101
|
Blanco F, Salinas P, Cecchini NM, Jordana X, Van Hummelen P, Alvarez ME, Holuigue L. Early genomic responses to salicylic acid in Arabidopsis. PLANT MOLECULAR BIOLOGY 2009; 70:79-102. [PMID: 19199050 DOI: 10.1007/s11103-009-9458-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 01/11/2009] [Indexed: 05/21/2023]
Abstract
Salicylic acid (SA) is a stress-induced hormone involved in the activation of defense genes. Here we analyzed the early genetic responses to SA of wild type and npr1-1 mutant Arabidopsis seedlings, using Complete Arabidopsis Transcriptome MicroArray (CATMAv2) chip. We identified 217 genes rapidly induced by SA (early SAIGs); 193 by a NPR1-dependent and 24 by a NPR1-independent pathway. These two groups of genes also differed in their functional classification, expression profiles and over-representation of cis-elements, supporting differential pathways for their activation. Examination of the expression patterns for selected early SAIGs from both groups indicated that their activation by SA required TGA2/5/6 subclass of transcription factors. These genes were also activated by Pseudomonas syringae pv. tomato AvrRpm1, suggesting that they might play a role in defense against bacteria. This study gives a global idea of the early response to SA in Arabidopsis seedlings, expanding our knowledge about SA function in plant defense.
Collapse
Affiliation(s)
- Francisca Blanco
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
102
|
Meier S, Gehring C. A guide to the integrated application of on-line data mining tools for the inference of gene functions at the systems level. Biotechnol J 2009; 3:1375-87. [PMID: 18830970 DOI: 10.1002/biot.200800142] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Genes function in networks to achieve a common biological response. Thus, inferences into the biological role of individual genes can be gained by analyzing their association with other genes with more precisely defined functions. Here, we present a guide, using the well-characterized Arabidopsis thaliana pathogenesis-related protein 2 gene (PR-2) as an example, to document how the sequential use of web-based tools can be applied to integrate information from different databases and associate the function of an individual gene with a network of genes and additionally identify specific biological processes in which they collectively function. The analysis begins by performing a global expression correlation analysis to build a functionally associated gene network. The network is subsequently analyzed for Gene Ontology enrichment, stimuli and mutant-specific transcriptional responses and enriched putative promoter regulatory elements that may be responsible for their correlated relationships. The results for the PR-2 gene are entirely consistent with the published literature documenting the accuracy of this type of analysis. Furthermore, this type of analysis can also be performed on other organisms with the appropriate data available and will greatly assist in understanding individual gene functions in a systems context.
Collapse
Affiliation(s)
- Stuart Meier
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | | |
Collapse
|
103
|
Fulton L, Batoux M, Vaddepalli P, Yadav RK, Busch W, Andersen SU, Jeong S, Lohmann JU, Schneitz K. DETORQUEO, QUIRKY, and ZERZAUST represent novel components involved in organ development mediated by the receptor-like kinase STRUBBELIG in Arabidopsis thaliana. PLoS Genet 2009; 5:e1000355. [PMID: 19180193 PMCID: PMC2628281 DOI: 10.1371/journal.pgen.1000355] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 12/23/2008] [Indexed: 12/26/2022] Open
Abstract
Intercellular signaling plays an important role in controlling cellular behavior in apical meristems and developing organs in plants. One prominent example in Arabidopsis is the regulation of floral organ shape, ovule integument morphogenesis, the cell division plane, and root hair patterning by the leucine-rich repeat receptor-like kinase STRUBBELIG (SUB). Interestingly, kinase activity of SUB is not essential for its in vivo function, indicating that SUB may be an atypical or inactive receptor-like kinase. Since little is known about signaling by atypical receptor-like kinases, we used forward genetics to identify genes that potentially function in SUB-dependent processes and found recessive mutations in three genes that result in a sub-like phenotype. Plants with a defect in DETORQEO (DOQ), QUIRKY (QKY), and ZERZAUST (ZET) show corresponding defects in outer integument development, floral organ shape, and stem twisting. The mutants also show sub-like cellular defects in the floral meristem and in root hair patterning. Thus, SUB, DOQ, QKY, and ZET define the STRUBBELIG-LIKE MUTANT (SLM) class of genes. Molecular cloning of QKY identified a putative transmembrane protein carrying four C(2) domains, suggesting that QKY may function in membrane trafficking in a Ca(2+)-dependent fashion. Morphological analysis of single and all pair-wise double-mutant combinations indicated that SLM genes have overlapping, but also distinct, functions in plant organogenesis. This notion was supported by a systematic comparison of whole-genome transcript profiles during floral development, which molecularly defined common and distinct sets of affected processes in slm mutants. Further analysis indicated that many SLM-responsive genes have functions in cell wall biology, hormone signaling, and various stress responses. Taken together, our data suggest that DOQ, QKY, and ZET contribute to SUB-dependent organogenesis and shed light on the mechanisms, which are dependent on signaling through the atypical receptor-like kinase SUB.
Collapse
Affiliation(s)
- Lynette Fulton
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Martine Batoux
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Prasad Vaddepalli
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Ram Kishor Yadav
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Wolfgang Busch
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, AG Lohmann, Tübingen, Germany
| | - Stig U. Andersen
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, AG Lohmann, Tübingen, Germany
| | - Sangho Jeong
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Jan U. Lohmann
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, AG Lohmann, Tübingen, Germany
- Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
104
|
Vlot AC, Dempsey DA, Klessig DF. Salicylic Acid, a multifaceted hormone to combat disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:177-206. [PMID: 19400653 DOI: 10.1146/annurev.phyto.050908.135202] [Citation(s) in RCA: 1360] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
For more than 200 years, the plant hormone salicylic acid (SA) has been studied for its medicinal use in humans. However, its extensive signaling role in plants, particularly in defense against pathogens, has only become evident during the past 20 years. This review surveys how SA in plants regulates both local disease resistance mechanisms, including host cell death and defense gene expression, and systemic acquired resistance (SAR). Genetic studies reveal an increasingly complex network of proteins required for SA-mediated defense signaling, and this process is amplified by several regulatory feedback loops. The interaction between the SA signaling pathway and those regulated by other plant hormones and/or defense signals is also discussed.
Collapse
Affiliation(s)
- A Corina Vlot
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| | | | | |
Collapse
|
105
|
Endah R, Beyene G, Kiggundu A, van den Berg N, Schlüter U, Kunert K, Chikwamba R. Elicitor and Fusarium-induced expression of NPR1-like genes in banana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:1007-14. [PMID: 18657982 DOI: 10.1016/j.plaphy.2008.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 06/06/2008] [Accepted: 06/12/2008] [Indexed: 05/20/2023]
Abstract
The non-expressor of pathogenesis-related genes 1 (NPR1) is an essential positive regulator of salicylic acid (SA)-induced pathogenesis-related (PR) gene expression and systemic acquired resistance (SAR). Two novel full length NPR1-like genes; MNPR1A and MNPR1B, were isolated from banana by application of the PCR and rapid amplification of cDNA ends (RACE) techniques. The two identified MNPR1 sequences differed greatly in their expression profile using quantitative real time (qRT)-PCR following either elicitor or Fusarium oxysporum Schlecht f. sp. cubense (Smith) Snyd (Foc) treatment. MNPR1A was greatly expressed after Foc treatment with higher and earlier expression in the Foc-tolerant cultivar GCTCV-218 than in the sensitive cultivar Grand Naine. In comparison, MNPR1B was highly responsive to SA, but not to methyl jasmonate (MeJA) treatment, in both the tolerant banana cultivar GCTCV-218 and the more sensitive cultivar Grand Naine. Expression of the MNPR1 genes further directly related to PR gene expression known to be involved in fungal resistance. Reduced sensitivity to Foc in GCTCV-218 might be partially attributed to the higher and an earlier expression of both MNPR1A and PR-1 in this cultivar after Foc treatment. Further characterisation of the MNPR1 genes through complementation of Arabidopsis npr1 mutants and overexpression studies in banana cultivars is the subject of ongoing and future work.
Collapse
Affiliation(s)
- Rosita Endah
- Plant Science Department and Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | | | | | | | | | | | | |
Collapse
|
106
|
Fode B, Siemsen T, Thurow C, Weigel R, Gatz C. The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters. THE PLANT CELL 2008; 20:3122-35. [PMID: 18984675 PMCID: PMC2613660 DOI: 10.1105/tpc.108.058974] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 10/10/2008] [Accepted: 10/24/2008] [Indexed: 05/17/2023]
Abstract
The plant signaling molecule salicylic acid (SA) and/or xenobiotic chemicals like the auxin mimic 2,4-D induce transcriptional activation of defense- and stress-related genes that contain activation sequence-1 (as-1)-like cis-elements in their promoters. as-1-like sequences are recognized by basic/leucine zipper transcription factors of the TGA family. Expression of genes related to the SA-dependent defense program systemic acquired resistance requires the TGA-interacting protein NPR1. However, a number of as-1-containing promoters can be activated independently from NPR1. Here, we report the identification of Arabidopsis thaliana SCARECROW-like 14 (SCL14), a member of the GRAS family of regulatory proteins, as a TGA-interacting protein that is required for the activation of TGA-dependent but NPR1-independent SA- and 2,4-D-inducible promoters. Chromatin immunoprecipitation experiments revealed that class II TGA factors TGA2, TGA5, and/or TGA6 are needed to recruit SCL14 to promoters of selected SCL14 target genes identified by whole-genome transcript profiling experiments. The coding regions and the expression profiles of the SCL14-dependent genes imply that they might be involved in the detoxification of xenobiotics and possibly endogenous harmful metabolites. Consistently, plants ectopically expressing SCL14 showed increased tolerance to toxic doses of the chemicals isonicotinic acid and 2,4,6-triiodobenzoic acid, whereas the scl14 and the tga2 tga5 tga6 mutants were more susceptible. Hence, the TGA/SCL14 complex seems to be involved in the activation of a general broad-spectrum detoxification network upon challenge of plants with xenobiotics.
Collapse
Affiliation(s)
- Benjamin Fode
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, D-37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
107
|
Jing HC, Hebeler R, Oeljeklaus S, Sitek B, Stühler K, Meyer HE, Sturre MJG, Hille J, Warscheid B, Dijkwel PP. Early leaf senescence is associated with an altered cellular redox balance in Arabidopsis cpr5/old1 mutants. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10 Suppl 1:85-98. [PMID: 18721314 DOI: 10.1111/j.1438-8677.2008.00087.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reactive oxygen species (ROS) are the inevitable by-products of essential cellular metabolic and physiological activities. Plants have developed sophisticated gene networks of ROS generation and scavenging systems. However, ROS regulation is still poorly understood. Here, we report that mutations in the Arabidopsis CPR5/OLD1 gene may cause early senescence through deregulation of the cellular redox balance. Genetic analysis showed that blocking stress-related hormonal signalling pathways, such as ethylene, salicylic acid, jasmonic acid, abscisic acid and sugar, did not affect premature cell death and leaf senescence. We took a bioinformatics approach and analysed publicly available transcriptome data of presymptomatic cpr5/old1 mutants. The results demonstrate that many genes in the ROS gene network show at least fivefold increases in transcripts in comparison with those of wild-type plants, suggesting that presymptomatic cpr5/old1 mutants are in a state of high-cellular oxidative stress. This was further confirmed by a comparative, relative quantitative proteomics study of Arabidopsis wild-type and cpr5/old1 mutant plants, which demonstrated that several Phi family members of glutathione s-transferases significantly increased in abundance. In summary, our genetic, transcriptomic and relative quantitative proteomics analyses indicate that CPR5 plays a central role in regulating redox balance in Arabidopsis.
Collapse
Affiliation(s)
- H-C Jing
- Department of Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Ho LHM, Giraud E, Uggalla V, Lister R, Clifton R, Glen A, Thirkettle-Watts D, Van Aken O, Whelan J. Identification of regulatory pathways controlling gene expression of stress-responsive mitochondrial proteins in Arabidopsis. PLANT PHYSIOLOGY 2008; 147:1858-73. [PMID: 18567827 PMCID: PMC2492625 DOI: 10.1104/pp.108.121384] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 06/11/2008] [Indexed: 05/17/2023]
Abstract
In this study we analyzed transcript abundance and promoters of genes encoding mitochondrial proteins to identify signaling pathways that regulate stress-induced gene expression. We used Arabidopsis (Arabidopsis thaliana) alternative oxidase AOX1a, external NADP H-dehydrogenase NDB2, and two additional highly stress-responsive genes, At2g21640 and BCS1. As a starting point, the promoter region of AOX1a was analyzed and functional analysis identified 10 cis-acting regulatory elements (CAREs), which played a role in response to treatment with H(2)O(2), rotenone, or both. Six of these elements were also functional in the NDB2 promoter. The promoter region of At2g21640, previously defined as a hallmark of oxidative stress, shared two functional CAREs with AOX1a and was responsive to treatment with H(2)O(2) but not rotenone. Microarray analysis further supported that signaling pathways induced by H(2)O(2) and rotenone are not identical. The promoter of BCS1 was not responsive to H(2)O(2) or rotenone, but highly responsive to salicylic acid (SA), whereas the promoters of AOX1a and NDB2 were unresponsive to SA. Analysis of transcript abundance of these genes in a variety of defense signaling mutants confirmed that BCS1 expression is regulated in a different manner compared to AOX1a, NDB2, and At2g21640. These mutants also revealed a pathway associated with programmed cell death that regulated AOX1a in a manner distinct from the other genes. Thus, at least three distinctive pathways regulate mitochondrial stress response at a transcriptional level, an SA-dependent pathway represented by BCS1, a second pathway that represents a convergence point for signals generated by H(2)O(2) and rotenone on multiple CAREs, some of which are shared between responsive genes, and a third pathway that acts via EDS1 and PAD4 regulating only AOX1a. Furthermore, posttranscriptional regulation accounts for changes in transcript abundance by SA treatment for some genes.
Collapse
Affiliation(s)
- Lois H M Ho
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Kim JG, Taylor KW, Hotson A, Keegan M, Schmelz EA, Mudgett MB. XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in xanthomonas-infected tomato leaves. THE PLANT CELL 2008; 20:1915-29. [PMID: 18664616 PMCID: PMC2518228 DOI: 10.1105/tpc.108.058529] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 07/02/2008] [Accepted: 07/14/2008] [Indexed: 05/18/2023]
Abstract
We demonstrate that XopD, a type III effector from Xanthomonas campestris pathovar vesicatoria (Xcv), suppresses symptom production during the late stages of infection in susceptible tomato (Solanum lycopersicum) leaves. XopD-dependent delay of tissue degeneration correlates with reduced chlorophyll loss, reduced salicylic acid levels, and changes in the mRNA abundance of senescence- and defense-associated genes despite high pathogen titers. Subsequent structure-function analyses led to the discovery that XopD is a DNA binding protein that alters host transcription. XopD contains a putative helix-loop-helix domain required for DNA binding and two conserved ERF-associated amphiphilic motifs required to repress salicylic acid- and jasmonic acid-induced gene transcription in planta. Taken together, these data reveal that XopD is a unique virulence factor in Xcv that alters host transcription, promotes pathogen multiplication, and delays the onset of leaf chlorosis and necrosis.
Collapse
Affiliation(s)
- Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
110
|
Chern M, Canlas PE, Ronald PC. Strong suppression of systemic acquired resistance in Arabidopsis by NRR is dependent on its ability to interact with NPR1 and its putative repression domain. MOLECULAR PLANT 2008; 1:552-9. [PMID: 19825560 DOI: 10.1093/mp/ssn017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Systemic Acquired Resistance (SAR) in plants confers lasting broad-spectrum resistance to pathogens and requires the phytohormone salicylic acid (SA). Arabidopsis NPR1/NIM1 is a key regulator of the SAR response. Studies attempting to reveal the function of NPR1 and how it mediates SA signaling have led to isolation of two classes of proteins that interact with NPR1: the first class includes rice NRR, Arabidopsis NIMIN1, NIMIN2, and NIMIN3, and tobacco NIMIN2-like proteins; the second class belongs to TGA transcription factors. We have previously shown that overexpression of NRR in rice suppresses both basal and Xa21-mediated resistance. In order to test whether NRR affects SA-induced, NPR1-mediated SAR, we have transformed Arabidopsis with the rice NRR gene and tested its effects on the defense response. Expression of NRR in Arabidopsis results in suppression of PR gene induction by SAR inducer and resistance to pathogens. These phenotypes are even more severe than those of the npr1-1 mutant. The ability of NRR to suppress PR gene induction and disease resistance is correlated with its ability to bind to NPR1 because two point mutations in NRR, which reduce NPR1 binding, fail to suppress NPR1. In contrast, wild-type and a mutant NRR, which still binds to NPR1 strongly, retain the ability to suppress the SAR response. Replacing the C-terminal 79 amino acids of NRR with the VP16 activation domain turns the fusion protein into a transcriptional co-activator. These results indicate that NRR binds to NPR1 in vivo in a protein complex to inhibit transcriptional activation of PR genes and that NRR contains a transcription repression domain for active repression.
Collapse
Affiliation(s)
- Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
111
|
Schütze K, Harter K, Chaban C. Post-translational regulation of plant bZIP factors. TRENDS IN PLANT SCIENCE 2008; 13:247-55. [PMID: 18424222 DOI: 10.1016/j.tplants.2008.03.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 02/14/2008] [Accepted: 03/21/2008] [Indexed: 05/07/2023]
Abstract
The post-translational regulation of transcription factors plays an important role in the control of gene expression in eukaryotes. The mechanisms of regulation include not only factor modifications but also regulated protein-protein interaction, protein degradation and intracellular partitioning. In plants, the basic-region leucine zipper (bZIP) transcription factors contribute to many transcriptional response pathways. Despite this, little is known about their post-translational regulation. Recent findings suggest that plant bZIP factors are under the control of various partially signal-induced and reversible post-translational mechanisms that are crucial for the control of their function. However, the fact that, to date, only a few plant bZIPs have been analyzed with respect to post-translational regulation indicates that we have just identified the tip of an iceberg.
Collapse
Affiliation(s)
- Katia Schütze
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, Tübingen, Germany
| | | | | |
Collapse
|
112
|
Meier S, Bastian R, Donaldson L, Murray S, Bajic V, Gehring C. Co-expression and promoter content analyses assign a role in biotic and abiotic stress responses to plant natriuretic peptides. BMC PLANT BIOLOGY 2008; 8:24. [PMID: 18307823 PMCID: PMC2268938 DOI: 10.1186/1471-2229-8-24] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 02/29/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant natriuretic peptides (PNPs) are a class of systemically mobile molecules distantly related to expansins. While several physiological responses to PNPs have been reported, their biological role has remained elusive. Here we use a combination of expression correlation analysis, meta-analysis of gene expression profiles in response to specific stimuli and in selected mutants, and promoter content analysis to infer the biological role of the Arabidopsis thaliana PNP, AtPNP-A. RESULTS A gene ontology analysis of AtPNP-A and the 25 most expression correlated genes revealed a significant over representation of genes annotated as part of the systemic acquired resistance (SAR) pathway. Transcription of these genes is strongly induced in response to salicylic acid (SA) and its functional synthetic analogue benzothiadiazole S-methylester (BTH), a number of biotic and abiotic stresses including many SA-mediated SAR-inducing conditions, as well as in the constitutive SAR expressing mutants cpr5 and mpk4 which have elevated SA levels. Furthermore, the expression of AtPNP-A was determined to be significantly correlated with the SAR annotated transcription factor, WRKY 70, and the promoters of AtPNP-A and the correlated genes contain an enrichment in the core WRKY binding W-box cis-elements. In constitutively expressing WRKY 70 lines the expression of AtPNP-A and the correlated genes, including the SAR marker genes, PR-2 and PR-5, were determined to be strongly induced. CONCLUSION The co-expression analyses, both in wild type and mutants, provides compelling evidence that suggests AtPNP-A may function as a component of plant defence responses and SAR in particular. The presented evidence also suggests that the expression of AtPNP-A is controlled by WRKY transcription factors and WRKY 70 in particular. AtPNP-A shares many characteristics with PR proteins in that its transcription is strongly induced in response to pathogen challenges, it contains an N-terminal signalling peptide and is secreted into the extracellular space and along with PR-1, PR-2 and PR-5 proteins it has been isolated from the Arabidopsis apoplast. Based on these findings we suggest that AtPNP-A could be classified as a newly identified PR protein.
Collapse
Affiliation(s)
- Stuart Meier
- Department of Biotechnology, University of the Western Cape, Private Bag X17, Cape Town - Bellville 7535, South Africa
- South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Cape Town - Bellville 7535, South Africa
| | - René Bastian
- Department of Biotechnology, University of the Western Cape, Private Bag X17, Cape Town - Bellville 7535, South Africa
| | - Lara Donaldson
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Shane Murray
- Department of Biotechnology, University of the Western Cape, Private Bag X17, Cape Town - Bellville 7535, South Africa
| | - Vladimir Bajic
- South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Cape Town - Bellville 7535, South Africa
| | - Chris Gehring
- Department of Biotechnology, University of the Western Cape, Private Bag X17, Cape Town - Bellville 7535, South Africa
| |
Collapse
|
113
|
March-Díaz R, García-Domínguez M, Lozano-Juste J, León J, Florencio FJ, Reyes JC. Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:475-87. [PMID: 17988222 DOI: 10.1111/j.1365-313x.2007.03361.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
One of the mechanisms involved in chromatin remodelling is so-called 'histone replacement'. An example of such a mechanism is the substitution of canonical H2A histone by the histone variant H2A.Z. The ATP-dependent chromatin remodelling complex SWR1 is responsible for this action in yeast. We have previously proposed the existence of an SWR1-like complex in Arabidopsis by demonstrating genetic and physical interaction of the components SEF, ARP6 and PIE1, which are homologues of the yeast Swc6 and Arp6 proteins and the core ATPase Swr1, respectively. Here we show that histone variant H2A.Z, but not canonical H2A histone, interacts with PIE1. Plants mutated at loci HTA9 and HTA11 (two of the three Arabidopsis H2A.Z-coding genes) displayed developmental abnormalities similar to those found in pie1, sef and arp6 plants, exemplified by an early-flowering phenotype. Comparison of gene expression profiles revealed that 65% of the genes differentially regulated in hta9 hta11 plants were also mis-regulated in pie1 plants. Detailed examination of the expression data indicated that the majority of mis-regulated genes were related to salicylic acid-dependent immunity. RT-PCR and immunoblotting experiments confirmed constitutive expression of systemic acquired resistance (SAR) marker genes in pie1, hta9 hta11 and sef plants. Variations observed at the molecular level resulted in phenotypic alterations such as spontaneous cell death and enhanced resistance to the phytopathogenic bacteria Pseudomonas syringae pv. tomato. Thus, our results support the existence in Arabidopsis of an SWR1-like chromatin remodelling complex that is functionally related to that described in yeast and human, and attribute to this complex a role in maintaining a repressive state of the SAR response.
Collapse
Affiliation(s)
- Rosana March-Díaz
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-USE), Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
114
|
Halim VA, Eschen-Lippold L, Altmann S, Birschwilks M, Scheel D, Rosahl S. Salicylic acid is important for basal defense of Solanum tuberosum against Phytophthora infestans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1346-52. [PMID: 17977146 DOI: 10.1094/mpmi-20-11-1346] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The importance of the signaling compound salicylic acid for basal defense of potato (Solanum tuberosum L. cv. Désirée) against Phytophthora infestans, the causal agent of late blight disease, was assessed using transgenic NahG potato plants which are unable to accumulate salicylic acid. Although the size of lesions caused by P. infestans was not significantly different in wild-type and transgenic NahG plants, real-time polymerase chain reaction analyses revealed a drastic enhancement of pathogen growth in potato plants depleted of salicylic acid. Increased susceptibility of NahG plants correlated with compromised callose formation and reduced early defense gene expression. NahG plants pretreated with the salicylic acid analog 2,6-dichloro-isonicotinic acid allowed pathogen growth to a similar extent as did wild-type plants, indicating that salicylic acid is an important compound required for basal defense of potato against P. infestans.
Collapse
Affiliation(s)
- Vincentius A Halim
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, Weinberg 3, D-06120 Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
115
|
Ahn IP. Disturbance of the Ca(2+)/calmodulin-dependent signalling pathway is responsible for the resistance of Arabidopsis dnd1 against Pectobacterium carotovorum infection. MOLECULAR PLANT PATHOLOGY 2007; 8:747-759. [PMID: 20507535 DOI: 10.1111/j.1364-3703.2007.00428.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Arabidopsis thaliana wild-type Col-0 and its mutant, 'defence, no death' (dnd) 1-1, were infected with biotrophic Pseudomonas syringae pv. tomato strain DC3000 and necrotrophic Pectobacterium carotovorum strain KACC 10228, and cellular and molecular responses among them were then analysed. Col-0 wild-type was susceptible to both pathogens. By contrast, neither DC3000 nor KACC 10228 infected dnd1-1 (Yu et al., 1998. Proc. Natl. Acad. Sci. USA 95: 7819-7824). Neither of the pathogens triggered cell death or accumulation of active oxygen species in dnd1-1. KACC 10228 induced accelerated transcriptions of PDF1.2 and AtEBP genes in wild-type Col-0, while DC3000-induced transcriptions of them were relatively retarded. Neither of the pathogens modified the constitutive transcription of PR1 in dnd1-1. PDF1.2 and AtEBP transcriptions were not induced by the same treatments. Hydrogen peroxide scavengers, catalase and ascorbic acid, and LaCl(3), an inhibitor of Ca(2+) influx, diminished cell death and protected the wild-type plant from KACC 10228 infection, while EGTA inhibited cell death and pathogen growth. Exogenous Ca(2+) nullified resistance against KACC 10228 challenge in dnd1-1. W-7 and chloropromazine, two calmodulin antagonists, also triggered cell death in dnd1-1 and abolished resistance against KACC 10228. In summary, cell death is correlated with KACC 10228 infection and disease development. Furthermore, the resistance of dnd1-1 against P. carotovorum is dependent on calmodulin and inhibition of cytosolic Ca(2+) increment.
Collapse
Affiliation(s)
- Il-Pyung Ahn
- National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-100, Republic of Korea
| |
Collapse
|
116
|
Zwicker S, Mast S, Stos V, Pfitzner AJP, Pfitzner UM. Tobacco NIMIN2 proteins control PR gene induction through transient repression early in systemic acquired resistance. MOLECULAR PLANT PATHOLOGY 2007; 8:385-400. [PMID: 20507508 DOI: 10.1111/j.1364-3703.2007.00399.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
NPR1 (for Nonexpressor of PR genes; also known as NIM1) is a positive regulator of systemic acquired resistance (SAR) in Arabidopsis, which controls the induction of Pathogenesis-Related (PR) genes by salicylic acid (SA). NPR1 interacts with members of two protein families, TGA transcription factors and NIMIN (for NIM1-interacting) proteins. In Arabidopsis, NIMIN1, NIMIN2 and NIMIN3 constitute a small gene family of structurally related, yet distinct members. To unravel the biological significance of NIMIN interaction with NPR1, we searched a tobacco yeast two-hybrid cDNA library for NPR1- and NIMIN2-binding proteins. One NPR1 cDNA clone and three clones encoding NIMIN proteins were isolated. Although clearly similar to At NPR1, Nt NPR1 does not interact with At NIMIN3. Furthermore, all Nt NIMIN proteins identified are structurally related to At NIMIN2, thus forming a small NIMIN2 subfamily in tobacco. cDNA clones encoding At NIMIN1 or At NIMIN3 homologues were not identified. The function of NIMIN2 proteins was studied by expression of Nt NIMIN2a chimeric genes in tobacco. While constitutive NIMIN2a over-expression delayed PR-1 protein induction, suppression of NIMIN2 transcripts enhanced the accumulation of PR-1 proteins. In both cases, the effects of altered NIMIN2 transcript levels became evident foremost early in SAR. Notably, Nt NIMIN2 gene expression is elevated prior to the induction of the PR-1a gene. Together, the data suggest that, in tobacco, NIMIN2 proteins control PR-1 gene expression, and that NIMIN2-mediated control is exerted through transient PR-1 repression before SAR has fully developed. Furthermore, although sharing conserved domains and functions, tobacco and Arabidopsis NPR1 and NIMIN proteins are clearly distinct.
Collapse
Affiliation(s)
- Sylvia Zwicker
- Universität Hohenheim, Institut für Genetik, FG Allgemeine Virologie, D-70593 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
117
|
Mao P, Duan M, Wei C, Li Y. WRKY62 Transcription Factor Acts Downstream of Cytosolic NPR1 and Negatively Regulates Jasmonate-Responsive Gene Expression. ACTA ACUST UNITED AC 2007; 48:833-42. [PMID: 17510065 DOI: 10.1093/pcp/pcm058] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Cytosolic NPR1 has been shown to be essential for the salicylic acid (SA)-mediated suppression of jasmonic acid (JA)-responsive gene expression. However, factors downstream of NPR1 in the cross-talk between SA and JA signaling are unclear. Here we show that Arabidopsis WRKY62, a member of WRKY group III transcription factors, was induced by methyl jasmonate (MeJA) and SA treatment. The presence of basal SA is required for the MeJA-induced WRKY62 expression, and both chemicals exhibit a synergistic effect on WRKY62 induction. In addition, upon treatment with an extremely low concentration of SA, cytosolic NPR1 controls the MeJA-induced expression of WRKY62. TGA transcription factors, which up-regulate SA-induced expression of WRKY62, are dispensable for the induction of WRKY62 in JA signaling. Genetic dissection of both wrky62 mutants and WRKY62-overexpressing plants indicated that WRKY62 down-regulates JA-responsive LOX2 and VSP2 expression. Our results demonstrate that WRKY62 acts downstream of cytosolic NPR1 and negatively regulates JA-responsive gene expression, suggesting that WRKY62 may be involved in the SA-mediated suppression of JA signaling.
Collapse
Affiliation(s)
- Peng Mao
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | |
Collapse
|
118
|
Rinaldi C, Kohler A, Frey P, Duchaussoy F, Ningre N, Couloux A, Wincker P, Le Thiec D, Fluch S, Martin F, Duplessis S. Transcript profiling of poplar leaves upon infection with compatible and incompatible strains of the foliar rust Melampsora larici-populina. PLANT PHYSIOLOGY 2007; 144:347-66. [PMID: 17400708 PMCID: PMC1913798 DOI: 10.1104/pp.106.094987] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 03/20/2007] [Indexed: 05/14/2023]
Abstract
To understand key processes governing defense mechanisms in poplar (Populus spp.) upon infection with the rust fungus Melampsora larici-populina, we used combined histological and molecular techniques to describe the infection of Populus trichocarpa x Populus deltoides 'Beaupré' leaves by compatible and incompatible fungal strains. Striking differences in host-tissue infection were observed after 48-h postinoculation (hpi) between compatible and incompatible interactions. No reactive oxygen species production could be detected at infection sites, while a strong accumulation of monolignols occurred in the incompatible interaction after 48 hpi, indicating a late plant response once the fungus already penetrated host cells to form haustorial infection structures. P. trichocarpa whole-genome expression oligoarrays and sequencing of cDNAs were used to determine changes in gene expression in both interactions at 48 hpi. Temporal expression profiling of infection-regulated transcripts was further compared by cDNA arrays and reverse transcription-quantitative polymerase chain reaction. Among 1,730 significantly differentially expressed transcripts in the incompatible interaction, 150 showed an increase in concentration > or =3-fold, whereas 62 were decreased by > or =3-fold. Regulated transcripts corresponded to known genes targeted by R genes in plant pathosystems, such as inositol-3-P synthase, glutathione S-transferases, and pathogenesis-related proteins. However, the transcript showing the highest rust-induced up-regulation encodes a putative secreted protein with no known function. In contrast, only a few transcripts showed an altered expression in the compatible interaction, suggesting a delay in defense response between incompatible and compatible interactions in poplar. This comprehensive analysis of early molecular responses of poplar to M. larici-populina infection identified key genes that likely contain the fungus proliferation in planta. Sequences from the SSH library described in this article can be retrieved in GenBank under accession numbers CT 027996 to CT 029994 and CT 033829.
Collapse
Affiliation(s)
- Cécile Rinaldi
- Unité Mixte de Recherche 1136 Institut National de la Recherche Agronomique, and UMR 1137 INRA/Nancy Université Ecophysiologie et Ecologie Forestières, Centre INRA de Nancy, F-54280 Champenoux, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C. SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:128-39. [PMID: 17397508 DOI: 10.1111/j.1365-313x.2007.03039.x] [Citation(s) in RCA: 276] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Salicylic acid (SA) is a plant signaling molecule that mediates the induction of defense responses upon attack by a variety of pathogens. Moreover, it antagonizes gene induction by the stress signaling molecule jasmonic acid (JA). Several SA-responsive genes are regulated by basic/leucine zipper-type transcription factors of the TGA family. TGA factors interact with NPR1, a central regulator of many SA-induced defense responses including SA/JA antagonism. In order to identify further regulatory proteins of SA-dependent signaling pathways, a yeast protein interaction screen with tobacco TGA2.2 as bait and an Arabidopsis thaliana cDNA prey library was performed and led to the identification of a member of the glutaredoxin family (GRX480, encoded by At1g28480). Glutaredoxins are candidates for mediating redox regulation of proteins because of their capacity to catalyze disulfide transitions. This agrees with previous findings that the redox state of both TGA1 and NPR1 changes under inducing conditions. Transgenic Arabidopsis plants ectopically expressing GRX480 show near wild-type expression of standard marker genes for SA- and xenobiotic-inducible responses. In contrast, transcription of the JA-dependent defensin gene PDF1.2 was antagonized by transgenic GRX480. This, together with the observation that GRX480 transcription is SA-inducible and requires NPR1, suggests a role of GRX480 in SA/JA cross-talk. Suppression of PDF1.2 by GRX480 depends on the presence of TGA factors, indicating that the GRX480/TGA interaction is effective in planta.
Collapse
Affiliation(s)
- Ivan Ndamukong
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
120
|
Little D, Gouhier-Darimont C, Bruessow F, Reymond P. Oviposition by pierid butterflies triggers defense responses in Arabidopsis. PLANT PHYSIOLOGY 2007; 143:784-800. [PMID: 17142483 PMCID: PMC1803735 DOI: 10.1104/pp.106.090837] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Insect eggs represent a threat for the plant as hatching larvae rapidly start with their feeding activity. Using a whole-genome microarray, we studied the expression profile of Arabidopsis (Arabidopsis thaliana) leaves after oviposition by two pierid butterflies. For Pieris brassicae, the deposition of egg batches changed the expression of hundreds of genes over a period of 3 d after oviposition. The transcript signature was similar to that observed during a hypersensitive response or in lesion-mimic mutants, including the induction of defense and stress-related genes and the repression of genes involved in growth and photosynthesis. Deposition of single eggs by Pieris rapae caused a similar although much weaker transcriptional response. Analysis of the jasmonic acid and salicylic acid mutants coi1-1 and sid2-1 indicated that the response to egg deposition is mostly independent of these signaling pathways. Histochemical analyses showed that egg deposition is causing a localized cell death, accompanied by the accumulation of callose, and the production of reactive oxygen species. In addition, activation of the pathogenesis-related1::beta-glucuronidase reporter gene correlated precisely with the site of egg deposition and was also triggered by crude egg extract. This study provides molecular evidence for the detection of egg deposition by Arabidopsis plants and suggests that oviposition causes a localized response with strong similarity to a hypersensitive response.
Collapse
Affiliation(s)
- Dawn Little
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
121
|
Rochon A, Boyle P, Wignes T, Fobert PR, Després C. The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines. THE PLANT CELL 2006; 18:3670-85. [PMID: 17172357 PMCID: PMC1785396 DOI: 10.1105/tpc.106.046953] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) regulates systemic acquired resistance (SAR) in Arabidopsis thaliana, and current models propose that after treatment with salicylic acid (SA), Cys-82 and Cys-216 of NPR1 are reduced, leading to nuclear import. The interaction of nucleus-localized NPR1 with TGA transcription factors results in the activation of defense genes, including the SAR marker PATHOGENESIS-RELATED-1 (PR-1), and the deployment of SAR. Little is known about how TGA factors or NPR1 regulate transcription or whether a TGA-NPR1 complex forms on DNA. We show that TGA2 and NPR1 are recruited to PR-1 independently of each other and of SA treatment. Consistent with the result that a triple knockout in TGA2/5/6 derepresses PR-1, in vivo plant transcription assays revealed that TGA2 is not an autonomous transcription activator but is a transcriptional repressor in both untreated and SA-treated cells. However, after stimulation with SA, TGA2 is incorporated into a transactivating complex with NPR1, forming an enhanceosome that requires the core of the NPR1 BTB/POZ domain (residues 80 to 91) and the oxidation of NPR1 Cys-521 and Cys-529. These Cys residues are found in a new type of transactivation domain that we term Cys-oxidized. These data further our understanding of the mechanism by which TGA2 and NPR1 activate Arabidopsis PR-1.
Collapse
Affiliation(s)
- Amanda Rochon
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1
| | | | | | | | | |
Collapse
|
122
|
Grant M, Lamb C. Systemic immunity. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:414-20. [PMID: 16753329 DOI: 10.1016/j.pbi.2006.05.013] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 05/18/2006] [Indexed: 05/10/2023]
Abstract
Systemic acquired resistance (SAR) provides enhanced, long-lasting systemic immunity to secondary infection by a range of biotrophic, hemibiotrophic and necrotrophic pathogens that have diverse modes of infection. Considerable effort has focussed on the conserved central positive regulator of SAR, NON-EXPRESSOR OF PATHOGENESIS-RELATED1 (NPR1), and its control by changes in cellular redox potential. Recently, genetic and genomic approaches have highlighted a critical role for nucleocytoplasmic communication and protein secretion in establishing effective systemic immunity. Identification of the mobile signals and the mechanisms by which they are perceived in distal tissues remains challenging, but emerging evidence suggests that signal translocation uses lipid-derived (possibly jasmonate-based) signals and lipid-binding chaperones. Furthermore, the demonstration that autophagy interdicts and inactivates a systemic cell death signal adds further complexity to elucidating how mobile signals are decoded and transduced for effective immunity.
Collapse
Affiliation(s)
- Murray Grant
- Imperial College of Science, Technology and Medicine, Exhibition Road, London SW7 2AZ, UK
| | | |
Collapse
|
123
|
Halim VA, Vess A, Scheel D, Rosahl S. The role of salicylic acid and jasmonic acid in pathogen defence. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:307-13. [PMID: 16807822 DOI: 10.1055/s-2006-924025] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Phytohormones are not only instrumental in regulating developmental processes in plants but also play important roles for the plant's responses to biotic and abiotic stresses. In particular, abscisic acid, ethylene, jasmonic acid, and salicylic acid have been shown to possess crucial functions in mediating or orchestrating stress responses in plants. Here, we review the role of salicylic acid and jasmonic acid in pathogen defence responses with special emphasis on their function in the solanaceous plant potato.
Collapse
Affiliation(s)
- V A Halim
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle/Saale, Germany
| | | | | | | |
Collapse
|
124
|
Thilmony R, Underwood W, He SY. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:34-53. [PMID: 16553894 DOI: 10.1111/j.1365-313x.2006.02725.x] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Pseudomonas syringae pv. tomato DC3000 (Pst) is a virulent pathogen that causes disease on tomato and Arabidopsis. The type III secretion system (TTSS) plays a key role in pathogenesis by translocating virulence effectors from the bacteria into the plant host cell, while the phytotoxin coronatine (COR) contributes to virulence and disease symptom development. Recent studies suggest that both the TTSS and COR are involved in the suppression of host basal defenses. However, little is known about the interplay between the host gene expression changes associated with basal defenses and the virulence activities of the TTSS and COR during infection. In this study, we used the Affymetrix full genome chip to determine the Arabidopsis transcriptome associated with basal defense to Pst DC3000 hrp mutants and the human pathogenic bacterium Escherichia coli O157:H7. We then used Pst DC3000 virulence mutants to characterize Arabidopsis transcriptional responses to the action of hrp-regulated virulence factors (e.g. TTSS and COR) during bacterial infection. Additionally, we used bacterial fliC mutants to assess the role of the pathogen-associated molecular pattern flagellin in induction of basal defense-associated transcriptional responses. In total, our global gene expression analysis identified 2800 Arabidopsis genes that are reproducibly regulated in response to bacterial pathogen inoculation. Regulation of these genes provides a molecular signature for Arabidopsis basal defense to plant and human pathogenic bacteria, and illustrates both common and distinct global virulence effects of the TTSS, COR, and possibly other hrp-regulated virulence factors during Pst DC3000 infection.
Collapse
Affiliation(s)
- Roger Thilmony
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
125
|
Kazan K. Negative regulation of defence and stress genes by EAR-motif-containing repressors. TRENDS IN PLANT SCIENCE 2006; 11:109-12. [PMID: 16473545 DOI: 10.1016/j.tplants.2006.01.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 01/05/2006] [Accepted: 01/27/2006] [Indexed: 05/06/2023]
Abstract
Although positive control or activation mechanism(s) involved in plant defence- and stress-related gene expression is relatively well studied, little is known about what keeps defensive armoury under control when not needed. Recent reports suggest that transcriptional repression of gene expression by EAR-motif-containing repressor proteins plays a key role in modulating plant defence and stress responses.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific & Industrial Research Organization, Plant Industry, Queensland Bioscience Precinct, St Lucia, Queensland 4067, Australia.
| |
Collapse
|
126
|
McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. PLANT PHYSIOLOGY 2005; 139:949-59. [PMID: 16183832 PMCID: PMC1256008 DOI: 10.1104/pp.105.068544] [Citation(s) in RCA: 389] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To identify transcription factors (TFs) involved in jasmonate (JA) signaling and plant defense, we screened 1,534 Arabidopsis (Arabidopsis thaliana) TFs by real-time quantitative reverse transcription-PCR for their altered transcript at 6 h following either methyl JA treatment or inoculation with the incompatible pathogen Alternaria brassicicola. We identified 134 TFs that showed a significant change in expression, including many APETALA2/ethylene response factor (AP2/ERF), MYB, WRKY, and NAC TF genes with unknown functions. Twenty TF genes were induced by both the pathogen and methyl JA and these included 10 members of the AP2/ERF TF family, primarily from the B1a and B3 subclusters. Functional analysis of the B1a TF AtERF4 revealed that AtERF4 acts as a novel negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation. In contrast, functional analysis of the B3 TF AtERF2 showed that AtERF2 is a positive regulator of JA-responsive defense genes and resistance to F. oxysporum and enhances JA inhibition of root elongation. Our results suggest that plants coordinately express multiple repressor- and activator-type AP2/ERFs during pathogen challenge to modulate defense gene expression and disease resistance.
Collapse
Affiliation(s)
- Ken C McGrath
- Cooperative Research Centre for Tropical Plant Protection, University of Queensland, St. Lucia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. PLANT PHYSIOLOGY 2005. [PMID: 16183832 DOI: 10.1104/pp.105.068544.2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
To identify transcription factors (TFs) involved in jasmonate (JA) signaling and plant defense, we screened 1,534 Arabidopsis (Arabidopsis thaliana) TFs by real-time quantitative reverse transcription-PCR for their altered transcript at 6 h following either methyl JA treatment or inoculation with the incompatible pathogen Alternaria brassicicola. We identified 134 TFs that showed a significant change in expression, including many APETALA2/ethylene response factor (AP2/ERF), MYB, WRKY, and NAC TF genes with unknown functions. Twenty TF genes were induced by both the pathogen and methyl JA and these included 10 members of the AP2/ERF TF family, primarily from the B1a and B3 subclusters. Functional analysis of the B1a TF AtERF4 revealed that AtERF4 acts as a novel negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation. In contrast, functional analysis of the B3 TF AtERF2 showed that AtERF2 is a positive regulator of JA-responsive defense genes and resistance to F. oxysporum and enhances JA inhibition of root elongation. Our results suggest that plants coordinately express multiple repressor- and activator-type AP2/ERFs during pathogen challenge to modulate defense gene expression and disease resistance.
Collapse
Affiliation(s)
- Ken C McGrath
- Cooperative Research Centre for Tropical Plant Protection, University of Queensland, St. Lucia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Chern M, Canlas PE, Fitzgerald HA, Ronald PC. Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:623-35. [PMID: 16115061 DOI: 10.1111/j.1365-313x.2005.02485.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arabidopsis NPR1/NIM1 is a key regulator of systemic acquired resistance (SAR), which confers lasting broad-spectrum resistance. Over-expression of Arabidopsis NPR1 or the NPR1 homolog 1 (NH1) in rice results in enhanced resistance to the pathogen Xanthomonasoryzae pv. oryzae (Xoo), suggesting the presence of a related defense pathway in rice. We investigated this pathway in rice by identifying proteins that interact with NH1. Here we report the isolation and characterization of a rice cDNA encoding a novel protein, named NRR (for negative regulator of resistance). NRR interacts with NPR1 in the NPR1-interacting domain (NI25) consisting of 25 amino acids. NRR also interacts with NH1; however, NI25 was not sufficient for a strong interaction, indicating a difference between the rice and the Arabidopsis proteins. Silencing of NRR in rice had little effect on resistance to Xoo. When constitutively over-expressed in rice, NRR affected basal resistance, age-related resistance and Xa21-mediated resistance, causing enhanced susceptibility to Xoo. This phenotype was correlated with elevated NRR mRNA and protein levels and increased Xoo growth. Over-expression of NRR suppressed the induction of defense-related genes. NRR:GFP (green fluorescent protein) protein was localized to the nucleus, indicating that NRR may act directly to suppress the activation of defense genes. The fact that NRR compromises Xa21-mediated resistance indicates cross-talk or overlap between NH1- and Xa21-mediated pathways.
Collapse
Affiliation(s)
- Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|