101
|
Gao K, Zha WL, Zhu JX, Zheng C, Zi JC. A review: biosynthesis of plant-derived labdane-related diterpenoids. Chin J Nat Med 2021; 19:666-674. [PMID: 34561077 DOI: 10.1016/s1875-5364(21)60100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Indexed: 11/16/2022]
Abstract
Plant-derived labdane-related diterpenoids (LRDs) represent a large group of terpenoids. LRDs possess either a labdane-type bicyclic core structure or more complex ring systems derived from labdane-type skeletons, such as abietane, pimarane, kaurane, etc. Due to their various pharmaceutical activities and unique properties, many of LRDs have been widely used in pharmaceutical, food and perfume industries. Biosynthesis of various LRDs has been extensively studied, leading to characterization of a large number of new biosynthetic enzymes. The biosynthetic pathways of important LRDs and the relevant enzymes (especially diterpene synthases and cytochrome P450 enzymes) were summarized in this review.
Collapse
Affiliation(s)
- Ke Gao
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen-Long Zha
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jian-Xun Zhu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Cheng Zheng
- Zhejiang Institute for Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine, Hangzhou 310052, China.
| | - Jia-Chen Zi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
102
|
Yang Y, Amo A, Wei D, Chai Y, Zheng J, Qiao P, Cui C, Lu S, Chen L, Hu YG. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3083-3109. [PMID: 34142166 DOI: 10.1007/s00122-021-03881-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/02/2021] [Indexed: 05/20/2023]
Abstract
Based on the large-scale integration of meta-QTL and Genome-Wide Association Study, 76 high-confidence MQTL regions and 237 candidate genes that affected wheat yield and yield-related traits were discovered. Improving yield and yield-related traits are key goals in wheat breeding program. The integration of accumulated wheat genetic resources provides an opportunity to uncover important genomic regions and candidate genes that affect wheat yield. Here, a comprehensive meta-QTL analysis was conducted on 2230 QTL of yield-related traits obtained from 119 QTL studies. These QTL were refined into 145 meta-QTL (MQTL), and 89 MQTL were verified by GWAS with different natural populations. The average confidence interval (CI) of these MQTL was 2.92 times less than that of the initial QTL. Furthermore, 76 core MQTL regions with a physical distance less than 25 Mb were detected. Based on the homology analysis and expression patterns, 237 candidate genes in the MQTL involved in photoperiod response, grain development, multiple plant growth regulator pathways, carbon and nitrogen metabolism and spike and flower organ development were determined. A novel candidate gene TaKAO-4A was confirmed to be significantly associated with grain size, and a CAPS marker was developed based on its dominant haplotype. In summary, this study clarified a method based on the integration of meta-QTL, GWAS and homology comparison to reveal the genomic regions and candidate genes that affect important yield-related traits in wheat. This work will help to lay a foundation for the identification, transfer and aggregation of these important QTL or candidate genes in wheat high-yield breeding.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Aduragbemi Amo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Di Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongmao Chai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfang Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunge Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
103
|
Li Y, Shan X, Jiang Z, Zhao L, Jin F. Genome-wide identification and expression analysis of the GA2ox gene family in maize (Zea mays L.) under various abiotic stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:621-633. [PMID: 34192648 DOI: 10.1016/j.plaphy.2021.06.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
GA 2-oxidases (GA2oxs) are a class of enzymes that inhibit the biosynthesis of bioactive GAs in plants. Although GA2oxs have clear roles in the development and defence responses in Arabidopsis, rice, and wheat, their potential effects on maize remain unclear. This study identified thirteen ZmGA2ox genes in maize and further characterized them using phylogenetic, gene structure, genomic locus, expression pattern analyses and GA content determination. Phylogenetic relationship analysis clearly divided the ZmGA2ox family into three groups-seven in C19-GA2ox class I, three in C19-GA2ox class II, and three in C20-GA2ox class. Evolutionary analysis suggested that ZmGA2ox1;1 and ZmGA2ox1;2, ZmGA2ox3;1 and ZmGA2ox3;2, and ZmGA2ox7;1 and ZmGA2ox7;2 are three pairs of segmental duplicated genes. Prediction of cis-regulatory elements in promoters suggested that ZmGA2ox genes were mainly associated with growth, development, hormones, and biotic/abiotic stress. Therefore, their spatial and temporal expression patterns and responses to various stress treatments were analysed on the basis of published RNA-seq data. Moreover, the changes of ZmGA2ox expression in leaves and roots of maize seedlings was detected under salt, alkali, dehydration, and cold stresses by qRT-PCR. The ZmGA2oxs exhibited obvious expression tendencies or characteristics in various organs under different abiotic stresses. The variations in the expression of three ZmGA2ox genes in the C20-GA2ox class in maize seedling roots showed significant regularity and a clear negative correlation with bioactive GA contents under cold and drought conditions, indicating that these three genes might exert key effects on the regulation of GA synthesis and the response to drought and cold stress. Taken together, this study is useful for further dissection of the effect of ZmGA2oxs on abiotic stress responses and might provide potential targets for the genetic improvement of maize.
Collapse
Affiliation(s)
- Yidan Li
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Xiaohui Shan
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Zhilei Jiang
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lei Zhao
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Fengxue Jin
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| |
Collapse
|
104
|
Feng J, Cheng L, Zhu Z, Yu F, Dai C, Liu Z, Guo WW, Wu XM, Kang C. GRAS transcription factor LOSS OF AXILLARY MERISTEMS is essential for stamen and runner formation in wild strawberry. PLANT PHYSIOLOGY 2021; 186:1970-1984. [PMID: 33890635 PMCID: PMC8331164 DOI: 10.1093/plphys/kiab184] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/03/2021] [Indexed: 05/19/2023]
Abstract
Axillary bud development is a major factor that impacts plant architecture. A runner is an elongated shoot that develops from axillary bud and is frequently used for clonal propagation of strawberry. However, the genetic control underlying runner production is largely unknown. Here, we identified and characterized loss of axillary meristems (lam), an ethyl methanesulfonate-induced mutant of the diploid woodland strawberry (Fragaria vesca) that lacked stamens in flowers and had reduced numbers of branch crowns and runners. The reduced branch crown and runner phenotypes were caused by a failure of axillary meristem initiation. The causative mutation of lam was located in FvH4_3g41310, which encodes a GRAS transcription factor, and was validated by a complementation test. lamCR mutants generated by CRISPR/Cas9 produced flowers without stamens and had fewer runners than the wild-type. LAM was broadly expressed in meristematic tissues. Gibberellic acid (GA) application induced runner outgrowth from the remaining buds in lam, but failed to do so at the empty axils of lam. In contrast, treatment with the GA biosynthesis inhibitor paclobutrazol converted the runners into branch crowns. Moreover, genetic studies indicated that lam is epistatic to suppressor of runnerless (srl), a mutant of FveRGA1 in the GA pathway, during runner formation. Our results demonstrate that LAM is required for stamen and runner formation and acts sequentially with GA from bud initiation to runner outgrowth, providing insights into the molecular regulation of these economically important organs in strawberry.
Collapse
Affiliation(s)
- Jia Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Laichao Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenying Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Feiqi Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Author for communication:
| |
Collapse
|
105
|
Tahir MM, Chen S, Ma X, Li S, Zhang X, Shao Y, Shalmani A, Zhao C, Bao L, Zhang D. Transcriptome analysis reveals the promotive effect of potassium by hormones and sugar signaling pathways during adventitious roots formation in the apple rootstock. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:123-136. [PMID: 34038809 DOI: 10.1016/j.plaphy.2021.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Apples are economically valuable and widely consumed fruits. The adventitious roots (ARs) formation is gridlock for apple trees mass propagation. The possible function of multiple hormones and sugar signaling pathways regulating ARs formation has not been completely understood in apple. In this study, B9 stem cuttings were treated with KCl treatment, where the highest root numbers (220) and maximum root length of 731.2 cm were noticed in KCl-treated cuttings, which were 98.2% and 215% higher than control cuttings. The content of endogenous hormones: IAA, ZR, JA, GA, and ABA were detected higher in response to KCl at most time-points. To figure out the molecular mechanisms underlying this effect, we investigated transcriptome analysis. In total, 4631 DEGs were determined, from which about 202 DEGs were considerably enriched in pathways associated with hormone signaling, sugar metabolism, root development, and cell cycle-related and were thereupon picked out on their potential involvements in ARs formation. Though, IAA accumulation and up-regulation of various genes contribute to induce AR formation. These results suggest that AR formation is a complex biological process in apple rootstocks, influenced mainly by the auxin signaling pathway and sugar metabolism.
Collapse
Affiliation(s)
- Muhammad Mobeen Tahir
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Shiyue Chen
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Xiaoyan Ma
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Shaohuan Li
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Xiaoyun Zhang
- College of Agriculture, The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, Shihezi University, 832003, Shihezi, Xinjiang, China
| | - Yun Shao
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Abdullah Shalmani
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Caiping Zhao
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Lu Bao
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Dong Zhang
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| |
Collapse
|
106
|
Hsieh KT, Chen YT, Hu TJ, Lin SM, Hsieh CH, Liu SH, Shiue SY, Lo SF, Wang IW, Tseng CS, Chen LJ. Comparisons within the Rice GA 2-Oxidase Gene Family Revealed Three Dominant Paralogs and a Functional Attenuated Gene that Led to the Identification of Four Amino Acid Variants Associated with GA Deactivation Capability. RICE (NEW YORK, N.Y.) 2021; 14:70. [PMID: 34322729 PMCID: PMC8319247 DOI: 10.1186/s12284-021-00499-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/03/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND GA 2-oxidases (GA2oxs) are involved in regulating GA homeostasis in plants by inactivating bioactive GAs through 2β-hydroxylation. Rice GA2oxs are encoded by a family of 10 genes; some of them have been characterized, but no comprehensive comparisons for all these genes have been conducted. RESULTS Rice plants with nine functional GA2oxs were demonstrated in the present study, and these genes not only were differentially expressed but also revealed various capabilities for GA deactivation based on their height-reducing effects in transgenic plants. Compared to that of wild-type plants, the relative plant height (RPH) of transgenic plants was scored to estimate their reducing effects, and 8.3% to 59.5% RPH was observed. Phylogenetic analysis of class I GA2ox genes revealed two functionally distinct clades in the Poaceae. The OsGA2ox3, 4, and 8 genes belonging to clade A showed the most severe effect (8.3% to 8.7% RPH) on plant height reduction, whereas the OsGA2ox7 gene belonging to clade B showed the least severe effect (59.5% RPH). The clade A OsGA2ox3 gene contained two conserved C186/C194 amino acids that were crucial for enzymatic activity. In the present study, these amino acids were replaced with OsGA2ox7-conserved arginine (C186R) and proline (C194P), respectively, or simultaneously (C186R/C194P) to demonstrate their importance in planta. Another two amino acids, Q220 and Y274, conserved in OsGA2ox3 were substituted with glutamic acid (E) and phenylalanine (F), respectively, or simultaneously to show their significance in planta. In addition, through sequence divergence, RNA expression profile and GA deactivation capability analyses, we proposed that OsGA2ox1, OsGA2ox3 and OsGA2ox6 function as the predominant paralogs in each of their respective classes. CONCLUSIONS This study demonstrates rice has nine functional GA2oxs and the class I GA2ox genes are divided into two functionally distinct clades. Among them, the OsGA2ox7 of clade B is a functional attenuated gene and the OsGA2ox1, OsGA2ox3 and OsGA2ox6 are the three predominant paralogs in the family.
Collapse
Affiliation(s)
- Kun-Ting Hsieh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yi-Ting Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ting-Jen Hu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shih-Min Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Hung Hsieh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Su-Hui Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shiau-Yu Shiue
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shuen-Fang Lo
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - I-Wen Wang
- Division of Biotechnology, Taiwan Agriculture Research Institute, Taichung, 41362, Taiwan
| | - Ching-Shan Tseng
- Division of Biotechnology, Taiwan Agriculture Research Institute, Taichung, 41362, Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
107
|
The effect of RNA polymerase V on 24-nt siRNA accumulation depends on DNA methylation contexts and histone modifications in rice. Proc Natl Acad Sci U S A 2021; 118:2100709118. [PMID: 34290143 DOI: 10.1073/pnas.2100709118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA-directed DNA methylation (RdDM) functions in de novo methylation in CG, CHG, and CHH contexts. Here, we performed map-based cloning of OsNRPE1, which encodes the largest subunit of RNA polymerase V (Pol V), a key regulator of gene silencing and reproductive development in rice. We found that rice Pol V is required for CHH methylation on RdDM loci by transcribing long noncoding RNAs. Pol V influences the accumulation of 24-nucleotide small interfering RNAs (24-nt siRNAs) in a locus-specific manner. Biosynthesis of 24-nt siRNAs on loci with high CHH methylation levels and low CG and CHG methylation levels tends to depend on Pol V. In contrast, low methylation levels in the CHH context and high methylation levels in CG and CHG contexts predisposes 24-nt siRNA accumulation to be independent of Pol V. H3K9me1 and H3K9me2 tend to be enriched on Pol V-independent 24-nt siRNA loci, whereas various active histone modifications are enriched on Pol V-dependent 24-nt siRNA loci. DNA methylation is required for 24-nt siRNAs biosynthesis on Pol V-dependent loci but not on Pol V-independent loci. Our results reveal the function of rice Pol V for long noncoding RNA production, DNA methylation, 24-nt siRNA accumulation, and reproductive development.
Collapse
|
108
|
IPA1 Negatively Regulates Early Rice Seedling Development by Interfering with Starch Metabolism via the GA and WRKY Pathways. Int J Mol Sci 2021; 22:ijms22126605. [PMID: 34203082 PMCID: PMC8234402 DOI: 10.3390/ijms22126605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 11/29/2022] Open
Abstract
Ideal Plant Architecture 1 (IPA1) encodes SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 14 (SPL14) with a pleiotropic effect on regulating rice development and biotic stress responses. To investigate the role of IPA1 in early seedling development, we developed a pair of IPA1/ipal-NILs and found that seed germination and early seedling growth were retarded in the ipa1-NIL. Analysis of the soluble sugar content, activity of amylase, and expression of the α-amylase genes revealed that the starch metabolism was weakened in the ipa1-NIL germinating seeds. Additionally, the content of bioactive gibberellin (GA) was significantly lower than that in the IPA1-NIL seeds at 48 h of imbibition. Meanwhile, the expression of GA synthesis-related gene OsGA20ox1 was downregulated, whereas the expression of GA inactivation-related genes was upregulated in ipa1-NIL seeds. In addition, the expression of OsWRKY51 and OsWRKY71 was significantly upregulated in ipa1-NIL seeds. Using transient dual-luciferase and yeast one-hybrid assays, IPA1 was found to directly activate the expression of OsWRKY51 and OsWRKY71, which would interfere with the binding affinity of GA-induced transcription factor OsGAMYB to inhibit the expression of α-amylase genes. In summary, our results suggest that IPA1 negatively regulates seed germination and early seedling growth by interfering with starch metabolism via the GA and WRKY pathways.
Collapse
|
109
|
Kumar V, Singh D, Majee A, Singh S, Asif MH, Sane AP, Sane VA. Identification of tomato root growth regulatory genes and transcription factors through comparative transcriptomic profiling of different tissues. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1173-1189. [PMID: 34177143 PMCID: PMC8212336 DOI: 10.1007/s12298-021-01015-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Tomato is an economically important vegetable crop and a model for development and stress response studies. Although studied extensively for understanding fruit ripening and pathogen responses, its role as a model for root development remains less explored. In this study, an Illumina-based comparative differential transcriptomic analysis of tomato root with different aerial tissues was carried out to identify genes that are predominantly expressed during root growth. Sequential comparisons revealed ~ 15,000 commonly expressed genes and ~ 3000 genes of several classes that were mainly expressed or regulated in roots. These included 1069 transcription factors (TFs) of which 100 were differentially regulated. Prominent amongst these were members of families encoding Zn finger, MYB, ARM, bHLH, AP2/ERF, WRKY and NAC proteins. A large number of kinases, phosphatases and F-box proteins were also expressed in the root transcriptome. The major hormones regulating root growth were represented by the auxin, ethylene, JA, ABA and GA pathways with root-specific expression of certain components. Genes encoding carbon metabolism and photosynthetic components showed reduced expression while several protease inhibitors were amongst the most highly expressed. Overall, the study sheds light on genes governing root growth in tomato and provides a resource for manipulation of root growth for plant improvement. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01015-0.
Collapse
Affiliation(s)
- Vinod Kumar
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Deepika Singh
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Integral University, Lucknow, 226026 India
| | - Adity Majee
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Shikha Singh
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Mehar Hasan Asif
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Aniruddha P. Sane
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Vidhu A. Sane
- Plant Gene Expression Lab, Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
110
|
Kwon YH, Kabange NR, Lee JY, Lee SM, Cha JK, Shin DJ, Cho JH, Kang JW, Ko JM, Lee JH. Novel QTL Associated with Shoot Branching Identified in Doubled Haploid Rice ( Oryza sativa L.) under Low Nitrogen Cultivation. Genes (Basel) 2021; 12:745. [PMID: 34069231 PMCID: PMC8157147 DOI: 10.3390/genes12050745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Shoot branching is considered as an important trait for the architecture of plants and contributes to their growth and productivity. In cereal crops, such as rice, shoot branching is controlled by many factors, including phytohormones signaling networks, operating either in synergy or antagonizing each other. In rice, shoot branching indicates the ability to produce more tillers that are essential for achieving high productivity and yield potential. In the present study, we evaluated the growth and development, and yield components of a doubled haploid population derived from a cross between 93-11 (P1, indica) and Milyang352 (P2, japonica), grown under normal nitrogen and low nitrogen cultivation open field conditions. The results of the phenotypic evaluation indicated that parental lines 93-11 (P1, a high tillering indica cultivar) and Milyang352 (P2, a low tillering japonica cultivar) showed distinctive phenotypic responses, also reflected in their derived population. In addition, the linkage mapping and quantitative trait locus (QTL) analysis detected three QTLs associated with tiller number on chromosome 2 (qTNN2-1, 130 cM, logarithm of the odds (LOD) 4.14, PVE 14.5%; and qTNL2-1, 134 cM, LOD: 6.05, PVE: 20.5%) and chromosome 4 (qTN4-1, 134 cM, LOD 3.92, PVE 14.5%), with qTNL2-1 having the highest phenotypic variation explained, and the only QTL associated with tiller number under low nitrogen cultivation conditions, using Kompetitive Allele-Specific PCR (KASP) and Fluidigm markers. The additive effect (1.81) of qTNL2-1 indicates that the allele from 93-11 (P1) contributed to the observed phenotypic variation for tiller number under low nitrogen cultivation. The breakthrough is that the majority of the candidate genes harbored by the QTLs qTNL2-1 and qTNN4-1 (here associated with the control of shoot branching under low and normal nitrogen cultivation, respectively), were also proposed to be involved in plant stress signaling or response mechanisms, with regard to their annotations and previous reports. Therefore, put together, these results would suggest that a possible crosstalk exists between the control of plant growth and development and the stress response in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea; (Y.-H.K.); (N.-R.K.); (J.-Y.L.); (S.-M.L.); (J.-K.C.); (D.-J.S.); (J.-H.C.); (J.-W.K.); (J.-M.K.)
| |
Collapse
|
111
|
Idris M, Seo N, Jiang L, Kiyota S, Hidema J, Iino M. UV-B signalling in rice: Response identification, gene expression profiling and mutant isolation. PLANT, CELL & ENVIRONMENT 2021; 44:1468-1485. [PMID: 33377203 DOI: 10.1111/pce.13988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Responses of rice seedlings to UV-B radiation (UV-B) were investigated, aiming to establish rice as a model plant for UV-B signalling studies. The growth of japonica rice coleoptiles, grown under red light, was inhibited by brief irradiation with UV-B, but not with blue light. The effective UV-B fluences (10-1 -103 μmol m-2 ) were much lower than those reported in Arabidopsis. The response was much less in indica rice cultivars and its extent varied among Oryza species. We next identified UV-B-specific anthocyanin accumulation in the first leaf of purple rice and used this visible phenotype to isolate mutants. Some isolated mutants were further characterized, and one was found to have a defect in the growth response. Using microarrays, we identified a number of genes that are regulated by low-fluence-rate UV-B in japonica coleoptiles. Some up-regulated genes were analysed by real-time PCR for UV-B specificity and the difference between japonica and indica. More than 70% of UV-B-regulated rice genes had no homologs in UV-B-regulated Arabidopsis genes. Many UV-B-regulated rice genes are related to plant hormones and especially to jasmonate biosynthetic and responsive genes in apparent agreement with the growth response. Possible involvement of two rice homologs of UVR8, a UV-B photoreceptor, is discussed.
Collapse
Affiliation(s)
- Muhammad Idris
- Botanical Gardens, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Nobu Seo
- Botanical Gardens, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Lei Jiang
- Botanical Gardens, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Seiichiro Kiyota
- Office of General Administration, Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Jun Hidema
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Moritoshi Iino
- Botanical Gardens, Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
112
|
Molecular mechanism of lateral bud differentiation of Pinus massoniana based on high-throughput sequencing. Sci Rep 2021; 11:9033. [PMID: 33907200 PMCID: PMC8079368 DOI: 10.1038/s41598-021-87787-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/25/2021] [Indexed: 01/15/2023] Open
Abstract
Knot-free timber cultivation is an important goal of forest breeding, and lateral shoots affect yield and stem shape of tree. The purpose of this study was to analyze the molecular mechanism of lateral bud development by removing the apical dominance of Pinus massoniana young seedlings through transcriptome sequencing and identify key genes involved in lateral bud development. We analyzed hormone contents and transcriptome data for removal of apical dominant of lateral buds as well as apical and lateral buds of normal development ones. Data were analyzed using an comprehensive approach of pathway- and gene-set enrichment analysis, Mapman visualization tool, and gene expression analysis. Our results showed that the contents of auxin (IAA), Zea and strigolactone (SL) in lateral buds significantly increased after removal of apical dominance, while abscisic acid (ABA) decreased. Gibberellin (GA) metabolism, cytokinin (CK), jasmonic acid, zeatin pathway-related genes positively regulated lateral bud development, ABA metabolism-related genes basically negatively regulated lateral bud differentiation, auxin, ethylene, SLs were positive and negative regulation, while only A small number of genes of SA and BRASSINOSTEROID, such as TGA and TCH4, were involved in lateral bud development. In addition, it was speculated that transcription factors such as WRKY, TCP, MYB, HSP, AuxIAA, and AP2 played important roles in the development of lateral buds. In summary, our results provided a better understanding of lateral bud differentiation and lateral shoot formation of P. massoniana from transcriptome level. It provided a basis for molecular characteristics of side branch formation of other timber forests, and contributed to knot-free breeding of forest trees.
Collapse
|
113
|
Li L, He Y, Zhang Z, Shi Y, Zhang X, Xu X, Wu JL, Tang S. OsNAC109 regulates senescence, growth and development by altering the expression of senescence- and phytohormone-associated genes in rice. PLANT MOLECULAR BIOLOGY 2021; 105:637-654. [PMID: 33543390 PMCID: PMC7985107 DOI: 10.1007/s11103-021-01118-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/13/2021] [Indexed: 05/11/2023]
Abstract
We demonstrate that OsNAC109 regulates senescence, growth and development via binding to the cis-element CNTCSSNNSCAVG and altering the expression of multiple senescence- and hormone-associated genes in rice. The NAC family is one of the largest transcripton factor families in plants and plays an essential role in plant development, leaf senescence and responses to biotic/abiotic stresses through modulating the expression of numerous genes. Here, we isolated and characterized a novel yellow leaf 3 (yl3) mutant exhibiting arrested-growth, increased accumulation of reactive oxygen species (ROS), decreased level of soluble proteins, increased level of malondialdehyde (MDA), reduced activities of ROS scavenging enzymes, altered expression of photosynthesis and senescence/hormone-associated genes. The yellow leaf and arrested-growth trait was controlled by a single recessive gene located to chromosome 9. A single nucleotide substitution was detected in the mutant allele leading to premature termination of its coding protein. Genetic complementation could rescue the mutant phenotype while the YL3 knockout lines displayed similar phenotype to WT. YL3 was expressed in all tissues tested and predicted to encode a transcriptional factor OsNAC109 which localizes to the nucleus. It was confirmed that OsNAC109 could directly regulate the expression of OsNAP, OsNYC3, OsEATB, OsAMTR1, OsZFP185, OsMPS and OsGA2ox3 by targeting to the highly conserved cis-element CNTCSSNNSCAVG except OsSAMS1. Our results demonstrated that OsNAC109 is essential to rice leaf senescence, growth and development through regulating the expression of senescence- and phytohormone-associated genes in rice.
Collapse
Affiliation(s)
- Liangjian Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Yan He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Zhihong Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Yongfeng Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Xiaobo Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Xia Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Jian-Li Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China.
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China.
| |
Collapse
|
114
|
Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato. Proc Natl Acad Sci U S A 2021; 118:2004384118. [PMID: 33836559 PMCID: PMC7980468 DOI: 10.1073/pnas.2004384118] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
For almost a century, auxin had been well-known as the master regulator of apical dominance. Recently, however, sugars were shown to be the initial regulator of apical dominance, while strigolactones (SLs) and cytokinins (CKs) act downstream of auxin to control bud outgrowth. However, the interactions of the different pathways have remained outstanding questions. Here, we report that brassinosteroids (BRs) are essential for the release of apical dominance in tomato. CK signaling relays information from auxin, SL, and sugars to promote the production of BRs, which activate the BZR1 transcription factor to suppress the expression of BRANCHED1, an inhibitor of bud outgrowth. These findings demonstrate that hormonal and metabolic pathways impinge on a common BR signaling for controlling shoot branching. The control of apical dominance involves auxin, strigolactones (SLs), cytokinins (CKs), and sugars, but the mechanistic controls of this regulatory network are not fully understood. Here, we show that brassinosteroid (BR) promotes bud outgrowth in tomato through the direct transcriptional regulation of BRANCHED1 (BRC1) by the BR signaling component BRASSINAZOLE-RESISTANT1 (BZR1). Attenuated responses to the removal of the apical bud, the inhibition of auxin, SLs or gibberellin synthesis, or treatment with CK and sucrose, were observed in bud outgrowth and the levels of BRC1 transcripts in the BR-deficient or bzr1 mutants. Furthermore, the accumulation of BR and the dephosphorylated form of BZR1 were increased by apical bud removal, inhibition of auxin, and SLs synthesis or treatment with CK and sucrose. These responses were decreased in the DELLA-deficient mutant. In addition, CK accumulation was inhibited by auxin and SLs, and decreased in the DELLA-deficient mutant, but it was increased in response to sucrose treatment. CK promoted BR synthesis in axillary buds through the action of the type-B response regulator, RR10. Our results demonstrate that BR signaling integrates multiple pathways that control shoot branching. Local BR signaling in axillary buds is therefore a potential target for shaping plant architecture.
Collapse
|
115
|
Cheng J, Ma J, Zheng X, Lv H, Zhang M, Tan B, Ye X, Wang W, Zhang L, Li Z, Li J, Feng J. Functional Analysis of the Gibberellin 2-oxidase Gene Family in Peach. FRONTIERS IN PLANT SCIENCE 2021; 12:619158. [PMID: 33679834 PMCID: PMC7928363 DOI: 10.3389/fpls.2021.619158] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 05/28/2023]
Abstract
Peach (Prunus persica L. Batsch) trees grow vigorously and are subject to intense pruning during orchard cultivation. Reducing the levels of endogenous gibberellins (GAs) represents an effective method for controlling branch growth. Gibberellin 2-oxidases (GA2oxs) deactivate bioactive GAs, but little is known about the GA2ox gene family in peach. In this study, we identified seven PpGA2ox genes in the peach genome, which were clustered into three subgroups: C19-GA2ox-I, C19-GA2ox-II, and C20-GA2ox-I. Overexpressing representative genes from the three subgroups, PpGA2ox-1, PpGA2ox-5, and PpGA2ox-2, in tobacco resulted in dwarf plants with shorter stems and smaller leaves than the wild type. An analysis of the GA metabolic profiles of the transgenic plants showed that PpGA2ox-5 (a member of subgroup C19-GA2ox-II) is simultaneously active against both C19-GAs and C20-GAs,which implied that C19-GA2ox-II enzymes represent intermediates of C19-GA2oxs and C20-GA2oxs. Exogenous GA3 treatment of shoot tips activated the expression of all seven PpGA2ox genes, with different response times: the C 19-GA2ox genes were transcriptionally activated more rapidly than the C20-GA2ox genes. GA metabolic profile analysis suggested that C20-GA2ox depletes GA levels more broadly than C19-GA2ox. These results suggest that the PpGA2ox gene family is responsible for fine-tuning endogenous GA levels in peach. Our findings provide a theoretical basis for appropriately controlling the vigorous growth of peach trees.
Collapse
|
116
|
Chen K, Guo B, Yu C, Chen P, Chen J, Gao G, Wang X, Zhu A. Comparative Transcriptome Analysis Provides New Insights into the Molecular Regulatory Mechanism of Adventitious Root Formation in Ramie ( Boehmeria nivea L.). PLANTS 2021; 10:plants10010160. [PMID: 33467608 PMCID: PMC7830346 DOI: 10.3390/plants10010160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 11/16/2022]
Abstract
The occurrence of adventitious roots is necessary for the survival of cuttings. In this study, comparative transcriptome analysis between two ramie (Boehmeria nivea L.) varieties with different adventitious root (AR) patterns was performed by mRNA-Seq before rooting (control, CK) and 10 days water-induced adventitious rooting (treatment, T) to reveal the regulatory mechanism of rooting. Characterization of the two ramie cultivars, Zhongzhu No 2 (Z2) and Huazhu No 4 (H4), indicated that Z2 had a high adventitious rooting rate but H4 had a low rooting rate. Twelve cDNA libraries of the two varieties were constructed, and a total of 26,723 genes were expressed. In the non-water culture condition, the number of the distinctive genes in H4 was 2.7 times of that in Z2, while in the water culture condition, the number of the distinctive genes in Z2 was nearly 2 times of that in H4. A total of 4411 and 5195 differentially expressed genes (DEGs) were identified in the comparison of H4CK vs. H4T and Z2CK vs. Z2T, respectively. After the water culture, more DEGs were upregulated in Z2, but more DEGs were downregulated in H4. Gene ontology (GO) functional analysis of the DEGs indicated that the polysaccharide metabolic process, carbohydrate metabolic process, cellular carbohydrate metabolic process, cell wall macromolecule metabolic process, and photosystem GO terms were distinctively significantly enriched in H4. Simultaneously, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that photosynthesis, photosynthesis antenna proteins, and starch and sucrose metabolism pathways were distinctively significantly enriched in H4. Moreover, KEGG analysis showed that jasmonic acid (JA) could interact with ethylene to regulate the occurrence and number of AR in Z2. This study reveals the transcriptomic divergence of two ramie varieties with high and low adventitious rooting rates, and provides insights into the molecular regulatory mechanism of AR formation in ramie.
Collapse
|
117
|
Su L, Yang J, Li D, Peng Z, Xia A, Yang M, Luo L, Huang C, Wang J, Wang H, Chen Z, Guo T. Dynamic genome-wide association analysis and identification of candidate genes involved in anaerobic germination tolerance in rice. RICE (NEW YORK, N.Y.) 2021; 14:1. [PMID: 33409869 PMCID: PMC7788155 DOI: 10.1186/s12284-020-00444-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/06/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND In Asian rice production, an increasing number of countries now choose the direct seeding mode because of rising costs, labour shortages and water shortages. The ability of rice seeds to undergo anaerobic germination (AG) plays an important role in the success of direct seeding. RESULTS In this study, we used 2,123,725 single nucleotide polymorphism (SNP) markers based on resequencing to conduct a dynamic genome-wide association study (GWAS) of coleoptile length (CL) and coleoptile diameter (CD) in 209 natural rice populations. A total of 26 SNP loci were detected in these two phenotypes, of which 5 overlapped with previously reported loci (S1_ 39674301, S6_ 20797781, S7_ 18722403, S8_ 9946213, S11_ 19165397), and two sites were detected repeatedly at different time points (S3_ 24689629 and S5_ 27918754). We suggest that these 7 loci (-log10 (P) value > 7.3271) are the key sites that affect AG tolerance. To screen the candidate genes more effectively, we sequenced the transcriptome of the flooding-tolerant variety R151 in six key stages, including anaerobic (AN) and the oxygen conversion point (AN-A), and obtained high-quality differential expression profiles. Four reliable candidate genes were identified: Os01g0911700 (OsVP1), Os05g0560900 (OsGA2ox8), Os05g0562200 (OsDi19-1) and Os06g0548200. Then qRT-PCR and LC-MS/ MS targeting metabolite detection technology were used to further verify that the up-regulated expression of these four candidate genes was closely related to AG. CONCLUSION The four novel candidate genes were associated with gibberellin (GA) and abscisic acid (ABA) regulation and cell wall metabolism under oxygen-deficiency conditions and promoted coleoptile elongation while avoiding adverse effects, allowing the coleoptile to obtain oxygen, escape the low-oxygen environment and germinate rapidly. The results of this study improve our understanding of the genetic basis of AG in rice seeds, which is conducive to the selection of flooding-tolerant varieties suitable for direct seeding.
Collapse
Affiliation(s)
- Ling Su
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Jing Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Dandan Li
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Ziai Peng
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Aoyun Xia
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Meng Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Lixin Luo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Cuihong Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Jiafeng Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
118
|
Sun S, Wang D, Li J, Lei Y, Li G, Cai W, Zhao X, Liang W, Zhang D. Transcriptome Analysis Reveals Photoperiod-Associated Genes Expressed in Rice Anthers. FRONTIERS IN PLANT SCIENCE 2021; 12:621561. [PMID: 33719293 PMCID: PMC7953911 DOI: 10.3389/fpls.2021.621561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/13/2021] [Indexed: 05/12/2023]
Abstract
Environmental conditions, such as photoperiod and temperature, can affect male fertility in plants. While this feature is heavily exploited in rice to generate male-sterile lines for hybrid breeding, the underlying molecular mechanisms remain largely unknown. In this study, we use a transcriptomics approach to identify key genes and regulatory networks affecting pollen maturation in rice anthers in response to different day lengths. A total of 11,726 differentially expressed genes (DEGs) were revealed, of which 177 were differentially expressed at six time points over a 24-h period. GO enrichment analysis revealed that genes at all time points were enriched in transport, carbohydrate, and lipid metabolic processes, and signaling pathways, particularly phytohormone signaling. In addition, co-expression network analysis revealed four modules strongly correlated with photoperiod. Within these four modules, 496 hub genes were identified with a high degree of connectivity to other photoperiod-sensitive DEGs, including two previously reported photoperiod- and temperature-sensitive genes affecting male fertility, Carbon Starved Anther and UDP-glucose pyrophosphorylase, respectively. This work provides a new understanding on photoperiod-sensitive pollen development in rice, and our gene expression data will provide a new, comprehensive resource to identify new environmentally sensitive genes regulating male fertility for use in crop improvement.
Collapse
Affiliation(s)
- Shiyu Sun
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Duoxiang Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingbin Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaqi Lei
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Li
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - WenGuo Cai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangxiang Zhao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
- *Correspondence: Dabing Zhang,
| |
Collapse
|
119
|
Teshome S, Kebede M. Analysis of regulatory elements in GA2ox, GA3ox and GA20ox gene families in Arabidopsis thaliana: an important trait. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1995494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Shiferaw Teshome
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Department of Biotechnology, College of Natural and Computational Science, Wolaita Sodo University, Sodo, Ethiopia
| | - Mulugeta Kebede
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
120
|
Gao S, Chu C. Gibberellin Metabolism and Signaling: Targets for Improving Agronomic Performance of Crops. PLANT & CELL PHYSIOLOGY 2020; 61:1902-1911. [PMID: 32761079 PMCID: PMC7758032 DOI: 10.1093/pcp/pcaa104] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/24/2020] [Indexed: 05/19/2023]
Abstract
Gibberellins (GAs) are a class of tetracyclic diterpenoid phytohormones that regulate many aspects of plant development, including seed germination, stem elongation, leaf expansion, pollen maturation, and the development of flowers, fruits and seeds. During the past decades, the primary objective of crop breeding programs has been to increase productivity or yields. 'Green Revolution' genes that can produce semidwarf, high-yielding crops were identified as GA synthesis or response genes, confirming the value of research on GAs in improving crop productivity. The manipulation of GA status either by genetic alteration or by exogenous application of GA or GA biosynthesis inhibitors is often used to optimize plant growth and yields. In this review, we summarize the roles of GAs in major aspects of crop growth and development and present the possible targets for the fine-tuning of GA metabolism and signaling as a promising strategy for crop improvement.
Collapse
Affiliation(s)
- Shaopei Gao
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author: E-mail, ; Fax, +86 010 64806608
| |
Collapse
|
121
|
Kandpal M, Vishwakarma C, Krishnan K, Chinnusamy V, Pareek A, Sharma MK, Sharma R. Gene Expression Dynamics in Rice Peduncles at the Heading Stage. Front Genet 2020; 11:584678. [PMID: 33343630 PMCID: PMC7744745 DOI: 10.3389/fgene.2020.584678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
Improving grain yield in the staple food crop rice has been long sought goal of plant biotechnology. One of the traits with significant impact on rice breeding programs is peduncle elongation at the time of heading failing which leads to significant reduction in grain yield due to incomplete panicle exsertion. To decipher transcriptional dynamics and molecular players underlying peduncle elongation, we performed RNA sequencing analysis of elongating and non-elongating peduncles in two Indian cultivars, Swarna and Pokkali, at the time of heading. Along with genes associated with cell division and cell wall biosynthesis, we observed significant enrichment of genes associated with auxins, gibberellins, and brassinosteroid biosynthesis/signaling in the elongating peduncles before heading in both the genotypes. Similarly, genes associated with carbohydrate metabolism and mobilization, abiotic stress response along with cytokinin, abscisic acid, jasmonic acid, and ethylene biosynthesis/signaling were enriched in non-elongating peduncles post heading. Significant enrichment of genes belonging to key transcription factor families highlights their specialized roles in peduncle elongation and grain filling before and after heading, respectively. A comparison with anther/pollen development-related genes provided 76 candidates with overlapping roles in anther/pollen development and peduncle elongation. Some of these are important for carbohydrate remobilization to the developing grains. These can be engineered to combat with incomplete panicle exsertion in male sterile lines and manipulate carbohydrate dynamics in grasses. Overall, this study provides baseline information about potential target genes for engineering peduncle elongation with implications on plant height, biomass composition and grain yields in rice.
Collapse
Affiliation(s)
- Manu Kandpal
- Grass Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Chandrapal Vishwakarma
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kushagra Krishnan
- Grass Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ashwani Pareek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manoj K. Sharma
- Grass Genetics and Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rita Sharma
- Grass Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
122
|
Triflumizole as a Novel Lead Compound for Strigolactone Biosynthesis Inhibitor. Molecules 2020; 25:molecules25235525. [PMID: 33255720 PMCID: PMC7728069 DOI: 10.3390/molecules25235525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Strigolactones (SLs) are carotenoid-derived plant hormones involved in the development of various plants. SLs also stimulate seed germination of the root parasitic plants, Striga spp. and Orobanche spp., which reduce crop yield. Therefore, regulating SL biosynthesis may lessen the damage of root parasitic plants. Biosynthetic inhibitors effectively control biological processes by targeted regulation of biologically active compounds. In addition, biosynthetic inhibitors regulate endogenous levels in developmental stage- and tissue-specific manners. To date, although some chemicals have been found as SL biosynthesis inhibitor, these are derived from only three lead chemicals. In this study, to find a novel lead chemical for SL biosynthesis inhibitor, 27 nitrogen-containing heterocyclic derivatives were screened for inhibition of SL biosynthesis. Triflumizole most effectively reduced the levels of rice SL, 4-deoxyorobanchol (4DO), in root exudates. In addition, triflumizole inhibited endogenous 4DO biosynthesis in rice roots by inhibiting the enzymatic activity of Os900, a rice enzyme that converts the SL intermediate carlactone to 4DO. A Striga germination assay revealed that triflumizole-treated rice displayed a reduced level of germination stimulation for Striga. These results identify triflumizole as a novel lead compound for inhibition of SL biosynthesis.
Collapse
|
123
|
Cao D, Barbier F, Yoneyama K, Beveridge CA. A Rapid Method for Quantifying RNA and Phytohormones From a Small Amount of Plant Tissue. FRONTIERS IN PLANT SCIENCE 2020; 11:605069. [PMID: 33329677 PMCID: PMC7717934 DOI: 10.3389/fpls.2020.605069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/30/2020] [Indexed: 05/23/2023]
Abstract
Phytohormones are involved in most plant physiological processes and the quantification of endogenous phytohormone levels and related gene expressions is an important approach to studying phytohormone functions. However, the quantification of phytohormones is still challenging due to their extremely low endogenous level in plant tissues and their high chemical diversity. Therefore, developing a method to simultaneously quantify phytohormone levels and RNA would strongly facilitate comparative analyses of phytohormones and gene expression. The present work reports a convenient extraction protocol enabling multivariate analysis of phytohormones and RNA from small amounts of plant material (around 10 mg). This high-throughput ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method demonstrates quantification of phytohormones and their related metabolites from four plant hormone classes: cytokinin, auxin, abscisic acid, and gibberellin. The UPLC-MS/MS method can quantify thirteen phytohormones and their metabolites simultaneously in 14 min. To validate the developed method, we determined the dynamic profiles of phytohormones and gene expressions in small axillary shoot buds in garden pea. This new method is applicable to quantification analysis of gene expression and multiple phytohormone classes in small amounts of plant materials. The results obtained using this method in axillary buds provide a basis for understanding the phytohormone functions in shoot branching regulation.
Collapse
Affiliation(s)
- Da Cao
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Francois Barbier
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kaori Yoneyama
- Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | | |
Collapse
|
124
|
Wang Y, Hou Y, Qiu J, Wang H, Wang S, Tang L, Tong X, Zhang J. Abscisic acid promotes jasmonic acid biosynthesis via a 'SAPK10-bZIP72-AOC' pathway to synergistically inhibit seed germination in rice (Oryza sativa). THE NEW PHYTOLOGIST 2020; 228:1336-1353. [PMID: 32583457 PMCID: PMC7689938 DOI: 10.1111/nph.16774] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/15/2020] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) and jasmonic acid (JA) both inhibit seed germination, but their interactions during this process remain elusive. Here, we report the identification of a 'SAPK10-bZIP72-AOC' pathway, through which ABA promotes JA biosynthesis to synergistically inhibit rice seed germination. Using biochemical interaction and phosphorylation assays, we show that SAPK10 exhibits autophosphorylation activity on the 177th serine, which enables it to phosphorylate bZIP72 majorly on 71st serine. The SAPK10-dependent phosphorylation enhances bZIP72 protein stability as well as the DNA-binding ability to the G-box cis-element of AOC promoter, thereby elevating the AOC transcription and the endogenous concentration of JA. Blocking of JA biosynthesis significantly alleviated the ABA sensitivity on seed germination, suggesting that ABA-imposed inhibition partially relied on the elevated concentration of JA. Our findings shed a novel insight into the molecular networks of ABA-JA synergistic interaction during rice seed germination.
Collapse
Affiliation(s)
- Yifeng Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Yuxuan Hou
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Jiehua Qiu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Huimei Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Shuang Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
- College of Life ScienceYangtze UniversityJingzhou434025China
| | - Liqun Tang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Xiaohong Tong
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Jian Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| |
Collapse
|
125
|
Ray P, Guo Y, Chi MH, Krom N, Saha MC, Craven KD. Serendipita bescii promotes winter wheat growth and modulates the host root transcriptome under phosphorus and nitrogen starvation. Environ Microbiol 2020; 23:1876-1888. [PMID: 32959463 PMCID: PMC8247352 DOI: 10.1111/1462-2920.15242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/28/2022]
Abstract
Serendipita vermifera ssp. bescii, hereafter referred to as S. bescii, is a root‐associated fungus that promotes plant growth in both its native switchgrass host and a variety of monocots and dicots. Winter wheat (Triticum aestivum L.), a dual‐purpose crop, used for both forage and grain production, significantly contributes to the agricultural economies of the Southern Great Plains, USA. In this study, we investigated the influence of S. bescii on growth and transcriptome regulation of nitrogen (N) and phosphorus (P) metabolism in winter wheat. Serendipita bescii significantly improved lateral root growth and forage biomass under a limited N or P regime. Further, S. bescii activated sets of host genes regulating N and P starvation responses. These genes include, root‐specific auxin transport, strigolactone and gibberellin biosynthesis, degradation of phospholipids and biosynthesis of glycerolipid, downregulation of ammonium transport and nitrate assimilation, restriction of protein degradation by autophagy and subsequent N remobilization. All these genes are hypothesized to regulate acquisition, assimilation and remobilization of N and P. Based on transcriptional level gene regulation and physiological responses to N or P limitation, we suggest S. bescii plays a critical role in modulating stress imposed by limitation of these two critical nutrients in winter wheat.
Collapse
Affiliation(s)
- Prasun Ray
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Yingqing Guo
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | | | - Nick Krom
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Malay C Saha
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | | |
Collapse
|
126
|
Singh SK, Richmond MD, Pearce RC, Bailey WA, Hou X, Pattanaik S, Yuan L. Maleic hydrazide elicits global transcriptomic changes in chemically topped tobacco to influence shoot bud development. PLANTA 2020; 252:64. [PMID: 32968874 DOI: 10.1007/s00425-020-03460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
MAIN CONCLUSION Transcriptomic analysis revealed maleic hydrazide suppresses apical and axillary bud development by altering the expression of genes related to meristem development, cell division, DNA replication, DNA damage and recombination, and phytohormone signaling. Topping (removal of apical buds) is a common agricultural practice for some crop plants including cotton, cannabis, and tobacco. Maleic hydrazide (MH) is a systemic suckercide, a chemical that inhibits shoot bud growth, used to control the growth of apical (ApB) and axillary buds (AxB) following topping. However, the influence of MH on gene expression and the underlying molecular mechanism of controlling meristem development are not well studied. Our RNA sequencing analysis showed that MH significantly influences the transcriptomic landscape in ApB and AxB of chemically topped tobacco. Gene ontology (GO) enrichment analysis revealed that upregulated genes in ApB were enriched for phosphorelay signal transduction, and the regulation of transition timing from vegetative to reproductive phase, whereas downregulated genes were largely associated with meristem maintenance, cytokinin metabolism, cell wall synthesis, photosynthesis, and DNA metabolism. In MH-treated AxB, GO terms related to defense response and oxylipin metabolism were overrepresented in upregulated genes. GO terms associated with cell cycle, DNA metabolism, and cytokinin metabolism were enriched in downregulated genes. Expression of KNOX and MADS transcription factor (TF) family genes, known to be involved in meristem development, were affected in ApB and AxB by MH treatment. The promoters of MH-responsive genes are enriched for several known cis-acting elements, suggesting the involvement of a subset of TF families. Our findings suggest that MH affects shoot bud development in chemically topped tobacco by altering the expression of genes related to meristem development, DNA repair and recombination, cell division, and phytohormone signaling.
Collapse
Affiliation(s)
- Sanjay K Singh
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Mitchell D Richmond
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
- Canadian Tobacco Research Foundation, Tillsonburg, ON, N4G 4H5, Canada
| | - Robert C Pearce
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - William A Bailey
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Xin Hou
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
- Department of Tobacco, College of Plant Protection, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai`an, 271018, China
| | - Sitakanta Pattanaik
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA.
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
127
|
Xu X, Ye J, Yang Y, Zhang M, Xu Q, Feng Y, Yuan X, Yu H, Wang Y, Yang Y, Wei X. Genome-Wide Association Study of Rice Rooting Ability at the Seedling Stage. RICE (NEW YORK, N.Y.) 2020; 13:59. [PMID: 32833069 PMCID: PMC7445215 DOI: 10.1186/s12284-020-00420-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/10/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Rice rooting ability is a complex agronomical trait that displays heterosis and plays an important role in rice growth and production. Only a few quantitative trait loci (QTLs) have been identified by bi-parental population. More genes or QTLs are required to dissect the genetic architecture of rice rooting ability. RESULTS To characterize the genetic basis for rice rooting ability, we used a natural rice population, genotyped by a 90 K single nucleotide polymorphism (SNP) array, to identify the loci associated with rooting-related traits through the genome-wide association study (GWAS). Population structure analysis divided the natural population into two subgroups: indica and japonica. We measured four traits for evaluating rice rooting ability, namely root growth ability (RGA), maximum root length (MRL), root length (RL), and root number (RN). Using the association study in three panels consisting of one for the full population, one for indica, and one for japonica, 24 SNPs associated with rooting ability-related traits were identified. Through comparison of the relative expression levels and DNA sequences between germplasm with extreme phenotypes, results showed that LOC_Os05g11810 had non-synonymous variations at the coding region, which may cause differences in root number, and that the expression levels of LOC_Os04g09900 and LOC_Os04g10060 are closely associated with root length variation. CONCLUSIONS Through evaluation of the rice rooting ability-related traits and the association mapping, we provided useful information for understanding the genetic basis of rice rooting ability and also identified some candidate genes and molecular markers for rice root breeding.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Junhua Ye
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yingying Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Mengchen Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qun Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yue Feng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiaoping Yuan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hanyong Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yiping Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yaolong Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.
| | - Xinghua Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.
| |
Collapse
|
128
|
Xu X, Feng G, Liang Y, Shuai Y, Liu Q, Nie G, Yang Z, Hang L, Zhang X. Comparative transcriptome analyses reveal different mechanism of high- and low-tillering genotypes controlling tiller growth in orchardgrass (Dactylis glomerata L.). BMC PLANT BIOLOGY 2020; 20:369. [PMID: 32758131 PMCID: PMC7409468 DOI: 10.1186/s12870-020-02582-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/27/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Tillering is an important agronomic trait underlying the yields and reproduction of orchardgrass (Dactylis glomerata), an important perennial forage grass. Although some genes affecting tiller initiation have been identified, the tillering regulatory network is still largely unknown, especially in perennial forage grasses. Thus, unraveling the regulatory mechanisms of tillering in orchardgrass could be helpful in developing selective strategies for high-yield perennial grasses. In this study, we generated high-throughput RNA-sequencing data from multiple tissues of tillering stage plants to identify differentially expressed genes (DEGs) between high- and low-tillering orchardgrass genotypes. Gene Ontology and pathway enrichment analyses connecting the DEGs to tillering number diversity were conducted. RESULTS In the present study, approximately 26,282 DEGs were identified between two orchardgrass genotypes, AKZ-NRGR667 (a high-tillering genotype) and D20170203 (a low-tillering genotype), which significantly differed in tiller number. Pathway enrichment analysis indicated that DEGs related to the biosynthesis of three classes of phytohormones, i.e., strigolactones (SLs), abscisic acid (ABA), and gibberellic acid (GA), as well as nitrogen metabolism dominated such differences between the high- and low-tillering genotypes. We also confirmed that under phosphorus deficiency, the expression level of the major SL biosynthesis genes encoding DWARF27 (D27), 9-cis-beta-carotene 9',10'-cleaving dioxygenase (CCD7), carlactone synthase (CCD8), and more axillary branching1 (MAX1) proteins in the high-tillering orchardgrass genotype increased more slowly relative to the low-tillering genotype. CONCLUSIONS Here, we used transcriptomic data to study the tillering mechanism of perennial forage grasses. We demonstrated that differential expression patterns of genes involved in SL, ABA, and GA biosynthesis may differentiate high- and low-tillering orchardgrass genotypes at the tillering stage. Furthermore, the core SL biosynthesis-associated genes in high-tillering orchardgrass were more insensitive than the low-tillering genotype to phosphorus deficiency which can lead to increases in SL biosynthesis, raising the possibility that there may be distinct SL biosynthesis way in tillering regulation in orchardgrass. Our research has revealed some candidate genes involved in the regulation of tillering in perennial grasses that is available for establishment of new breeding resources for high-yield perennial grasses and will serve as a new resource for future studies into molecular mechanism of tillering regulation in orchardgrass.
Collapse
Affiliation(s)
- Xiaoheng Xu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guangyan Feng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yueyang Liang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Shuai
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiuxu Liu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Gang Nie
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhongfu Yang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linkai Hang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
129
|
Luo H, Hill CB, Zhou G, Zhang XQ, Li C. Genome-wide association mapping reveals novel genes associated with coleoptile length in a worldwide collection of barley. BMC PLANT BIOLOGY 2020; 20:346. [PMID: 32698771 PMCID: PMC7374919 DOI: 10.1186/s12870-020-02547-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/08/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Drought is projected to become more frequent and severe in a changing climate, which requires deep sowing of crop seeds to reach soil moisture. Coleoptile length is a key agronomic trait in cereal crops such as barley, as long coleoptiles are linked to drought tolerance and improved seedling establishment under early water-limited growing conditions. RESULTS In this study, we detected large genetic variation in a panel of 328 diverse barley (Hordeum vulgare L.) accessions. To understand the overall genetic basis of barley coleoptile length, all accessions were germinated in the dark and phenotyped for coleoptile length after 2 weeks. The investigated barleys had significant variation for coleoptile length. We then conducted genome-wide association studies (GWASs) with more than 30,000 molecular markers and identified 8 genes and 12 intergenic loci significantly associated with coleoptile length in our barley panel. The Squamosa promoter-binding-like protein 3 gene (SPL3) on chromosome 6H was identified as a major candidate gene. The missense variant on the second exon changed serine to alanine in the conserved SBP domain, which likely impacted its DNA-binding activity. CONCLUSION This study provides genetic loci for seedling coleoptile length along with candidate genes for future potential incorporation in breeding programmes to enhance early vigour and yield potential in water-limited environments.
Collapse
Affiliation(s)
- Hao Luo
- Western Barley Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Camilla Beate Hill
- Western Barley Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Gaofeng Zhou
- Department of Primary Industries and Regional Development, Agriculture and Food, South Perth, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia.
| |
Collapse
|
130
|
Guo S, Zhang X, Bai Q, Zhao W, Fang Y, Zhou S, Zhao B, He L, Chen J. Cloning and Functional Analysis of Dwarf Gene Mini Plant 1 ( MNP1) in Medicago truncatula. Int J Mol Sci 2020; 21:E4968. [PMID: 32674471 PMCID: PMC7404263 DOI: 10.3390/ijms21144968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/31/2022] Open
Abstract
Plant height is a vital agronomic trait that greatly determines crop yields because of the close relationship between plant height and lodging resistance. Legumes play a unique role in the worldwide agriculture; however, little attention has been given to the molecular basis of their height. Here, we characterized the first dwarf mutant mini plant 1 (mnp1) of the model legume plant Medicago truncatula. Our study found that both cell length and the cell number of internodes were reduced in a mnp1 mutant. Using the forward genetic screening and subsequent whole-genome resequencing approach, we cloned the MNP1 gene and found that it encodes a putative copalyl diphosphate synthase (CPS) implicated in the first step of gibberellin (GA) biosynthesis. MNP1 was highly homologous to Pisum sativum LS. The subcellular localization showed that MNP1 was located in the chloroplast. Further analysis indicated that GA3 could significantly restore the plant height of mnp1-1, and expression of MNP1 in a cps1 mutant of Arabidopsis partially rescued its mini-plant phenotype, indicating the conservation function of MNP1 in GA biosynthesis. Our results provide valuable information for understanding the genetic regulation of plant height in M. truncatula.
Collapse
Affiliation(s)
- Shiqi Guo
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojia Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanzi Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyue Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuegenwang Fang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
| |
Collapse
|
131
|
Savary R, Dupuis C, Masclaux FG, Mateus ID, Rojas EC, Sanders IR. Genetic variation and evolutionary history of a mycorrhizal fungus regulate the currency of exchange in symbiosis with the food security crop cassava. THE ISME JOURNAL 2020; 14:1333-1344. [PMID: 32066875 PMCID: PMC7242447 DOI: 10.1038/s41396-020-0606-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/16/2020] [Accepted: 01/30/2020] [Indexed: 12/19/2022]
Abstract
Most land plants form symbioses with arbuscular mycorrhizal fungi (AMF). Diversity of AMF increases plant community productivity and plant diversity. For decades, it was known that plants trade carbohydrates for phosphate with their fungal symbionts. However, recent studies show that plant-derived lipids probably represent the most essential currency of exchange. Understanding the regulation of plant genes involved in the currency of exchange is crucial to understanding stability of this mutualism. Plants encounter many different AMF genotypes that vary greatly in the benefit they confer to plants. Yet the role that fungal genetic variation plays in the regulation of this currency has not received much attention. We used a high-resolution phylogeny of one AMF species (Rhizophagus irregularis) to show that fungal genetic variation drives the regulation of the plant fatty acid pathway in cassava (Manihot esculenta); a pathway regulating one of the essential currencies of trade in the symbiosis. The regulation of this pathway was explained by clearly defined patterns of fungal genome-wide variation representing the precise fungal evolutionary history. This represents the first demonstrated link between the genetics of AMF and reprogramming of an essential plant pathway regulating the currency of exchange in the symbiosis. The transcription factor RAM1 was also revealed as the dominant gene in the fatty acid plant gene co-expression network. Our study highlights the crucial role of variation in fungal genomes in the trade of resources in this important symbiosis and also opens the door to discovering characteristics of AMF genomes responsible for interactions between AMF and cassava that will lead to optimal cassava growth.
Collapse
Affiliation(s)
- Romain Savary
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cindy Dupuis
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Frédéric G Masclaux
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Ivan D Mateus
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Edward C Rojas
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Copenhagen, Denmark
| | - Ian R Sanders
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
132
|
Zhang C, Wei Y, Xu L, Wu KC, Yang L, Shi CN, Yang GY, Chen D, Yu FF, Xie Q, Ding SW, Wu JG. A Bunyavirus-Inducible Ubiquitin Ligase Targets RNA Polymerase IV for Degradation during Viral Pathogenesis in Rice. MOLECULAR PLANT 2020; 13:836-850. [PMID: 32087369 DOI: 10.1016/j.molp.2020.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/18/2020] [Accepted: 02/14/2020] [Indexed: 05/19/2023]
Abstract
The ubiquitin-proteasome system (UPS) is an important post-translational regulatory mechanism that controls many cellular functions in eukaryotes. Here, we show that stable expression of P3 protein encoded by Rice grassy stunt virus (RGSV), a negative-strand RNA virus in the Bunyavirales, causes developmental abnormities similar to the disease symptoms caused by RGSV, such as dwarfing and excess tillering, in transgenic rice plants. We found that both transgenic expression of P3 and RGSV infection induce ubiquitination and UPS-dependent degradation of rice NUCLEAR RNA POLYMERASE D1a (OsNRPD1a), one of two orthologs of the largest subunit of plant-specific RNA polymerase IV (Pol IV), which is required for RNA-directed DNA methylation (RdDM). Furthermore, we identified a P3-inducible U-box type E3 ubiquitin ligase, designated as P3-inducible protein 1 (P3IP1), which interacts with OsNRPD1a and mediates its ubiquitination and UPS-dependent degradation in vitro and in vivo. Notably, both knockdown of OsNRPD1 and overexpression of P3IP1 in rice plants induced developmental phenotypes similar to RGSV disease symptomss. Taken together, our findings reveal a novel virulence mechanism whereby plant pathogens target host RNA Pol IV for UPS-dependent degradation to induce disease symptoms. Our study also identified an E3 ubiquitin ligase, which targets the RdDM compotent NRPD1 for UPS-mediated degradation in rice.
Collapse
Affiliation(s)
- Chao Zhang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Wei
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Le Xu
- Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, College of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kang-Cheng Wu
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liang Yang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao-Nan Shi
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guo-Yi Yang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dong Chen
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fei-Fei Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Jian-Guo Wu
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
133
|
Lin Q, Zhang Z, Wu F, Feng M, Sun Y, Chen W, Cheng Z, Zhang X, Ren Y, Lei C, Zhu S, Wang J, Zhao Z, Guo X, Wang H, Wan J. The APC/C TE E3 Ubiquitin Ligase Complex Mediates the Antagonistic Regulation of Root Growth and Tillering by ABA and GA. THE PLANT CELL 2020; 32:1973-1987. [PMID: 32265265 PMCID: PMC7268805 DOI: 10.1105/tpc.20.00101] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 05/20/2023]
Abstract
The antagonistic regulation of seed germination by the phytohormones abscisic acid (ABA) and gibberellic acid (GA) has been well-established. However, how these phytohormones antagonistically regulate root growth and branching (tillering in rice, Oryza sativa) remains obscure. Rice TILLER ENHANCER (TE) encodes an activator of the APC/CTE E3 ubiquitin ligase complex that represses tillering but promotes seed germination. In this study, we identified a dual role of GA and APC/CTE in regulating root growth. High GA levels can activate APC/CTE to promote the degradation of rice SHORT-ROOT1 (OsSHR1, a key factor promoting root growth) in the root meristem (RM) or MONOCULM1 (MOC1, a key factor promoting tillering) in the axillary meristem (AM), leading to restricted root growth and tillering, while low GA levels can activate the role of APC/CTE in stimulating RM cell division to promote root growth. In addition, moderate enhancement of ABA signaling helps maintain the RM and AM size, sustaining root growth and tillering by antagonizing the GA-promoted degradation of OsSHR1 and MOC1 through the SnRK2-APC/CTE regulatory module. We conclude that APC/CTE plays a key role in regulating plant architecture by mediating the crosstalk between ABA and GA signaling pathways.
Collapse
Affiliation(s)
- Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhe Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miao Feng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weiwei Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
134
|
Ma Z, Wu T, Huang K, Jin YM, Li Z, Chen M, Yun S, Zhang H, Yang X, Chen H, Bai H, Du L, Ju S, Guo L, Bian M, Hu L, Du X, Jiang W. A Novel AP2/ERF Transcription Factor, OsRPH1, Negatively Regulates Plant Height in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:709. [PMID: 32528516 PMCID: PMC7266880 DOI: 10.3389/fpls.2020.00709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/05/2020] [Indexed: 05/24/2023]
Abstract
The APETALA 2/ethylene response factors (AP2/ERF) are widespread in the plant kingdom and play essential roles in regulating plant growth and development as well as defense responses. In this study, a novel rice AP2/ERF transcription factor gene, OsRPH1, was isolated and functionally characterized. OsRPH1 falls into group-IVa of the AP2/ERF family. OsRPH1 protein was found to be localized in the nucleus and possessed transcriptional activity. Overexpression of OsRPH1 resulted in a decrease in plant height and length of internode and leaf sheath as well as other abnormal characters in rice. The length of the second leaf sheath of OsRPH1-overexpressing (OE) plants recovered to that of Kitaake (non-transgenic recipient) in response to exogenous gibberellin A3 (GA3) application. The expression of GA biosynthesis genes (OsGA20ox1-OsGA20ox4, OsGA3ox1, and OsGA3ox2) was significantly downregulated, whereas that of GA inactivation genes (OsGA2ox7, OsGA2ox9, and OsGA2ox10) was significantly upregulated in OsRPH1-OE plants. Endogenous bioactive GA contents significantly decreased in OsRPH1-OE plants. OsRPH1 interacted with a blue light receptor, OsCRY1b, in a blue light-dependent manner. Taken together, our results demonstrate that OsRPH1 negatively regulates plant height and bioactive GA content by controlling the expression of GA metabolism genes in rice. OsRPH1 is involved in blue light inhibition of leaf sheath elongation by interacting with OsCRY1b.
Collapse
Affiliation(s)
- Ziming Ma
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Tao Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Kai Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Yong-Mei Jin
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhao Li
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Mojun Chen
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Sokyong Yun
- Kye Ung Sang College of Agriculture of Kim II Sung University, Pyongyang, North Korea
| | - Hongjia Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xue Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Haoyuan Chen
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Huijiao Bai
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Lin Du
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Shanshan Ju
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Liping Guo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Mingdi Bian
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Lanjuan Hu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xinglin Du
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Wenzhu Jiang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
135
|
Ben Saad R, Ben Romdhane W, Mihoubi W, Ben Hsouna A, Brini F. A Lobularia maritima LmSAP protein modulates gibberellic acid homeostasis via its A20 domain under abiotic stress conditions. PLoS One 2020; 15:e0233420. [PMID: 32428039 PMCID: PMC7237032 DOI: 10.1371/journal.pone.0233420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/05/2020] [Indexed: 01/09/2023] Open
Abstract
Stress-associated proteins (SAPs) are favorable targets to improve stress tolerance in plants, owing to their roles in developmental processes and stress responses. However, the role of SAPs and the molecular mechanisms by which they regulate plant stress responses remain poorly understood. Previously, it was reported that LmSAP expression was upregulated by various abiotic stressors in Lobularia maritima, and that transgenic tobacco lines with constitutively expressed LmSAPΔA20 and LmSAPΔA20-ΔAN1 showed dwarf phenotypes due to the deficiency of cell elongation under salt and osmotic stresses. In this study, we examined the function of A20 domain in the GA pathway in response to abiotic stresses. Transient expression of acGFP-LmSAPΔA20 and acGFP-LmSAPΔA20-ΔAN1 in onion epidermal cells demonstrated that these fused proteins were localized in the nucleo–cytoplasm. However, the truncated form acGFP-LmSAPΔAN1 was localized in the nucleus. Moreover, comparison of native and truncated LmSAP showed dramatic structural changes caused by the deletion of the A20 domain, leading to loss of function and localization. Interestingly, overexpression LmSAP and truncated LmSAPΔAN1 led to up-regulation of GA biosynthetic genes and increased total gibberellins (GAs) content, corresponding with accelerated development in transgenic tobacco plants. Moreover, the dwarf phenotype of the transgenic lines that express LmSAPΔA20 and LmSAPΔA20-ΔAN1 under stress conditions was fully restored by the application of exogenous GA3. These findings improve our understanding of the role of LmSAP in regulating GA homeostasis, which is important for regulating plant development under abiotic stress conditions.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- * E-mail:
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Wafa Mihoubi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Department of Life Sciences, Faculty of Sciences of Gafsa, Gafsa, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
136
|
A common allosteric mechanism regulates homeostatic inactivation of auxin and gibberellin. Nat Commun 2020; 11:2143. [PMID: 32358569 PMCID: PMC7195466 DOI: 10.1038/s41467-020-16068-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/23/2020] [Indexed: 01/07/2023] Open
Abstract
Allosteric regulation is protein activation by effector binding at a site other than the active site. Here, we show via X-ray structural analysis of gibberellin 2-oxidase 3 (GA2ox3), and auxin dioxygenase (DAO), that such a mechanism maintains hormonal homeostasis in plants. Both enzymes form multimers by interacting via GA4 and indole-3-acetic acid (IAA) at their binding interface. Via further functional analyses we reveal that multimerization of these enzymes gradually proceeds with increasing GA4 and IAA concentrations; multimerized enzymes have higher specific activities than monomer forms, a system that should favour the maintenance of homeostasis for these phytohormones. Molecular dynamic analysis suggests a possible mechanism underlying increased GA2ox3 activity by multimerization-GA4 in the interface of oligomerized GA2ox3s may be able to enter the active site with a low energy barrier. In summary, homeostatic systems for maintaining GA and IAA levels, based on a common allosteric mechanism, appear to have developed independently.
Collapse
|
137
|
Li C, Tao RF, Li Y, Duan MH, Xu JH. Transcriptome analysis of the thermosensitive genic male-sterile line provides new insights into fertility alteration in rice (Oryza sativa). Genomics 2020; 112:2119-2129. [DOI: 10.1016/j.ygeno.2019.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
|
138
|
OsbHLH073 Negatively Regulates Internode Elongation and Plant Height by Modulating GA Homeostasis in Rice. PLANTS 2020; 9:plants9040547. [PMID: 32340222 PMCID: PMC7238965 DOI: 10.3390/plants9040547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
Abstract
Internode elongation is one of the key agronomic traits determining a plant’s height and biomass. However, our understanding of the molecular mechanisms controlling internode elongation is still limited in crop plant species. Here, we report the functional identification of an atypical basic helix-loop-helix transcription factor (OsbHLH073) through gain-of-function studies using overexpression (OsbHLH073-OX) and activation tagging (osbhlh073-D) lines of rice. The expression of OsbHLH073 was significantly increased in the osbhlh073-D line. The phenotype of osbhlh073-D showed semi-dwarfism due to deficient elongation of the first internode and poor panicle exsertion. Transgenic lines overexpressing OsbHLH073 confirmed the phenotype of the osbhlh073-D line. Exogenous gibberellic acid (GA3) treatment recovered the semi-dwarf phenotype of osbhlh073-D plants at the seedling stage. In addition, quantitative expression analysis of genes involving in GA biosynthetic and signaling pathway revealed that the transcripts of rice ent-kaurene oxidases 1 and 2 (OsKO1 and OsKO2) encoding the GA biosynthetic enzyme were significantly downregulated in osbhlh073-D and OsbHLH073-OX lines. Yeast two-hybrid and localization assays showed that the OsbHLH073 protein is a nuclear localized-transcriptional activator. We report that OsbHLH073 participates in regulating plant height, internode elongation, and panicle exsertion by regulating GA biosynthesis associated with the OsKO1 and OsKO2 genes.
Collapse
|
139
|
Hsieh KT, Liu SH, Wang IW, Chen LJ. Phalaenopsis orchid miniaturization by overexpression of OsGA2ox6, a rice GA2-oxidase gene. BOTANICAL STUDIES 2020; 61:10. [PMID: 32253516 PMCID: PMC7136379 DOI: 10.1186/s40529-020-00288-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/28/2020] [Indexed: 06/02/2023]
Abstract
BACKGROUND Phalaenopsis orchids are one of the most common potted orchids sold worldwide. Most Phalaenopsis cultivars have long inflorescences that cause shipping problems and increase handling costs. Miniaturization of Phalaenopsis orchids not only reduces overall production costs but also can expand the appeal of the orchids to a different group of consumers who prefer to keep flowers on desks or tabletops. Although some miniature Phalaenopsis plants can be obtained via hybridization or mutation, they are unpredictable and limited in variety. We therefore used the transgenic approach of overexpressing gibberellin 2-oxidase 6 (OsGA2ox6), a rice GA deactivation gene, to investigate its functional effect in miniaturizing Phalaenopsis and to create a stable miniaturization platform to facilitate a supply for the potential demands of the miniature flower market. RESULTS A commercial moth orchid, Phalaenopsis Sogo Yukidian 'SPM313', was transformed with the plasmid vector Ubi:OsGA2ox6 and successfully overexpressed the OsGA2ox6 gene in planta. The transgenic lines displayed darker-green, shorter, and wider leaves, thicker roots and much shorter flower spikes (10 cm vs 33 cm) than the nontransgenic line with a normal flower size and blooming ability and are therefore an ideal miniaturized form of Phalaenopsis orchids. CONCLUSIONS We demonstrated that the ectopic expression of OsGA2ox6 can miniaturize Phalaenopsis Sogo Yukidian 'SPM313' while preserving its blooming ability, providing an alternative, useful method for miniaturizing Phalaenopsis species. This miniaturization by a transgenic approach can be further expanded by using GA2ox genes from different plant species or different gene variants, thereby expanding the technical platform for miniaturizing Phalaenopsis species to meet the potential demands of the miniature Phalaenopsis flower market.
Collapse
Affiliation(s)
- Kun-Ting Hsieh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Su-Hui Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227 Taiwan
| | - I-Wen Wang
- Division of Biotechnology, Taiwan Agriculture Research Institute, Taichung, 41362 Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227 Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 40227 Taiwan
| |
Collapse
|
140
|
Zhang QQ, Wang JG, Wang LY, Wang JF, Wang Q, Yu P, Bai MY, Fan M. Gibberellin repression of axillary bud formation in Arabidopsis by modulation of DELLA-SPL9 complex activity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:421-432. [PMID: 31001922 DOI: 10.1111/jipb.12818] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/16/2019] [Indexed: 05/25/2023]
Abstract
The formation of lateral branches has an important and fundamental contribution to the remarkable developmental plasticity of plants, which allows plants to alter their architecture to adapt to the challenging environment conditions. The Gibberellin (GA) phytohormones have been known to regulate the outgrowth of axillary meristems (AMs), but the specific molecular mechanisms remain unclear. Here we show that DELLA proteins regulate axillary bud formation by interacting and regulating the DNA-binding ability of SQUAMOSA-PROMOTER BINDING PROTEIN LIKE 9 (SPL9), a microRNA156-targeted squamosa promoter binding protein-like transcription factor. SPL9 participates in the initial regulation of axillary buds by repressing the expression of LATERAL SUPPRESSOR (LAS), a key regulator in the initiation of AMs, and LAS contributes to the specific expression pattern of the GA deactivation enzyme GA2ox4, which is specifically expressed in the axils of leaves to form a low-GA cell niche in this anatomical region. Nevertheless, increasing GA levels in leaf axils by ectopically expressing the GA-biosynthesis enzyme GA20ox2 significantly impaired axillary meristem initiation. Our study demonstrates that DELLA-SPL9-LAS-GA2ox4 defines a core feedback regulatory module that spatially pattern GA content in the leaf axil and precisely control the axillary bud formation in different spatial and temporal.
Collapse
Affiliation(s)
- Qi-Qi Zhang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jia-Gang Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ling-Yan Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jun-Fang Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qun Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ping Yu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ming-Yi Bai
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Min Fan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
141
|
Ferrari C, Shivhare D, Hansen BO, Pasha A, Esteban E, Provart NJ, Kragler F, Fernie A, Tohge T, Mutwil M. Expression Atlas of Selaginella moellendorffii Provides Insights into the Evolution of Vasculature, Secondary Metabolism, and Roots. THE PLANT CELL 2020; 32:853-870. [PMID: 31988262 PMCID: PMC7145505 DOI: 10.1105/tpc.19.00780] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 05/20/2023]
Abstract
Selaginella moellendorffii is a representative of the lycophyte lineage that is studied to understand the evolution of land plant traits such as the vasculature, leaves, stems, roots, and secondary metabolism. However, only a few studies have investigated the expression and transcriptional coordination of Selaginella genes, precluding us from understanding the evolution of the transcriptional programs behind these traits. We present a gene expression atlas comprising all major organs, tissue types, and the diurnal gene expression profiles for S. moellendorffii We show that the transcriptional gene module responsible for the biosynthesis of lignocellulose evolved in the ancestor of vascular plants and pinpoint the duplication and subfunctionalization events that generated multiple gene modules involved in the biosynthesis of various cell wall types. We demonstrate how secondary metabolism is transcriptionally coordinated and integrated with other cellular pathways. Finally, we identify root-specific genes and show that the evolution of roots did not coincide with an increased appearance of gene families, suggesting that the development of new organs does not coincide with increased fixation of new gene functions. Our updated database at conekt.plant.tools represents a valuable resource for studying the evolution of genes, gene families, transcriptomes, and functional gene modules in the Archaeplastida kingdom.
Collapse
Affiliation(s)
- Camilla Ferrari
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Devendra Shivhare
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Bjoern Oest Hansen
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Marek Mutwil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
142
|
Li S, Zheng T, Zhuo X, Li Z, Li L, Li P, Qiu L, Pan H, Wang J, Cheng T, Zhang Q. Transcriptome profiles reveal that gibberellin-related genes regulate weeping traits in crape myrtle. HORTICULTURE RESEARCH 2020; 7:54. [PMID: 32257240 PMCID: PMC7109059 DOI: 10.1038/s41438-020-0279-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 05/18/2023]
Abstract
Plant architecture includes vital traits that influence and benefit crops, and economically important trees. Different plant architectures provide natural beauty. Weeping ornamental plants are aesthetically appealing to people. The regulatory mechanism controlling the weeping trait is poorly understood in crape myrtle. To investigate the weeping trait mechanism, transcriptional profiling of different organs in weeping and upright crape myrtle was performed based on phenotype. Phenotypic and histological analyses demonstrated that endodermal cells were absent, and that new shoot phenotypes could be rescued by the GA3 treatment of weeping plants. The transcriptional analysis and coexpression network analysis (WGCNA) of differentially expressed genes indicated that GA synthesis and signal transduction pathways play a role in weeping traits. When the expression level of a negative element of GA signaling, LfiGRAS1, was reduced by virus-induced gene silencing (VIGS), new branches grew in infected plants in a negatively geotropic manner. An integrated analysis implied that GA had a strong influence on weeping crape myrtle by interacting with other factors. This study helps to elucidate the mechanism governing the weeping trait and can improve the efficiency of breeding in Lagerstroemia.
Collapse
Affiliation(s)
- Suzhen Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Xiaokang Zhuo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Zhuojiao Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Lulu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Ping Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Like Qiu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of the Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
143
|
Groszmann M, Chandler PM, Ross JJ, Swain SM. Manipulating Gibberellin Control Over Growth and Fertility as a Possible Target for Managing Wild Radish Weed Populations in Cropping Systems. FRONTIERS IN PLANT SCIENCE 2020; 11:190. [PMID: 32265944 PMCID: PMC7096587 DOI: 10.3389/fpls.2020.00190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/07/2020] [Indexed: 05/22/2023]
Abstract
Wild radish is a major weed of Australian cereal crops. A rapid establishment, fast growth, and abundant seed production are fundamental to its success as an invasive species. Wild radish has developed resistance to a number of commonly used herbicides increasing the problem. New innovative approaches are needed to control wild radish populations. Here we explore the possibility of pursuing gibberellin (GA) biosynthesis as a novel molecular target for controlling wild radish, and in doing so contribute new insights into GA biology. By characterizing ga 3-oxidase (ga3ox) mutants in Arabidopsis, a close taxonomic relative to wild radish, we showed that even mild GA deficiencies cause considerable reductions in growth and fecundity. This includes an explicit requirement for GA biosynthesis in successful female fertility. Similar defects were reproducible in wild radish via chemical inhibition of GA biosynthesis, confirming GA action as a possible new target for controlling wild radish populations. Two possible targeting approaches are considered; the first would involve developing a species-specific inhibitor that selectively inhibits GA production in wild radish over cereal crops. The second, involves making crop species insensitive to GA repression, allowing the use of existing broad spectrum GA inhibitors to control wild radish populations. Toward the first concept, we cloned and characterized two wild radish GA3OX genes, identifying protein differences that appear sufficient for selective inhibition of dicot over monocot GA3OX activity. We developed a novel yeast-based approach to assay GA3OX activity as part of the molecular characterization, which could be useful for future screening of inhibitory compounds. For the second approach, we demonstrated that a subset of GA associated sln1/Rht-1 overgrowth mutants, recently generated in cereals, are insensitive to GA reductions brought on by the general GA biosynthesis inhibitor, paclobutrazol. The location of these mutations within sln1/Rht-1, offers additional insight into the functional domains of these important GA signaling proteins. Our early assessment suggests that targeting the GA pathway could be a viable inclusion into wild radish management programs that warrants further investigation. In drawing this conclusion, we provided new insights into GA regulated reproductive development and molecular characteristics of GA metabolic and signaling proteins.
Collapse
Affiliation(s)
- Michael Groszmann
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Peter M. Chandler
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - John J. Ross
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Steve M. Swain
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
144
|
Guo F, Ma J, Hou L, Shi S, Sun J, Li G, Zhao C, Xia H, Zhao S, Wang X, Zhao Y. Transcriptome profiling provides insights into molecular mechanism in Peanut semi-dwarf mutant. BMC Genomics 2020; 21:211. [PMID: 32138648 PMCID: PMC7059693 DOI: 10.1186/s12864-020-6614-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant height, mainly decided by main stem height, is the major agronomic trait and closely correlated to crop yield. A number of studies had been conducted on model plants and crops to understand the molecular and genetic basis of plant height. However, little is known on the molecular mechanisms of peanut main stem height. RESULTS In this study, a semi-dwarf peanut mutant was identified from 60Co γ-ray induced mutant population and designated as semi-dwarf mutant 2 (sdm2). The height of sdm2 was only 59.3% of its wild line Fenghua 1 (FH1) at the mature stage. The sdm2 has less internode number and short internode length to compare with FH1. Gene expression profiles of stem and leaf from both sdm2 and FH1 were analyzed using high throughput RNA sequencing. The differentially expressed genes (DEGs) were involved in hormone biosynthesis and signaling pathways, cell wall synthetic and metabolic pathways. BR, GA and IAA biosynthesis and signal transduction pathways were significantly enriched. The expression of several genes in BR biosynthesis and signaling were found to be significantly down-regulated in sdm2 as compared to FH1. Many transcription factors encoding genes were identified as DEGs. CONCLUSIONS A large number of genes were found differentially expressed between sdm2 and FH1. These results provide useful information for uncovering the molecular mechanism regulating peanut stem height. It could facilitate identification of causal genes for breeding peanut varieties with semi-dwarf phenotype.
Collapse
Affiliation(s)
- Fengdan Guo
- College of Life Science, Shandong Normal University, Jinan, People's Republic of China.,Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, People's Republic of China
| | - Junjie Ma
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, People's Republic of China.,Life Science College of Shandong University, Jinan, 250100, People's Republic of China
| | - Lei Hou
- College of Life Science, Shandong Normal University, Jinan, People's Republic of China.,Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, People's Republic of China
| | - Suhua Shi
- College of Life Science, Shandong Normal University, Jinan, People's Republic of China.,Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, People's Republic of China
| | - Jinbo Sun
- College of Life Science, Shandong Normal University, Jinan, People's Republic of China.,Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, People's Republic of China
| | - Guanghui Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, People's Republic of China
| | - Chuanzhi Zhao
- College of Life Science, Shandong Normal University, Jinan, People's Republic of China.,Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, People's Republic of China
| | - Han Xia
- College of Life Science, Shandong Normal University, Jinan, People's Republic of China.,Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, People's Republic of China
| | - Shuzhen Zhao
- College of Life Science, Shandong Normal University, Jinan, People's Republic of China.,Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, People's Republic of China
| | - Xingjun Wang
- College of Life Science, Shandong Normal University, Jinan, People's Republic of China. .,Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, People's Republic of China. .,Life Science College of Shandong University, Jinan, 250100, People's Republic of China.
| | - Yanxiu Zhao
- College of Life Science, Shandong Normal University, Jinan, People's Republic of China.
| |
Collapse
|
145
|
Cheng W, Yin S, Tu Y, Mei H, Wang Y, Yang Y. SlCAND1, encoding cullin-associated Nedd8-dissociated protein 1, regulates plant height, flowering time, seed germination, and root architecture in tomato. PLANT MOLECULAR BIOLOGY 2020; 102:537-551. [PMID: 31916084 DOI: 10.1007/s11103-020-00963-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/03/2020] [Indexed: 05/22/2023]
Abstract
Silencing of SlCAND1 expression resulted in dwarfish, loss of apical dominance, early flowering, suppression of seed germination, and abnormal root architecture in tomato Cullin-RING E3 ligases (CRLs)-dependent ubiquitin proteasome system mediates degradation of numerous proteins that controls a wide range of developmental and physiological processes in eukaryotes. Cullin-associated Nedd8-dissociated protein 1 (CAND1) acts as an exchange factor allowing substrate recognition part exchange and plays a vital role in reactivating CRLs. The present study reports on the identification of SlCAND1, the only one CAND gene in tomato. SlCAND1 expression is ubiquitous and positively regulated by multiple plant hormones. Silencing of SlCAND1 expression using RNAi strategy resulted in a pleiotropic and gibberellin/auxin-associated phenotypes, including dwarf plant with reduced internode length, loss of apical dominance, early flowering, low seed germination percentage, delayed seed germination speed, short primary root, and increased lateral root proliferation and elongation. Moreover, application of exogenous GA3 or IAA could partly rescue some SlCAND1-silenced phenotypes, and the expression levels of gibberellin/auxin-related genes were altered in SlCAND1-RNAi lines. These facts revealed that SlCAND1 is required for gibberellin/auxin-associated regulatory network in tomato. Although SlCAND1 is crucial for multiple developmental processes during vegetative growth stage, SlCAND1-RNAi lines didn't exhibit visible effect on fruit development and ripening. Meanwhile, we discussed that multiple physiological functions of SlCAND1 in tomato are different to previous report of its ortholog in Arabidopsis. Our study adds a new perspective on the functional roles of CAND1 in plants, and strongly supports the hypothesis that CAND1 and its regulated ubiquitin proteasome system are pivotal for plant vegetative growth but possibly have different roles in diverse plant species.
Collapse
Affiliation(s)
- Wenjing Cheng
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Shuangqin Yin
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yun Tu
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Hu Mei
- Bioengineering College, Chongqing University, Chongqing, 400044, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yongzhong Wang
- Bioengineering College, Chongqing University, Chongqing, 400044, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yingwu Yang
- Bioengineering College, Chongqing University, Chongqing, 400044, China.
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
146
|
Meng WL, Zhao MJ, Yang XB, Zhang AX, Wang NN, Xu ZS, Ma J. Examination of Genomic and Transcriptomic Alterations in a Morphologically Stable Line, MU1, Generated by Intergeneric Pollination. Genes (Basel) 2020; 11:genes11020199. [PMID: 32075264 PMCID: PMC7073617 DOI: 10.3390/genes11020199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
Interspecific hybridization creates genetic variation useful for crop improvement. However, whether pollen from a different genus affects the genomic stability and/or transcriptome of the recipient species during intergeneric pollination has not been investigated. Here, we crossed japonica rice cv. Z12 with the maize accession B73 (pollen donor) and obtained a morphologically stable line, MU1, exhibiting moderate dwarfism, higher tiller number, and increased grain weight compared with Z12. To reveal the genetic basis of these morphological changes in MU1, we performed whole-genome resequencing of MU1 and Z12. Compared with Z12, MU1 showed 107,250 single nucleotide polymorphisms (SNPs) and 23,278 insertion/deletions (InDels). Additionally, 5'-upstream regulatory regions (5'UTRs) of 429 and 309 differentially expressed genes (DEGs) in MU1 contained SNPs and InDels, respectively, suggesting that a subset of these DEGs account for the variation in 5'UTRs. Transcriptome analysis revealed 2190 DEGs in MU1 compared with Z12. Genes up-regulated in MU1 were mainly involved in photosynthesis, generation of precursor metabolites, and energy and cellular biosynthetic processes; whereas those down-regulated in MU1 were involved in plant hormone signal transduction pathway and response to stimuli and stress processes. Quantitative PCR (qPCR) further identified the expression levels of the up- or down-regulated gene in plant hormone signal transduction pathway. The expression level changes of plant hormone signal transduction pathway may be significant for plant growth and development. These findings suggest that mutations caused by intergeneric pollination could be the important reason for changes of MU1 in agronomic traits.
Collapse
Affiliation(s)
- Wei-Long Meng
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (W.-L.M.); (A.-X.Z.); (N.-N.W.)
| | - Meng-Jie Zhao
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China;
| | - Xiang-Bo Yang
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, China;
| | - An-Xing Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (W.-L.M.); (A.-X.Z.); (N.-N.W.)
| | - Ning-Ning Wang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (W.-L.M.); (A.-X.Z.); (N.-N.W.)
| | - Zhao-Shi Xu
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China;
- Correspondence: (Z.-S.X.); (J.M.)
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (W.-L.M.); (A.-X.Z.); (N.-N.W.)
- Correspondence: (Z.-S.X.); (J.M.)
| |
Collapse
|
147
|
Genome-wide and SNP network analyses reveal genetic control of spikelet sterility and yield-related traits in wheat. Sci Rep 2020; 10:2098. [PMID: 32034248 PMCID: PMC7005900 DOI: 10.1038/s41598-020-59004-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/21/2020] [Indexed: 02/03/2023] Open
Abstract
Revealing the genetic factors underlying yield and agronomic traits in wheat are an imperative need for covering the global food demand. Yield boosting requires a deep understanding of the genetic basis of grain yield-related traits (e.g., spikelet fertility and sterility). Here, we have detected much natural variation among ancient hexaploid wheat accessions in twenty-two agronomic traits collected over eight years of field experiments. A genome-wide association study (GWAS) using 15 K single nucleotide polymorphisms (SNPs) was applied to detect the genetic basis of studied traits. Subsequently, the GWAS output was reinforced via other statistical and bioinformatics analyses to detect putative candidate genes. Applying the genome-wide SNP-phenotype network defined the most decisive SNPs underlying the traits. Six pivotal SNPs, co-located physically within the genes encoding enzymes, hormone response, metal ion transport, and response to oxidative stress have been identified. Of these, metal ion transport and Gibberellin 2-oxidases (GA2oxs) genes showed strong involvement in controlling the spikelet sterility, which had not been reported previously in wheat. SNP-gene haplotype analysis confirmed that these SNPs influence spikelet sterility, especially the SNP co-located on the exon of the GA2ox gene. Interestingly, these genes were highly expressed in the grain and spike, demonstrating their pivotal role in controlling the trait. The integrative analysis strategy applied in this study, including GWAS, SNP-phenotype network, SNP-gene haplotype, expression analysis, and genome-wide prediction (GP), empower the identification of functional SNPs and causal genes. GP outputs obtained in this study are encouraging for the implementation of the traits to accelerate yield improvement by making an early prediction of complex yield-related traits in wheat. Our findings demonstrate the usefulness of the ancient wheat material as a valuable resource for yield-boosting. This is the first comprehensive genome-wide analysis for spikelet sterility in wheat, and the results provide insights into yield improvement.
Collapse
|
148
|
Induced Mutagenesis Enhances Lodging Resistance and Photosynthetic Efficiency of Kodomillet (Paspalum Scrobiculatum). AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present research was focused in the development of photosynthetically efficient (PhE) and non-lodging mutants by utilizing ethyl methane sulphonate (EMS) and gamma radiation in the kodomillet variety CO 3, prone to lodging. Striking variations in a number of anatomical characteristics of leaf anatomy for PhE and culm thickness for lodging resistance was recorded in M2 (second mutant) generation. The identified mutants were subjected to transcriptomic studies to understand their molecular basis. Expression profiling was undertaken for pyruvate phosphate dikinase (PPDK), Nicotinamide Adenine Dinucleotide Phosphate Hydrogen—(NADPH) and NADP-dependent malate dehydrogenase (NADP-MDH) in the mutants CO 3-100-7-12 (photosynthetically efficient) and in CO 3-200-13-4 (less efficient). For lodging trait, two mutants CO 3-100-18-22 (lodged) and CO 3-300-7-4 (non-lodged) were selected for expression profiling using genes GA2ox6 and Rht-B. The studies confirmed the expression of PPDK increased 30-fold, NADP-ME2 ~1-fold and NADP-MDH10 was also highly expressed in the mutant CO 3-100-7-12. These expression profiles suggest that kodomillet uses an NADP-malic enzyme subtype C4 photosynthetic system. The expression of Rht-B was significantly up regulated in CO 3-300-7-4. The study highlights the differential expression patterns of the same gene in different lines at different time points of stress as well as non-stress conditions. This infers that the mutation has some effect on their expression; otherwise the expression levels will be unaltered. Enhancement in grain yield could be best achieved by developing a phenotype with high PhE and culm with thick sclerenchyma cells.
Collapse
|
149
|
Miao C, Wang D, He R, Liu S, Zhu J. Mutations in MIR396e and MIR396f increase grain size and modulate shoot architecture in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:491-501. [PMID: 31336020 PMCID: PMC6953237 DOI: 10.1111/pbi.13214] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 05/20/2023]
Abstract
Grain size and plant architecture are critical factors determining crop productivity. Here, we performed gene editing of the MIR396 gene family in rice and found that MIR396e and MIR396f are two important regulators of grain size and plant architecture. mir396ef mutations can increase grain yield by increasing grain size. In addition, mir396ef mutations resulted in an altered plant architecture, with lengthened leaves but shortened internodes, especially the uppermost internode. Our research suggests that mir396ef mutations promote leaf elongation by increasing the level of a gibberellin (GA) precursor, mevalonic acid, which subsequently promotes GA biosynthesis. However, internode elongation in mir396ef mutants appears to be suppressed via reduced CYP96B4 expression but not via the GA pathway. This research provides candidate gene-editing targets to breed elite rice varieties.
Collapse
Affiliation(s)
- Chunbo Miao
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityLin'anHangzhouChina
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi ProvinceCollege of Life ScienceNanchang UniversityJiangxiChina
| | - Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi ProvinceCollege of Life ScienceNanchang UniversityJiangxiChina
| | - Shenkui Liu
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityLin'anHangzhouChina
| | - Jian‐Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
| |
Collapse
|
150
|
Nutan KK, Rathore RS, Tripathi AK, Mishra M, Pareek A, Singla-Pareek SL. Integrating the dynamics of yield traits in rice in response to environmental changes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:490-506. [PMID: 31410470 DOI: 10.1093/jxb/erz364] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/29/2019] [Indexed: 05/23/2023]
Abstract
Reductions in crop yields as a consequence of global climate change threaten worldwide food security. It is therefore imperative to develop high-yielding crop plants that show sustainable production under stress conditions. In order to achieve this aim through breeding or genetic engineering, it is crucial to have a complete and comprehensive understanding of the molecular basis of plant architecture and the regulation of its sub-components that contribute to yield under stress. Rice is one of the most widely consumed crops and is adversely affected by abiotic stresses such as drought and salinity. Using it as a model system, in this review we present a summary of our current knowledge of the physiological and molecular mechanisms that determine yield traits in rice under optimal growth conditions and under conditions of environmental stress. Based on physiological functioning, we also consider the best possible combination of genes that may improve grain yield under optimal as well as environmentally stressed conditions. The principles that we present here for rice will also be useful for similar studies in other grain crops.
Collapse
Affiliation(s)
- Kamlesh Kant Nutan
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ray Singh Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Amit Kumar Tripathi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Manjari Mishra
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|