101
|
Xie HT, Wan ZY, Li S, Zhang Y. Spatiotemporal Production of Reactive Oxygen Species by NADPH Oxidase Is Critical for Tapetal Programmed Cell Death and Pollen Development in Arabidopsis. THE PLANT CELL 2014; 26:2007-2023. [PMID: 24808050 PMCID: PMC4079365 DOI: 10.1105/tpc.114.125427] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 05/17/2023]
Abstract
Male sterility in angiosperms has wide applications in agriculture, particularly in hybrid crop breeding and gene flow control. Microspores develop adjacent to the tapetum, a layer of cells that provides nutrients for pollen development and materials for pollen wall formation. Proper pollen development requires programmed cell death (PCD) of the tapetum, which requires transcriptional cascades and proteolytic enzymes. Reactive oxygen species (ROS) also affect tapetal PCD, and failures in ROS scavenging cause male sterility. However, many aspects of tapetal PCD remain unclear, including what sources generate ROS, whether ROS production has a temporal pattern, and how the ROS-producing system interacts with the tapetal transcriptional network. We report here that stage-specific expression of NADPH oxidases in the Arabidopsis thaliana tapetum contributes to a temporal peak of ROS production. Genetic interference with the temporal ROS pattern, by manipulating RESPIRATORY-BURST OXIDASE HOMOLOG (RBOH) genes, affected the timing of tapetal PCD and resulted in aborted male gametophytes. We further show that the tapetal transcriptional network regulates RBOH expression, indicating that the temporal pattern of ROS production intimately connects to other signaling pathways regulated by the tapetal transcriptional network to ensure the proper timing of tapetal PCD.
Collapse
Affiliation(s)
- Hong-Tao Xie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Zhi-Yuan Wan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
102
|
Running MP. The role of lipid post-translational modification in plant developmental processes. FRONTIERS IN PLANT SCIENCE 2014; 5:50. [PMID: 24600462 PMCID: PMC3927097 DOI: 10.3389/fpls.2014.00050] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/01/2014] [Indexed: 05/06/2023]
Abstract
Most eukaryotic proteins are post-translationally modified, and modification has profound effects on protein function. One key modification is the attachment of a lipid group to certain amino acids; this typically facilitates subcellular targeting (association with a membrane) and protein-protein interactions (by virtue of the large hydrophobic moiety). Most widely recognized are lipid modifications of proteins involved in developmental signaling, but proteins with structural roles are also lipid-modified. The three known types of intracellular protein lipid modifications are S-acylation, N-myristoylation, and prenylation. In plants, genetic analysis of the enzymes involved, along with molecular analysis of select target proteins, has recently shed light on the roles of lipid modification in key developmental processes, such as meristem function, flower development, polar cell elongation, cell differentiation, and hormone responses. In addition, while lipid post-translational mechanisms are generally conserved among eukaryotes, plants differ in the nature and function of target proteins, the effects of lipid modification on target proteins, and the roles of lipid modification in developmental processes.
Collapse
Affiliation(s)
- Mark P. Running
- *Correspondence: Mark P. Running, Department of Biology, University of Louisville, Louisville, KY 40292, USA e-mail:
| |
Collapse
|
103
|
Huang GQ, Li E, Ge FR, Li S, Wang Q, Zhang CQ, Zhang Y. Arabidopsis RopGEF4 and RopGEF10 are important for FERONIA-mediated developmental but not environmental regulation of root hair growth. THE NEW PHYTOLOGIST 2013; 200:1089-101. [PMID: 23915272 DOI: 10.1111/nph.12432] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/01/2013] [Indexed: 05/09/2023]
Abstract
We investigated a genetic pathway in root hair development in Arabidopsis thaliana, involving the receptor-like kinase FERONIA (FER), two guanine nucleotide exchange factors for ROPs (RopGEF4 and RopGEF10), and the small GTPase Rho of plants (ROPs). Loss- and gain-of-function analyses demonstrated distinct roles of RopGEF4 and RopGEF10 such that RopGEF4 is only important for root hair elongation, while RopGEF10 mainly contributes to root hair initiation. Domain dissection by truncation and domain-swapping experiments indicated that their functional distinctions were mainly contributed by the noncatalytic domains. Using fluorescent ratio imaging, we showed that functional loss of RopGEF4 and RopGEF10 additively reduced reactive oxygen species (ROS) production. Bimolecular fluorescence complementation experiments demonstrated that RopGEF4 and RopGEF10 had the same interaction specificity as ROPs, suggesting common downstream components. We further showed that the promoting effects of environmental cues such as exogenous auxin and phosphate limitation on root hair development depended on FER. However, although functional loss of RopGEF4 and RopGEF10 largely abolished FER-induced ROS production, it did not compromise the responses to FER-mediated environmental cues on root hair development. Our results demonstrated that RopGEF4 and RopGEF10 are genetic components in FER-mediated, developmentally (but not environmentally) regulated, root hair growth.
Collapse
Affiliation(s)
- Guo-Qiang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
104
|
Yuan X, Zhang S, Sun M, Liu S, Qi B, Li X. Putative DHHC-cysteine-rich domain S-acyltransferase in plants. PLoS One 2013; 8:e75985. [PMID: 24155879 PMCID: PMC3796536 DOI: 10.1371/journal.pone.0075985] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/19/2013] [Indexed: 11/18/2022] Open
Abstract
Protein S-acyltransferases (PATs) containing Asp-His-His-Cys within a Cys-rich domain (DHHC-CRD) are polytopic transmembrane proteins that are found in eukaryotic cells and mediate the S-acylation of target proteins. S-acylation is an important secondary and reversible modification that regulates the membrane association, trafficking and function of target proteins. However, little is known about the characteristics of PATs in plants. Here, we identified 804 PATs from 31 species with complete genomes. The analysis of the phylogenetic relationships suggested that all of the PATs fell into 8 groups. In addition, we analysed the phylogeny, genomic organization, chromosome localisation and expression pattern of PATs in Arabidopsis, Oryza sative, Zea mays and Glycine max. The microarray data revealed that PATs genes were expressed in different tissues and during different life stages. The preferential expression of the ZmPATs in specific tissues and the response of Zea mays to treatments with phytohormones and abiotic stress demonstrated that the PATs play roles in plant growth and development as well as in stress responses. Our data provide a useful reference for the identification and functional analysis of the members of this protein family.
Collapse
Affiliation(s)
- Xiaowei Yuan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong 271018, China
- Huasheng Agriculture Limited Liability Company, Qingzhou, Shandong 262500, China
- Qingzhou City Bureau of Agriculture, Qingzhou, Shandong 262500, China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong 271018, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Meihong Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Shiyang Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Baoxiu Qi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xinzheng Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong 271018, China
- * E-mail:
| |
Collapse
|
105
|
Qi B, Doughty J, Hooley R. A Golgi and tonoplast localized S-acyl transferase is involved in cell expansion, cell division, vascular patterning and fertility in Arabidopsis. THE NEW PHYTOLOGIST 2013; 200:444-456. [PMID: 23795888 PMCID: PMC3817529 DOI: 10.1111/nph.12385] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/23/2013] [Indexed: 05/04/2023]
Abstract
S-acylation of eukaryotic proteins is the reversible attachment of palmitic or stearic acid to cysteine residues, catalysed by protein S-acyl transferases that share an Asp-His-His-Cys (DHHC) motif. Previous evidence suggests that in Arabidopsis S-acylation is involved in the control of cell size, polarity and the growth of pollen tubes and root hairs. Using a combination of yeast genetics, biochemistry, cell biology and loss of function genetics the roles of a member of the protein S-acyl transferase PAT family, AtPAT10 (At3g51390), have been explored. In keeping with its role as a PAT, AtPAT10 auto-S-acylates, and partially complements the yeast akr1 PAT mutant, and this requires Cys(192) of the DHHC motif. In Arabidopsis AtPAT10 is localized in the Golgi stack, trans-Golgi network/early endosome and tonoplast. Loss-of-function mutants have a pleiotropic phenotype involving cell expansion and division, vascular patterning, and fertility that is rescued by wild-type AtPAT10 but not by catalytically inactive AtPAT10C(192) A. This supports the hypothesis that AtPAT10 is functionally independent of the other Arabidopsis PATs. Our findings demonstrate a growing importance of protein S-acylation in plants, and reveal a Golgi and tonoplast located S-acylation mechanism that affects a range of events during growth and development in Arabidopsis.
Collapse
Affiliation(s)
- Baoxiu Qi
- Department of Biology and Biochemistry, University of BathClaverton Down, Bath, BA2 7AY, UK
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityShandong, 271018, China
| | - James Doughty
- Department of Biology and Biochemistry, University of BathClaverton Down, Bath, BA2 7AY, UK
| | - Richard Hooley
- Department of Biology and Biochemistry, University of BathClaverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
106
|
Steinhorst L, Kudla J. Calcium and reactive oxygen species rule the waves of signaling. PLANT PHYSIOLOGY 2013; 163:471-85. [PMID: 23898042 PMCID: PMC3793029 DOI: 10.1104/pp.113.222950] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/25/2013] [Indexed: 05/18/2023]
Abstract
Calcium signaling and reactive oxygen species signaling are directly connected, and both contribute to cell-to-cell signal propagation in plants.
Collapse
|
107
|
Wang JG, Li S, Zhao XY, Zhou LZ, Huang GQ, Feng C, Zhang Y. HAPLESS13, the Arabidopsis μ1 adaptin, is essential for protein sorting at the trans-Golgi network/early endosome. PLANT PHYSIOLOGY 2013; 162:1897-910. [PMID: 23766365 PMCID: PMC3729769 DOI: 10.1104/pp.113.221051] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/11/2013] [Indexed: 05/20/2023]
Abstract
In plant cells, secretory and endocytic routes intersect at the trans-Golgi network (TGN)/early endosome (EE), where cargos are further sorted correctly and in a timely manner. Cargo sorting is essential for plant survival and therefore necessitates complex molecular machinery. Adaptor proteins (APs) play key roles in this process by recruiting coat proteins and selecting cargos for different vesicle carriers. The µ1 subunit of AP-1 in Arabidopsis (Arabidopsis thaliana) was recently identified at the TGN/EE and shown to be essential for cytokinesis. However, little was known about other cellular activities affected by mutations in AP-1 or the developmental consequences of such mutations. We report here that HAPLESS13 (HAP13), the Arabidopsis µ1 adaptin, is essential for protein sorting at the TGN/EE. Functional loss of HAP13 displayed pleiotropic developmental defects, some of which were suggestive of disrupted auxin signaling. Consistent with this, the asymmetric localization of PIN-FORMED2 (PIN2), an auxin transporter, was compromised in the mutant. In addition, cell morphogenesis was disrupted. We further demonstrate that HAP13 is critical for brefeldin A-sensitive but wortmannin-insensitive post-Golgi trafficking. Our results show that HAP13 is a key link in the sophisticated trafficking network in plant cells.
Collapse
|
108
|
Hemsley PA, Weimar T, Lilley K, Dupree P, Grierson C. Palmitoylation in plants: new insights through proteomics. PLANT SIGNALING & BEHAVIOR 2013; 8:25209. [PMID: 23759553 PMCID: PMC3999067 DOI: 10.4161/psb.25209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 05/20/2023]
Abstract
Palmitoylation is the post-translational addition of lipids to proteins though thioester bonds and acts to promote association with membranes. Palmitoylation also acts to target proteins to specific membrane compartments, control residence in and movement between membrane microdomains and regulate protein conformation and activity. Palmitoylation is unique among lipid modifications of proteins as it is reversible, allowing for dynamic control over all palmitoylation dependent processes. Palmitoylation cannot be predicted from protein sequence and as a result is understudied when compared with other post-translational modifications. We recently published a proteomic analysis of palmitoylation in plants and increased the number of proposed palmitoylated proteins in plants from ~30 to over 500. The wide range of identified proteins indicates that palmitoylation is likely important for a variety of different functions in plants. Many supposedly well characterized proteins were identified as palmitoylated and our new data provides novel insight into regulatory mechanisms and potential explanations for observed phenomena. These data represent a new resource for plant biologist and will allow the study of palmitoylated proteins in plants to expand and move forward.
Collapse
Affiliation(s)
- Piers A. Hemsley
- Division of Plant Sciences; University of Dundee at the James Hutton Institute; Invergowrie, UK
- Cell and Molecular Sciences; James Hutton Institute; Invergowrie, UK
- Correspondence to: Piers A. Hemsley,
| | - Thilo Weimar
- Department of Biochemistry; University of Cambridge; Cambridge, UK
| | - Kathryn Lilley
- Cambridge Center for Proteomics; University of Cambridge; Cambridge, UK
| | - Paul Dupree
- Department of Biochemistry; University of Cambridge; Cambridge, UK
| | - Claire Grierson
- School of Biological Sciences; University of Bristol; Bristol, UK
| |
Collapse
|