101
|
Lu Y, Yan J, Guimarães CT, Taba S, Hao Z, Gao S, Chen S, Li J, Zhang S, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Parentoni SN, Shah T, Rong T, Crouch JH, Xu Y. Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 120:93-115. [PMID: 19823800 DOI: 10.1007/s00122-009-1162-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 09/11/2009] [Indexed: 05/18/2023]
Abstract
Characterization of genetic diversity is of great value to assist breeders in parental line selection and breeding system design. We screened 770 maize inbred lines with 1,034 single nucleotide polymorphism (SNP) markers and identified 449 high-quality markers with no germplasm-specific biasing effects. Pairwise comparisons across three distinct sets of germplasm, CIMMYT (394), China (282), and Brazil (94), showed that the elite lines from these diverse breeding pools have been developed with only limited utilization of genetic diversity existing in the center of origin. Temperate and tropical/subtropical germplasm clearly clustered into two separate groups. The temperate germplasm could be further divided into six groups consistent with known heterotic patterns. The greatest genetic divergence was observed between temperate and tropical/subtropical lines, followed by the divergence between yellow and white kernel lines, whereas the least divergence was observed between dent and flint lines. Long-term selection for hybrid performance has contributed to significant allele differentiation between heterotic groups at 20% of the SNP loci. There appeared to be substantial levels of genetic variation between different breeding pools as revealed by missing and unique alleles. Two SNPs developed from the same candidate gene were associated with the divergence between two opposite Chinese heterotic groups. Associated allele frequency change at two SNPs and their allele missing in Brazilian germplasm indicated a linkage disequilibrium block of 142 kb. These results confirm the power of SNP markers for diversity analysis and provide a feasible approach to unique allele discovery and use in maize breeding programs.
Collapse
Affiliation(s)
- Yanli Lu
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera, Mexico-Veracruz, El Batan, Texcoco, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Zhang L, Chia JM, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D. A genome-wide characterization of microRNA genes in maize. PLoS Genet 2009; 5:e1000716. [PMID: 19936050 PMCID: PMC2773440 DOI: 10.1371/journal.pgen.1000716] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/12/2009] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play essential roles in plant growth, development, and stress response. We conducted a genome-wide survey of maize miRNA genes, characterizing their structure, expression, and evolution. Computational approaches based on homology and secondary structure modeling identified 150 high-confidence genes within 26 miRNA families. For 25 families, expression was verified by deep-sequencing of small RNA libraries that were prepared from an assortment of maize tissues. PCR-RACE amplification of 68 miRNA transcript precursors, representing 18 families conserved across several plant species, showed that splice variation and the use of alternative transcriptional start and stop sites is common within this class of genes. Comparison of sequence variation data from diverse maize inbred lines versus teosinte accessions suggest that the mature miRNAs are under strong purifying selection while the flanking sequences evolve equivalently to other genes. Since maize is derived from an ancient tetraploid, the effect of whole-genome duplication on miRNA evolution was examined. We found that, like protein-coding genes, duplicated miRNA genes underwent extensive gene-loss, with approximately 35% of ancestral sites retained as duplicate homoeologous miRNA genes. This number is higher than that observed with protein-coding genes. A search for putative miRNA targets indicated bias towards genes in regulatory and metabolic pathways. As maize is one of the principal models for plant growth and development, this study will serve as a foundation for future research into the functional roles of miRNA genes.
Collapse
Affiliation(s)
- Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jer-Ming Chia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Joshua C. Stein
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Zhijie Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Apurva Narechania
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Christopher A. Maher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Katherine Guill
- Plant Genetics Research Unit, United States Department of Agriculture–Agriculture Research Service, Columbia, Missouri, United States of America
| | - Michael D. McMullen
- Plant Genetics Research Unit, United States Department of Agriculture–Agriculture Research Service, Columbia, Missouri, United States of America
- Division of Plant Sciences, University of Missouri Columbia, Columbia, Missouri, United States of America
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Plant, Soil, and Nutrition Research Unit, United States Department of Agriculture–Agriculture Research Service, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
103
|
Springer NM, Ying K, Fu Y, Ji T, Yeh CT, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum H, Iniguez AL, Barbazuk WB, Jeddeloh JA, Nettleton D, Schnable PS. Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 2009; 5:e1000734. [PMID: 19956538 PMCID: PMC2780416 DOI: 10.1371/journal.pgen.1000734] [Citation(s) in RCA: 364] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 10/19/2009] [Indexed: 12/25/2022] Open
Abstract
Following the domestication of maize over the past approximately 10,000 years, breeders have exploited the extensive genetic diversity of this species to mold its phenotype to meet human needs. The extent of structural variation, including copy number variation (CNV) and presence/absence variation (PAV), which are thought to contribute to the extraordinary phenotypic diversity and plasticity of this important crop, have not been elucidated. Whole-genome, array-based, comparative genomic hybridization (CGH) revealed a level of structural diversity between the inbred lines B73 and Mo17 that is unprecedented among higher eukaryotes. A detailed analysis of altered segments of DNA conservatively estimates that there are several hundred CNV sequences among the two genotypes, as well as several thousand PAV sequences that are present in B73 but not Mo17. Haplotype-specific PAVs contain hundreds of single-copy, expressed genes that may contribute to heterosis and to the extraordinary phenotypic diversity of this important crop.
Collapse
Affiliation(s)
- Nathan M. Springer
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Kai Ying
- Interdepartmental Genetics Graduate Program, Iowa State University, Ames, Iowa, United States of America
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Yan Fu
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
- Center for Carbon Capturing Crops, Iowa State University, Ames, Iowa, United States of America
| | - Tieming Ji
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Cheng-Ting Yeh
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Yi Jia
- Interdepartment Plant Biology, Iowa State University, Ames, Iowa, United States of America
| | - Wei Wu
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Todd Richmond
- Roche NimbleGen, Madison, Wisconsin, United States of America
| | - Jacob Kitzman
- Roche NimbleGen, Madison, Wisconsin, United States of America
| | - Heidi Rosenbaum
- Roche NimbleGen, Madison, Wisconsin, United States of America
| | | | - W. Brad Barbazuk
- University of Florida, Gainesville, Florida, United States of America
| | | | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Patrick S. Schnable
- Interdepartmental Genetics Graduate Program, Iowa State University, Ames, Iowa, United States of America
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
- Center for Carbon Capturing Crops, Iowa State University, Ames, Iowa, United States of America
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
- Interdepartment Plant Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
104
|
Zhang LB, Zhu Q, Wu ZQ, Ross-Ibarra J, Gaut BS, Ge S, Sang T. Selection on grain shattering genes and rates of rice domestication. THE NEW PHYTOLOGIST 2009; 184:708-720. [PMID: 19674325 DOI: 10.1111/j.1469-8137.2009.02984.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Molecular cloning of major quantitative trait loci (QTLs) responsible for the reduction of rice grain shattering, a hallmark of cereal domestication, provided opportunities for in-depth investigation of domestication processes. Here, we studied nucleotide variation at the shattering loci, sh4 and qSH1, for cultivated rice, Oryza sativa ssp. indica and Oryza sativa ssp. japonica, and the wild progenitors, Oryza nivara andOryza rufipogon. The nonshattering sh4 allele was fixed in all rice cultivars, with levels of sequence polymorphism significantly reduced in both indica and japonica cultivars relative to the wild progenitors. The sh4 phylogeny together with the neutrality tests and coalescent simulations suggested that sh4 had a single origin and was fixed by artificial selection during the domestication of rice. Selection on qSH1 was not detected in indica and remained unclear in japonica. Selection on sh4 could be strong enough to have driven its fixation in a population of cultivated rice within a period of c. 100 yr. The slow fixation of the nonshattering phenotype observed at the archeological sites might be a result of relatively weak selection on mutations other than sh4 in early rice cultivation. The fixation of sh4 could have been achieved later through strong selection for the optimal phenotype.
Collapse
Affiliation(s)
- Lin-Bin Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qihui Zhu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhi-Qiang Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jeffrey Ross-Ibarra
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tao Sang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
105
|
Fan L, Bao J, Wang Y, Yao J, Gui Y, Hu W, Zhu J, Zeng M, Li Y, Xu Y. Post-domestication selection in the maize starch pathway. PLoS One 2009; 4:e7612. [PMID: 19859548 PMCID: PMC2762603 DOI: 10.1371/journal.pone.0007612] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 10/08/2009] [Indexed: 11/18/2022] Open
Abstract
Modern crops have usually experienced domestication selection and subsequent genetic improvement (post-domestication selection). Chinese waxy maize, which originated from non-glutinous domesticated maize (Zea mays ssp. mays), provides a unique model for investigating the post-domestication selection of maize. In this study, the genetic diversity of six key genes in the starch pathway was investigated in a glutinous population that included 55 Chinese waxy accessions, and a selective bottleneck that resulted in apparent reductions in diversity in Chinese waxy maize was observed. Significant positive selection in waxy (wx) but not amylose extender1 (ae1) was detected in the glutinous population, in complete contrast to the findings in non-glutinous maize, which indicated a shift in the selection target from ae1 to wx during the improvement of Chinese waxy maize. Our results suggest that an agronomic trait can be quickly improved into a target trait with changes in the selection target among genes in a crop pathway.
Collapse
Affiliation(s)
- Longjiang Fan
- Institute of Crop Science and Institute of Bioinformatics, Department of Agronomy, Zhejiang University, Hangzhou, China
- * E-mail:
| | - Jiandong Bao
- Institute of Crop Science and Institute of Bioinformatics, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Yu Wang
- Institute of Crop Science and Institute of Bioinformatics, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Jianqiang Yao
- Institute of Crop Science and Institute of Bioinformatics, Department of Agronomy, Zhejiang University, Hangzhou, China
- Institute of Crop Science, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Yijie Gui
- Institute of Crop Science and Institute of Bioinformatics, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Weiming Hu
- Institute of Crop Science and Institute of Bioinformatics, Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Jinqing Zhu
- Institute of Crop Science, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Mengqian Zeng
- Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunbi Xu
- International Maize and Wheat Improvement Center (CIMMYT), Mexico, D.F., Mexico
| |
Collapse
|
106
|
Flint-Garcia SA, Bodnar AL, Scott MP. Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009. [PMID: 19701625 DOI: 10.1007/s00122-009-1115-1111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
All crop species have been domesticated from their wild relatives, and geneticists are just now beginning to understand the consequences of artificial (human) selection on agronomic traits that are relevant today. The primary consequence is a basal loss of diversity across the genome, and an additional reduction in diversity for genes underlying traits targeted by selection. An understanding of attributes of the wild relatives may provide insight into target traits and valuable allelic variants for modern agriculture. This is especially true for maize (Zea mays ssp. mays), where its wild ancestor, teosinte (Z. mays ssp. parviglumis), is so strikingly different than modern maize. One obvious target of selection is the size and composition of the kernel. We evaluated kernel characteristics, kernel composition, and zein profiles for a diverse set of modern inbred lines, teosinte accessions, and landraces, the intermediate between inbreds and teosinte. We found that teosinte has very small seeds, but twice the protein content of landraces and inbred lines. Teosinte has a higher average alpha zein content (nearly 89% of total zeins as compared to 72% for inbred lines and 76% for landraces), and there are many novel alcohol-soluble proteins in teosinte relative to the other two germplasm groups. Nearly every zein protein varied in abundance among the germplasm groups, especially the methionine-rich delta zein protein, and the gamma zeins. Teosinte and landraces harbor phenotypic variation that will facilitate genetic dissection of kernel traits and grain quality, ultimately leading to improvement via traditional plant breeding and/or genetic engineering.
Collapse
|
107
|
Flint-Garcia SA, Bodnar AL, Scott MP. Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:1129-42. [PMID: 19701625 DOI: 10.1007/s00122-009-1115-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 07/20/2009] [Indexed: 05/06/2023]
Abstract
All crop species have been domesticated from their wild relatives, and geneticists are just now beginning to understand the consequences of artificial (human) selection on agronomic traits that are relevant today. The primary consequence is a basal loss of diversity across the genome, and an additional reduction in diversity for genes underlying traits targeted by selection. An understanding of attributes of the wild relatives may provide insight into target traits and valuable allelic variants for modern agriculture. This is especially true for maize (Zea mays ssp. mays), where its wild ancestor, teosinte (Z. mays ssp. parviglumis), is so strikingly different than modern maize. One obvious target of selection is the size and composition of the kernel. We evaluated kernel characteristics, kernel composition, and zein profiles for a diverse set of modern inbred lines, teosinte accessions, and landraces, the intermediate between inbreds and teosinte. We found that teosinte has very small seeds, but twice the protein content of landraces and inbred lines. Teosinte has a higher average alpha zein content (nearly 89% of total zeins as compared to 72% for inbred lines and 76% for landraces), and there are many novel alcohol-soluble proteins in teosinte relative to the other two germplasm groups. Nearly every zein protein varied in abundance among the germplasm groups, especially the methionine-rich delta zein protein, and the gamma zeins. Teosinte and landraces harbor phenotypic variation that will facilitate genetic dissection of kernel traits and grain quality, ultimately leading to improvement via traditional plant breeding and/or genetic engineering.
Collapse
|
108
|
Külheim C, Yeoh SH, Maintz J, Foley WJ, Moran GF. Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways. BMC Genomics 2009; 10:452. [PMID: 19775472 PMCID: PMC2760585 DOI: 10.1186/1471-2164-10-452] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 09/24/2009] [Indexed: 11/21/2022] Open
Abstract
Background There is little information about the DNA sequence variation within and between closely related plant species. The combination of re-sequencing technologies, large-scale DNA pools and availability of reference gene sequences allowed the extensive characterisation of single nucleotide polymorphisms (SNPs) in genes of four biosynthetic pathways leading to the formation of ecologically relevant secondary metabolites in Eucalyptus. With this approach the occurrence and patterns of SNP variation for a set of genes can be compared across different species from the same genus. Results In a single GS-FLX run, we sequenced over 103 Mbp and assembled them to approximately 50 kbp of reference sequences. An average sequencing depth of 315 reads per nucleotide site was achieved for all four eucalypt species, Eucalyptus globulus, E. nitens, E. camaldulensis and E. loxophleba. We sequenced 23 genes from 1,764 individuals and discovered 8,631 SNPs across the species, with about 1.5 times as many SNPs per kbp in the introns compared to exons. The exons of the two closely related species (E. globulus and E. nitens) had similar numbers of SNPs at synonymous and non-synonymous sites. These species also had similar levels of SNP diversity, whereas E. camaldulensis and E. loxophleba had much higher SNP diversity. Neither the pathway nor the position in the pathway influenced gene diversity. The four species share between 20 and 43% of the SNPs in these genes. Conclusion By using conservative statistical detection methods, we were confident about the validity of each SNP. With numerous individuals sampled over the geographical range of each species, we discovered one SNP in every 33 bp for E. nitens and one in every 31 bp in E. globulus. In contrast, the more distantly related species contained more SNPs: one in every 16 bp for E. camaldulensis and one in 17 bp for E. loxophleba, which is, to the best of our knowledge, the highest frequency of SNPs described in woody plant species.
Collapse
Affiliation(s)
- Carsten Külheim
- Research School of Biology, Australian National University, 116 Daley Road, Canberra, Australia.
| | | | | | | | | |
Collapse
|
109
|
Tian F, Stevens NM, Buckler ES. Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc Natl Acad Sci U S A 2009; 106 Suppl 1:9979-86. [PMID: 19528660 PMCID: PMC2702805 DOI: 10.1073/pnas.0901122106] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Maize domestication is one of the greatest feats of artificial selection and evolution, wherein a weedy plant in Central Mexico was converted through human-mediated selection into the most productive crop in the world. In fact, the changes were so astounding that it took much of the last century to identify modern maize's true ancestor. Through modern genetic studies, the molecular basis of this evolution is being unraveled. Maize's new morphology and adaptation to diverse environments required selection at thousands of loci, and we are beginning to understand the magnitude and rates of these genetic changes. Most of the known major genes have experienced strong selection, but only small regions surrounding the selected genes exhibit substantially reduced genetic diversity. Here, we report the discovery of a large region on chromosome 10 involved in adaptation or domestication that has been the target of strong selection during maize domestication. Unlike previously described regions in the maize genome, 1.1 Mb and >15 genes lost genetic diversity during selection at this region. Finally, the prospects of a detailed understanding of maize evolution are discussed with consideration of both top-down and bottom-up approaches.
Collapse
Affiliation(s)
| | | | - Edward S. Buckler
- Institute for Genomic Diversity and
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850; and
- United States Department of Agriculture, Agricultural Research Service, Ithaca, NY 14850
| |
Collapse
|
110
|
Hübner S, Höffken M, Oren E, Haseneyer G, Stein N, Graner A, Schmid K, Fridman E. Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Mol Ecol 2009; 18:1523-36. [PMID: 19368652 DOI: 10.1111/j.1365-294x.2009.04106.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we present the genetic analysis of a new collection of wild barley (Hordeum spontaneum) using 42 simple sequence repeat (SSR) markers that represent the seven chromosomes. The Barley1K (B1K) infrastructure consists of 1020 accessions collected in a hierarchical sampling mode (HSM) from 51 sites across Israel and represents the wide adaptive niche of the modern barley's ancestor. According to the genetic structure analysis, the sampled sites can be divided into seven groups, and sampled microsites located on opposing slopes or in different soil types did not show significant genetic differentiation. Although the genetic analysis indicates a simple isolation-by-distance model among the populations, examination of the genetic populations' structure with abiotic parameters in an ordination analysis revealed that the combination of elevation, mid-day temperature and rainfall explains a high proportion of the variance in the principal components analysis. Our findings demonstrate that the current populations have therefore been shaped and distinguished by non-selective forces such as migration; however, we suggest that aridity and temperature gradients played major roles as selective forces in the adaptation of wild barley in this part of the Fertile Crescent. This unique collection is a prelude for the investigation of the molecular basis underlying plant adaptation and responsiveness to harsh environments.
Collapse
Affiliation(s)
- S Hübner
- The RH Smith Institute of Plant Sciences and Genetics in Agriculture, The RH Smith Faculty of Agricultural, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Ganal MW, Altmann T, Röder MS. SNP identification in crop plants. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:211-7. [PMID: 19186095 DOI: 10.1016/j.pbi.2008.12.009] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/18/2008] [Accepted: 12/20/2008] [Indexed: 05/18/2023]
Abstract
In many plants, single nucleotide polymorphism (SNP) markers are increasingly becoming the marker system of choice. However, for many crop plants there are surprisingly low numbers of validated SNP markers available although they are needed in large numbers for studies regarding genetic variation, linkage mapping, population structure analysis, association genetics, map-based gene isolation, and plant breeding. This review summarizes the current status of SNP marker development technologies for major crop plants. It will also provide an outlook into the future regarding possible SNP identification approaches in crop plants on the basis of current development in model systems such as Arabidopsis which will become available with the full sequencing of more plant genomes, genome resequencing, and in conjunction with the next-generation sequencing technologies.
Collapse
Affiliation(s)
- Martin W Ganal
- TraitGenetics GmbH, Am Schwabeplan 1b, D-06466 Gatersleben, Germany.
| | | | | |
Collapse
|
112
|
Prada D. Molecular population genetics and agronomic alleles in seed banks: searching for a needle in a haystack? JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2541-52. [PMID: 19451185 DOI: 10.1093/jxb/erp130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Seed banking has been the single most significant reaction of the research community to the alarming rates of plant genetic erosion occurring in the wild. One enduring challenge for a wiser utilization of the resources enclosed in seed banks, however, has been the estimation of their genetic potentials for agriculture's benefit. Key to detecting in landraces and/or wild relatives of modern crops any allelic variant lost during domestication and crop improvement is the use of molecular information to determine structure, evolution, and function of the genes harbouring these alleles. This paper reviews some of the theoretical and statistical issues surrounding the use of molecular population genetics tools for the detection of agronomical valuable alleles in seed banks. Emphasis is made on the technical limitations imposed by seed banking that may lessen the success of integrated and multi-disciplinary molecular approaches. The influence that population stratification and linkage disequilibrium exert on specific experimental designs for a better understanding of the evolutionary history of potential agronomic-related genes is also examined.
Collapse
Affiliation(s)
- Dario Prada
- Seed Conservation Department, Royal Botanic Gardens Kew, Wakehurst Place, West Sussex RH17 6TN, UK.
| |
Collapse
|
113
|
Wright SI, Andolfatto P. The Impact of Natural Selection on the Genome: Emerging Patterns inDrosophilaandArabidopsis. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2008. [DOI: 10.1146/annurev.ecolsys.39.110707.173342] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stephen I. Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, Ontario, M5S 3B2 Canada,
| | - Peter Andolfatto
- Department of Ecology and Evolutionary Biology and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544,
| |
Collapse
|
114
|
Chapman MA, Pashley CH, Wenzler J, Hvala J, Tang S, Knapp SJ, Burke JM. A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus). THE PLANT CELL 2008; 20:2931-45. [PMID: 19017747 PMCID: PMC2613673 DOI: 10.1105/tpc.108.059808] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 10/22/2008] [Accepted: 11/04/2008] [Indexed: 05/18/2023]
Abstract
Genomic scans for selection are a useful tool for identifying genes underlying phenotypic transitions. In this article, we describe the results of a genome scan designed to identify candidates for genes targeted by selection during the evolution of cultivated sunflower. This work involved screening 492 loci derived from ESTs on a large panel of wild, primitive (i.e., landrace), and improved sunflower (Helianthus annuus) lines. This sampling strategy allowed us to identify candidates for selectively important genes and investigate the likely timing of selection. Thirty-six genes showed evidence of selection during either domestication or improvement based on multiple criteria, and a sequence-based test of selection on a subset of these loci confirmed this result. In view of what is known about the structure of linkage disequilibrium across the sunflower genome, these genes are themselves likely to have been targeted by selection, rather than being merely linked to the actual targets. While the selection candidates showed a broad range of putative functions, they were enriched for genes involved in amino acid synthesis and protein catabolism. Given that a similar pattern has been detected in maize (Zea mays), this finding suggests that selection on amino acid composition may be a general feature of the evolution of crop plants. In terms of genomic locations, the selection candidates were significantly clustered near quantitative trait loci (QTL) that contribute to phenotypic differences between wild and cultivated sunflower, and specific instances of QTL colocalization provide some clues as to the roles that these genes may have played during sunflower evolution.
Collapse
Affiliation(s)
- Mark A Chapman
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Fernandes J, Morrow DJ, Casati P, Walbot V. Distinctive transcriptome responses to adverse environmental conditions in Zea mays L. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:782-98. [PMID: 18643947 DOI: 10.1111/j.1467-7652.2008.00360.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Maize seedling transcriptome responses to six abiotic perturbations (heat, cold, darkness, desiccation, salt, ultraviolet-B) were analysed. Approximately 7800 transcripts were expressed in one or more treatments compared with light-grown seedlings plus juvenile leaves from field-grown plants. Approximately 5200 transcripts were expressed in one or more treatments and absent in light-grown seedlings. Approximately 2000 transcripts were unique to one treatment. Salt and heat elicited the largest number of transcript changes; however, salt resulted in mostly a decreased abundance of transcripts, whereas heat shock resulted in mostly an increased abundance of transcripts. A total of 384 transcripts were common to all stress treatments and not expressed in light-grown seedlings; 146 transcripts were present in light-grown seedlings and absent from all stress treatments. A complex pattern of overlapping transcripts between treatments was found, and a significant pattern of congruence in the direction of transcript change between pairs of treatments was uncovered. From the analysis, it appears that the scope of gene expression changes is determined by the challenge, indicating specificity in perception and response. Nonetheless, transcripts regulated by multiple responses are generally affected in the same manner, indicating common or converging regulatory networks. The data are available for additional analysis through a searchable database.
Collapse
Affiliation(s)
- John Fernandes
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA 94305-5020, USA
| | | | | | | |
Collapse
|
116
|
Camus-Kulandaivelu L, Chevin LM, Tollon-Cordet C, Charcosset A, Manicacci D, Tenaillon MI. Patterns of molecular evolution associated with two selective sweeps in the Tb1-Dwarf8 region in maize. Genetics 2008; 180:1107-21. [PMID: 18780751 PMCID: PMC2567360 DOI: 10.1534/genetics.108.088849] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 08/08/2008] [Indexed: 12/19/2022] Open
Abstract
We focused on a region encompassing a major maize domestication locus, Tb1, and a locus involved in the flowering time variation, Dwarf8 (D8), to investigate the consequences of two closely linked selective sweeps on nucleotide variation and gain some insights into maize geographical diffusion, through climate adaptation. First, we physically mapped D8 at approximately 300 kb 3' of Tb1. Second, we analyzed patterns of nucleotide variation at Tb1, D8, and seven short regions (400-700 bp) located in the Tb1-D8 region sequenced on a 40 maize inbred lines panel encompassing early-flowering temperate and late-flowering tropical lines. The pattern of polymorphism along the region is characterized by two valleys of depleted polymorphism while the region in between exhibits an appreciable amount of diversity. Our results reveal that a region approximately 100 kb upstream of the D8 gene exhibits hallmarks of divergent selection between temperate and tropical lines and is likely closer than the D8 gene to the target of selection for climate adaptation. Selection in the tropical lines appears more recent than in the temperate lines, suggesting an initial domestication of early-flowering maize. Simulation results indicate that the polymorphism pattern is consistent with two interfering selective sweeps at Tb1 and D8.
Collapse
|
117
|
Konishi S, Ebana K, Izawa T. Inference of the japonica rice domestication process from the distribution of six functional nucleotide polymorphisms of domestication-related genes in various landraces and modern cultivars. PLANT & CELL PHYSIOLOGY 2008; 49:1283-1293. [PMID: 18701522 DOI: 10.1093/pcp/pcn118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Crop domestication can serve as a model of plant evolutionary processes. It involves a series of selection events from standing natural variation and newly occurring mutations and combinations of mutations as a result of natural crossings in populations during local adaptation and propagation of plant lines to other cultivation areas. Our earlier identification of three functional nucleotide polymorphisms (FNPs) of distinct genes involved in the rice domestication process led us to propose a model of the japonica rice domestication process. Here, we examined three more FNPs in two domestication-related genes involved in pigment synthesis during the development of seed pericarp color (Rc and Rd) in 91 landraces (and some modern cultivars) of japonica rice collected from throughout the area of distribution of rice. These polymorphisms were assigned by using genome-wide patterns of restriction fragment length polymorphisms (RFLPs) and the local origins of the landraces. The results led us to infer the process of japonica rice domestication in more detail and propose a more refined model of the japonica domestication process. In this model, the critical role of the Rc FNP at an early step of the domestication process was highlighted. Independent artificial selections of two defective Rd alleles were found, suggesting a role for Rd other than in pigment synthesis during rice domestication.
Collapse
MESH Headings
- Breeding
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Crops, Agricultural/genetics
- DNA, Plant/genetics
- Evolution, Molecular
- Genes, Plant
- Genome, Plant
- Genotype
- Models, Biological
- Mutation
- Oryza/genetics
- Pigments, Biological/genetics
- Polymorphism, Restriction Fragment Length
- Selection, Genetic
Collapse
Affiliation(s)
- Saeko Konishi
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | | | | |
Collapse
|
118
|
The role of regulatory genes during maize domestication: evidence from nucleotide polymorphism and gene expression. Genetics 2008; 178:2133-43. [PMID: 18430939 DOI: 10.1534/genetics.107.085506] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated DNA sequence variation in 72 candidate genes in maize landraces and the wild ancestor of maize, teosinte. The candidate genes were chosen because they exhibit very low sequence diversity among maize inbreds and have sequence homology to known regulatory genes. We observed signatures of selection in 17 candidate genes, indicating that they were potential targets of artificial selection during domestication. In addition, 21 candidate genes were identified as potential targets of natural selection in teosinte. A comparison of the proportion of selected genes between our regulatory genes and genes unfiltered for their potential function (but also with very low sequence diversity among maize inbreds) provided some weak evidence that regulatory genes are overrepresented among selected genes. We detected no significant association between the positions of genes identified as potential targets of selection during domestication and quantitative trait loci (QTL) responsible for maize domestication traits. However, a subset of these genes, those identified by sequence homology as kinase/phosphatase genes, significantly cluster with the domestication QTL. We also analyzed expression profiles of genes in distinct maize tissues and observed that domestication genes are expressed on average at a significantly higher level than neutral genes in reproductive organs, including kernels.
Collapse
|
119
|
Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 2008; 9:444-57. [DOI: 10.1038/nrg2342] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
120
|
Abstract
Quercus is attractive for evolutionary studies, primarily for developing the concepts of the species, speciation and adaptation; however, remarkably little is known about levels of nucleotide polymorphism in the nuclear functional genes of this genus. This article provides the first characterization of levels of nucleotide polymorphism in 11 gene fragments in natural populations of a Quercus species, Quercus crispula Blume. Results show that the level of nucleotide variation in this oak is generally higher than that in conifers, as high as that in a European oak, but lower than that in an aspen. The level of population recombination is relatively high. Within-population inbreeding is negligible and between-population differentiation is modest. The decay of linkage disequilibrium is significantly faster in the species-wide samples and the three northernmost populations than in the other populations. Statistical tests support the hypothesis of a recent bottleneck for several populations in the southern part of Japan. The amounts and patterns of nucleotide variation, recombination and linkage disequilibrium, and genetic differentiation observed among populations of this species are contradictory to our expectations, given the recent colonization history of the northern Japan populations.
Collapse
|
121
|
Zhou M, Lei M, Rao Y, Nie Q, Zeng H, Xia M, Liang F, Zhang D, Zhang X. Polymorphisms of Vasoactive Intestinal Peptide Receptor-1 Gene and Their Genetic Effects on Broodiness in Chickens. Poult Sci 2008; 87:893-903. [PMID: 18420979 DOI: 10.3382/ps.2007-00495] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- M Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
de Meaux J, Koornneef M. The cause and consequences of natural variation: the genome era takes off! CURRENT OPINION IN PLANT BIOLOGY 2008; 11:99-102. [PMID: 18337159 DOI: 10.1016/j.pbi.2008.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
123
|
Tenaillon MI, Tiffin PL. The quest for adaptive evolution: a theoretical challenge in a maze of data. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:110-115. [PMID: 18255332 DOI: 10.1016/j.pbi.2007.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 05/25/2023]
Abstract
Advances in sequencing technology have brought opportunities to refine our searches for adaptive evolution and to address and identify new questions regarding how adaptive evolution has shaped genomic diversity. Recent theoretical developments incorporate demographic and complex selective histories into tests of non-neutral evolution, thereby significantly improving our power to detect selection. These analyses combined with large data sets promise to identify targets of selection for which there was no a priori expectation. Moreover, they contribute to elucidate the role selection has played in shaping diversity in transposable elements, conserved noncoding DNA, gene family size, and other multicopy features of genomes.
Collapse
Affiliation(s)
- Maud I Tenaillon
- INRA/Univ Paris-Sud/CNRS/AgroParisTech, UMR8120 de Génétique Végétale, Ferme du Moulon, 91190 Gif-sur-Yvette, France.
| | | |
Collapse
|
124
|
Chaouachi M, El Malki R, Berard A, Romaniuk M, Laval V, Brunel D, Bertheau Y. Development of a real-time PCR method for the differential detection and quantification of four solanaceae in GMO analysis: potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), and pepper (Capsicum annuum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:1818-28. [PMID: 18303841 DOI: 10.1021/jf073313n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The labeling of products containing genetically modified organisms (GMO) is linked to their quantification since a threshold for the presence of fortuitous GMOs in food has been established. This threshold is calculated from a combination of two absolute quantification values: one for the specific GMO target and the second for an endogenous reference gene specific to the taxon. Thus, the development of reliable methods to quantify GMOs using endogenous reference genes in complex matrixes such as food and feed is needed. Plant identification can be difficult in the case of closely related taxa, which moreover are subject to introgression events. Based on the homology of beta-fructosidase sequences obtained from public databases, two couples of consensus primers were designed for the detection, quantification, and differentiation of four Solanaceae: potato (Solanum tuberosum), tomato (Solanum lycopersicum), pepper (Capsicum annuum), and eggplant (Solanum melongena). Sequence variability was studied first using lines and cultivars (intraspecies sequence variability), then using taxa involved in gene introgressions, and finally, using taxonomically close taxa (interspecies sequence variability). This study allowed us to design four highly specific TaqMan-MGB probes. A duplex real time PCR assay was developed for simultaneous quantification of tomato and potato. For eggplant and pepper, only simplex real time PCR tests were developed. The results demonstrated the high specificity and sensitivity of the assays. We therefore conclude that beta-fructosidase can be used as an endogenous reference gene for GMO analysis.
Collapse
Affiliation(s)
- Maher Chaouachi
- Unité Etude du Polymorphisme des Génomes Végétaux (EPGV) UR1279, Centre National de Génotypage (CNG), 2 rue Gaston Crémieux 91057, CP5721, Evry cedex, France
| | | | | | | | | | | | | |
Collapse
|
125
|
Sanchez-Villeda H, Schroeder S, Flint-Garcia S, Guill KE, Yamasaki M, McMullen MD. DNAAlignEditor: DNA alignment editor tool. BMC Bioinformatics 2008; 9:154. [PMID: 18366684 PMCID: PMC2322986 DOI: 10.1186/1471-2105-9-154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 03/19/2008] [Indexed: 12/02/2022] Open
Abstract
Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism.
Collapse
|
126
|
Sanchez-Villeda H, Schroeder S, Flint-Garcia S, Guill KE, Yamasaki M, McMullen MD. DNAAlignEditor: DNA alignment editor tool. BMC Bioinformatics 2008. [PMID: 18366684 DOI: 10.1186/1471‐2105‐9‐154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. RESULTS We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. CONCLUSION We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism.
Collapse
|
127
|
Burger JC, Chapman MA, Burke JM. Molecular insights into the evolution of crop plants. AMERICAN JOURNAL OF BOTANY 2008; 95:113-22. [PMID: 21632337 DOI: 10.3732/ajb.95.2.113] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The domestication and improvement of crop plants have long fascinated evolutionary biologists, geneticists, and anthropologists. In recent years, the development of increasingly powerful molecular and statistical tools has reinvigorated this now fast-paced field of research. In this paper, we provide an overview of how such tools have been applied to the study of crop evolution. We also highlight lessons that have been learned in light of a few long-standing and interrelated hypotheses concerning the origins of crop plants and the nature of the genetic changes underlying their evolution. We conclude by discussing compelling evolutionary genomic approaches that make possible the efficient and unbiased identification of genes controlling crop-related traits and provide further insight into the actual timing of selection on particular genomic regions.
Collapse
Affiliation(s)
- Jutta C Burger
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602 USA
| | | | | |
Collapse
|
128
|
Tenaillon MI, Austerlitz F, Tenaillon O. Apparent mutational hotspots and long distance linkage disequilibrium resulting from a bottleneck. J Evol Biol 2008; 21:541-50. [PMID: 18205779 DOI: 10.1111/j.1420-9101.2007.01490.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genome wide patterns of nucleotide diversity and recombination reveal considerable variation including hotspots. Some studies suggest that these patterns are primarily dictated by individual locus history related at a broader scale to the population demographic history. Because bottlenecks have occurred in the history of numerous species, we undertook a simulation approach to investigate their impact on the patterns of aggregation of polymorphic sites and linkage disequilibrium (LD). We developed a new index (Polymorphism Aggregation Index) to characterize this aggregation and showed that variation in the density of polymorphic sites results from an interplay between the bottleneck scenario and the recombination rate. Under particular conditions, aggregation is maximized and apparent mutation hotspots resulting in a 50-fold increase in polymorphic sites density can occur. In similar conditions, long distance LD can be detected.
Collapse
Affiliation(s)
- M I Tenaillon
- UMR8120 de Génétique Végétale, INRA/Univ. Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
129
|
Papa R, Bellucci E, Rossi M, Leonardi S, Rau D, Gepts P, Nanni L, Attene G. Tagging the signatures of domestication in common bean (Phaseolus vulgaris) by means of pooled DNA samples. ANNALS OF BOTANY 2007; 100:1039-51. [PMID: 17673468 PMCID: PMC2759209 DOI: 10.1093/aob/mcm151] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS The main aim of this study was to use an amplified fragment length polymorphism (AFLP)-based, large-scale screening of the whole genome of Phaseolus vulgaris to determine the effects of selection on the structure of the genetic diversity in wild and domesticated populations. METHODS Using pooled DNA samples, seven each of wild and domesticated populations of P. vulgaris were studied using 2506 AFLP markers (on average, one every 250 kb). About 10 % of the markers were also analysed on individual genotypes and were used to infer allelic frequencies empirically from bulk data. In both data sets, tests were made to determine the departure from neutral expectation for each marker using an F(ST)-based method. KEY RESULTS The most important outcome is that a large fraction of the genome of the common bean (16 %; P < 0.01) appears to have been subjected to effects of selection during domestication. Markers obtained in individual genotypes were also mapped and classified according to their proximities to known genes and quantitative trait loci (QTLs) of the domestication syndrome. Most of the markers that were found to be potentially under the effects of selection were located in the proximity of previously mapped genes and QTLs related to the domestication syndrome. CONCLUSIONS Overall, the results indicate that in P. vulgaris a large portion of the genome appears to have been subjected to the effects of selection, probably because of linkage to the loci selected during domestication. As most of the markers that are under the effects of selection are linked to known loci related to the domestication syndrome, it is concluded that population genomics approaches are very efficient in detecting QTLs. A method based on bulk DNA samples is presented that is effective in pre-screening for a large number of markers to determine selection signatures.
Collapse
Affiliation(s)
- Roberto Papa
- Dipartimento di Scienze degli Alimenti, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Yamasaki M, Wright SI, McMullen MD. Genomic screening for artificial selection during domestication and improvement in maize. ANNALS OF BOTANY 2007; 100:967-73. [PMID: 17704539 PMCID: PMC2759211 DOI: 10.1093/aob/mcm173] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Artificial selection results in phenotypic evolution. Maize (Zea mays L. ssp. mays) was domesticated from its wild progenitor teosinte (Zea mays subspecies parviglumis) through a single domestication event in southern Mexico between 6000 and 9000 years ago. This domestication event resulted in the original maize landrace varieties. The landraces provided the genetic material for modern plant breeders to select improved varieties and inbred lines by enhancing traits controlling agricultural productivity and performance. Artificial selection during domestication and crop improvement involved selection of specific alleles at genes controlling key morphological and agronomic traits, resulting in reduced genetic diversity relative to unselected genes. SCOPE This review is a summary of research on the identification and characterization by population genetics approaches of genes affected by artificial selection in maize. CONCLUSIONS Analysis of DNA sequence diversity at a large number of genes in a sample of teosintes and maize inbred lines indicated that approx. 2 % of maize genes exhibit evidence of artificial selection. The remaining genes give evidence of a population bottleneck associated with domestication and crop improvement. In a second study to efficiently identify selected genes, the genes with zero sequence diversity in maize inbreds were chosen as potential targets of selection and sequenced in diverse maize landraces and teosintes, resulting in about half of candidate genes exhibiting evidence for artificial selection. Extended gene sequencing demonstrated a low false-positive rate in the approach. The selected genes have functions consistent with agronomic selection for plant growth, nutritional quality and maturity. Large-scale screening for artificial selection allows identification of genes of potential agronomic importance even when gene function and the phenotype of interest are unknown. These approaches should also be applicable to other domesticated species if specific demographic conditions during domestication exist.
Collapse
Affiliation(s)
- Masanori Yamasaki
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
131
|
Burke JM, Burger JC, Chapman MA. Crop evolution: from genetics to genomics. Curr Opin Genet Dev 2007; 17:525-32. [PMID: 17933510 DOI: 10.1016/j.gde.2007.09.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/03/2007] [Accepted: 09/03/2007] [Indexed: 10/22/2022]
Abstract
The advent of the genomics age has greatly facilitated the study of crop evolution. While full-scale genome sequencing projects are underway for just a handful of crop plants, recent years have witnessed a tremendous increase in the availability of DNA sequence data for virtually all major crops. Such resources have bolstered 'traditional' genetic approaches such as QTL mapping and candidate gene-based association studies. They have also allowed us to undertake genome-wide analyses in which we simultaneously consider the importance of a large and essentially random collection of genes. These sorts of analyses promise a more or less unbiased view of the genetic basis of crop evolution and will probably result in the identification of agronomically important genes that would have otherwise been overlooked.
Collapse
Affiliation(s)
- John M Burke
- University of Georgia, Department of Plant Biology, Miller Plant Sciences Building, Athens, GA 30602, USA.
| | | | | |
Collapse
|
132
|
Abstract
An ultimate objective of QTL mapping is cloning genes responsible for quantitative traits. However, projects seldom go beyond segments <5 cM without subsequent breeding and genotyping lines to identify additional crossovers in a genomic region of interest. We report on a QTL analysis performed as a preliminary step in the development of a resource for map-based cloning of domestication and improvement genes in corn. A large backcross (BC)1 population derived from a cross between maize (Zea mays ssp. mays) and teosinte (ssp. parviglumis) was grown for the analysis. A total of 1749 progenies were genotyped for 304 markers and measured for 22 morphological traits. The results are in agreement with earlier studies showing a small number of genomic regions having greater impact on the morphological traits distinguishing maize and teosinte. Despite considerable power to detect epistasis, few QTL interactions were identified. To create a permanent resource, seed of BC1 plants was archived and 1000 BC2S6 BC1-derived lines are in development for fine mapping and cloning. The identification of four BC1 progeny with crossovers in a single gene, tb1, indicated that enough derived lines already exist to clone many QTL without the need to generate and identify additional crossovers.
Collapse
|
133
|
Wang S, Zhu QH, Guo X, Gui Y, Bao J, Helliwell C, Fan L. Molecular evolution and selection of a gene encoding two tandem microRNAs in rice. FEBS Lett 2007; 581:4789-93. [PMID: 17884044 DOI: 10.1016/j.febslet.2007.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/31/2007] [Accepted: 09/04/2007] [Indexed: 11/25/2022]
Abstract
It has been shown that overexpression of MIR156b/c resulted in a bushy phenotype in maize and rice. Our results indicated that the MIR156b/c locus was highly conserved among cereals, but not in dicots and that genome duplication events played an important role in the evolution of the miR156 family. Genetic diversity investigation at the locus indicated that only approximately 9% of nucleotide diversity observed in wild rice (O. rufigogon) was maintained in the cultivated rice and the neutral model was rejected (P<0.05) based on Tajima's D and Fu and Li's D( *) and F( *) tests. To our knowledge, this is the first example of miRNA gene to be targeted by both natural and domestication selection in plants.
Collapse
Affiliation(s)
- Sheng Wang
- Institute of Crop Science, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
134
|
Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS. SNP discovery via 454 transcriptome sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:910-8. [PMID: 17662031 PMCID: PMC2169515 DOI: 10.1111/j.1365-313x.2007.03193.x] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A massively parallel pyro-sequencing technology commercialized by 454 Life Sciences Corporation was used to sequence the transcriptomes of shoot apical meristems isolated from two inbred lines of maize using laser capture microdissection (LCM). A computational pipeline that uses the POLYBAYES polymorphism detection system was adapted for 454 ESTs and used to detect SNPs (single nucleotide polymorphisms) between the two inbred lines. Putative SNPs were computationally identified using 260,000 and 280,000 454 ESTs from the B73 and Mo17 inbred lines, respectively. Over 36,000 putative SNPs were detected within 9980 unique B73 genomic anchor sequences (MAGIs). Stringent post-processing reduced this number to > 7000 putative SNPs. Over 85% (94/110) of a sample of these putative SNPs were successfully validated by Sanger sequencing. Based on this validation rate, this pilot experiment conservatively identified > 4900 valid SNPs within > 2400 maize genes. These results demonstrate that 454-based transcriptome sequencing is an excellent method for the high-throughput acquisition of gene-associated SNPs.
Collapse
Affiliation(s)
| | - Scott J Emrich
- Interdepartmental Bioinformatics and Computational Biology Graduate ProgramAmes, IA 50011, USA
- Department of Electrical and Computer EngineeringAmes, IA 50011, USA
| | | | - Li Li
- Interdepartmental Plant Physiology MajorAmes, IA 50011, USA
- Department of Genetics, Development, and Cell BiologyAmes, IA 50011, USA
| | - Patrick S Schnable
- Interdepartmental Bioinformatics and Computational Biology Graduate ProgramAmes, IA 50011, USA
- Department of AgronomyAmes, IA 50011, USA
- Interdepartmental Plant Physiology MajorAmes, IA 50011, USA
- Department of Genetics, Development, and Cell BiologyAmes, IA 50011, USA
- Center for Plant Genomics, Iowa State UniversityAmes, IA 50011, USA
- (fax +1 515 294 5256; e-mail )
| |
Collapse
|
135
|
Kolkman JM, Berry ST, Leon AJ, Slabaugh MB, Tang S, Gao W, Shintani DK, Burke JM, Knapp SJ. Single nucleotide polymorphisms and linkage disequilibrium in sunflower. Genetics 2007; 177:457-68. [PMID: 17660563 PMCID: PMC2013689 DOI: 10.1534/genetics.107.074054] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Genetic diversity in modern sunflower (Helianthus annuus L.) cultivars (elite oilseed inbred lines) has been shaped by domestication and breeding bottlenecks and wild and exotic allele introgression(-)the former narrowing and the latter broadening genetic diversity. To assess single nucleotide polymorphism (SNP) frequencies, nucleotide diversity, and linkage disequilibrium (LD) in modern cultivars, alleles were resequenced from 81 genic loci distributed throughout the sunflower genome. DNA polymorphisms were abundant; 1078 SNPs (1/45.7 bp) and 178 insertions-deletions (INDELs) (1/277.0 bp) were identified in 49.4 kbp of DNA/genotype. SNPs were twofold more frequent in noncoding (1/32.1 bp) than coding (1/62.8 bp) sequences. Nucleotide diversity was only slightly lower in inbred lines ( = 0.0094) than wild populations ( = 0.0128). Mean haplotype diversity was 0.74. When extraploted across the genome ( approximately 3500 Mbp), sunflower was predicted to harbor at least 76.4 million common SNPs among modern cultivar alleles. LD decayed more slowly in inbred lines than wild populations (mean LD declined to 0.32 by 5.5 kbp in the former, the maximum physical distance surveyed), a difference attributed to domestication and breeding bottlenecks. SNP frequencies and LD decay are sufficient in modern sunflower cultivars for very high-density genetic mapping and high-resolution association mapping.
Collapse
Affiliation(s)
- Judith M Kolkman
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Moeller DA, Tenaillon MI, Tiffin P. Population structure and its effects on patterns of nucleotide polymorphism in teosinte (Zea mays ssp. parviglumis). Genetics 2007; 176:1799-809. [PMID: 17483429 PMCID: PMC1931540 DOI: 10.1534/genetics.107.070631] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Accepted: 04/19/2007] [Indexed: 12/11/2022] Open
Abstract
Surveys of nucleotide diversity in the wild ancestor of maize, Zea mays ssp. parviglumis, have revealed genomewide departures from the standard neutral equilibrium (NE) model. Here we investigate the degree to which population structure may account for the excess of rare polymorphisms frequently observed in species-wide samples. On the basis of sequence data from five nuclear and two chloroplast loci, we found significant population genetic structure among seven subpopulations from two geographic regions. Comparisons of estimates of population genetic parameters from species-wide samples and subpopulation-specific samples showed that population genetic subdivision influenced observed patterns of nucleotide polymorphism. In particular, Tajima's D was significantly higher (closer to zero) in subpopulation-specific samples relative to species-wide samples, and therefore more closely corresponded to NE expectations. In spite of these overall patterns, the extent to which levels and patterns of polymorphism within subpopulations differed from species-wide samples and NE expectations depended strongly on the geographic region (Jalisco vs. Balsas) from which subpopulations were sampled. This may be due to the demographic history of subpopulations in those regions. Overall, these results suggest that explicitly accounting for population structure may be important for studies examining the genetic basis of ecologically and agronomically important traits as well as for identifying loci that have been the targets of selection.
Collapse
Affiliation(s)
- David A Moeller
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
137
|
Hufford KM, Canaran P, Ware DH, McMullen MD, Gaut BS. Patterns of selection and tissue-specific expression among maize domestication and crop improvement loci. PLANT PHYSIOLOGY 2007; 144:1642-53. [PMID: 17496114 PMCID: PMC1914116 DOI: 10.1104/pp.107.098988] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The domestication of maize (Zea mays sp. mays) from its wild progenitors represents an opportunity to investigate the timing and genetic basis of morphological divergence resulting from artificial selection on target genes. We compared sequence diversity of 30 candidate selected and 15 reference loci between the three populations of wild teosintes, maize landraces, and maize inbred lines. We inferred an approximately equal ratio of genes selected during early domestication and genes selected during modern crop breeding. Using an expanded dataset of 48 candidate selected and 658 neutral reference loci, we tested the hypothesis that candidate selected genes in maize are more likely to have transcriptional functions than neutral reference genes, but there was no overrepresentation of regulatory genes in the selected gene dataset. Electronic northern analysis revealed that candidate genes are significantly overexpressed in the maize ear relative to vegetative tissues such as maize shoot, leaf, and root tissue. The maize ear underwent dramatic morphological alteration upon domestication and has been a continuing target of selection for maize yield. Therefore, we hypothesize that genes targeted by selection are more likely to be expressed in tissues that experienced high levels of morphological divergence during domestication and crop improvement.
Collapse
Affiliation(s)
- Kristina M Hufford
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
138
|
Sato S, Nakamura Y, Asamizu E, Isobe S, Tabata S. Genome sequencing and genome resources in model legumes. PLANT PHYSIOLOGY 2007; 144:588-93. [PMID: 17556522 PMCID: PMC1914170 DOI: 10.1104/pp.107.097493] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818 Japan
| | | | | | | | | |
Collapse
|
139
|
Ross-Ibarra J, Morrell PL, Gaut BS. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci U S A 2007; 104 Suppl 1:8641-8. [PMID: 17494757 PMCID: PMC1876441 DOI: 10.1073/pnas.0700643104] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite the fundamental role of plant domestication in human history and the critical importance of a relatively small number of crop plants to modern societies, we still know little about adaptation under domestication. Here we focus on efforts to identify the genes responsible for adaptation to domestication. We start from a historical perspective, arguing that Darwin's conceptualization of domestication and unconscious selection provides valuable insight into the evolutionary history of crops and also provides a framework to evaluate modern methods used to decipher the genetic mechanisms underlying phenotypic change. We then review these methods, framing the discussion in terms of the phenotype-genotype hierarchy. Top-down approaches, such as quantitative trait locus and linkage disequilibrium mapping, start with a phenotype of interest and use genetic analysis to identify candidate genes. Bottom-up approaches, alternatively, use population genetic analyses to identify potentially adaptive genes and then rely on standard bioinformatics and reverse genetic tools to connect selected genes to a phenotype. We discuss the successes, advantages, and challenges of each, but we conclude that bottom-up approaches to understanding domestication as an adaptive process hold greater promise both for the study of adaptation and as a means to identify genes that contribute to agronomically important traits.
Collapse
Affiliation(s)
- Jeffrey Ross-Ibarra
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525
| | - Peter L. Morrell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
140
|
Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glémin S, David J. Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 2007; 24:1506-17. [PMID: 17443011 DOI: 10.1093/molbev/msm077] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several demographic and selective events occurred during the domestication of wheat from the allotetraploid wild emmer (Triticum turgidum ssp. dicoccoides). Cultivated wheat has since been affected by other historical events. We analyzed nucleotide diversity at 21 loci in a sample of 101 individuals representing 4 taxa corresponding to representative steps in the recent evolution of wheat (wild, domesticated, cultivated durum, and bread wheats) to unravel the evolutionary history of cultivated wheats and to quantify its impact on genetic diversity. Sequence relationships are consistent with a single domestication event and identify 2 genetically different groups of bread wheat. The wild group is not highly polymorphic, with only 212 polymorphic sites among the 21,720 bp sequenced, and, during domestication, diversity was further reduced in cultivated forms--by 69% in bread wheat and 84% in durum wheat--with considerable differences between loci, some retaining no polymorphism at all. Coalescent simulations were performed and compared with our data to estimate the intensity of the bottlenecks associated with domestication and subsequent selection. Based on our 21-locus analysis, the average intensity of domestication bottleneck was estimated at about 3--giving a population size for the domesticated form about one third that of wild dicoccoides. The most severe bottleneck, with an intensity of about 6, occurred in the evolution of durum wheat. We investigated whether some of the genes departed from the empirical distribution of most loci, suggesting that they might have been selected during domestication or breeding. We detected a departure from the null model of demographic bottleneck for the hypothetical gene HgA. However, the atypical pattern of polymorphism at this locus might reveal selection on the linked locus Gsp1A, which may affect grain softness--an important trait for end-use quality in wheat.
Collapse
Affiliation(s)
- A Haudry
- UMR Diversité et Adaptation des Plantes Cultivées, Montpellier SupAgro-INRA-IRD-UMII, 2 Place Pierre Viala, 34060 Montpellier Cedex 1, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Stinchcombe JR, Hoekstra HE. Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity (Edinb) 2007; 100:158-70. [PMID: 17314923 DOI: 10.1038/sj.hdy.6800937] [Citation(s) in RCA: 380] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A central challenge in evolutionary biology is to identify genes underlying ecologically important traits and describe the fitness consequences of naturally occurring variation at these loci. To address this goal, several novel approaches have been developed, including 'population genomics,' where a large number of molecular markers are scored in individuals from different environments with the goal of identifying markers showing unusual patterns of variation, potentially due to selection at linked sites. Such approaches are appealing because of (1) the increasing ease of generating large numbers of genetic markers, (2) the ability to scan the genome without measuring phenotypes and (3) the simplicity of sampling individuals without knowledge of their breeding history. Although such approaches are inherently applicable to non-model systems, to date these studies have been limited in their ability to uncover functionally relevant genes. By contrast, quantitative genetics has a rich history, and more recently, quantitative trait locus (QTL) mapping has had some success in identifying genes underlying ecologically relevant variation even in novel systems. QTL mapping, however, requires (1) genetic markers that specifically differentiate parental forms, (2) a focus on a particular measurable phenotype and (3) controlled breeding and maintenance of large numbers of progeny. Here we present current advances and suggest future directions that take advantage of population genomics and quantitative genetic approaches - in both model and non-model systems. Specifically, we discuss advantages and limitations of each method and argue that a combination of the two provides a powerful approach to uncovering the molecular mechanisms responsible for adaptation.
Collapse
Affiliation(s)
- J R Stinchcombe
- Department of Ecology and Evolutionary Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
142
|
Able JA, Langridge P, Milligan AS. Capturing diversity in the cereals: many options but little promiscuity. TRENDS IN PLANT SCIENCE 2007; 12:71-9. [PMID: 17224300 DOI: 10.1016/j.tplants.2006.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 11/06/2006] [Accepted: 12/20/2006] [Indexed: 05/13/2023]
Abstract
It is generally recognized by geneticists and plant breeders alike that there is a need to further improve the ability to capture and manipulate genetic diversity. The effective harnessing of diversity in traditional breeding programmes is limited and, therefore, it is vital that meiotic recombination can be manipulated given that it plays a pivotal role in generating diversity. With the advent of a wider range of genomics technologies, our understanding of meiotic processes should increase rapidly. Although comparative genetics has been useful, particularly in the broader grass family, the development of physical maps, long-range sequencing and transcript profiles promises to unravel the complexities of genomes as large or larger than wheat. Highlighting the most significant findings to date, this review pools the knowledge on these tools and reproductive processes.
Collapse
Affiliation(s)
- Jason A Able
- Molecular Plant Breeding Cooperative Research Centre, School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia.
| | | | | |
Collapse
|
143
|
Abstract
Ten thousand years ago human societies around the globe began to transition from hunting and gathering to agriculture. By 4000 years ago, ancient peoples had completed the domestication of all major crop species upon which human survival is dependent, including rice, wheat, and maize. Recent research has begun to reveal the genes responsible for this agricultural revolution. The list of genes to date tentatively suggests that diverse plant developmental pathways were the targets of Neolithic "genetic tinkering," and we are now closer to understanding how plant development was redirected to meet the needs of a hungry world.
Collapse
Affiliation(s)
- John F Doebley
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
144
|
|
145
|
Wang Q, Dooner HK. Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci U S A 2006; 103:17644-9. [PMID: 17101975 PMCID: PMC1693800 DOI: 10.1073/pnas.0603080103] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maize is probably the most diverse of all crop species. Unexpectedly large differences among haplotypes were first revealed in a comparison of the bz genomic regions of two different inbred lines, McC and B73. Retrotransposon clusters, which comprise most of the repetitive DNA in maize, varied markedly in makeup, and location relative to the genes in the region and genic sequences, later shown to be carried by two helitron transposons, also differed between the inbreds. Thus, the allelic bz regions of these Corn Belt inbreds shared only a minority of the total sequence. To investigate further the variation caused by retrotransposons, helitrons, and other insertions, we have analyzed the organization of the bz genomic region in five additional cultivars selected because of their geographic and genetic diversity: the inbreds A188, CML258, and I137TN, and the land races Coroico and NalTel. This vertical comparison has revealed the existence of several new helitrons, new retrotransposons, members of every superfamily of DNA transposons, numerous miniature elements, and novel insertions flanked at either end by TA repeats, which we call TAFTs (TA-flanked transposons). The extent of variation in the region is remarkable. In pairwise comparisons of eight bz haplotypes, the percentage of shared sequences ranges from 25% to 84%. Chimeric haplotypes were identified that combine retrotransposon clusters found in different haplotypes. We propose that recombination in the common gene space greatly amplifies the variability produced by the retrotransposition explosion in the maize ancestry, creating the heterogeneity in genome organization found in modern maize.
Collapse
Affiliation(s)
- Qinghua Wang
- *The Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08855; and
| | - Hugo K. Dooner
- *The Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08855; and
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
146
|
Yang S, Feng Z, Zhang X, Jiang K, Jin X, Hang Y, Chen JQ, Tian D. Genome-wide investigation on the genetic variations of rice disease resistance genes. PLANT MOLECULAR BIOLOGY 2006. [PMID: 16915523 DOI: 10.1007/s11103-006-90123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Exploitation of plant disease resistance (R) gene in breeding programs has been proven to be the most efficient strategy for coping with the threat of pathogens. An understanding of R-gene variation is the basis for this strategy. Here we report a genome-wide investigation on the variation of NBS-LRR-encoding genes, the common type of R genes, between two sequenced rice genomes, Oryza sativa L. var. Nipponbare and 93-11. We show that the allelic nucleotide diversity in 65.0% of 397 least-divergent pairs is not high (0.344% on average), while the remaining 35% display a greater diversity (5.4% on average). The majority of conserved R genes is single-copy and/or located as a singleton. The clustered, particularly the complex-clustered, R-genes contribute greatly to the rich genetic variation. Surprisingly only 11.2% of R-genes have remarkably high ratios of non-synonymous to synonymous rates, which is much less than the 17.4% observed between Arabidopsis genomes. Noticeable "artificially selective sweeping" could be detected in a large proportion of the conserved R-genes, a scenario described in the "arms race" co-evolutionary model. Based on our study, a variation pattern of R-genes is proposed and confirmed by the analysis of R-genes from other rice lines, indicating that the observed variation pattern may be common in all rice lines.
Collapse
Affiliation(s)
- Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biology, Nanjing University, 210093 Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Yang S, Feng Z, Zhang X, Jiang K, Jin X, Hang Y, Chen JQ, Tian D. Genome-wide investigation on the genetic variations of rice disease resistance genes. PLANT MOLECULAR BIOLOGY 2006; 62:181-93. [PMID: 16915523 DOI: 10.1007/s11103-006-9012-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 04/25/2006] [Indexed: 05/11/2023]
Abstract
Exploitation of plant disease resistance (R) gene in breeding programs has been proven to be the most efficient strategy for coping with the threat of pathogens. An understanding of R-gene variation is the basis for this strategy. Here we report a genome-wide investigation on the variation of NBS-LRR-encoding genes, the common type of R genes, between two sequenced rice genomes, Oryza sativa L. var. Nipponbare and 93-11. We show that the allelic nucleotide diversity in 65.0% of 397 least-divergent pairs is not high (0.344% on average), while the remaining 35% display a greater diversity (5.4% on average). The majority of conserved R genes is single-copy and/or located as a singleton. The clustered, particularly the complex-clustered, R-genes contribute greatly to the rich genetic variation. Surprisingly only 11.2% of R-genes have remarkably high ratios of non-synonymous to synonymous rates, which is much less than the 17.4% observed between Arabidopsis genomes. Noticeable "artificially selective sweeping" could be detected in a large proportion of the conserved R-genes, a scenario described in the "arms race" co-evolutionary model. Based on our study, a variation pattern of R-genes is proposed and confirmed by the analysis of R-genes from other rice lines, indicating that the observed variation pattern may be common in all rice lines.
Collapse
Affiliation(s)
- Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biology, Nanjing University, 210093 Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Maggio A, Zhu JK, Hasegawa PM, Bressan RA. Osmogenetics: Aristotle to Arabidopsis. THE PLANT CELL 2006; 18:1542-57. [PMID: 16809814 PMCID: PMC1488915 DOI: 10.1105/tpc.105.040501] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Albino Maggio
- Department of Agricultural Engineering and Agronomy, University of Naples Federico II, Portici, Italy 80055
| | | | | | | |
Collapse
|
149
|
Hamblin MT, Casa AM, Sun H, Murray SC, Paterson AH, Aquadro CF, Kresovich S. Challenges of detecting directional selection after a bottleneck: lessons from Sorghum bicolor. Genetics 2006; 173:953-64. [PMID: 16547110 PMCID: PMC1526520 DOI: 10.1534/genetics.105.054312] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 03/13/2006] [Indexed: 11/18/2022] Open
Abstract
Multilocus surveys of sequence variation can be used to identify targets of directional selection, which are expected to have reduced levels of variation. Following a population bottleneck, the signal of directional selection may be hard to detect because many loci may have low variation by chance and the frequency spectrum of variation may be perturbed in ways that resemble the effects of selection. Cultivated Sorghum bicolor contains a subset of the genetic diversity found in its wild ancestor(s) due to the combined effects of a domestication bottleneck and human selection on traits associated with agriculture. As a framework for distinguishing between the effects of demography and selection, we sequenced 204 loci in a diverse panel of 17 cultivated S. bicolor accessions. Genomewide patterns of diversity depart strongly from equilibrium expectations with regard to the variance of the number of segregating sites, the site frequency spectrum, and haplotype configuration. Furthermore, gene genealogies of most loci with an excess of low frequency variants and/or an excess of segregating sites do not show the characteristic signatures of directional and diversifying selection, respectively. A simple bottleneck model provides an improved but inadequate fit to the data, suggesting the action of other population-level factors, such as population structure and migration. Despite a known history of recent selection, we find little evidence for directional selection, likely due to low statistical power and lack of an appropriate null model.
Collapse
Affiliation(s)
- Martha T Hamblin
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
The beneficial substitution of an allele shapes patterns of genetic variation at linked sites. Thus, in principle, adaptations can be mapped by looking for the signature of directional selection in polymorphism data. In practice, such efforts are hampered by the need for an accurate characterization of the demographic history of the species and of the effects of positive selection. In an attempt to circumvent these difficulties, researchers are increasingly taking a purely empirical approach, in which a large number of genomic regions are ordered by summaries of the polymorphism data, and loci with extreme values are considered to be likely targets of positive selection. We evaluated the reliability of the "empirical" approach, focusing on applications to human data and to maize. To do so, we considered a coalescent model of directional selection in a sensible demographic setting, allowing for selection on standing variation as well as on a new mutation. Our simulations suggest that while empirical approaches will identify several interesting candidates, they will also miss many--in some cases, most--loci of interest. The extent of the trade-off depends on the mode of positive selection and the demographic history of the population. Specifically, the false-discovery rate is higher when directional selection involves a recessive rather than a co-dominant allele, when it acts on a previously neutral rather than a new allele, and when the population has experienced a population bottleneck rather than maintained a constant size. One implication of these results is that, insofar as attributes of the beneficial mutation (e.g., the dominance coefficient) affect the power to detect targets of selection, genomic scans will yield an unrepresentative subset of loci that contribute to adaptations.
Collapse
Affiliation(s)
- Kosuke M. Teshima
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
- Corresponding authors.E-mail ; fax (773) 834-0505.E-mail ; fax (773) 834-0505
| | - Graham Coop
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Molly Przeworski
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
- Corresponding authors.E-mail ; fax (773) 834-0505.E-mail ; fax (773) 834-0505
| |
Collapse
|