101
|
Wang L, Zhu X, Liu J, Chu X, Jiao J, Liang Y. Involvement of phospholipases C and D in the defence responses of riboflavin-treated tobacco cells. PROTOPLASMA 2013; 250:441-9. [PMID: 22684579 DOI: 10.1007/s00709-012-0426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/30/2012] [Indexed: 05/08/2023]
Abstract
Riboflavin is an activator of defence responses in plants that increases resistance against diseases caused by fungal, oomycete, bacterial and viral pathogens. However, the mechanisms driving defence activation by riboflavin are poorly understood. We investigated the signal transduction pathways of phospholipase C (PLC) and phospholipase D (PLD) in tobacco (Nicotiana tabacum) suspension cells using a pharmacological approach to confirm whether riboflavin-mediated activation of the defence response is dependent on both PLC and PLD. The expression patterns analysed by quantitative reverse transcription-polymerase chain reaction demonstrated that the tobacco PLC and PLD gene families were differentially expressed in riboflavin-treated tobacco cells. PLC and PLD expression accompanied defence responses including the expression of defence response genes (PAL, PR-1a and PR-1b), the production of hydrogen peroxide and the accumulation of the phytoalexin scopoletin in tobacco cells treated with riboflavin. These defence responses were significantly inhibited in the presence of the PLC inhibitor U73122 and the PLD inhibitor 1-butanol; however, inhibitor analogues had no effect. Moreover, treating tobacco cells with phosphatidic acid, a signalling molecule produced by phospholipase catalysis, induced the accumulation of the phytoalexin scopoletin and compensated for the suppressive effects of U73122 and 1-butanol on riboflavin-induced accumulation of the phytoalexin. These results offer pharmacological evidence that PLC and PLD play a role in riboflavin-induced defences of tobacco.
Collapse
Affiliation(s)
- Lianlian Wang
- Department of Plant Pathology, Shandong Agricultural University, Daizong Road 61#, Tai'an, 271018, People's Republic of China
| | | | | | | | | | | |
Collapse
|
102
|
Cai G, Serafini-Fracassini D, Del Duca S. Regulation of Pollen Tube Growth by Transglutaminase. PLANTS 2013; 2:87-106. [PMID: 27137368 PMCID: PMC4844290 DOI: 10.3390/plants2010087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 02/08/2013] [Accepted: 02/27/2013] [Indexed: 11/23/2022]
Abstract
In pollen tubes, cytoskeleton proteins are involved in many aspects of pollen germination and growth, from the transport of sperm cells to the asymmetrical distribution of organelles to the deposition of cell wall material. These activities are based on the dynamics of the cytoskeleton. Changes to both actin filaments and microtubules are triggered by specific proteins, resulting in different organization levels suitable for the different functions of the cytoskeleton. Transglutaminases are enzymes ubiquitous in all plant organs and cell compartments. They catalyze the post-translational conjugation of polyamines to different protein targets, such as the cytoskeleton. Transglutaminases are suggested to have a general role in the interaction between pollen tubes and the extracellular matrix during fertilization and a specific role during the self-incompatibility response. In such processes, the activity of transglutaminases is enhanced, leading to the formation of cross-linked products (including aggregates of tubulin and actin). Consequently, transglutaminases are suggested to act as regulators of cytoskeleton dynamics. The distribution of transglutaminases in pollen tubes is affected by both membrane dynamics and the cytoskeleton. Transglutaminases are also secreted in the extracellular matrix, where they may take part in the assembly and/or strengthening of the pollen tube cell wall.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via Mattioli 4, Siena 53100, Italy.
| | - Donatella Serafini-Fracassini
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di Bologna, via Irnerio, Bologna 40126, Italy.
| | - Stefano Del Duca
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di Bologna, via Irnerio, Bologna 40126, Italy.
| |
Collapse
|
103
|
Zhao LN, Shen LK, Zhang WZ, Zhang W, Wang Y, Wu WH. Ca2+-dependent protein kinase11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes. THE PLANT CELL 2013; 25:649-61. [PMID: 23449501 PMCID: PMC3608784 DOI: 10.1105/tpc.112.103184] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/03/2013] [Accepted: 02/07/2013] [Indexed: 05/18/2023]
Abstract
Potassium (K(+)) influx into pollen tubes via K(+) transporters is essential for pollen tube growth; however, the mechanism by which K(+) transporters are regulated in pollen tubes remains unknown. Here, we report that Arabidopsis thaliana Ca(2+)-dependent protein kinase11 (CPK11) and CPK24 are involved in Ca(2+)-dependent regulation of the inward K(+) (K(+)in) channels in pollen tubes. Using patch-clamp analysis, we demonstrated that K(+)in currents of pollen tube protoplasts were inhibited by elevated [Ca(2+)]cyt. However, disruption of CPK11 or CPK24 completely impaired the Ca(2+)-dependent inhibition of K(+)in currents and enhanced pollen tube growth. Moreover, the cpk11 cpk24 double mutant exhibited similar phenotypes as the corresponding single mutants, suggesting that these two CDPKs function in the same signaling pathway. Bimolecular fluorescence complementation and coimmunoprecipitation experiments showed that CPK11 could interact with CPK24 in vivo. Furthermore, CPK11 phosphorylated the N terminus of CPK24 in vitro, suggesting that these two CDPKs work together as part of a kinase cascade. Electrophysiological assays demonstrated that the Shaker pollen K(+)in channel is the main contributor to pollen tube K(+)in currents and acts as the downstream target of the CPK11-CPK24 pathway. We conclude that CPK11 and CPK24 together mediate the Ca(2+)-dependent inhibition of K(+)in channels and participate in the regulation of pollen tube growth in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Centre, China Agricultural University, Beijing 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Centre, China Agricultural University, Beijing 100193, China
| |
Collapse
|
104
|
Malinsky J, Opekarová M, Grossmann G, Tanner W. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:501-29. [PMID: 23638827 DOI: 10.1146/annurev-arplant-050312-120103] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.
Collapse
Affiliation(s)
- Jan Malinsky
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic.
| | | | | | | |
Collapse
|
105
|
Yang Z, Lavagi I. Spatial control of plasma membrane domains: ROP GTPase-based symmetry breaking. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:601-607. [PMID: 23177207 PMCID: PMC3545472 DOI: 10.1016/j.pbi.2012.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 10/22/2012] [Indexed: 05/17/2023]
Abstract
Breaking of the cell membrane symmetry to form polarized or localized domains/regions of the plasma membrane (PM) is a fundamental cellular process that occurs in essentially all cellular organisms, and is required for a wide variety of cellular functions/behaviors including cell morphogenesis, cell division and cell differentiation. In plants, the development of localized or polarized PM domains has been linked to a vast array of cellular and developmental processes such as polar cell expansion, asymmetric cell division, cell morphogenesis, the polarization of auxin transporters (and thus auxin polar transport), secondary cell wall patterning, cell type specification, and tissue pattern formation. Rho GTPases from plants (ROPs) are known to be involved in many of these processes. Here, we review the current knowledge on ROP involvement in breaking symmetry and propose that ROP-based self-organizing signaling may provide a common mechanism for the spatial control of PM domains required in various cellular and developmental processes in plants.
Collapse
Affiliation(s)
- Zhenbiao Yang
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
106
|
Pokotylo I, Pejchar P, Potocký M, Kocourková D, Krčková Z, Ruelland E, Kravets V, Martinec J. The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog Lipid Res 2012; 52:62-79. [PMID: 23089468 DOI: 10.1016/j.plipres.2012.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/25/2012] [Accepted: 09/25/2012] [Indexed: 11/16/2022]
Abstract
Non-specific phospholipases C (NPCs) were discovered as a novel type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C and responsible for lipid conversion during phosphate-limiting conditions. The six-gene family was established in Arabidopsis, and growing evidence suggests the involvement of two articles NPCs in biotic and abiotic stress responses as well as phytohormone actions. In addition, the diacylglycerol produced via NPCs is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. This review summarises information concerning this new plant protein family and focusses on its sequence analysis, biochemical properties, cellular and tissue distribution and physiological functions. Possible modes of action are also discussed.
Collapse
Affiliation(s)
- Igor Pokotylo
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Rupwate SD, Rajasekharan R. Plant phosphoinositide-specific phospholipase C: an insight. PLANT SIGNALING & BEHAVIOR 2012; 7:1281-3. [PMID: 22902702 PMCID: PMC3493414 DOI: 10.4161/psb.21436] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phosphoinositide-specific phospholipase C (PI-PLC) belongs to an important class of enzymes involved in signaling related to lipids. They hydrolyze a membrane-associated phospholipid, phosphatidylinositol-4,5-bisphosphate, to produce inositol-1,4,5-trisphosphate and diacylglycerol. The role of PI-PLC and the mechanism behind its functioning is well studied in animal system; however, mechanism of plant PI-PLC functioning remains largely obscure. Here, we attempted to summarize the understanding regarding plant PI-PLC mechanism of regulation, localization, and domain association. Using sedimentation based phospholipid binding assay and surface plasmon resonance spectroscopy, it was demonstrated that C2 domain of plant PI-PLC alone is capable of targeting membranes. Moreover, change in surface hydrophobicity upon calcium stimulus is the key element in targeting plant PI-PLC from soluble fractions to membranes. This property of altering surface hydrophobicity plays a pivot role in regulation of PI-PLC activity.
Collapse
Affiliation(s)
- Sunny D. Rupwate
- Department of Biochemistry; Indian Institute of Science; Bangalore, India
| | - Ram Rajasekharan
- Department of Biochemistry; Indian Institute of Science; Bangalore, India
- Central Institute of Medicinal and Aromatic Plants; Council of Scientific and Industrial Research; Lucknow, India
- Correspondence to: Ram Rajasekharan,
| |
Collapse
|
108
|
Moscatelli A, Idilli AI, Rodighiero S, Caccianiga M. Inhibition of actin polymerisation by low concentration Latrunculin B affects endocytosis and alters exocytosis in shank and tip of tobacco pollen tubes. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:770-82. [PMID: 22288466 DOI: 10.1111/j.1438-8677.2011.00547.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pollen tube growth depends on the integrity of the actin cytoskeleton that regulates cytoplasmic streaming and secretion. To clarify whether actin also plays a role in pollen tube endocytosis, Latrunculin B (LatB) was employed in internalisation experiments with tobacco pollen tubes, using the lipophilic dye FM4-64 and charged nanogold. Time-lapse analysis and dissection of endocytosis allowed us to identify internalisation pathways with different sensitivity to LatB. Co-localisation experiments and ultrastructural observations using positively charged nanogold revealed that LatB significantly inhibited endocytosis in the pollen tube shank, affecting internalisation of the plasma membrane (PM) recycled for secretion, as well as that conveyed to vacuoles. In contrast, endocytosis of negatively charged nanogold in the tip, which is also conveyed to vacuoles, was not influenced. Experiments of fluorescence recovery after photobleaching (FRAP) of the apical and subapical PM revealed domains with different rates of fluorescence recovery and showed that these differences depend on the actin cytoskeleton integrity. These results show the presence of distinct degradation pathways by demonstrating that actin-dependent and actin-indepedent endocytosis both operate in pollen tubes, internalising tracts of PM to be recycled and broken down. Intriguingly, although most studies concentrate on exocytosis and distension in the apex, the present paper shows that uncharacterised, actin-dependent secretory activity occurs in the shank of pollen tubes.
Collapse
Affiliation(s)
- A Moscatelli
- Dipartimento di Biologia L. Gorini, Università degli Studi di Milano, Milan, Italy Fondazione Filarete - Università degli Studi di Milano, Milan, Italy
| | - A I Idilli
- Dipartimento di Biologia L. Gorini, Università degli Studi di Milano, Milan, Italy Fondazione Filarete - Università degli Studi di Milano, Milan, Italy
| | - S Rodighiero
- Dipartimento di Biologia L. Gorini, Università degli Studi di Milano, Milan, Italy Fondazione Filarete - Università degli Studi di Milano, Milan, Italy
| | - M Caccianiga
- Dipartimento di Biologia L. Gorini, Università degli Studi di Milano, Milan, Italy Fondazione Filarete - Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
109
|
Idilli AI, Onelli E, Moscatelli A. Low concentration of LatB dramatically changes the microtubule organization and the timing of vegetative nucleus/generative cell entrance in tobacco pollen tubes. PLANT SIGNALING & BEHAVIOR 2012; 7:947-50. [PMID: 22827942 PMCID: PMC3474692 DOI: 10.4161/psb.20907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Low concentration of LatB inhibits not only the actin polymerization, but also induces profound alteration of MT distribution in pollen tubes of Nicotiana tabacum. The short randomly oriented MTs in the apical and subapical regions, became organized as bundles forming subapical rings or basket-like structures, surrounding the apex. Moreover, the depolymerization of AFs in the cortical regions of the apex and subapical region affects the timing of entrance of the vegetative nucleus and generative cell into the pollen tube.
Collapse
|
110
|
Guo F, McCubbin AG. The pollen-specific R-SNARE/longin PiVAMP726 mediates fusion of endo- and exocytic compartments in pollen tube tip growth. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3083-95. [PMID: 22345643 PMCID: PMC3350921 DOI: 10.1093/jxb/ers023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 05/06/2023]
Abstract
The growing pollen tube apex is dedicated to balancing exo- and endocytic processes to form a rapidly extending tube. As perturbation of either tends to cause a morphological phenotype, this system provides tractable model for studying these processes. Vesicle-associated membrane protein 7s (VAMP7s) are members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family that mediate cognate membrane fusion but their role in pollen tube growth has not been investigated. This manuscript identifies PiVAMP726 of Petunia inflata as a pollen-specific VAMP7 that localizes to the inverted cone of transport vesicles at the pollen tube tip. The endocytic marker FM4-64 was found to colocalize with yellow fluorescent protein (YFP)-PiVAMP726, which is consistent with PiVAMP726 containing an amino-acid motif implicated in endosomal localization, At high overexpression levels, YFP- PiVAMP726 inhibited growth and caused the formation of novel membrane compartments within the pollen tube tip. Functional dissection of PiVAMP726 implicated the N-terminal longin domain in negative regulation of the SNARE activity, but not localization of PiVAMP726. Expression of the constitutively active C-terminal SNARE domain alone, in pollen tubes, generated similar phenotypes to the full-length protein, but the truncated domain was more potent than the wild-type protein at both inhibiting growth and forming the novel membrane compartments. Both endo- and exocytic markers localized to these compartments in addition to YFP-PiVAMP726, leading to the speculation that PiVAMP726 might be involved in the recycling of endocytic vesicles in tip growth.
Collapse
Affiliation(s)
| | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
111
|
Dong W, Lv H, Xia G, Wang M. Does diacylglycerol serve as a signaling molecule in plants? PLANT SIGNALING & BEHAVIOR 2012; 7:472-5. [PMID: 22499171 PMCID: PMC3419036 DOI: 10.4161/psb.19644] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Diacylglycerol (DAG) is an important signaling phospholipid in animals, specifically binding to the C1 domain of proteins such as protein kinase C. In most plant species, however, DAG is present at low abundance, and no interacting proteins have yet been identified. As a result, it has been proposed that the signaling function of DAG has been discarded by plants during their evolution. In this mini-review, we summarize the accumulating experimental evidence which supports that notion that changes in DAG content in response to particular cues are a feature of plant cells. This behavior suggests that DAG does indeed act as a signaling molecule during plant development and in response to certain environmental stimuli.
Collapse
|
112
|
Rupwate SD, Rajasekharan R. C2 domain is responsible for targeting rice phosphoinositide specific phospholipase C. PLANT MOLECULAR BIOLOGY 2012; 78:247-58. [PMID: 22124893 DOI: 10.1007/s11103-011-9862-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/18/2011] [Indexed: 05/10/2023]
Abstract
Phosphoinositide-specific phospholipase C (PLC) is involved in Ca²⁺ mediated signalling events that lead to altered cellular status. Using various sequence-analysis methods, we identified two conserved motifs in known PLC sequences. The identified motifs are located in the C2 domain of plant PLCs and are not found in any other protein. These motifs are specifically found in the Ca²⁺ binding loops and form adjoining beta strands. Further, we identified certain conserved residues that are highly distinct from corresponding residues of animal PLCs. The motifs reported here could be used to annotate plant-specific phospholipase C sequences. Furthermore, we demonstrated that the C2 domain alone is capable of targeting PLC to the membrane in response to a Ca²⁺ signal. We also showed that the binding event results from a change in the hydrophobicity of the C2 domain upon Ca²⁺ binding. Bioinformatic analyses revealed that all PLCs from Arabidopsis and rice lack a transmembrane domain, myristoylation and GPI-anchor protein modifications. Our bioinformatic study indicates that plant PLCs are located in the cytoplasm, the nucleus and the mitochondria. Our results suggest that there are no distinct isoforms of plant PLCs, as have been proposed to exist in the soluble and membrane associated fractions. The same isoform could potentially be present in both subcellular fractions, depending on the calcium level of the cytosol. Overall, these data suggest that the C2 domain of PLC plays a vital role in calcium signalling.
Collapse
Affiliation(s)
- Sunny D Rupwate
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
113
|
Pleskot R, Pejchar P, Bezvoda R, Lichtscheidl IK, Wolters-Arts M, Marc J, Žárský V, Potocký M. Turnover of Phosphatidic Acid through Distinct Signaling Pathways Affects Multiple Aspects of Pollen Tube Growth in Tobacco. FRONTIERS IN PLANT SCIENCE 2012; 3:54. [PMID: 22639652 PMCID: PMC3355619 DOI: 10.3389/fpls.2012.00054] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/29/2012] [Indexed: 05/20/2023]
Abstract
Phosphatidic acid (PA) is an important intermediate in membrane lipid metabolism that acts as a key component of signaling networks, regulating the spatio-temporal dynamics of the endomembrane system and the cytoskeleton. Using tobacco pollen tubes as a model, we addressed the signaling effects of PA by probing the functions of three most relevant enzymes that regulate the production and degradation of PA, namely, phospholipases D (PLD), diacylglycerol kinases (DGKs), and lipid phosphate phosphatases (LPPs). Phylogenetic analysis indicated a highly dynamic evolution of all three lipid-modifying enzymes in land plants, with many clade-specific duplications or losses and massive diversification of the C2-PLD family. In silico transcriptomic survey revealed increased levels of expression of all three PA-regulatory genes in pollen development (particularly the DGKs). Using specific inhibitors we were able to distinguish the contributions of PLDs, DGKs, and LPPs into PA-regulated processes. Thus, suppressing PA production by inhibiting either PLD or DGK activity compromised membrane trafficking except early endocytosis, disrupted tip-localized deposition of cell wall material, especially pectins, and inhibited pollen tube growth. Conversely, suppressing PA degradation by inhibiting LPP activity using any of three different inhibitors significantly stimulated pollen tube growth, and similar effect was achieved by suppressing the expression of tobacco pollen LPP4 using antisense knock-down. Interestingly, inhibiting specifically DGK changed vacuolar dynamics and the morphology of pollen tubes, whereas inhibiting specifically PLD disrupted the actin cytoskeleton. Overall, our results demonstrate the critical importance of all three types of enzymes involved in PA production and degradation, with strikingly different roles of PA produced by the PLD and DGK pathways, in pollen tube growth.
Collapse
Affiliation(s)
- Roman Pleskot
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Radek Bezvoda
- Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Irene K. Lichtscheidl
- Core Facility of Cell Imaging and Ultrastructure Research, University of ViennaVienna, Austria
| | - Mieke Wolters-Arts
- Department of Molecular Plant Physiology, Institute for Wetland and Water Research, Radboud University NijmegenNijmegen, Netherlands
| | - Jan Marc
- School of Biological Sciences, University of SydneySydney, NSW, Australia
| | - Viktor Žárský
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
- *Correspondence: Martin Potocký, Laboratory of Cell Biology, Institute of Experimental Botany AS CR, v.v.i., Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Lysolaje, Czech Republic. e-mail:
| |
Collapse
|
114
|
Abstract
Plant phospholipases can be grouped into four major types, phospholipase D, phospholipase C, phospholipase A1 (PLA(1)), and phospholipase A2 (PLA(2)), that hydrolyze glycerophospholipids at different ester bonds. Within each type, there are different families or subfamilies of enzymes that can differ in substrate specificity, cofactor requirement, and/or reaction conditions. These differences provide insights into determining the cellular function of specific phospholipases in plants, and they can be explored for different industrial applications.
Collapse
Affiliation(s)
- Geliang Wang
- Department of Biology, University of Missouri, St. Louis, MO, USA
| | | | | |
Collapse
|
115
|
Abstract
"All things flow and change…even in the stillest matter there is unseen flux and movement." Attributed to Heraclitus (530-470 BC), from The Story of Philosophy by Will Durant. Heraclitus, a Greek philosopher, was thinking on a much larger scale than molecular signaling; however, his visionary comments are an important reminder for those studying signaling today. Even in unstimulated cells, signaling pathways are in constant metabolic flux and provide basal signals that travel throughout the organism. In addition, negatively charged phospholipids, such as the polyphosphorylated inositol phospholipids, provide a circuit board of on/off switches for attracting or repelling proteins that define the membranes of the cell. This template of charged phospholipids is sensitive to discrete changes and metabolic fluxes-e.g., in pH and cations-which contribute to the oscillating signals in the cell. The inherent complexities of a constantly fluctuating system make understanding how plants integrate and process signals challenging. In this review we discuss one aspect of lipid signaling: the inositol family of negatively charged phospholipids and their functions as molecular sensors and regulators of metabolic flux in plants.
Collapse
Affiliation(s)
- Wendy F Boss
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695-7649, USA.
| | | |
Collapse
|
116
|
Zhang Y, Li S, Zhou LZ, Fox E, Pao J, Sun W, Zhou C, McCormick S. Overexpression of Arabidopsis thaliana PTEN caused accumulation of autophagic bodies in pollen tubes by disrupting phosphatidylinositol 3-phosphate dynamics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:1081-92. [PMID: 21883549 DOI: 10.1111/j.1365-313x.2011.04761.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Autophagy is a pathway in eukaryotes by which nutrient remobilization occurs through bulk protein and organelle turnover. Autophagy not only aides cells in coping with harsh environments but also plays a key role in many physiological processes that include pollen germination and tube growth. Most autophagic components are conserved among eukaryotes, but phylum-specific molecular components also exist. We show here that Arabidopsis thaliana PTEN, a protein and lipid dual phosphatase homologous to animal PTENs (phosphatase and tensin homologs deleted on chromosome 10), regulates autophagy in pollen tubes by disrupting the dynamics of phosphatidylinositol 3-phosphate (PI3P). The pollen-specific PTEN bound PI3P in vitro and was localized at PI3P-positive vesicles. Overexpression of PTEN caused accumulation of autophagic bodies and resulted in gametophytic male sterility. Such an overexpression effect was dependent upon its lipid phosphatase activity and was inhibited by exogenous PI3P or by expression of a class III phosphatidylinositol 3-kinase (PI3K) that produced PI3P. Overexpression of PTEN disrupted the dynamics of autophagosomes and a subpopulation of endosomes, as shown by altered localization patterns of respective fluorescent markers. Treatment with wortmannin, an inhibitor of class III PI3K, mimicked the effects by PTEN overexpression, which implied a critical role for PI3P dynamics in these processes. Despite sharing evolutionarily conserved catalytic domains, plant PTENs contain regulatory sequences that are distinct from those of animal PTENs, which might underlie their differing membrane association and thereby function. Our results show that PTEN regulates autophagy through phylum-specific molecular mechanisms.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Munnik T, Nielsen E. Green light for polyphosphoinositide signals in plants. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:489-97. [PMID: 21775194 DOI: 10.1016/j.pbi.2011.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 05/04/2023]
Abstract
Plant genomes lack homologues of the inositol 1,4,5-trisphosphate receptor and protein kinase C, which are important components of the canonical phospholipase C signalling system in animals. Instead, plants seem to utilize alternative downstream signalling molecules, that is, InsP(6) and phosphatidic acid. Inositol lipids may also function as second messengers themselves. By reversible phosphorylation of the inositol headgroup, five biologically active plant polyphosphoinositides can be detected. Protein targets interact with specific polyphosphoinositide isomers via selective lipid-binding domains, thereby altering their intracellular localization and/or enzymatic activity. Such lipid-binding domains have also been used to create GFP based-lipid biosensors to visualize PPIs dynamics in vivo. Here, we highlight some recent advances and ideas on PPIs' role in plant signalling.
Collapse
Affiliation(s)
- Teun Munnik
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands.
| | | |
Collapse
|
118
|
Santiago-Tirado FH, Bretscher A. Membrane-trafficking sorting hubs: cooperation between PI4P and small GTPases at the trans-Golgi network. Trends Cell Biol 2011; 21:515-25. [PMID: 21764313 DOI: 10.1016/j.tcb.2011.05.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/24/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
Cell polarity in eukaryotes requires constant sorting, packaging and transport of membrane-bound cargo within the cell. These processes occur in two sorting hubs: the recycling endosome for incoming material and the trans-Golgi network for outgoing material. Phosphatidylinositol 3-phosphate and phosphatidylinositol 4-phosphate are enriched at the endocytic and exocytic sorting hubs, respectively, where they act together with small GTPases to recruit factors to segregate cargo and regulate carrier formation and transport. In this review, we summarize the current understanding of how these lipids and GTPases regulate membrane trafficking directly, emphasizing the recent discoveries of phosphatidylinositol 4-phosphate functions at the trans-Golgi network.
Collapse
Affiliation(s)
- Felipe H Santiago-Tirado
- Department of Molecular Biology and Genetics, 107 Biotechnology Bldg., Cornell University, Ithaca, NY 14853-7202, USA
| | | |
Collapse
|
119
|
Kocourková D, Krčková Z, Pejchar P, Veselková Š, Valentová O, Wimalasekera R, Scherer GFE, Martinec J. The phosphatidylcholine-hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3753-63. [PMID: 21525137 PMCID: PMC3134337 DOI: 10.1093/jxb/err039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 01/26/2011] [Accepted: 01/28/2011] [Indexed: 05/20/2023]
Abstract
Phosphatidylcholine-hydrolysing phospholipase C, also known as non-specific phospholipase C (NPC), is a new member of the plant phospholipase family that reacts to environmental stresses such as phosphate deficiency and aluminium toxicity, and has a role in root development and brassinolide signalling. Expression of NPC4, one of the six NPC genes in Arabidopsis, was highly induced by NaCl. Maximum expression was observed from 3 h to 6 h after the salt treatment and was dependent on salt concentration. Results of histochemical analysis of P(NPC4):GUS plants showed the localization of salt-induced expression in root tips. On the biochemical level, increased NPC enzyme activity, indicated by accumulation of diacylglycerol, was observed as early as after 30 min of salt treatment of Arabidopsis seedlings. Phenotype analysis of NPC4 knockout plants showed increased sensitivity to salinity as compared with wild-type plants. Under salt stress npc4 plants had shorter roots, lower fresh weight, and reduced seed germination. Expression levels of abscisic acid-related genes ABI1, ABI2, RAB18, PP2CA, and SOT12 were substantially reduced in salt-treated npc4 plants. These observations demonstrate a role for NPC4 in the response of Arabidopsis to salt stress.
Collapse
Affiliation(s)
- Daniela Kocourková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, v. v. i., Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Zuzana Krčková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, v. v. i., Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, v. v. i., Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Štěpánka Veselková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, v. v. i., Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Olga Valentová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Rinukshi Wimalasekera
- Leibniz University of Hannover, Institute of Floriculture and Wood Science, Section of Applied Molecular Physiology, Herrenhauser Strasse 2, D-30419 Hannover, Germany
| | - Günther F. E. Scherer
- Leibniz University of Hannover, Institute of Floriculture and Wood Science, Section of Applied Molecular Physiology, Herrenhauser Strasse 2, D-30419 Hannover, Germany
| | - Jan Martinec
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, v. v. i., Rozvojová 263, 165 02 Prague 6, Czech Republic
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
120
|
Qin Y, Yang Z. Rapid tip growth: insights from pollen tubes. Semin Cell Dev Biol 2011; 22:816-24. [PMID: 21729760 DOI: 10.1016/j.semcdb.2011.06.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 12/31/2022]
Abstract
Pollen tubes extend rapidly in an oscillatory manner by the extreme form of polarized growth, tip growth, and provide an exciting system for studying the spatiotemporal control of polarized cell growth. The Rho-family ROP GTPase is a key signaling molecule in this growth control and is periodically activated at the apical plasma membrane to spatially define the apical growth region and temporally precede the burst of growth. The spatiotemporal dynamics of ROP GTPase is interconnected with actin dynamics and polar exocytosis that is required for tip-targeted membrane and wall expansion. Recent advances in the study of the mechanistic interlinks between ROP-centered signaling and spatiotemporal dynamics of cell membrane and wall remodeling will be discussed.
Collapse
Affiliation(s)
- Yuan Qin
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
121
|
Wang H, Jiang L. Transient expression and analysis of fluorescent reporter proteins in plant pollen tubes. Nat Protoc 2011; 6:419-26. [PMID: 21412270 DOI: 10.1038/nprot.2011.309] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pollen tube is an excellent single-cell model system for studying cellular processes in plant cell biology. This protocol describes a detailed step-by-step procedure with optimized conditions for introducing various fluorescent reporter proteins into lily, tobacco and Arabidopsis pollen grains by means of biolistics for their transient expression and subsequent analysis in germinating pollen tubes. The whole experiment consists of four major stages: coating gold microcarriers with DNA constructs, preparation of pollen grains, transformation of plasmid DNA into pollen grains by particle delivery system and germination of bombarded pollen grains in optimized germination media to obtain pollen tubes for protein trafficking, protein localization, drug treatment and organelle dynamics analysis. This protocol takes about 4-12 h from pollen preparation to protein detection.
Collapse
Affiliation(s)
- Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
122
|
Tavares B, Domingos P, Dias PN, Feijó JA, Bicho A. The essential role of anionic transport in plant cells: the pollen tube as a case study. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2273-2298. [PMID: 21511914 DOI: 10.1093/jxb/err036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plasma membrane anion transporters play fundamental roles in plant cell biology, especially in stomatal closure and nutrition. Notwithstanding, a lot is still unknown about the specific function of these transporters, their specific localization, or molecular nature. Here the fundamental roles of anionic transport in plant cells are reviewed. Special attention will be paid to them in the control of pollen tube growth. Pollen tubes are extreme examples of cellular polarity as they grow exclusively in their apical extremity. Their unique cell biology has been extensively exploited for fundamental understanding of cellular growth and morphogenesis. Non-invasive methods have demonstrated that tube growth is governed by different ion fluxes, with different properties and distribution. Not much is known about the nature of the membrane transporters responsible for anionic transport and their regulation in the pollen tube. Recent data indicate the importance of chloride (Cl(-)) transfer across the plasma membrane for pollen germination and pollen tube growth. A general overview is presented of the well-known accumulated data in terms of biophysical and functional characterization, transcriptomics, and genomic description of pollen ionic transport, and the various controversies around the role of anionic fluxes during pollen tube germination, growth, and development. It is concluded that, like all other plant cells so far analysed, pollen tubes depend on anion fluxes for a number of fundamental homeostatic properties.
Collapse
|
123
|
Sun J, Liu X, Pan Y. The physical interaction between LdPLCs and Arabidopsis G beta in a yeast two-hybrid system. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11703-011-1063-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
124
|
Ischebeck T, Stenzel I, Hempel F, Jin X, Mosblech A, Heilmann I. Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:453-68. [PMID: 21265898 DOI: 10.1111/j.1365-313x.2010.04435.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The regulation of pollen tube growth by the phospholipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2) ) is not well understood. The Arabidopsis genome encodes two type A phosphatidylinositol-4-phosphate (PI4P) 5-kinases, PIP5K10 and PIP5K11, which are exclusively expressed in pollen and produce PtdIns(4,5)P(2) in vitro. Fluorescence-tagged PIP5K10 and PIP5K11 localized to lateral subapical plasma membrane microdomains in tobacco pollen tubes in a pattern closely resembling the distribution of PtdIns(4,5)P(2,) with the exception of notably weaker association at the extreme apex. Overexpression of PIP5K10 or PIP5K11 in tobacco pollen tubes resulted in severe tip swelling and altered actin fine structure similar to that reported for overexpression of tobacco Nt-Rac5, a monomeric GTPase known to regulate the actin cytoskeleton. Increased sensitivity of Arabidopsis pip5k10 pip5k11 double mutant pollen tubes to Latrunculin B (LatB) further supports a role for type A PI4P 5-kinases in controlling the actin cytoskeleton. Despite the disruption of both its type A PI4P 5-kinases, the pip5k10 pip5k11 double mutant was fertile, indicating that one of the remaining type B PI4P 5-kinase isoforms might be functionally redundant with PIP5K10 and PIP5K11. Antagonistic effects of PIP5K11 and the Nt-Rac5-specific guanine nucleotide dissociation inhibitor, Nt-RhoGDI2, on tip swelling observed in coexpression-titration experiments indicate a link between PtdIns(4,5)P(2) and Rac-signaling in pollen tubes. The data suggest that type A PI4P 5-kinases influence the actin cytoskeleton in pollen tubes in part by counteracting Nt-RhoGDI2, possibly contributing to the control of the pool of plasma membrane-associated Nt-Rac5.
Collapse
Affiliation(s)
- Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
125
|
|
126
|
Kim HJ, Ok SH, Bahn SC, Jang J, Oh SA, Park SK, Twell D, Ryu SB, Shin JS. Endoplasmic reticulum- and Golgi-localized phospholipase A2 plays critical roles in Arabidopsis pollen development and germination. THE PLANT CELL 2011; 23:94-110. [PMID: 21278126 PMCID: PMC3051258 DOI: 10.1105/tpc.110.074799] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 12/31/2010] [Accepted: 01/11/2011] [Indexed: 05/18/2023]
Abstract
The phospholipase A(2) (PLA(2)) superfamily of lipolytic enzymes is involved in a number of essential biological processes, such as inflammation, development, host defense, and signal transduction. Despite the proven involvement of plant PLA(2)s in many biological functions, including senescence, wounding, elicitor and stress responses, and pathogen defense, relatively little is known about plant PLA(2)s, and their genes essentially remain uncharacterized. We characterized three of four Arabidopsis thaliana PLA(2) paralogs (PLA(2)-β, -γ, and -δ) and found that they (1) are expressed during pollen development, (2) localize to the endoplasmic reticulum and/or Golgi, and (3) play critical roles in pollen development and germination and tube growth. The suppression of PLA(2) using the RNA interference approach resulted in pollen lethality. The inhibition of pollen germination by pharmacological PLA(2) inhibitors was rescued by a lipid signal molecule, lysophosphatidyl ethanolamine. Based on these results, we propose that plant reproduction, in particular, male gametophyte development, requires the activities of the lipid-modifying PLA(2)s that are conserved in other organisms.
Collapse
Affiliation(s)
- Hae Jin Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Sung Han Ok
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Sung Chul Bahn
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Juno Jang
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Sung Aeong Oh
- Division of Plant Biosciences, Kyungpook National University, Daegu 702-701, Korea
| | - Soon Ki Park
- Division of Plant Biosciences, Kyungpook National University, Daegu 702-701, Korea
| | - David Twell
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Stephen Beungtae Ryu
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, South Korea
| | - Jeong Sheop Shin
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
- Address correspondence to
| |
Collapse
|
127
|
Biochemical and genetic evidence for the presence of multiple phosphatidylinositol- and phosphatidylinositol 4,5-bisphosphate-specific phospholipases C in Tetrahymena. EUKARYOTIC CELL 2010; 10:412-22. [PMID: 21169416 DOI: 10.1128/ec.00272-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Eukaryotic phosphoinositide-specific phospholipases C (PI-PLC) specifically hydrolyze phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)], produce the Ca(2+)-mobilizing agent inositol 1,4,5-trisphosphate, and regulate signaling in multicellular organisms. Bacterial PtdIns-specific PLCs, also present in trypanosomes, hydrolyze PtdIns and glycosyl-PtdIns, and they are considered important virulence factors. All unicellular eukaryotes studied so far contain a single PI-PLC-like gene. In this report, we show that ciliates are an exception, since we provide evidence that Tetrahymena species contain two sets of functional genes coding for both bacterial and eukaryotic PLCs. Biochemical characterization revealed two PLC activities that differ in their phosphoinositide substrate utilization, subcellular localization, secretion to extracellular space, and sensitivity to Ca(2+). One of these activities was identified as a typical membrane-associated PI-PLC activated by low-micromolar Ca(2+), modestly activated by GTPγS in vitro, and inhibited by the compound U73122 [1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione]. Importantly, inhibition of PI-PLC in vivo resulted in rapid upregulation of PtdIns(4,5)P(2) levels, suggesting its functional importance in regulating phosphoinositide turnover in Tetrahymena. By in silico and molecular analysis, we identified two PLC genes that exhibit significant similarity to bacterial but not trypanosomal PLC genes and three eukaryotic PI-PLC genes, one of which is a novel inactive PLC similar to proteins identified only in metazoa. Comparative studies of expression patterns and PI-PLC activities in three T. thermophila strains showed a correlation between expression levels and activity, suggesting that the three eukaryotic PI-PLC genes are functionally nonredundant. Our findings imply the presence of a conserved and elaborate PI-PLC-Ins(1,4,5)P(3)-Ca(2+) regulatory axis in ciliates.
Collapse
|
128
|
Zhao Y, Yan A, Feijó JA, Furutani M, Takenawa T, Hwang I, Fu Y, Yang Z. Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. THE PLANT CELL 2010; 22:4031-44. [PMID: 21189293 PMCID: PMC3027160 DOI: 10.1105/tpc.110.076760] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 11/23/2010] [Accepted: 12/06/2010] [Indexed: 05/18/2023]
Abstract
Using the tip-growing pollen tube of Arabidopsis thaliana and Nicotiana tabacum as a model to investigate endocytosis mechanisms, we show that phosphatidylinositol-4-phosphate 5-kinase 6 (PIP5K6) regulates clathrin-dependent endocytosis in pollen tubes. Green fluorescent protein-tagged PIP5K6 was preferentially localized to the subapical plasma membrane (PM) in pollen tubes where it apparently converts phosphatidylinositol 4-phosphate (PI4P) to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]. RNA interference-induced suppression of PIP5K6 expression impaired tip growth and inhibited clathrin-dependent endocytosis in pollen tubes. By contrast, PIP5K6 overexpression induced massive aggregation of the PM in pollen tube tips. This PM abnormality was apparently due to excessive clathrin-dependent membrane invagination because this defect was suppressed by the expression of a dominant-negative mutant of clathrin heavy chain. These results support a role for PI(4,5)P(2) in promoting early stages of clathrin-dependent endocytosis (i.e., membrane invagination). Interestingly, the PIP5K6 overexpression-induced PM abnormality was partially suppressed not only by the overexpression of PLC2, which breaks down PI(4,5)P(2), but also by that of PI4Kβ1, which increases the pool of PI4P. Based on these observations, we propose that a proper balance between PI4P and PI(4,5)P(2) is required for clathrin-dependent endocytosis in the tip of pollen tubes.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University–University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - An Yan
- Center for Plant Cell Biology, Department of Botany and Sciences, University of California, Riverside, California 92521
| | - José A. Feijó
- Seccao de Biologia Vegetal, Faculdade de Ciencias, Universidade de Lisboa 1700, Lisbon P-1749-016, Portugal
- Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | - Masahiro Furutani
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tadaomi Takenawa
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Inhwan Hwang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenbiao Yang
- China Agricultural University–University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
- Center for Plant Cell Biology, Department of Botany and Sciences, University of California, Riverside, California 92521
| |
Collapse
|
129
|
Pejchar P, Potocký M, Novotná Z, Veselková S, Kocourková D, Valentová O, Schwarzerová K, Martinec J. Aluminium ions inhibit the formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase C in tobacco cells. THE NEW PHYTOLOGIST 2010; 188:150-60. [PMID: 20629955 DOI: 10.1111/j.1469-8137.2010.03349.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
• Aluminium ions (Al) have been recognized as a major toxic factor for crop production in acidic soils. This study aimed to assess the impact of Al on the activity of phosphatidylcholine-hydrolysing phospholipase C (PC-PLC), a new member of the plant phospholipase family. • We labelled the tobacco cell line BY-2 and pollen tubes with a fluorescent derivative of phosphatidylcholine and assayed for patterns of fluorescently labelled products. Growth of pollen tubes was analysed. • We observed a significant decrease of labelled diacylglycerol (DAG) in cells treated with AlCl(3). Investigation of possible metabolic pathways that control DAG generation and consumption during the response to Al showed that DAG originated from the reaction catalysed by PC-PLC. The growth of pollen tubes was retarded in the presence of Al and this effect was accompanied by the decrease of labelled DAG similar to the case of the BY-2 cell line. The growth of pollen tubes arrested by Al was rescued by externally added DAG. • Our observation strongly supports the role of DAG generated by PC-PLC in the response of tobacco cells to Al.
Collapse
Affiliation(s)
- Premysl Pejchar
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, v. v. i., Rozvojová 263, 165 02 Prague 6, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Kato M, Nagasaki-Takeuchi N, Ide Y, Tomioka R, Maeshima M. PCaPs, possible regulators of PtdInsP signals on plasma membrane. PLANT SIGNALING & BEHAVIOR 2010; 5:848-50. [PMID: 20448467 PMCID: PMC3014536 DOI: 10.4161/psb.5.7.11825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In plants, Ca(2+), phosphatidylinositol phosphates (PtdInsPs) and inositol phosphates are major components of intracellular signaling. Several kinds of proteins and enzymes, such as calmodulin (CaM), protein kinase, protein phosphatase, and the Ca(2+) channel, mediate the signaling. Two new Ca(2+)-binding proteins were identified from Arabidopsis thaliana and named PCaP1 and PCaP2 [plasma membrane (PM)-associated Ca(2+) (cation)-binding protein 1 and 2]. PCaP1 has an intrinsically disordered region in the central and C-terminal parts. The PCaP1 gene is expressed in most tissues and the PCaP2 gene is expressed predominantly in root hairs and pollen tubes. We recently demonstrated that these proteins are N-myristoylated, stably anchored in the PM, and are bound with phosphatidylinositol phosphates, especially PtdInsP2s. Here we propose a model for the switching mechanism of Ca (2+)-signaling mediated by PtdInsPs. Ca(2+) forms a complex with CaM (Ca(2+)-CaM) when there is an increase in the cytosol free Ca(2+). The binding of PCaPs with Ca(2+)-CaM causes PCaPs to release PtdInsPs. Until the release of PtdInsPs, the signaling is kept in the resting state.
Collapse
Affiliation(s)
- Mariko Kato
- Graduate School of Bioagricultural Sciences; Nagoya University, Nagoya, Japan
| | | | | | | | | |
Collapse
|
131
|
Wimalasekera R, Pejchar P, Holk A, Martinec J, Scherer GFE. Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana. MOLECULAR PLANT 2010; 3:610-25. [PMID: 20507939 DOI: 10.1093/mp/ssq005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC) catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphocholine and diacylglycerol (DAG). PC-PLC has a long tradition in animal signal transduction to generate DAG as a second messenger besides the classical phosphatidylinositol splitting phospholipase C (PI-PLC). Based on amino acid sequence similarity to bacterial PC-PLC, six putative PC-PLC genes (NPC1 to NPC6) were identified in the Arabidopsis genome. RT-PCR analysis revealed overlapping expression pattern of NPC genes in root, stem, leaf, flower, and silique. In auxin-treated P(NPC3):GUS and P(NPC4):GUS seedlings, strong increase of GUS activity was visible in roots, leaves, and shoots and, to a weaker extent, in brassinolide-treated (BL) seedlings. P(NPC4):GUS seedlings also responded to cytokinin with increased GUS activity in young leaves. Compared to wild-type, T-DNA insertional knockouts npc3 and npc4 showed shorter primary roots and lower lateral root density at low BL concentrations but increased lateral root densities in response to exogenous 0.05-1.0 μM BL. BL-induced expression of TCH4 and LRX2, which are involved in cell expansion, was impaired but not impaired in repression of CPD, a BL biosynthesis gene, in BL-treated npc3 and npc4. These observations suggest NPC3 and NPC4 are important in BL-mediated signaling in root growth. When treated with 0.1 μM BL, DAG accumulation was observed in tobacco BY-2 cell cultures labeled with fluorescent PC as early as 15 min after application. We hypothesize that at least one PC-PLC is a plant signaling enzyme in BL signal transduction and, as shown earlier, in elicitor signal transduction.
Collapse
Affiliation(s)
- Rinukshi Wimalasekera
- Leibniz University of Hannover, Institute of Floriculture and Wood Science, Section of Applied Molecular Physiology, Herrenhäuser Strasse 2, D-30419 Hannover, Germany
| | | | | | | | | |
Collapse
|
132
|
Zonia L. Spatial and temporal integration of signalling networks regulating pollen tube growth. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1939-57. [PMID: 20378665 DOI: 10.1093/jxb/erq073] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The overall function of a cell is determined by its contingent of active signal transduction cascades interacting on multiple levels with metabolic pathways, cytoskeletal organization, and regulation of gene expression. Much work has been devoted to analysis of individual signalling cascades interacting with unique cellular targets. However, little is known about how cells integrate information across hierarchical signalling networks. Recent work on pollen tube growth indicates that several key signalling cascades respond to changes in cell hydrodynamics and apical volume. Combined with known effects on cytoarchitecture and signalling from other cell systems, hydrodynamics has the potential to integrate and synchronize the function of the broader signalling network in pollen tubes. This review will explore recent work on cell hydrodynamics in a variety of systems including pollen, and discuss hydrodynamic regulation of cell signalling and function including exocytosis and endocytosis, actin cytoskeleton reorganization, cell wall deposition and assembly, phospholipid and inositol polyphosphate signalling, ion flux, small G-proteins, fertilization, and self-incompatibility. The combined data support a newly emerging model of pollen tube growth.
Collapse
Affiliation(s)
- Laura Zonia
- University of Amsterdam, Swammerdam Institute for Life Sciences, Section of Plant Physiology, Kruislaan 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
133
|
Ischebeck T, Seiler S, Heilmann I. At the poles across kingdoms: phosphoinositides and polar tip growth. PROTOPLASMA 2010; 240:13-31. [PMID: 20091065 PMCID: PMC2841259 DOI: 10.1007/s00709-009-0093-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 11/20/2009] [Indexed: 05/20/2023]
Abstract
Phosphoinositides (PIs) are minor, but essential phospholipid constituents of eukaryotic membranes, and are involved in the regulation of various physiological processes. Recent genetic and cell biological advances indicate that PIs play important roles in the control of polar tip growth in plant cells. In root hairs and pollen tubes, PIs control directional membrane trafficking required for the delivery of cell wall material and membrane area to the growing tip. So far, the exact mechanisms by which PIs control polarity and tip growth are unresolved. However, data gained from the analysis of plant, fungal and animal systems implicate PIs in the control of cytoskeletal dynamics, ion channel activity as well as vesicle trafficking. The present review aims at giving an overview of PI roles in eukaryotic cells with a special focus on functions pertaining to the control of cell polarity. Comparative screening of plant and fungal genomes suggests diversification of the PI system with increasing organismic complexity. The evolutionary conservation of the PI system among eukaryotic cells suggests a role for PIs in tip growing cells in models where PIs so far have not been a focus of attention, such as fungal hyphae.
Collapse
Affiliation(s)
- Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Stephan Seiler
- Department of Microbiology and Genetics; and DFG Research Center Molecular Physiology of the Brain (CMPB), Georg-August-University Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
134
|
Staiger CJ, Poulter NS, Henty JL, Franklin-Tong VE, Blanchoin L. Regulation of actin dynamics by actin-binding proteins in pollen. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1969-86. [PMID: 20159884 DOI: 10.1093/jxb/erq012] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A dynamic network of polymers, the actin cytoskeleton, co-ordinates numerous fundamental cellular processes. In pollen tubes, organelle movements and cytoplasmic streaming, organization of the tip zone, vesicle trafficking, and tip growth have all been linked to actin-based function. Further, during the self-incompatibility response of Papaver rhoeas, destruction of the cytoskeleton is a primary target implicated in the rapid cessation of pollen tube growth and alterations in actin dynamics are associated with the initiation of programmed cell death. Surprisingly, these diverse cellular processes are accomplished with only a small amount of filamentous actin and a huge pool of polymerizable monomers. These observations hint at incredibly fast and complex actin dynamics in pollen. To understand the molecular mechanisms regulating actin dynamics in plant cells, the abundant actin monomer-binding proteins, a major filament nucleator, a family of bundling and severing proteins, and a modulator of growth at the barbed-end of actin filaments have been characterized biochemically. The activities of these proteins are generally consistent with textbook models for actin turnover. For example, the three monomer-binding proteins, profilin, ADF, and CAP, are thought to function synergistically to enhance turnover and the exchange of subunits between monomer and polymer pools. How individual actin filaments behave in living cells, however, remains largely unexplored. Actin dynamics were examined using variable angle epifluorescence microscopy (VAEM) in expanding hypocotyl epidermal cells. Our observations of single filament behaviour are not consistent with filament turnover by treadmilling, but rather represent a novel property called stochastic dynamics. A new model for the dynamic control of actin filament turnover in plant cells is presented.
Collapse
Affiliation(s)
- Christopher J Staiger
- Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907-2064, USA.
| | | | | | | | | |
Collapse
|
135
|
Vossen JH, Abd-El-Haliem A, Fradin EF, van den Berg GCM, Ekengren SK, Meijer HJG, Seifi A, Bai Y, ten Have A, Munnik T, Thomma BPHJ, Joosten MHAJ. Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:224-39. [PMID: 20088897 DOI: 10.1111/j.1365-313x.2010.04136.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The perception of pathogen-derived elicitors by plants has been suggested to involve phosphatidylinositol-specific phospholipase-C (PI-PLC) signalling. Here we show that PLC isoforms are required for the hypersensitive response (HR) and disease resistance. We characterised the tomato [Solanum lycopersicum (Sl)] PLC gene family. Six Sl PLC-encoding cDNAs were isolated and their expression in response to infection with the pathogenic fungus Cladosporium fulvum was studied. We found significant regulation at the transcriptional level of the various SlPLCs, and SlPLC4 and SlPLC6 showed distinct expression patterns in C. fulvum-resistant Cf-4 tomato. We produced the encoded proteins in Escherichia coli and found that both genes encode catalytically active PI-PLCs. To test the requirement of these Sl PLCs for full Cf-4-mediated recognition of the effector Avr4, we knocked down the expression of the encoding genes by virus-induced gene silencing. Silencing of SlPLC4 impaired the Avr4/Cf-4-induced HR and resulted in increased colonisation of Cf-4 plants by C. fulvum expressing Avr4. Furthermore, expression of the gene in Nicotiana benthamiana enhanced the Avr4/Cf-4-induced HR. Silencing of SlPLC6 did not affect HR, whereas it caused increased colonisation of Cf-4 plants by the fungus. Interestingly, Sl PLC6, but not Sl PLC4, was also required for resistance to Verticillium dahliae, mediated by the transmembrane Ve1 resistance protein, and to Pseudomonas syringae, mediated by the intracellular Pto/Prf resistance protein couple. We conclude that there is a differential requirement of PLC isoforms for the plant immune response and that Sl PLC4 is specifically required for Cf-4 function, while Sl PLC6 may be a more general component of resistance protein signalling.
Collapse
Affiliation(s)
- Jack H Vossen
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Kumar A, McClure B. Pollen-pistil interactions and the endomembrane system. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2001-13. [PMID: 20363870 DOI: 10.1093/jxb/erq065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The endomembrane system offers many potential points where plant mating can be effectively controlled. This results from two basic features of angiosperm reproduction: the requirement for pollen tubes to pass through sporophytic tissues to gain access to ovules and the physiology of pollen tube growth that provides it with the capacity to do so. Rapid pollen tube growth requires extravagant exocytosis and endocytosis activity as cell wall material is deposited and membrane is recovered from the actively growing tip. Moreover, recent results show that pollen tubes take up a great deal of material from the pistil extracellular matrix. Regarding the stigma and style as organs specialized for mate selection focuses attention on their complementary roles in secreting material to support the growth of compatible pollen tubes and discourage the growth of undesirable pollen. Since these processes also involve regulated activities of the endomembrane system, the potential for regulating mating by controlling endomembrane events exists in both pollen and pistil.
Collapse
Affiliation(s)
- Aruna Kumar
- Division of Biochemistry, Interdisciplinary Plant Group, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211-7310, USA
| | | |
Collapse
|
137
|
Kato M, Nagasaki-Takeuchi N, Ide Y, Maeshima M. An Arabidopsis hydrophilic Ca2(+) -binding protein with a PEVK-rich domain, PCaP2, is associated with the plasma membrane and interacts with calmodulin and phosphatidylinositol phosphates. PLANT & CELL PHYSIOLOGY 2010; 51:366-79. [PMID: 20061304 DOI: 10.1093/pcp/pcq003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We found a new hydrophilic protein in Arabidopsis thaliana. Real-time PCR demonstrated that the protein was expressed in roots. Histochemical analysis of promoter-beta-glucuronidase fusions demonstrated its extensive expression in root hairs. The protein is rich in proline, glutamate, valine and lysine residues (PEVK-rich domain), and bound Ca(2+) even in the presence of Mg(2+) and K(+) when examined by the (45)Ca overlay assay. Treatment of seedlings with K(+), Mn(2+), Zn(2+), Na(+), ABA and gibberellic acid, and cold and drought stresses enhanced the transcription. Expression of the protein linked to green fluorescent protein in A. thaliana showed its plasma membrane localization and cell-specific expression in the epidermal cells including root hairs and the elongating pollen tubes. Therefore, we named the protein PCaP2 (plasma membrane-associated Ca(2+)-binding protein-2). The substitution of glycine at position 2 with alanine resulted in cytoplasmic localization of PCaP2. These results and the N-terminal characteristic motif suggest that PCaP2 is N-myristoylated at Gly2. We examined the capacity for binding to phosphatidylinositol phosphates (PtdInsPs), and found that PCaP2 interacts strongly with PtdIns(3,5)P(2), PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3), and weakly with PtdIns(3,4)P(2). Furthermore, calmodulin was associated with PCaP2 in a Ca(2+)-dependent manner, and its association weakened the interaction of PCaP2 with PtdInsPs. These results indicate that PCaP2 is involved in intracellular signaling through interaction with PtdInsPs and calmodulin in growing root hairs. PCaP2 was previously reported as microtubule-associated protein-18. We discuss the physiological roles of PCaP2 in relation to microtubules in cells.
Collapse
Affiliation(s)
- Mariko Kato
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | | | | | | |
Collapse
|
138
|
Hwang JU, Wu G, Yan A, Lee YJ, Grierson CS, Yang Z. Pollen-tube tip growth requires a balance of lateral propagation and global inhibition of Rho-family GTPase activity. J Cell Sci 2010; 123:340-50. [PMID: 20053639 DOI: 10.1242/jcs.039180] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rapid tip growth allows for efficient development of highly elongated cells (e.g. neuronal axons, fungal hyphae and pollen tubes) and requires an elaborate spatiotemporal regulation of the growing region. Here, we use the pollen tube as a model to investigate the mechanism regulating the growing region. ROPs (Rho-related GTPases from plants) are essential for pollen tip growth and display oscillatory activity changes in the apical plasma membrane (PM). By manipulating the ROP activity level, we showed that the PM distribution of ROP activity as an apical cap determines the tip growth region and that efficient tip growth requires an optimum level of the apical ROP1 activity. Excessive ROP activation induced the enlargement of the tip growth region, causing growth depolarization and reduced tube elongation. Time-lapse analysis suggests that the apical ROP1 cap is generated by lateral propagation of a localized ROP activity. Subcellular localization and gain- and loss-of-function analyses suggest that RhoGDI- and RhoGAP-mediated global inhibition limits the lateral propagation of apical ROP1 activity. We propose that the balance between the lateral propagation and the global inhibition maintains an optimal apical ROP1 cap and generates the apical ROP1 activity oscillation required for efficient pollen-tube elongation.
Collapse
Affiliation(s)
- Jae-Ung Hwang
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA
| | | | | | | | | | | |
Collapse
|
139
|
|
140
|
The Emerging Roles of Phospholipase C in Plant Growth and Development. LIPID SIGNALING IN PLANTS 2010. [DOI: 10.1007/978-3-642-03873-0_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
141
|
|
142
|
Phosphatidylinositol 4-Phosphate is Required for Tip Growth in Arabidopsis thaliana. LIPID SIGNALING IN PLANTS 2010. [DOI: 10.1007/978-3-642-03873-0_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
143
|
Kost B. Regulatory and Cellular Functions of Plant RhoGAPs and RhoGDIs. INTEGRATED G PROTEINS SIGNALING IN PLANTS 2010. [DOI: 10.1007/978-3-642-03524-1_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
144
|
Abstract
Pollen tubes grow rapidly in a strictly polarized manner as they transport male reproductive cells through female flower tissues to bring about fertilization. Vegetative pollen tube cells are an excellent model system to investigate processes underlying directional cell expansion. In this chapter, we describe materials and methods required for (1) the identification of novel factors essential for polarized cell growth through the isolation and analysis of Arabidopsis mutants with defects in pollen tube growth and (2) the detailed functional characterization of pollen tube proteins based on transient transformation and microscopic analysis of cultured tobacco pollen tubes.
Collapse
Affiliation(s)
- Mark A Johnson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | | |
Collapse
|
145
|
|
146
|
The regulation of vesicle trafficking by small GTPases and phospholipids during pollen tube growth. ACTA ACUST UNITED AC 2009; 23:87-93. [DOI: 10.1007/s00497-009-0118-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/22/2009] [Indexed: 01/01/2023]
|
147
|
|
148
|
|
149
|
Huang CH, Crain RC. Phosphoinositide-specific phospholipase C in oat roots: association with the actin cytoskeleton. PLANTA 2009; 230:925-33. [PMID: 19672622 DOI: 10.1007/s00425-009-0990-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/13/2009] [Indexed: 05/13/2023]
Abstract
Phosphoinositide-specific phospholipase C (PI-PLC) activities are involved in mediating plant cell responses to environmental stimuli. Two variants of PI-PLC have been partially purified from the roots of oat seedlings; one cytosolic and one particulate. Although the cytosolic enzyme was significantly purified, the activity still co-migrated with a number of other proteins on heparin HPLC and also on size-exclusion chromatography. The partially purified PI-PLC was tested by Western blotting, and we found that actin and actin-binding proteins, profilin and tropomyosin, co-purified with cytosolic phospholipase C. After a non-ionic detergent (Triton X-100) treatment, PI-PLC activities still remained with the actin cytoskeleton. The effects of phalloidin and F-buffer confirmed this association; these conditions, which favor actin polymerization, decreased the release of PI-PLC from the cytoskeleton. The treatments of latrunculin and G-buffer, the conditions that favor actin depolymerization, increased the release of PI-PLC from the cytoskeleton. These results suggest that oat PI-PLC associates with the actin cytoskeleton.
Collapse
Affiliation(s)
- Chiung-Hua Huang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Pei-tun District, Taichung 40601, Taiwan.
| | | |
Collapse
|
150
|
Arisz SA, Testerink C, Munnik T. Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:869-75. [DOI: 10.1016/j.bbalip.2009.04.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/09/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
|