101
|
Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochem J 2013; 450:573-81. [PMID: 23323832 DOI: 10.1042/bj20121639] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PA (phosphatidic acid) is a lipid second messenger involved in an array of processes occurring during a plant's life cycle. These include development, metabolism, and both biotic and abiotic stress responses. PA levels increase in response to salt, but little is known about its function in the earliest responses to salt stress. In the present study we have combined an approach to isolate peripheral membrane proteins of Arabidopsis thaliana roots with lipid-affinity purification, to identify putative proteins that interact with PA and are recruited to the membrane in response to salt stress. Of the 42 putative PA-binding proteins identified by MS, a set of eight new candidate PA-binding proteins accumulated at the membrane fraction after 7 min of salt stress. Among these were CHC (clathrin heavy chain) isoforms, ANTH (AP180 N-terminal homology) domain clathrin-assembly proteins, a putative regulator of potassium transport, two ribosomal proteins, GAPDH (glyceraldehyde 3-phosphate dehydrogenase) and a PI (phosphatidylinositol) 4-kinase. PA binding and salt-induced membrane recruitment of GAPDH and CHC were confirmed by Western blot analysis of the cellular fractions. In conclusion, the approach of the present study is an effective way to isolate biologically relevant lipid-binding proteins and provides new leads in the study of PA-mediated salt-stress responses in roots.
Collapse
|
102
|
Du ZY, Chen MX, Chen QF, Xiao S, Chye ML. Arabidopsis acyl-CoA-binding protein ACBP1 participates in the regulation of seed germination and seedling development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:294-309. [PMID: 23448237 DOI: 10.1111/tpj.12121] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/20/2012] [Accepted: 01/14/2013] [Indexed: 05/08/2023]
Abstract
A family of six genes encoding acyl-CoA-binding proteins (ACBPs), ACBP1-ACBP6, has been characterized in Arabidopsis thaliana. In this study, we demonstrate that ACBP1 promotes abscisic acid (ABA) signaling during germination and seedling development. ACBP1 was induced by ABA, and transgenic Arabidopsis ACBP1-over-expressors showed increased sensitivity to ABA during germination and seedling development, whereas the acbp1 mutant showed decreased ABA sensitivity during these processes. Subsequent RNA assays showed that ACBP1 over-production in 12-day-old seedlings up-regulated the expression of PHOSPHOLIPASE Dα1 (PLDα1) and three ABA/stress-responsive genes: ABA-RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1), RESPONSE TO DESICCATION29A (RD29A) and bHLH-TRANSCRIPTION FACTOR MYC2 (MYC2). The expression of AREB1 and PLDα1 was suppressed in the acbp1 mutant in comparison with the wild type following ABA treatment. PLDα1 has been reported to promote ABA signal transduction by producing phosphatidic acid, an important lipid messenger in ABA signaling. Using lipid profiling, seeds and 12-day-old seedlings of ACBP1-over-expressing lines were shown to accumulate more phosphatidic acid after ABA treatment, in contrast to lower phosphatidic acid in the acbp1 mutant. Bimolecular fluorescence complementation assays indicated that ACBP1 interacts with PLDα1 at the plasma membrane. Their interaction was further confirmed by yeast two-hybrid analysis. As recombinant ACBP1 binds phosphatidic acid and phosphatidylcholine, ACBP1 probably promotes PLDα1 action. Taken together, these results suggest that ACBP1 participates in ABA-mediated seed germination and seedling development.
Collapse
Affiliation(s)
- Zhi-Yan Du
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
103
|
Okazaki Y, Kamide Y, Hirai MY, Saito K. Plant lipidomics based on hydrophilic interaction chromatography coupled to ion trap time-of-flight mass spectrometry. Metabolomics 2013; 9:121-131. [PMID: 23463370 PMCID: PMC3580141 DOI: 10.1007/s11306-011-0318-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 05/12/2011] [Indexed: 01/16/2023]
Abstract
Plants synthesize a wide range of hydrophobic compounds, generally known as lipids. Here, we report an application of liquid chromatography ion trap time-of-flight mass spectrometry (LC-IT-TOF-MS) for plant lipidomics. Using hydrophilic interaction chromatography (HILIC) for class separation, typical membrane lipids including glycerolipids, steryl glucosides and glucosylceramides, and hydrophobic plant secondary metabolites such as saponins were analyzed simultaneously. By this method, we annotated approximately 100 molecules from Arabidopsis thaliana. To demonstrate the application of this method to biological study, we analyzed Arabidopsis mutant trigalactosyldiacylglycerol3 (tgd3), which has a complex metabolic phenotype including the accumulation of unusual forms of galactolipids. Lipid profiling by LC-MS revealed that tgd3 accumulated an unusual form of digalactosyldiacylglycerol, annotated as Gal(β1 → 6)βGalDG. The compositional difference between normal and unusual forms of digalactosyldiacylglycerol was detected by this method. In addition, we analyzed well-known Arabidopsis mutants ats1-1, fad6-1, and fad7-2, which are also disrupted in lipid metabolic genes. Untargeted lipidome analysis coupled with multivariate analysis clearly discriminated the mutants and their distinctive metabolites. These results indicated that HILIC-MS is an efficient method for plant lipidomics.
Collapse
Affiliation(s)
- Yozo Okazaki
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Yukiko Kamide
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Masami Yokota Hirai
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, 230-0045 Japan
- Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Kazuki Saito
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, 230-0045 Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Inage-ku, Chiba, 263-8522 Japan
| |
Collapse
|
104
|
DU ZY, Chen MX, Chen QF, Xiao S, Chye ML. Overexpression of Arabidopsis acyl-CoA-binding protein ACBP2 enhances drought tolerance. PLANT, CELL & ENVIRONMENT 2013; 36:300-14. [PMID: 22788984 DOI: 10.1111/j.1365-3040.2012.02574.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana acyl-CoA-binding protein 2 (ACBP2) is a stress-responsive protein that is also important in embryogenesis. Here, we assign a role for ACBP2 in abscisic acid (ABA) signalling during seed germination, seedling development and the drought response. ACBP2 was induced by ABA and drought, and transgenic Arabidopsis overexpressing ACBP2 (ACBP2-OXs) showed increased sensitivity to ABA treatment during germination and seedling development. ACBP2-OXs also displayed improved drought tolerance and ABA-mediated reactive oxygen species (ROS) production in guard cells, thereby promoting stomatal closure, reducing water loss and enhancing drought tolerance. In contrast, acbp2 mutant plants showed decreased sensitivity to ABA in root development and were more sensitive to drought stress. RNA analyses revealed that ACBP2 overexpression up-regulated the expression of Respiratory Burst Oxidase Homolog D (AtrbohD) and AtrbohF, two NAD(P)H oxidases essential for ABA-mediated ROS production, whereas the expression of Hypersensitive to ABA1 (HAB1), an important negative regulator in ABA signalling, was down-regulated. In addition, transgenic plants expressing ACBP2pro:GUS showed beta-glucuronidase (GUS) staining in guard cells, confirming a role for ACBP2 at the stomata. These observations support a positive role for ACBP2 in promoting ABA signalling in germination, seedling development and the drought response.
Collapse
Affiliation(s)
- Zhi-Yan DU
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
105
|
Abstract
Phosphatidic acid phosphatase (PAP; EC 3.1.3.4) catalyzes the dephosphorylation of phosphatidic acid (PA) to produce diacylglycerol (DAG) and inorganic phosphate. In seed plants, PA plays pivotal roles both as a precursor to membrane lipids and as a signaling molecule. As more information on the roles of PAP in plants becomes available and the importance of PAP is revealed, protocols for assaying plant PAP activity are of interest to an increasing audience. This chapter describes procedures to assay plant PAP activity that are based on recent publications.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, ROC
| |
Collapse
|
106
|
Abstract
Plant nonspecific phospholipase C (NPC) is a recently described enzyme which plays a role in membrane rearrangement during phosphate starvation. It is also involved in responses of plants to brassinolide, abscisic acid (ABA), elicitors, and salt. The NPC activity is decreased in cells treated with aluminum. In the case of salt stress, the molecular mechanism of NPC action is based on accumulation of diacylglycerol (DAG) by hydrolysis of phospholipids and conversion of DAG, the product of NPC activity, to phosphatidic acid (PA) that participates in ABA signaling pathways. Here we describe a step-by-step protocol, which can be used to determine in situ or in vitro NPC activity. Determination is based on quantification of fluorescently labeled DAG as a product of cleavage of the fluorescently labeled substrate lipid, phosphatidylcholine. High-performance thin-layer chromatography is used for separation of fluorescent DAG. The spot is visualized with a laser scanner and the relative amounts of fluorescent DAG are quantified using imaging software.
Collapse
Affiliation(s)
- Přemysl Pejchar
- Institute of Experimental Botany, Academy of Sciences of the CzechRepublic, Prague, Czech Republic
| | | | | |
Collapse
|
107
|
vom Dorp K, Dombrink I, Dörmann P. Quantification of diacylglycerol by mass spectrometry. Methods Mol Biol 2013; 1009:43-54. [PMID: 23681522 DOI: 10.1007/978-1-62703-401-2_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diacylglycerol (DAG) is an important intermediate of lipid metabolism and a component of phospholipase C signal transduction. Quantification of DAG in plant membranes represents a challenging task because of its low abundance. DAG can be measured by direct infusion mass spectrometry (MS) on a quadrupole time-of-flight mass spectrometer after purification from the crude plant lipid extract via solid-phase extraction on silica columns. Different internal standards are employed to compensate for the dependence of the MS and MS/MS signals on the chain length and the presence of double bonds in the acyl moieties. Thus, using a combination of single MS and MS/MS experiments, quantitative results for the different molecular species of DAGs from Arabidopsis can be obtained.
Collapse
Affiliation(s)
- Katharina vom Dorp
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
108
|
Arisz SA, van Wijk R, Roels W, Zhu JK, Haring MA, Munnik T. Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase. FRONTIERS IN PLANT SCIENCE 2013; 4:1. [PMID: 23346092 PMCID: PMC3551192 DOI: 10.3389/fpls.2013.00001] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/01/2013] [Indexed: 05/18/2023]
Abstract
Phosphatidic acid (PtdOH) is emerging as an important signaling lipid in abiotic stress responses in plants. The effect of cold stress was monitored using (32)P-labeled seedlings and leaf discs of Arabidopsis thaliana. Low, non-freezing temperatures were found to trigger a very rapid (32)P-PtdOH increase, peaking within 2 and 5 min, respectively. In principle, PtdOH can be generated through three different pathways, i.e., (1) via de novo phospholipid biosynthesis (through acylation of lyso-PtdOH), (2) via phospholipase D hydrolysis of structural phospholipids, or (3) via phosphorylation of diacylglycerol (DAG) by DAG kinase (DGK). Using a differential (32)P-labeling protocol and a PLD-transphosphatidylation assay, evidence is provided that the rapid (32)P-PtdOH response was primarily generated through DGK. A simultaneous decrease in the levels of (32)P-PtdInsP, correlating in time, temperature dependency, and magnitude with the increase in (32)P-PtdOH, suggested that a PtdInsP-hydrolyzing PLC generated the DAG in this reaction. Testing T-DNA insertion lines available for the seven DGK genes, revealed no clear changes in (32)P-PtdOH responses, suggesting functional redundancy. Similarly, known cold-stress mutants were analyzed to investigate whether the PtdOH response acted downstream of the respective gene products. The hos1, los1, and fry1 mutants were found to exhibit normal PtdOH responses. Slight changes were found for ice1, snow1, and the overexpression line Super-ICE1, however, this was not cold-specific and likely due to pleiotropic effects. A tentative model illustrating direct cold effects on phospholipid metabolism is presented.
Collapse
Affiliation(s)
- Steven A. Arisz
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Ringo van Wijk
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Wendy Roels
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue UniversityWest Lafayette, IN, USA
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Michel A. Haring
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Teun Munnik
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
- *Correspondence: Teun Munnik, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam, Netherlands. e-mail:
| |
Collapse
|
109
|
Pokotylo I, Pejchar P, Potocký M, Kocourková D, Krčková Z, Ruelland E, Kravets V, Martinec J. The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog Lipid Res 2012; 52:62-79. [PMID: 23089468 DOI: 10.1016/j.plipres.2012.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/25/2012] [Accepted: 09/25/2012] [Indexed: 11/16/2022]
Abstract
Non-specific phospholipases C (NPCs) were discovered as a novel type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C and responsible for lipid conversion during phosphate-limiting conditions. The six-gene family was established in Arabidopsis, and growing evidence suggests the involvement of two articles NPCs in biotic and abiotic stress responses as well as phytohormone actions. In addition, the diacylglycerol produced via NPCs is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. This review summarises information concerning this new plant protein family and focusses on its sequence analysis, biochemical properties, cellular and tissue distribution and physiological functions. Possible modes of action are also discussed.
Collapse
Affiliation(s)
- Igor Pokotylo
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Gechev TS, Dinakar C, Benina M, Toneva V, Bartels D. Molecular mechanisms of desiccation tolerance in resurrection plants. Cell Mol Life Sci 2012; 69:3175-86. [PMID: 22833170 PMCID: PMC11114980 DOI: 10.1007/s00018-012-1088-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Resurrection plants are a small but diverse group of land plants characterized by their tolerance to extreme drought or desiccation. They have the unique ability to survive months to years without water, lose most of the free water in their vegetative tissues, fall into anabiosis, and, upon rewatering, quickly regain normal activity. Thus, they are fundamentally different from other drought-surviving plants such as succulents or ephemerals, which cope with drought by maintaining higher steady state water potential or via a short life cycle, respectively. This review describes the unique physiological and molecular adaptations of resurrection plants enabling them to withstand long periods of desiccation. The recent transcriptome analysis of Craterostigma plantagineum and Haberlea rhodopensis under drought, desiccation, and subsequent rehydration revealed common genetic pathways with other desiccation-tolerant species as well as unique genes that might contribute to the outstanding desiccation tolerance of the two resurrection species. While some of the molecular responses appear to be common for both drought stress and desiccation, resurrection plants also possess genes that are highly induced or repressed during desiccation with no apparent sequence homologies to genes of other species. Thus, resurrection plants are potential sources for gene discovery. Further proteome and metabolome analyses of the resurrection plants contributed to a better understanding of molecular mechanisms that are involved in surviving severe water loss. Understanding the cellular mechanisms of desiccation tolerance in this unique group of plants may enable future molecular improvement of drought tolerance in crop plants.
Collapse
Affiliation(s)
- Tsanko S Gechev
- Department of Plant Physiology and Plant Molecular Biology, University of Plovdiv, Bulgaria.
| | | | | | | | | |
Collapse
|
111
|
Molecular mechanisms of desiccation tolerance in resurrection plants. CELLULAR AND MOLECULAR LIFE SCIENCES : CMLS 2012. [PMID: 22833170 DOI: 10.1007/s00018‐012‐1088‐0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resurrection plants are a small but diverse group of land plants characterized by their tolerance to extreme drought or desiccation. They have the unique ability to survive months to years without water, lose most of the free water in their vegetative tissues, fall into anabiosis, and, upon rewatering, quickly regain normal activity. Thus, they are fundamentally different from other drought-surviving plants such as succulents or ephemerals, which cope with drought by maintaining higher steady state water potential or via a short life cycle, respectively. This review describes the unique physiological and molecular adaptations of resurrection plants enabling them to withstand long periods of desiccation. The recent transcriptome analysis of Craterostigma plantagineum and Haberlea rhodopensis under drought, desiccation, and subsequent rehydration revealed common genetic pathways with other desiccation-tolerant species as well as unique genes that might contribute to the outstanding desiccation tolerance of the two resurrection species. While some of the molecular responses appear to be common for both drought stress and desiccation, resurrection plants also possess genes that are highly induced or repressed during desiccation with no apparent sequence homologies to genes of other species. Thus, resurrection plants are potential sources for gene discovery. Further proteome and metabolome analyses of the resurrection plants contributed to a better understanding of molecular mechanisms that are involved in surviving severe water loss. Understanding the cellular mechanisms of desiccation tolerance in this unique group of plants may enable future molecular improvement of drought tolerance in crop plants.
Collapse
|
112
|
Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W, Wang X. Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. THE PLANT CELL 2012; 24:2200-12. [PMID: 22589465 PMCID: PMC3442596 DOI: 10.1105/tpc.111.094946] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Reactive oxygen species (ROS) are produced in plants under various stress conditions and serve as important mediators in plant responses to stresses. Here, we show that the cytosolic glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenases (GAPCs) interact with the plasma membrane-associated phospholipase D (PLDδ) to transduce the ROS hydrogen peroxide (H(2)O(2)) signal in Arabidopsis thaliana. Genetic ablation of PLDδ impeded stomatal response to abscisic acid (ABA) and H(2)O(2), placing PLDδ downstream of H(2)O(2) in mediating ABA-induced stomatal closure. To determine the molecular link between H(2)O(2) and PLDδ, GAPC1 and GAPC2 were identified to bind to PLDδ, and the interaction was demonstrated by coprecipitation using proteins expressed in Escherichia coli and yeast, surface plasmon resonance, and bimolecular fluorescence complementation. H(2)O(2) promoted the GAPC-PLDδ interaction and PLDδ activity. Knockout of GAPCs decreased ABA- and H(2)O(2)-induced activation of PLD and stomatal sensitivity to ABA. The loss of GAPCs or PLDδ rendered plants less responsive to water deficits than the wild type. The results indicate that the H(2)O(2)-promoted interaction of GAPC and PLDδ may provide a direct connection between membrane lipid-based signaling, energy metabolism and growth control in the plant response to ROS and water stress.
Collapse
Affiliation(s)
- Liang Guo
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Shivakumar P. Devaiah
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Rama Narasimhan
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Xiangqing Pan
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Yanyan Zhang
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Address correspondence to
| |
Collapse
|
113
|
Saeed M, Dahab AHA, Wangzhen G, Tianzhen Z. A cascade of recently discovered molecular mechanisms involved in abiotic stress tolerance of plants. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:188-99. [PMID: 22433075 DOI: 10.1089/omi.2011.0109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Today, agriculture is facing a tremendous threat from the climate change menace. As human survival is dependent on a constant supply of food from plants as the primary producers, we must aware of the underlying molecular mechanisms that plants have acquired as a result of molecular evolution to cope this rapidly changing environment. This understanding will help us in designing programs aimed at developing crop plant cultivars best suited to our needs of a sustainable agriculture. The field of systems biology is rapidly progressing, and new insight is coming out about the molecular mechanisms involved in abiotic stress tolerance. There is a cascade of changes in transcriptome, proteome, and metabolome of plants during these stress responses. We have tried to cover most pronounced recent developments in the field of "omics" related to abiotic stress tolerance of plants. These changes are very coordinated, and often there is crosstalk between different components of stress tolerance. The functions of various molecular entities are becoming more clear and being associated with more precise biological phenomenon.
Collapse
Affiliation(s)
- Muhammad Saeed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | | | | | | |
Collapse
|
114
|
Gillespie KM, Xu F, Richter KT, McGrath JM, Markelz RJC, Ort DR, Leakey ADB, Ainsworth EA. Greater antioxidant and respiratory metabolism in field-grown soybean exposed to elevated O3 under both ambient and elevated CO2. PLANT, CELL & ENVIRONMENT 2012; 35:169-84. [PMID: 21923758 DOI: 10.1111/j.1365-3040.2011.02427.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Antioxidant metabolism is responsive to environmental conditions, and is proposed to be a key component of ozone (O(3)) tolerance in plants. Tropospheric O(3) concentration ([O(3)]) has doubled since the Industrial Revolution and will increase further if precursor emissions rise as expected over this century. Additionally, atmospheric CO(2) concentration ([CO(2)]) is increasing at an unprecedented rate and will surpass 550 ppm by 2050. This study investigated the molecular, biochemical and physiological changes in soybean exposed to elevated [O(3) ] in a background of ambient [CO(2)] and elevated [CO(2)] in the field. Previously, it has been difficult to demonstrate any link between antioxidant defences and O(3) stress under field conditions. However, this study used principle components analysis to separate variability in [O(3)] from variability in other environmental conditions (temperature, light and relative humidity). Subsequent analysis of covariance determined that soybean antioxidant metabolism increased with increasing [O(3)], in both ambient and elevated [CO(2)]. The transcriptional response was dampened at elevated [CO(2)], consistent with lower stomatal conductance and lower O(3) flux into leaves. Energetically expensive increases in antioxidant metabolism and tetrapyrrole synthesis at elevated [O(3)] were associated with greater transcript levels of enzymes involved in respiratory metabolism.
Collapse
Affiliation(s)
- Kelly M Gillespie
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Ghars MA, Richard L, Lefebvre-De Vos D, Leprince AS, Parre E, Bordenave M, Abdelly C, Savouré A. Phospholipases C and D modulate proline accumulation in Thellungiella halophila/salsuginea differently according to the severity of salt or hyperosmotic stress. PLANT & CELL PHYSIOLOGY 2012; 53:183-92. [PMID: 22121247 DOI: 10.1093/pcp/pcr164] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Proline accumulation is one of the most common responses of plants to environmental constraints. Thellungiella halophila/salsuginea, a model halophyte, accumulates high levels of proline in response to abiotic stress and in the absence of stress. Recently, lipid signaling pathways have been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. Here we investigated the relationship between lipid signaling enzymes and the level of proline in T. salsuginea. Inhibition of phospholipase C (PLC) enzymes by the specific inhibitor U73122 demonstrated that proline accumulation is negatively controlled by PLCs in the absence of stress and under moderate salt stress (200 mM NaCl). The use of 1-butanol to divert some of the phospholipase D (PLD)-derived phosphatidic acid by transphosphatidylation revealed that PLDs exert a positive control on proline accumulation under severe stress (400 mM NaCl or 400 mM mannitol) but have no effect on its accumulation in non-stress conditions. This experimental evidence shows that positive and negative lipid regulatory components are involved in the fine regulation of proline metabolism. These signaling pathways in T. salsuginea are regulated in the opposite sense to those previously described in A. thaliana, revealing that common signaling components affect the physiology of closely related glycophyte and salt-tolerant plants differently.
Collapse
Affiliation(s)
- Mohamed Ali Ghars
- UPMC Université Paris 06, UR5 EAC7180 CNRS, Physiologie Cellulaire et Moléculaire des Plantes, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Plant phospholipases can be grouped into four major types, phospholipase D, phospholipase C, phospholipase A1 (PLA(1)), and phospholipase A2 (PLA(2)), that hydrolyze glycerophospholipids at different ester bonds. Within each type, there are different families or subfamilies of enzymes that can differ in substrate specificity, cofactor requirement, and/or reaction conditions. These differences provide insights into determining the cellular function of specific phospholipases in plants, and they can be explored for different industrial applications.
Collapse
Affiliation(s)
- Geliang Wang
- Department of Biology, University of Missouri, St. Louis, MO, USA
| | | | | |
Collapse
|
117
|
Samarakoon T, Shiva S, Lowe K, Tamura P, Roth MR, Welti R. Arabidopsis thaliana membrane lipid molecular species and their mass spectral analysis. Methods Mol Biol 2012; 918:179-268. [PMID: 22893293 DOI: 10.1007/978-1-61779-995-2_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, current approaches to electrospray ionization mass spectrometry-based analyses of membrane lipid molecular species found in Arabidopsis thaliana are summarized. Additionally, the identities of over 500 reported membrane lipid molecular species are assembled.
Collapse
Affiliation(s)
- Thilani Samarakoon
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, USA
| | | | | | | | | | | |
Collapse
|
118
|
Guo L, Wang X. Crosstalk between Phospholipase D and Sphingosine Kinase in Plant Stress Signaling. FRONTIERS IN PLANT SCIENCE 2012; 3:51. [PMID: 22639650 PMCID: PMC3355621 DOI: 10.3389/fpls.2012.00051] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/28/2012] [Indexed: 05/20/2023]
Abstract
The activation of phospholipase D (PLD) produces phosphatidic acid (PA), whereas plant sphingosine kinase (SPHK) phosphorylates long-chain bases to generate long-chain base-1-phosphates such as phytosphingosine-1-phosphate (phyto-S1P). PA and phyto-S1P have been identified as lipid messengers. Recent studies have shown that PA interacts directly with SPHKs in Arabidopsis, and that the interaction promotes SPHK activity. However, SPHK and phyto-S1P act upstream of PLDα1 and PA in the stomatal response to abscisic acid (ABA). These findings indicate that SPHK/phyto-S1P and PLD/PA are co-dependent in the amplification of lipid messengers, and that crosstalk between the sphingolipid- and phospholipid-mediated signaling pathways may play important roles in plant stress signaling.
Collapse
Affiliation(s)
- Liang Guo
- Department of Biology, University of MissouriSt. Louis, MO, USA
- Donald Danforth Plant Science Center, University of MissouriSt. Louis, MO, USA
| | - Xuemin Wang
- Department of Biology, University of MissouriSt. Louis, MO, USA
- Donald Danforth Plant Science Center, University of MissouriSt. Louis, MO, USA
- *Correspondence: Xuemin Wang, Department of Biology, University of Missouri, St. Louis, MO 63121, USA. e-mail:
| |
Collapse
|
119
|
Arisz SA, Munnik T. The salt stress-induced LPA response in Chlamydomonas is produced via PLA₂ hydrolysis of DGK-generated phosphatidic acid. J Lipid Res 2011; 52:2012-20. [PMID: 21900174 DOI: 10.1194/jlr.m016873] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The unicellular green alga Chlamydomonas has frequently been used as a eukaryotic model system to study intracellular phospholipid signaling pathways in response to environmental stresses. Earlier, we found that hypersalinity induced a rapid increase in the putative lipid second messenger, phosphatidic acid (PA), which was suggested to be generated via activation of a phospholipase D (PLD) pathway and the combined action of a phospholipase C/diacylglycerol kinase (PLC/DGK) pathway. Lysophosphatidic acid (LPA) was also increased and was suggested to reflect a phospholipase A₂ (PLA₂) activity based on pharmacological evidence. The question of PA's and LPA's origin is, however, more complicated, especially as both function as precursors in the biosynthesis of phospho- and galactolipids. To address this complexity, a combination of fatty acid-molecular species analysis and in vivo ³²P-radiolabeling was performed. Evidence is provided that LPA is formed from a distinct pool of PA characterized by a high α-linolenic acid (18:3n-3) content. This molecular species was highly enriched in the polyphosphoinositide fraction, which is the substrate for PLC to form diacylglycerol. Together with differential ³²P-radiolabeling studies and earlier PLD-transphosphatidylation and PLA₂-inhibitor assays, the data were consistent with the hypothesis that the salt-induced LPA response is primarily generated through PLA₂-mediated hydrolysis of DGK-generated PA and that PLD or de novo synthesis [via endoplasmic reticulum - or plastid-localized routes] is not a major contributor.
Collapse
Affiliation(s)
- Steven A Arisz
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
120
|
Testerink C, Munnik T. Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2349-61. [PMID: 21430291 DOI: 10.1093/jxb/err079] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phosphatidic acid (PA) is an essential phospholipid involved in membrane biosynthesis and signal transduction in all eukaryotes. This review focuses on its role as lipid second messenger during plant stress, metabolism, and development. The contribution of different individual isoforms of enzymes that generate and break down PA will be discussed and the downstream responses highlighted, with particular focus on proteins that bind PA. Through characterization of several of these PA targets, a molecular and genetic basis for PA's role in plant stress and development is emerging.
Collapse
Affiliation(s)
- Christa Testerink
- University of Amsterdam, Swammerdam Institute for Life Sciences, Section of Plant Physiology, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | |
Collapse
|
121
|
Paradis S, Villasuso AL, Aguayo SS, Maldiney R, Habricot Y, Zalejski C, Machado E, Sotta B, Miginiac E, Jeannette E. Arabidopsis thaliana lipid phosphate phosphatase 2 is involved in abscisic acid signalling in leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:357-362. [PMID: 21277215 DOI: 10.1016/j.plaphy.2011.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/21/2010] [Accepted: 01/04/2011] [Indexed: 05/30/2023]
Abstract
Lipid phosphate phosphatases (LPPs, E.C. 3.1.3.4) catalyse the dephosphorylation of diacylglycerol pyrophosphate (DGPP) and phosphatidic acid (PA), which are secondary messengers in abscisic acid (ABA) signalling. In this study, we investigated the effect of ABA on the expression of AtLPP genes as they encode putative ABA-signalling partners. We observed that AtLPP2 expression was down-regulated by ABA and we performed experiments on Atlpp2-2, an AtLPP2 knockout mutant, to determine whether AtLPP2 was involved in ABA signalling. We observed that Atlpp2-2 plantlets contained about twice as much PA as the wild-type Col-0 and exhibited higher PA kinase (PAK) activity than Col-0 plants. In addition, we showed that ABA stimulated diacylglycerol kinase (DGK) activity independently of AtLPP2 activity but that the ABA-stimulation of PAK activity recorded in Col-0 was dependent on AtLPP2. In order to evaluate the involvement of AtLPP2 activity in guard cell function, we measured the ABA sensitivity of Atlpp2-2 stomata. The inhibition of stomatal opening was less sensitive to ABA in Atlpp2-2 than in Col-0. Watered and water-stressed plants of the two genotypes accumulated ABA to the same extent, thus leading us to consider Atlpp2-2 an ABA-signalling mutant. Taken together our observations show that AtLPP2 is a part of ABA signalling and participate to the regulation of stomatal movements.
Collapse
Affiliation(s)
- Sophie Paradis
- Université Pierre et Marie Curie, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Unité de Recherche 5-Equipe d'Accueil 7180/CNRS, 4 place Jussieu, Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|