [DOI: 10.1002/1873-3468.12507] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Yuki Fujiki
- Division of Life Science; Graduate School of Science and Engineering; Saitama University; Japan
| | - Hiromitsu Teshima
- Department of Applied Bioscience; Faculty of Agriculture; Ehime University; Japan
| | - Shinji Kashiwao
- Department of Applied Bioscience; Faculty of Agriculture; Ehime University; Japan
| | - Miyuki Kawano-Kawada
- Department of Applied Bioscience; Faculty of Agriculture; Ehime University; Japan
- Advanced Research Support Center (ADRES); Ehime University; Japan
| | - Yoshinori Ohsumi
- Frontier Research Center; Tokyo Institute of Technology; Yokohama Japan
| | - Yoshimi Kakinuma
- Department of Applied Bioscience; Faculty of Agriculture; Ehime University; Japan
| | - Takayuki Sekito
- Department of Applied Bioscience; Faculty of Agriculture; Ehime University; Japan
| |
Collapse
|
116
|
Zamyatnin AA. Plant Proteases Involved in Regulated Cell Death. BIOCHEMISTRY (MOSCOW) 2016; 80:1701-15. [PMID: 26878575 DOI: 10.1134/s0006297915130064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Each plant genome encodes hundreds of proteolytic enzymes. These enzymes can be divided into five distinct classes: cysteine-, serine-, aspartic-, threonine-, and metalloproteinases. Despite the differences in their structural properties and activities, members of all of these classes in plants are involved in the processes of regulated cell death - a basic feature of eukaryotic organisms. Regulated cell death in plants is an indispensable mechanism supporting plant development, survival, stress responses, and defense against pathogens. This review summarizes recent advances in studies of plant proteolytic enzymes functioning in the initiation and execution of distinct types of regulated cell death.
Collapse
Affiliation(s)
- A A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| |
Collapse
|
117
|
Shibuya K, Yamada T, Ichimura K. Morphological changes in senescing petal cells and the regulatory mechanism of petal senescence. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5909-5918. [PMID: 27625416 DOI: 10.1093/jxb/erw337] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Petal senescence, or programmed cell death (PCD) in petals, is a developmentally regulated and genetically programmed process. During petal senescence, petal cells show morphological changes associated with PCD: tonoplast rupture and rapid destruction of the cytoplasm. This type of PCD is classified as vacuolar cell death or autolytic PCD based on morphological criteria. In PCD of petal cells, characteristic morphological features including an autophagy-like process, chromatin condensation, and nuclear fragmentation are also observed. While the phytohormone ethylene is known to play a crucial role in petal senescence in some plant species, little is known about the early regulation of ethylene-independent petal senescence. Recently, a NAC (NAM/ATAF1,2/CUC2) transcription factor was reported to control the progression of PCD during petal senescence in Japanese morning glory, which shows ethylene-independent petal senescence. In ethylene-dependent petal senescence, functional analyses of transcription factor genes have revealed the involvement of a basic helix-loop-helix protein and a homeodomain-leucine zipper protein in the transcriptional regulation of the ethylene biosynthesis pathway. Here we review the recent advances in our knowledge of petal senescence, mostly focusing on the morphology of senescing petal cells and the regulatory mechanisms of PCD by senescence-associated transcription factors during petal senescence.
Collapse
Affiliation(s)
- Kenichi Shibuya
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba 305-0852, Japan
| | - Tetsuya Yamada
- Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kazuo Ichimura
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba 305-0852, Japan
| |
Collapse
|
118
|
Liu R, Wang Y, Qin G, Tian S. iTRAQ-based quantitative proteomic analysis reveals the role of the tonoplast in fruit senescence. J Proteomics 2016; 146:80-9. [DOI: 10.1016/j.jprot.2016.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 01/09/2023]
|
119
|
Pradedova EV, Nimaeva OD, Truchan IS, Salyaev RK. Glutathione transferase activity of vacuoles, plastids, and tissue extracts of red beetroot. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2016. [DOI: 10.1134/s1990747816020082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
120
|
Diaz-Mendoza M, Velasco-Arroyo B, Santamaria ME, González-Melendi P, Martinez M, Diaz I. Plant senescence and proteolysis: two processes with one destiny. Genet Mol Biol 2016; 39:329-38. [PMID: 27505308 PMCID: PMC5004835 DOI: 10.1590/1678-4685-gmb-2016-0015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/10/2016] [Indexed: 01/03/2023] Open
Abstract
Senescence-associated proteolysis in plants is a complex and controlled process,
essential for mobilization of nutrients from old or stressed tissues, mainly leaves,
to growing or sink organs. Protein breakdown in senescing leaves involves many
plastidial and nuclear proteases, regulators, different subcellular locations and
dynamic protein traffic to ensure the complete transformation of proteins of high
molecular weight into transportable and useful hydrolysed products. Protease
activities are strictly regulated by specific inhibitors and through the activation
of zymogens to develop their proteolytic activity at the right place and at the
proper time. All these events associated with senescence have deep effects on the
relocation of nutrients and as a consequence, on grain quality and crop yield. Thus,
it can be considered that nutrient recycling is the common destiny of two processes,
plant senescence and, proteolysis. This review article covers the most recent
findings about leaf senescence features mediated by abiotic and biotic stresses as
well as the participants and steps required in this physiological process, paying
special attention to C1A cysteine proteases, their specific inhibitors, known as
cystatins, and their potential targets, particularly the chloroplastic proteins as
source for nitrogen recycling.
Collapse
Affiliation(s)
- Mercedes Diaz-Mendoza
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Blanca Velasco-Arroyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
121
|
No plastidial calmodulin-like proteins detected by two targeted mass-spectrometry approaches and GFP fusion proteins. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.neps.2016.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
122
|
Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis. Cell Death Differ 2016; 23:1493-501. [PMID: 27058316 PMCID: PMC5072426 DOI: 10.1038/cdd.2016.34] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 02/10/2016] [Accepted: 03/01/2016] [Indexed: 01/13/2023] Open
Abstract
Programmed cell death (PCD) is used by plants for development and survival to biotic and abiotic stresses. The role of caspases in PCD is well established in animal cells. Over the past 15 years, the importance of caspase-3-like enzymatic activity for plant PCD completion has been widely documented despite the absence of caspase orthologues. In particular, caspase-3 inhibitors blocked nearly all plant PCD tested. Here, we affinity-purified a plant caspase-3-like activity using a biotin-labelled caspase-3 inhibitor and identified Arabidopsis thaliana cathepsin B3 (AtCathB3) by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Consistent with this, recombinant AtCathB3 was found to have caspase-3-like activity and to be inhibited by caspase-3 inhibitors. AtCathepsin B triple-mutant lines showed reduced caspase-3-like enzymatic activity and reduced labelling with activity-based caspase-3 probes. Importantly, AtCathepsin B triple mutants showed a strong reduction in the PCD induced by ultraviolet (UV), oxidative stress (H2O2, methyl viologen) or endoplasmic reticulum stress. Our observations contribute to explain why caspase-3 inhibitors inhibit plant PCD and provide new tools to further plant PCD research. The fact that cathepsin B does regulate PCD in both animal and plant cells suggests that this protease may be part of an ancestral PCD pathway pre-existing the plant/animal divergence that needs further characterisation.
Collapse
|
123
|
Hong Y, Zhao J, Guo L, Kim SC, Deng X, Wang G, Zhang G, Li M, Wang X. Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 2016; 62:55-74. [DOI: 10.1016/j.plipres.2016.01.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
|
124
|
Pedrazzini E, Caprera A, Fojadelli I, Stella A, Rocchetti A, Bassin B, Martinoia E, Vitale A. The Arabidopsis tonoplast is almost devoid of glycoproteins with complex N-glycans, unlike the rat lysosomal membrane. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1769-81. [PMID: 26748395 PMCID: PMC4783361 DOI: 10.1093/jxb/erv567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The distribution of the N-glycoproteome in integral membrane proteins of the vacuolar membrane (tonoplast) or the plasma membrane of Arabidopsis thaliana and, for further comparison, of the Rattus norvegicus lysosomal and plasma membranes, was analyzed. In silico analysis showed that potential N-glycosylation sites are much less frequent in tonoplast proteins. Biochemical analysis of Arabidopsis subcellular fractions with the lectin concanavalin A, which recognizes mainly unmodified N-glycans, or with antiserum against Golgi-modified N-glycans confirmed the in silico results and showed that, unlike the plant plasma membrane, the tonoplast is almost or totally devoid of N-glycoproteins with Golgi-modified glycans. Lysosomes share with vacuoles the hydrolytic functions and the position along the secretory pathway; however, our results indicate that their membranes had a divergent evolution. We propose that protection against the luminal hydrolases that are abundant in inner hydrolytic compartments, which seems to have been achieved in many lysosomal membrane proteins by extensive N-glycosylation of the luminal domains, has instead been obtained in the vast majority of tonoplast proteins by limiting the length of such domains.
Collapse
Affiliation(s)
| | | | | | | | | | - Barbara Bassin
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Enrico Martinoia
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
125
|
Li P, Zhang G, Gonzales N, Guo Y, Hu H, Park S, Zhao J. Ca(2+) -regulated and diurnal rhythm-regulated Na(+) /Ca(2+) exchanger AtNCL affects flowering time and auxin signalling in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:377-92. [PMID: 26296956 DOI: 10.1111/pce.12620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 05/21/2023]
Abstract
Calcium (Ca(2+) ) is vital for plant growth, development, hormone response and adaptation to environmental stresses, yet the mechanisms regulating plant cytosolic Ca(2+) homeostasis are not fully understood. Here, we characterize an Arabidopsis Ca(2+) -regulated Na(+) /Ca(2+) exchanger AtNCL that regulates Ca(2+) and multiple physiological processes. AtNCL was localized to the tonoplast in yeast and plant cells. AtNCL appeared to mediate sodium (Na(+) ) vacuolar sequestration and meanwhile Ca(2+) release. The EF-hand domains within AtNCL regulated Ca(2+) binding and transport of Ca(2+) and Na(+) . Plants with diminished AtNCL expression were more tolerant to high CaCl2 but more sensitive to both NaCl and auxin; heightened expression of AtNCL rendered plants more sensitive to CaCl2 but tolerant to NaCl. AtNCL expression appeared to be regulated by the diurnal rhythm and suppressed by auxin. DR5::GUS expression and root responses to auxin were altered in AtNCL mutants. The auxin-induced suppression of AtNCL was attenuated in SLR/IAA14 and ARF6/8 mutants. The mutants with altered AtNCL expression also altered flowering time and FT and CO expression; FT may mediate AtNCL-regulated flowering time change. Therefore, AtNCL is a vacuolar Ca(2+) -regulated Na(+) /Ca(2+) exchanger that regulates auxin responses and flowering time.
Collapse
Affiliation(s)
- Penghui Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Gaoyang Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Naomi Gonzales
- Children's Nutrition Research Center, USDA/ARS, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yingqing Guo
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
- Children's Nutrition Research Center, USDA/ARS, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Honghong Hu
- College of Life Science and technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Sunghun Park
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, Manhattan, KS, 66506, USA
| | - Jian Zhao
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
- Children's Nutrition Research Center, USDA/ARS, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
126
|
Kanazawa T, Era A, Minamino N, Shikano Y, Fujimoto M, Uemura T, Nishihama R, Yamato KT, Ishizaki K, Nishiyama T, Kohchi T, Nakano A, Ueda T. SNARE Molecules in Marchantia polymorpha: Unique and Conserved Features of the Membrane Fusion Machinery. PLANT & CELL PHYSIOLOGY 2016; 57:307-24. [PMID: 26019268 DOI: 10.1093/pcp/pcv076] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/22/2015] [Indexed: 05/18/2023]
Abstract
The membrane trafficking pathway has been diversified in a specific way for each eukaryotic lineage, probably to fulfill specific functions in the organisms. In green plants, comparative genomics has supported the possibility that terrestrialization and/or multicellularization could be associated with the elaboration and diversification of membrane trafficking pathways, which have been accomplished by an expansion of the numbers of genes required for machinery components of membrane trafficking, including soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. However, information regarding membrane trafficking pathways in basal land plant lineages remains limited. In the present study, we conducted extensive analyses of SNARE molecules, which mediate membrane fusion between target membranes and transport vesicles or donor organelles, in the liverwort, Marchantia polymorpha. The M. polymorpha genome contained at least 34 genes for 36 SNARE proteins, comprising fundamental sets of SNARE proteins that are shared among land plant lineages with low degrees of redundancy. We examined the subcellular distribution of a major portion of these SNARE proteins by expressing Citrine-tagged SNARE proteins in M. polymorpha, and the results showed that some of the SNARE proteins were targeted to different compartments from their orthologous products in Arabidopsis thaliana. For example, MpSYP12B was localized to the surface of the oil body, which is a unique organelle in liverworts. Furthermore, we identified three VAMP72 members with distinctive structural characteristics, whose N-terminal extensions contain consensus sequences for N-myristoylation. These results suggest that M. polymorpha has acquired unique membrane trafficking pathways associated with newly acquired machinery components during evolution.
Collapse
Affiliation(s)
- Takehiko Kanazawa
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Atsuko Era
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Department of Cell Genetics, National Institute of Genetics, Mishima, Shizuoka, 411-8540 Japan
| | - Naoki Minamino
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yu Shikano
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Masaru Fujimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kinki University, Nishimitani, Kinokawa, Wakayama, 649-6493 Japan
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-0934 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 Japan
| |
Collapse
|
127
|
Scheuring D, Löfke C, Krüger F, Kittelmann M, Eisa A, Hughes L, Smith RS, Hawes C, Schumacher K, Kleine-Vehn J. Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. Proc Natl Acad Sci U S A 2016; 113:452-7. [PMID: 26715743 PMCID: PMC4720293 DOI: 10.1073/pnas.1517445113] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cytoskeleton is an early attribute of cellular life, and its main components are composed of conserved proteins. The actin cytoskeleton has a direct impact on the control of cell size in animal cells, but its mechanistic contribution to cellular growth in plants remains largely elusive. Here, we reveal a role of actin in regulating cell size in plants. The actin cytoskeleton shows proximity to vacuoles, and the phytohormone auxin not only controls the organization of actin filaments but also impacts vacuolar morphogenesis in an actin-dependent manner. Pharmacological and genetic interference with the actin-myosin system abolishes the effect of auxin on vacuoles and thus disrupts its negative influence on cellular growth. SEM-based 3D nanometer-resolution imaging of the vacuoles revealed that auxin controls the constriction and luminal size of the vacuole. We show that this actin-dependent mechanism controls the relative vacuolar occupancy of the cell, thus suggesting an unanticipated mechanism for cytosol homeostasis during cellular growth.
Collapse
Affiliation(s)
- David Scheuring
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Christian Löfke
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Falco Krüger
- Center for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Maike Kittelmann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Ahmed Eisa
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Louise Hughes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Karin Schumacher
- Center for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
128
|
Huang D, Zhao Y, Cao M, Qiao L, Zheng ZL. Integrated Systems Biology Analysis of Transcriptomes Reveals Candidate Genes for Acidity Control in Developing Fruits of Sweet Orange (Citrus sinensis L. Osbeck). FRONTIERS IN PLANT SCIENCE 2016; 7:486. [PMID: 27092171 PMCID: PMC4824782 DOI: 10.3389/fpls.2016.00486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/25/2016] [Indexed: 05/18/2023]
Abstract
Organic acids, such as citrate and malate, are important contributors for the sensory traits of fleshy fruits. Although their biosynthesis has been illustrated, regulatory mechanisms of acid accumulation remain to be dissected. To provide transcriptional architecture and identify candidate genes for citrate accumulation in fruits, we have selected for transcriptome analysis four varieties of sweet orange (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). Fruits of these varieties at 45 days post anthesis (DPA), which corresponds to Stage I (cell division), had similar acidity, but they displayed differential acid accumulation at 142 DPA (Stage II, cell expansion). Transcriptomes of fruits at 45 and 142 DPA were profiled using RNA sequencing and analyzed with three different algorithms (Pearson correlation, gene coexpression network and surrogate variable analysis). Our network analysis shows that the acid-correlated genes belong to three distinct network modules. Several of these candidate fruit acidity genes encode regulatory proteins involved in transport (such as AHA10), degradation (such as APD2) and transcription (such as AIL6) and act as hubs in the citrate accumulation gene networks. Taken together, our integrated systems biology analysis has provided new insights into the fruit citrate accumulation gene network and led to the identification of candidate genes likely associated with the fruit acidity control.
Collapse
Affiliation(s)
- Dingquan Huang
- Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, National Citrus Engineering Research Center, Citrus Research Institute, Southwest UniversityChongqing, China
| | - Yihong Zhao
- Division of Biostatistics, Department of Child Psychiatry, New York University Langone Medical Center, New YorkNY, USA
- *Correspondence: Yihong Zhao, ; Zhi-Liang Zheng,
| | - Minghao Cao
- Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, National Citrus Engineering Research Center, Citrus Research Institute, Southwest UniversityChongqing, China
| | - Liang Qiao
- Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, National Citrus Engineering Research Center, Citrus Research Institute, Southwest UniversityChongqing, China
| | - Zhi-Liang Zheng
- Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, National Citrus Engineering Research Center, Citrus Research Institute, Southwest UniversityChongqing, China
- Department of Biological Sciences, Lehman College, City University of New York, BronxNY, USA
- *Correspondence: Yihong Zhao, ; Zhi-Liang Zheng,
| |
Collapse
|
129
|
Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G. Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:735. [PMID: 27303427 PMCID: PMC4880792 DOI: 10.3389/fpls.2016.00735] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/12/2016] [Indexed: 05/18/2023]
Abstract
The phenylpropanoid pathway in plants is responsible for the biosynthesis of a huge amount of secondary metabolites derived from phenylalanine and tyrosine. Both flavonoids and lignins are synthesized at the end of this very diverse metabolic pathway, as well as many intermediate molecules whose precise biological functions remain largely unknown. The diversity of these molecules can be further increased under the action of UDP-glycosyltransferases (UGTs) leading to the production of glycosylated hydroxycinnamates and related aldehydes, alcohols and esters. Glycosylation can change phenylpropanoid solubility, stability and toxic potential, as well as influencing compartmentalization and biological activity. (De)-glycosylation therefore represents an extremely important regulation point in phenylpropanoid homeostasis. In this article we review recent knowledge on the enzymes involved in regulating phenylpropanoid glycosylation status and availability in different subcellular compartments. We also examine the potential link between monolignol glycosylation and lignification by exploring co-expression of lignin biosynthesis genes and phenolic (de)glycosylation genes. Of the different biological roles linked with their particular chemical properties, phenylpropanoids are often correlated with the plant's stress management strategies that are also regulated by glycosylation. UGTs can for instance influence the resistance of plants during infection by microorganisms and be involved in the mechanisms related to environmental changes. The impact of flavonoid glycosylation on the color of flowers, leaves, seeds and fruits will also be discussed. Altogether this paper underlies the fact that glycosylation and deglycosylation are powerful mechanisms allowing plants to regulate phenylpropanoid localisation, availability and biological activity.
Collapse
|
130
|
Girondé A, Poret M, Etienne P, Trouverie J, Bouchereau A, Le Cahérec F, Leport L, Niogret MF, Avice JC. A Comparative Study of Proteolytic Mechanisms during Leaf Senescence of Four Genotypes of Winter Oilseed Rape Highlighted Relevant Physiological and Molecular Traits for NRE Improvement. PLANTS (BASEL, SWITZERLAND) 2015; 5:E1. [PMID: 27135221 PMCID: PMC4844419 DOI: 10.3390/plants5010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 11/21/2022]
Abstract
Winter oilseed rape is characterized by a low N use efficiency related to a weak leaf N remobilization efficiency (NRE) at vegetative stages. By investigating the natural genotypic variability of leaf NRE, our goal was to characterize the relevant physiological traits and the main protease classes associated with an efficient proteolysis and high leaf NRE in response to ample or restricted nitrate supply. The degradation rate of soluble proteins and D1 protein (a thylakoid-bound protein) were correlated to N remobilization, except for the genotype Samouraï which showed a low NRE despite high levels of proteolysis. Under restricted nitrate conditions, high levels of soluble protein degradation were associated with serine, cysteine and aspartic proteases at acidic pH. Low leaf NRE was related to a weak proteolysis of both soluble and thylakoid-bound proteins. The results obtained on the genotype Samouraï suggest that the timing between the onset of proteolysis and abscission could be a determinant. The specific involvement of acidic proteases suggests that autophagy and/or senescence-associated vacuoles are implicated in N remobilization under low N conditions. The data revealed that the rate of D1 degradation could be a relevant indicator of leaf NRE and might be used as a tool for plant breeding.
Collapse
Affiliation(s)
- Alexandra Girondé
- UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., Université de Caen Normandie, F-14032 Caen, France.
| | - Marine Poret
- UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., Université de Caen Normandie, F-14032 Caen, France.
| | - Philippe Etienne
- UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., Université de Caen Normandie, F-14032 Caen, France.
| | - Jacques Trouverie
- UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., Université de Caen Normandie, F-14032 Caen, France.
| | - Alain Bouchereau
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France.
| | - Françoise Le Cahérec
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France.
| | - Laurent Leport
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France.
| | - Marie-Françoise Niogret
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France.
| | - Jean-Christophe Avice
- UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., Université de Caen Normandie, F-14032 Caen, France.
| |
Collapse
|
131
|
Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis. Proc Natl Acad Sci U S A 2015; 113:E41-50. [PMID: 26607451 DOI: 10.1073/pnas.1521248112] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The exocyst complex regulates the last steps of exocytosis, which is essential to organisms across kingdoms. In humans, its dysfunction is correlated with several significant diseases, such as diabetes and cancer progression. Investigation of the dynamic regulation of the evolutionarily conserved exocyst-related processes using mutants in genetically tractable organisms such as Arabidopsis thaliana is limited by the lethality or the severity of phenotypes. We discovered that the small molecule Endosidin2 (ES2) binds to the EXO70 (exocyst component of 70 kDa) subunit of the exocyst complex, resulting in inhibition of exocytosis and endosomal recycling in both plant and human cells and enhancement of plant vacuolar trafficking. An EXO70 protein with a C-terminal truncation results in dominant ES2 resistance, uncovering possible distinct regulatory roles for the N terminus of the protein. This study not only provides a valuable tool in studying exocytosis regulation but also offers a potentially new target for drugs aimed at addressing human disease.
Collapse
|
132
|
Krishnamurthy P, Tan XF, Lim TK, Lim TM, Kumar PP, Loh CS, Lin Q. Proteomic analysis of plasma membrane and tonoplast from the leaves of mangrove plant Avicennia officinalis. Proteomics 2015; 14:2545-57. [PMID: 25236605 DOI: 10.1002/pmic.201300527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 07/15/2014] [Accepted: 09/15/2014] [Indexed: 12/29/2022]
Abstract
In order to understand the salt tolerance and secretion in mangrove plant species, gel electrophoresis coupled with LC-MS-based proteomics was used to identify key transport proteins in the plasma membrane (PM) and tonoplast fractions of Avicennia officinalis leaves. PM and tonoplast proteins were purified using two-aqueous-phase partitioning and density gradient centrifugation, respectively. Forty of the 254 PM proteins and 31 of the 165 tonoplast proteins identified were predicted to have transmembrane domains. About 95% of the identified proteins could be classified based on their functions. The major classes of proteins were predicted to be involved in transport, metabolic processes, defense/stress response, and signal transduction, while a few of the proteins were predicted to be involved in other functions such as membrane trafficking. The main classes of transporter proteins identified included H(+) -ATPases, ATP-binding cassette transporters, and aquaporins, all of which could play a role in salt secretion. These data will serve as the baseline membrane proteomic dataset for Avicennia species. Further, this information can contribute to future studies on understanding the mechanism of salt tolerance in halophytes in addition to salt secretion in mangroves. All MS data have been deposited in the ProteomeXchange with identifier PXD000837 (http://proteomecentral.proteomexchange.org/dataset/PXD000837).
Collapse
Affiliation(s)
- Pannaga Krishnamurthy
- Department of Biological Sciences, National University of Singapore, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
133
|
Comparative proteome analysis of rubber latex serum from pathogenic fungi tolerant and susceptible rubber tree (Hevea brasiliensis). J Proteomics 2015; 131:82-92. [PMID: 26477389 DOI: 10.1016/j.jprot.2015.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/18/2015] [Accepted: 10/08/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED Many cultivated rubber trees (Hevea brasiliensis) are invaded by various Phytophthora species fungi, especially in tropical regions which result in crop yield losses. Comparative proteome analysis coupled with liquid chromatography electrospray/ionization (LC-ESI) mass spectrometry identification was employed to investigate the relative abundance of defense related proteins in Phytophthora sp. susceptible (RRIM600) and tolerant (BPM24) clones of rubber tree. Proteome maps of non-rubber constituent of these two model clones show similar protein counts, although some proteins show significant alterations in their abundance. Most of the differentially abundant proteins found in the serum of BPM24 illustrate the accumulation of defense related proteins that participate in plant defense mechanisms such as beta-1,3-glucanase, chitinase, and lectin. SDS-PAGE and 2-D Western blot analysis showed greater level of accumulation of beta-1,3-glucanase and chitinase in latex serum of BPM24 when compared to RRIM600. A functional study of these two enzymes showed that BPM24 serum had greater beta-1,3-glucanase and chitinase activities than that of RRIM600. These up-regulated proteins are constitutively expressed and would serve to protect the rubber tree BPM24 from any fungal invader. The information obtained from this work is valuable for understanding of defense mechanisms and plantation improvement of H. brasiliensis. BIOLOGICAL SIGNIFICANCE Non-rubber constituents (latex serum) have almost no value and are treated as waste in the rubber agricultural industry. However, the serum of natural rubber latex contains biochemical substances. The comparative proteomics analysis of latex serum between tolerant and susceptible clones reveals that the tolerant BPM24 clone contained a high abundance of several classes of fungal pathogen-responsive proteins, such as glucanase and chitinase. Moreover, other proteins identified highlighted the accumulation of defensive-associated proteins participating in plant fungal immunity. The isolation of beta-1,3-glucanase, chitinase, and lectin from latex serum should be further investigated and may provide a therapeutic application. This investigation will lead to possible use of latex serum as a great biotechnological resource due to the large quantity of serum produced and the biochemicals contained therein.
Collapse
|
134
|
Wang X, Wang D, Sun Y, Yang Q, Chang L, Wang L, Meng X, Huang Q, Jin X, Tong Z. Comprehensive Proteomics Analysis of Laticifer Latex Reveals New Insights into Ethylene Stimulation of Natural Rubber Production. Sci Rep 2015; 5:13778. [PMID: 26348427 PMCID: PMC4562231 DOI: 10.1038/srep13778] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 08/05/2015] [Indexed: 12/02/2022] Open
Abstract
Ethylene is a stimulant to increase natural rubber latex. After ethylene application, both fresh yield and dry matter of latex are substantially improved. Moreover, we found that ethylene improves the generation of small rubber particles. However, most genes involved in rubber biosynthesis are inhibited by exogenous ethylene. Therefore, we conducted a proteomics analysis of ethylene-stimulated rubber latex, and identified 287 abundant proteins as well as 143 ethylene responsive latex proteins (ERLPs) with mass spectrometry from the 2-DE and DIGE gels, respectively. In addition, more than 1,600 proteins, including 404 ERLPs, were identified by iTRAQ. Functional classification of ERLPs revealed that enzymes involved in post-translational modification, carbohydrate metabolism, hydrolase activity, and kinase activity were overrepresented. Some enzymes for rubber particle aggregation were inhibited to prolong latex flow, and thus finally improved latex production. Phosphoproteomics analysis identified 59 differential phosphoproteins; notably, specific isoforms of rubber elongation factor and small rubber particle protein that were phosphorylated mainly at serine residues. This post-translational modification and isoform-specific phosphorylation might be important for ethylene-stimulated latex production. These results not only deepen our understanding of the rubber latex proteome but also provide new insights into the use of ethylene to stimulate rubber latex production.
Collapse
Affiliation(s)
- Xuchu Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Dan Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Yong Sun
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Qian Yang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Lili Chang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Limin Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Xueru Meng
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Qixing Huang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Xiang Jin
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Zheng Tong
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| |
Collapse
|
135
|
Burns JA, Paasch A, Narechania A, Kim E. Comparative Genomics of a Bacterivorous Green Alga Reveals Evolutionary Causalities and Consequences of Phago-Mixotrophic Mode of Nutrition. Genome Biol Evol 2015. [PMID: 26224703 PMCID: PMC5741210 DOI: 10.1093/gbe/evv144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cymbomonas tetramitiformis—a marine prasinophyte—is one of only a few green algae that still retain an ancestral particulate-feeding mechanism while harvesting energy through photosynthesis. The genome of the alga is estimated to be 850 Mb–1.2 Gb in size—the bulk of which is filled with repetitive sequences—and is annotated with 37,366 protein-coding gene models. A number of unusual metabolic pathways (for the Chloroplastida) are predicted for C. tetramitiformis, including pathways for Lipid-A and peptidoglycan metabolism. Comparative analyses of the predicted peptides of C. tetramitiformis to sets of other eukaryotes revealed that nonphagocytes are depleted in a number of genes, a proportion of which have known function in feeding. In addition, our analysis suggests that obligatory phagotrophy is associated with the loss of genes that function in biosynthesis of small molecules (e.g., amino acids). Further, C. tetramitiformis and at least one other phago-mixotrophic alga are thus unique, compared with obligatory heterotrophs and nonphagocytes, in that both feeding and small molecule synthesis-related genes are retained in their genomes. These results suggest that early, ancestral host eukaryotes that gave rise to phototrophs had the capacity to assimilate building block molecules from inorganic substances (i.e., prototrophy). The loss of biosynthesis genes, thus, may at least partially explain the apparent lack of instances of permanent incorporation of photosynthetic endosymbionts in later-divergent, auxotrophic eukaryotic lineages, such as metazoans and ciliates.
Collapse
Affiliation(s)
- John A Burns
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY
| | - Amber Paasch
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY
| | - Eunsoo Kim
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY
| |
Collapse
|
136
|
Zhang C, Hicks GR, Raikhel NV. Molecular Composition of Plant Vacuoles: Important but Less Understood Regulations and Roles of Tonoplast Lipids. PLANTS 2015; 4:320-33. [PMID: 27135331 PMCID: PMC4844321 DOI: 10.3390/plants4020320] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/21/2015] [Accepted: 06/03/2015] [Indexed: 11/16/2022]
Abstract
The vacuole is an essential organelle for plant growth and development. It is the location for the storage of nutrients; such as sugars and proteins; and other metabolic products. Understanding the mechanisms of vacuolar trafficking and molecule transport across the vacuolar membrane is of great importance in understanding basic plant development and cell biology and for crop quality improvement. Proteins play important roles in vacuolar trafficking; such proteins include Rab GTPase signaling proteins; cargo recognition receptors; and SNAREs (Soluble NSF Attachment Protein Receptors) that are involved in membrane fusion. Some vacuole membrane proteins also serve as the transporters or channels for transport across the tonoplast. Less understood but critical are the roles of lipids in vacuolar trafficking. In this review, we will first summarize molecular composition of plant vacuoles and we will then discuss our latest understanding on the role of lipids in plant vacuolar trafficking and a surprising connection to ribosome function through the study of ribosomal mutants.
Collapse
Affiliation(s)
- Chunhua Zhang
- Center for Plant Cell Biology & Department of Botany and Plant Sciences, University of California, 900 University Ave., Riverside, CA 92521, USA.
| | - Glenn R Hicks
- Center for Plant Cell Biology & Department of Botany and Plant Sciences, University of California, 900 University Ave., Riverside, CA 92521, USA.
| | - Natasha V Raikhel
- Center for Plant Cell Biology & Department of Botany and Plant Sciences, University of California, 900 University Ave., Riverside, CA 92521, USA.
| |
Collapse
|
137
|
Hernández-Gras F, Boronat A. A hydrophobic proline-rich motif is involved in the intracellular targeting of temperature-induced lipocalin. PLANT MOLECULAR BIOLOGY 2015; 88:301-11. [PMID: 25957952 PMCID: PMC4441748 DOI: 10.1007/s11103-015-0326-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/27/2015] [Indexed: 05/05/2023]
Abstract
Temperature-induced lipocalins (TILs) play an essential role in the response of plants to different abiotic stresses. In agreement with their proposed role in protecting membrane lipids, TILs have been reported to be associated to cell membranes. However, TILs show an overall hydrophilic character and do not contain any signal for membrane targeting nor hydrophobic sequences that could represent transmembrane domains. Arabidopsis TIL (AtTIL) is considered the ortholog of human ApoD, a protein known to associate to membranes through a short hydrophobic loop protruding from strands 5 and 6 of the lipocalin β-barrel. An equivalent loop (referred to as HPR motif) is also present between β-strands 5 and 6 of TILs. The HPR motif, which is highly conserved among TIL proteins, extends over as short stretch of eight amino acids and contains four invariant proline residues. Subcellular localization studies have shown that TILs are targeted to a variety of cell membranes and organelles. We have also found that the HPR motif is necessary and sufficient for the intracellular targeting of TILs. Modeling studies suggest that the HPR motif may directly anchor TILs to cell membranes, favoring in this way further contact with the polar group of membrane lipids. However, some particular features of the HPR motif open the possibility that targeting of TILs to cell membranes could be mediated by interaction with other proteins. The functional analysis of the HPR motif unveils the existence of novel mechanisms involved in the intracellular targeting of proteins in plants.
Collapse
Affiliation(s)
- Francesc Hernández-Gras
- />Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- />Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra-Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Albert Boronat
- />Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- />Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra-Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
138
|
Hedrich R, Sauer N, Neuhaus HE. Sugar transport across the plant vacuolar membrane: nature and regulation of carrier proteins. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:63-70. [PMID: 26000864 DOI: 10.1016/j.pbi.2015.04.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/16/2015] [Accepted: 04/30/2015] [Indexed: 05/06/2023]
Abstract
The ability of higher plants to store sugars is of crucial importance for plant development, adaption to endogenous or environmental cues and for the economic value of crop species. Sugar storage and accumulation, and its homeostasis in plant cells are managed by the vacuole. Although transport of sugars across the vacuolar membrane has been monitored for about four decades, the molecular entities of the transporters involved have been identified in the last 10 years only. Thus, it is just recently that our pictures of the transporters that channel the sugar load across the tonoplast have gained real shape. Here we describe the molecular nature and regulation of an important group of tonoplast sugar transporter (TST) allowing accumulation of sugars against large concentration gradients. In addition, we report on proton-driven tonoplast sugar exporters and on facilitators, which are also involved in balancing cytosolic and vacuolar sugar levels.
Collapse
Affiliation(s)
- Rainer Hedrich
- Molecular Plant Physiology and Biophysics, University of Würzburg, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, University of Erlangen-Nuremberg, Germany
| | | |
Collapse
|
139
|
Water-soluble chlorophyll protein is involved in herbivore resistance activation during greening of Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:7303-8. [PMID: 26016527 DOI: 10.1073/pnas.1507714112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Water-soluble chlorophyll proteins (WSCPs) constitute a small family of unusual chlorophyll (Chl)-binding proteins that possess a Kunitz-type protease inhibitor domain. In Arabidopsis thaliana, a WSCP has been identified, named AtWSCP, that forms complexes with Chl and the Chl precursor chlorophyllide (Chlide) in vitro. AtWSCP exhibits a quite unexpected expression pattern for a Chl binding protein and accumulated to high levels in the apical hook of etiolated plants. AtWSCP expression was negatively light-regulated. Transgenic expression of AtWSCP fused to green fluorescent protein (GFP) revealed that AtWSCP is localized to cell walls/apoplastic spaces. Biochemical assays identified AtWSCP as interacting with RD21 (responsive to desiccation 21), a granulin domain-containing cysteine protease implicated in stress responses and defense. Reconstitution experiments showed tight interactions between RD21 and WSCP that were relieved upon Chlide binding. Laboratory feeding experiments with two herbivorous isopod crustaceans, Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug), identified the apical hook as Achilles' heel of etiolated plants and that this was protected by RD21 during greening. Because Chlide is formed in the apical hook during seedling emergence from the soil, our data suggest an unprecedented mechanism of herbivore resistance activation that is triggered by light and involves AtWSCP.
Collapse
|
140
|
Transcriptome sequencing of three Ranunculus species (Ranunculaceae) reveals candidate genes in adaptation from terrestrial to aquatic habitats. Sci Rep 2015; 5:10098. [PMID: 25993393 PMCID: PMC4438715 DOI: 10.1038/srep10098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/30/2015] [Indexed: 01/12/2023] Open
Abstract
Adaptation to aquatic habitats is a formidable challenge for terrestrial angiosperms that has long intrigued scientists. As part of a suite of work to explore the molecular mechanism of adaptation to aquatic habitats, we here sequenced the transcriptome of the submerged aquatic plant Ranunculus bungei, and two terrestrial relatives R. cantoniensis and R. brotherusii, followed by comparative evolutionary analyses to determine candidate genes for adaption to aquatic habitats. We obtained 126,037, 140,218 and 114,753 contigs for R. bungei, R. cantoniensis and R. brotherusii respectively. Bidirectional Best Hit method and OrthoMCL method identified 11,362 and 8,174 1:1:1 orthologous genes (one ortholog is represented in each of the three species) respectively. Non-synonymous/synonymous (dN/dS) analyses were performed with a maximum likelihood method and an approximate method for the three species-pairs. In total, 14 genes of R. bungei potentially involved in the adaptive transition from terrestrial to aquatic habitats were identified. Some of the homologs to these genes in model plants are involved in vacuole protein formation, regulating 'water transport process' and 'microtubule cytoskeleton organization'. Our study opens the door to understand the molecular mechanism of plant adaptation from terrestrial to aquatic habitats.
Collapse
|
141
|
Heard W, Sklenář J, Tomé DFA, Robatzek S, Jones AME. Identification of Regulatory and Cargo Proteins of Endosomal and Secretory Pathways in Arabidopsis thaliana by Proteomic Dissection. Mol Cell Proteomics 2015; 14:1796-813. [PMID: 25900983 DOI: 10.1074/mcp.m115.050286] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 12/19/2022] Open
Abstract
The cell's endomembranes comprise an intricate, highly dynamic and well-organized system. In plants, the proteins that regulate function of the various endomembrane compartments and their cargo remain largely unknown. Our aim was to dissect subcellular trafficking routes by enriching for partially overlapping subpopulations of endosomal proteomes associated with endomembrane markers. We selected RABD2a/ARA5, RABF2b/ARA7, RABF1/ARA6, and RABG3f as markers for combinations of the Golgi, trans-Golgi network (TGN), early endosomes (EE), secretory vesicles, late endosomes (LE), multivesicular bodies (MVB), and the tonoplast. As comparisons we used Golgi transport 1 (GOT1), which localizes to the Golgi, clathrin light chain 2 (CLC2) labeling clathrin-coated vesicles and pits and the vesicle-associated membrane protein 711 (VAMP711) present at the tonoplast. We developed an easy-to-use method by refining published protocols based on affinity purification of fluorescent fusion constructs to these seven subcellular marker proteins in Arabidopsis thaliana seedlings. We present a total of 433 proteins, only five of which were shared among all enrichments, while many proteins were common between endomembrane compartments of the same trafficking route. Approximately half, 251 proteins, were assigned to one enrichment only. Our dataset contains known regulators of endosome functions including small GTPases, SNAREs, and tethering complexes. We identify known cargo proteins such as PIN3, PEN3, CESA, and the recently defined TPLATE complex. The subcellular localization of two GTPase regulators predicted from our enrichments was validated using live-cell imaging. This is the first proteomic dataset to discriminate between such highly overlapping endomembrane compartments in plants and can be used as a general proteomic resource to predict the localization of proteins and identify the components of regulatory complexes and provides a useful tool for the identification of new protein markers of the endomembrane system.
Collapse
Affiliation(s)
- William Heard
- From the ‡The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jan Sklenář
- From the ‡The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Daniel F A Tomé
- §The School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Silke Robatzek
- From the ‡The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Alexandra M E Jones
- From the ‡The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; §The School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
142
|
Singh UM, Metwal M, Singh M, Taj G, Kumar A. Identification and characterization of calcium transporter gene family in finger millet in relation to grain calcium content. Gene 2015; 566:37-46. [PMID: 25869323 DOI: 10.1016/j.gene.2015.04.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 02/08/2023]
Abstract
Calcium (Ca) is an essential mineral for proper growth and development of plants as well as animals. In plants including cereals, calcium is deposited in seed during its development which is mediated by specialized Ca transporters. Common cereal seeds contain very low amounts of Ca while the finger millet (Eleusine coracana) contains exceptionally high amounts of Ca in seed. In order to understand the role of Ca transporters in grain Ca accumulation, developing seed transcriptome of two finger millet genotypes (GP-1, low Ca and GP-45 high Ca) differing in seed Ca content was sequenced using Illumina paired-end sequencing technology and members of Ca transporter gene family were identified. Out of 109,218 and 120,130 contigs, 86 and 81 contigs encoding Ca transporters were identified in GP-1 and GP-45, respectively. After removal of redundant sequences, a total of 19 sequences were confirmed as Ca transporter genes, which includes 11 Ca(2+) ATPases, 07 Ca(2+)/cation exchangers and 01 Ca(2+) channel. The differential expressions of all genes were analyzed from transcriptome data and it was observed that 9 and 3 genes were highly expressed in GP-45 and GP-1 genotypes respectively. Validation of transcriptome expression data of selected Ca transporter genes was performed on different stages of developing spikes of both genotypes grown under different concentrations of exogenous Ca. In both genotypes, significant correlation was observed between the expression of these genes, especially EcCaX3, and on the amount of Ca accumulated in seed. The positive correlation of seed mass with the amount of Ca concentration was also observed. The efficient Ca transport property and responsiveness of EcCAX3 towards exogenous Ca could be utilized in future biofortification program.
Collapse
Affiliation(s)
- Uma M Singh
- Department of Molecular Biology & Genetic Engineering, College of Basic Science & Humanities, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India; IRRI-South Asia Hub, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, Telangana State, India
| | - Mamta Metwal
- Department of Molecular Biology & Genetic Engineering, College of Basic Science & Humanities, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Manoj Singh
- Department of Molecular Biology & Genetic Engineering, College of Basic Science & Humanities, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Gohar Taj
- Department of Molecular Biology & Genetic Engineering, College of Basic Science & Humanities, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Anil Kumar
- Department of Molecular Biology & Genetic Engineering, College of Basic Science & Humanities, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India.
| |
Collapse
|
143
|
Yang H, Stierhof YD, Ludewig U. The putative Cationic Amino Acid Transporter 9 is targeted to vesicles and may be involved in plant amino acid homeostasis. FRONTIERS IN PLANT SCIENCE 2015; 6:212. [PMID: 25883600 PMCID: PMC4381505 DOI: 10.3389/fpls.2015.00212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/16/2015] [Indexed: 05/29/2023]
Abstract
Amino acids are major primary metabolites. Their uptake, translocation, compartmentation, and re-mobilization require a diverse set of cellular transporters. Here, the broadly expressed gene product of CATIONIC AMINO ACID TRANSPORTER 9 (CAT9) was identified as mainly localized to vesicular membranes that are involved in vacuolar trafficking, including those of the trans-Golgi network. In order to probe whether and how these compartments are involved in amino acid homeostasis, a loss-of-function cat9-1 mutant and ectopic over-expressor plants were isolated. Under restricted nitrogen supply in soil, cat9-1 showed a chlorotic phenotype, which was reversed in the over-expressors. The total soluble amino acid pools were affected in the mutants, but this was only significant under poor nitrogen supply. Upon nitrogen starvation, the soluble amino acid leaf pools were lower in the over-expressor, compared with cat9-1. Over-expression generally affected total soluble amino acid concentrations, slightly delayed development, and finally improved the survival upon severe nitrogen starvation. The results potentially identify a novel function of vesicular amino acid transport mediated by CAT9 in the cellular nitrogen-dependent amino acid homeostasis.
Collapse
Affiliation(s)
- Huaiyu Yang
- Nutritional Crop Physiology, Institute of Crop Science, University of HohenheimStuttgart, Germany
| | - York-Dieter Stierhof
- Zentrum für Molekularbiologie der Pflanzen, University of TübingenTübingen, Germany
| | - Uwe Ludewig
- Nutritional Crop Physiology, Institute of Crop Science, University of HohenheimStuttgart, Germany
| |
Collapse
|
144
|
Francoz E, Ranocha P, Nguyen-Kim H, Jamet E, Burlat V, Dunand C. Roles of cell wall peroxidases in plant development. PHYTOCHEMISTRY 2015; 112:15-21. [PMID: 25109234 DOI: 10.1016/j.phytochem.2014.07.020] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 05/18/2023]
Abstract
Class III peroxidases (CIII Prxs) are plant specific proteins. Based on in silico prediction and experimental evidence, they are mainly considered as cell wall localized proteins. Thanks to their dual hydroxylic and peroxidative cycles, they can produce ROS as well as oxidize cell wall aromatic compounds within proteins and phenolics that are either free or linked to polysaccharides. Thus, they are tightly associated to cell wall loosening and stiffening. They are members of large multigenic families, mostly due to an elevated rate of gene duplication in higher plants, resulting in a high risk of functional redundancy between them. However, proteomic and (micro)transcriptomic analyses have shown that CIII Prx expression profiles are highly specific. Based on these omic analyses, several reverse genetic studies have demonstrated the importance of the spatio-temporal regulation of their expression and ability to interact with cell wall microdomains in order to achieve specific activity in vivo. Each CIII Prx isoform could have specific functions in muro and this could explain the conservation of a high number of genes in plant genomes.
Collapse
Affiliation(s)
- Edith Francoz
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Philippe Ranocha
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Huan Nguyen-Kim
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Elisabeth Jamet
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France.
| | - Vincent Burlat
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Christophe Dunand
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
145
|
Pujol B. Genes and quantitative genetic variation involved with senescence in cells, organs, and the whole plant. Front Genet 2015; 6:57. [PMID: 25755664 PMCID: PMC4337380 DOI: 10.3389/fgene.2015.00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 02/06/2015] [Indexed: 11/22/2022] Open
Abstract
Senescence, the deterioration of morphological, physiological, and reproductive functions with age that ends with the death of the organism, was widely studied in plants. Genes were identified that are linked to the deterioration of cells, organs and the whole plant. It is, however, unclear whether those genes are the source of age dependent deterioration or get activated to regulate such deterioration. Furthermore, it is also unclear whether such genes are active as a direct consequence of age or because they are specifically involved in some developmental stages. At the individual level, it is the relationship between quantitative genetic variation, and age that can be used to detect the genetic signature of senescence. Surprisingly, the latter approach was only scarcely applied to plants. This may be the consequence of the demanding requirements for such approaches and/or the fact that most research interest was directed toward plants that avoid senescence. Here, I review those aspects in turn and call for an integrative genetic theory of senescence in plants. Such conceptual development would have implications for the management of plant genetic resources and generate progress on fundamental questions raised by aging research.
Collapse
Affiliation(s)
- Benoit Pujol
- CNRS, Université Paul Sabatier, ENFA, UMR5174 EDB (Laboratoire Évolution et Diversité Biologique) Toulouse, France ; Université Toulouse 3 Paul Sabatier, CNRS, UMR5174 EDB Toulouse, France
| |
Collapse
|
146
|
Löfke C, Dünser K, Scheuring D, Kleine-Vehn J. Auxin regulates SNARE-dependent vacuolar morphology restricting cell size. eLife 2015; 4. [PMID: 25742605 PMCID: PMC4384535 DOI: 10.7554/elife.05868] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/05/2015] [Indexed: 11/13/2022] Open
Abstract
The control of cellular growth is central to multicellular patterning. In plants, the encapsulating cell wall literally binds neighbouring cells to each other and limits cellular sliding/migration. In contrast to its developmental importance, growth regulation is poorly understood in plants. Here, we reveal that the phytohormone auxin impacts on the shape of the biggest plant organelle, the vacuole. TIR1/AFBs-dependent auxin signalling posttranslationally controls the protein abundance of vacuolar SNARE components. Genetic and pharmacological interference with the auxin effect on vacuolar SNAREs interrelates with auxin-resistant vacuolar morphogenesis and cell size regulation. Vacuolar SNARE VTI11 is strictly required for auxin-reliant vacuolar morphogenesis and loss of function renders cells largely insensitive to auxin-dependent growth inhibition. Our data suggests that the adaptation of SNARE-dependent vacuolar morphogenesis allows auxin to limit cellular expansion, contributing to root organ growth rates. DOI:http://dx.doi.org/10.7554/eLife.05868.001 In plants and animals, the way that cells grow is carefully controlled to enable tissues and organs to form and be maintained. This is especially important in plants because the cells are attached to each other by their cell walls. This means that, unlike some animal cells, plant cells are not able to move around as a plant's organs develop. Plant cells contain a large storage compartment called the vacuole, which occupies 30–80% of a cell's volume. The volume of the vacuole increases as the cell increases in size, and some researchers have suggested that the vacuole might help to control cell growth. A plant hormone called auxin can alter the growth of plant cells. However, this hormone's effect depends on the position of the cell in the plant; for example, it inhibits the growth of root cells, but promotes the growth of cells in the shoots and leaves. Nevertheless, it is not clear precisely how auxin controls plant cell growth. Here, Löfke et al. studied the effect of auxin on the appearance of vacuoles in a type of plant cell—called the root epidermal cell—on the surface of the roots of a plant called Arabidopsis thaliana. The experiments show that auxin alters the appearance of the vacuoles in these cells so they become smaller in size. At the same time, auxin also inhibits the growth of these cells. Löfke et al. found that auxin increases the amount of certain proteins in the membrane that surrounds the vacuole. These proteins belong to the SNARE family and one SNARE protein in particular, called VTI11, is required for auxin to be able to both alter the appearance of the vacuoles and restrict the growth of root epidermal cells. Enzymes called PI4 kinases were also shown to be involved in the control of the SNARE proteins in response to the auxin hormone. Löfke et al.'s findings suggest that auxin restricts the growth of root epidermal cells by controlling the amount of SNARE proteins in the vacuole membrane. The next challenge will be to understand precisely how the shape of the vacuole is controlled and how it contributes to cell growth. DOI:http://dx.doi.org/10.7554/eLife.05868.002
Collapse
Affiliation(s)
- Christian Löfke
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kai Dünser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - David Scheuring
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
147
|
Snowden CJ, Thomas B, Baxter CJ, Smith JAC, Sweetlove LJ. A tonoplast Glu/Asp/GABA exchanger that affects tomato fruit amino acid composition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:651-60. [PMID: 25602029 PMCID: PMC4950293 DOI: 10.1111/tpj.12766] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/16/2014] [Accepted: 12/23/2014] [Indexed: 05/18/2023]
Abstract
Vacuolar accumulation of acidic metabolites is an important aspect of tomato fruit flavour and nutritional quality. The amino acids Asp and Glu accumulate to high concentrations during ripening, while γ-aminobutyrate (GABA) shows an approximately stoichiometric decline. Given that GABA can be catabolised to form Glu and subsequently Asp, and the requirement for the fruit to maintain osmotic homeostasis during ripening, we hypothesised the existence of a tonoplast transporter that exports GABA from the vacuole in exchange for import of either Asp or Glu. We show here that the tomato vacuolar membrane possesses such a transport property: transport of Glu across isolated tonoplast vesicle membranes was trans-stimulated in counterexchange mode by GABA, Glu and Asp. We identified SlCAT9 as a candidate protein for this exchanger using quantitative proteomics of a tonoplast-enriched membrane fraction. Transient expression of a SlCAT9-YFP fusion in tobacco confirmed a tonoplast localisation. The function of the protein was examined by overexpression of SlCAT9 in transgenic tomato plants. Tonoplast vesicles isolated from transgenic plants showed higher rates of Glu and GABA transport than wild-type (WT) only when assayed in counterexchange mode with Glu, Asp, or GABA. Moreover, there were substantial increases in the content of all three cognate amino acids in ripe fruit from the transgenic plants. We conclude that SlCAT9 is a tonoplast Glu/Asp/GABA exchanger that strongly influences the accumulation of these amino acids during fruit development.
Collapse
Affiliation(s)
- Christopher J Snowden
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | | | | | | |
Collapse
|
148
|
Dima O, Morreel K, Vanholme B, Kim H, Ralph J, Boerjan W. Small glycosylated lignin oligomers are stored in Arabidopsis leaf vacuoles. THE PLANT CELL 2015; 27:695-710. [PMID: 25700483 PMCID: PMC4558659 DOI: 10.1105/tpc.114.134643] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/02/2014] [Accepted: 02/07/2015] [Indexed: 05/17/2023]
Abstract
Lignin is an aromatic polymer derived from the combinatorial coupling of monolignol radicals in the cell wall. Recently, various glycosylated lignin oligomers have been revealed in Arabidopsis thaliana. Given that monolignol oxidation and monolignol radical coupling are known to occur in the apoplast, and glycosylation in the cytoplasm, it raises questions about the subcellular localization of glycosylated lignin oligomer biosynthesis and their storage. By metabolite profiling of Arabidopsis leaf vacuoles, we show that the leaf vacuole stores a large number of these small glycosylated lignin oligomers. Their structural variety and the incorporation of alternative monomers, as observed in Arabidopsis mutants with altered monolignol biosynthesis, indicate that they are all formed by combinatorial radical coupling. In contrast to the common believe that combinatorial coupling is restricted to the apoplast, we hypothesized that the aglycones of these compounds are made within the cell. To investigate this, leaf protoplast cultures were cofed with 13C6-labeled coniferyl alcohol and a 13C4-labeled dimer of coniferyl alcohol. Metabolite profiling of the cofed protoplasts provided strong support for the occurrence of intracellular monolignol coupling. We therefore propose a metabolic pathway involving intracellular combinatorial coupling of monolignol radicals, followed by oligomer glycosylation and vacuolar import, which shares characteristics with both lignin and lignan biosynthesis.
Collapse
Affiliation(s)
- Oana Dima
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Kris Morreel
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Bartel Vanholme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Hoon Kim
- Departments of Biochemistry and Biological Systems Engineering, and the DOE Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726
| | - John Ralph
- Departments of Biochemistry and Biological Systems Engineering, and the DOE Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
149
|
Moro CF, Fukao Y, Shibato J, Rakwal R, Timperio AM, Zolla L, Agrawal GK, Shioda S, Kouzuma Y, Yonekura M. Unraveling the seed endosperm proteome of the lotus (Nelumbo nucifera
Gaertn.) utilizing 1DE and 2DE separation in conjunction with tandem mass spectrometry. Proteomics 2015; 15:1717-35. [DOI: 10.1002/pmic.201400406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/05/2014] [Accepted: 12/18/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Carlo F. Moro
- Laboratory of Molecular Food Functionality; College of Agriculture; Ami, Ibaraki Japan
| | - Yoichiro Fukao
- Plant Global Educational Project; Nara Institute of Science and Technology; Ikoma Japan
| | - Junko Shibato
- Department of Anatomy I; Showa University School of Medicine; Shinagawa Tokyo Japan
| | - Randeep Rakwal
- Department of Anatomy I; Showa University School of Medicine; Shinagawa Tokyo Japan
- Organization for Educational Initiatives; University of Tsukuba; Tsukuba Ibaraki Japan
- Research Laboratory for Biotechnology and Biochemistry (RLABB); Kathmandu Nepal
- GRADE Academy Private Limited; Adarsh Nagar; Birgunj Nepal
| | - Anna Maria Timperio
- Department of Ecology and Biology; University Tuscia; Piazzale Universita; Viterbo Italy
| | - Lello Zolla
- Department of Ecology and Biology; University Tuscia; Piazzale Universita; Viterbo Italy
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB); Kathmandu Nepal
- GRADE Academy Private Limited; Adarsh Nagar; Birgunj Nepal
| | - Seiji Shioda
- Department of Anatomy I; Showa University School of Medicine; Shinagawa Tokyo Japan
| | - Yoshiaki Kouzuma
- Laboratory of Molecular Food Functionality; College of Agriculture; Ami, Ibaraki Japan
| | - Masami Yonekura
- Laboratory of Molecular Food Functionality; College of Agriculture; Ami, Ibaraki Japan
| |
Collapse
|
150
|
Jung B, Ludewig F, Schulz A, Meißner G, Wöstefeld N, Flügge UI, Pommerrenig B, Wirsching P, Sauer N, Koch W, Sommer F, Mühlhaus T, Schroda M, Cuin TA, Graus D, Marten I, Hedrich R, Neuhaus HE. Identification of the transporter responsible for sucrose accumulation in sugar beet taproots. NATURE PLANTS 2015; 1:14001. [PMID: 27246048 DOI: 10.1038/nplants.2014.1] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/24/2014] [Indexed: 05/21/2023]
Abstract
Sugar beet provides around one third of the sugar consumed worldwide and serves as a significant source of bioenergy in the form of ethanol. Sucrose accounts for up to 18% of plant fresh weight in sugar beet. Most of the sucrose is concentrated in the taproot, where it accumulates in the vacuoles. Despite 30 years of intensive research, the transporter that facilitates taproot sucrose accumulation has escaped identification. Here, we combine proteomic analyses of the taproot vacuolar membrane, the tonoplast, with electrophysiological analyses to show that the transporter BvTST2.1 is responsible for vacuolar sucrose uptake in sugar beet taproots. We show that BvTST2.1 is a sucrose-specific transporter, and present evidence to suggest that it operates as a proton antiporter, coupling the import of sucrose into the vacuole to the export of protons. BvTST2.1 exhibits a high amino acid sequence similarity to members of the tonoplast monosaccharide transporter family in Arabidopsis, prompting us to rename this group of proteins 'tonoplast sugar transporters'. The identification of BvTST2.1 could help to increase sugar yields from sugar beet and other sugar-storing plants in future breeding programs.
Collapse
Affiliation(s)
- Benjamin Jung
- Pflanzenphysiologie, University Kaiserslautern, Erwin Schrödinger Straße, D-67653 Kaiserslautern, Germany
| | - Frank Ludewig
- Biocenter Cologne, Botanical Institute II and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47b, D-50674, Germany
| | - Alexander Schulz
- Biophysics and Molecular Plant Physiology, University Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany
| | - Garvin Meißner
- Pflanzenphysiologie, University Kaiserslautern, Erwin Schrödinger Straße, D-67653 Kaiserslautern, Germany
| | - Nicole Wöstefeld
- Biocenter Cologne, Botanical Institute II and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47b, D-50674, Germany
| | - Ulf-Ingo Flügge
- Biocenter Cologne, Botanical Institute II and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47b, D-50674, Germany
| | - Benjamin Pommerrenig
- Molecular Plant Physiology, University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Petra Wirsching
- Molecular Plant Physiology, University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Wolfgang Koch
- KWS Saat AG, Grimsehlstr.31, D37555 Einbeck, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University Kaiserslautern, Paul-Ehrlich-Straße, D-67653 Kaiserslautern Germany
| | - Timo Mühlhaus
- Molecular Biotechnology and Systems Biology, University Kaiserslautern, Paul-Ehrlich-Straße, D-67653 Kaiserslautern Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University Kaiserslautern, Paul-Ehrlich-Straße, D-67653 Kaiserslautern Germany
| | - Tracey Ann Cuin
- Biophysics and Molecular Plant Physiology, University Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany
| | - Dorothea Graus
- Biophysics and Molecular Plant Physiology, University Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany
| | - Irene Marten
- Biophysics and Molecular Plant Physiology, University Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany
| | - Rainer Hedrich
- Biophysics and Molecular Plant Physiology, University Würzburg, Julius von Sachs Platz 2, D-97082 Würzburg, Germany
| | - H Ekkehard Neuhaus
- Pflanzenphysiologie, University Kaiserslautern, Erwin Schrödinger Straße, D-67653 Kaiserslautern, Germany
| |
Collapse
|