101
|
Zhao G, Zou C, Li K, Wang K, Li T, Gao L, Zhang X, Wang H, Yang Z, Liu X, Jiang W, Mao L, Kong X, Jiao Y, Jia J. The Aegilops tauschii genome reveals multiple impacts of transposons. NATURE PLANTS 2017; 3:946-955. [PMID: 29158546 DOI: 10.1038/s41477-017-0067-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/30/2017] [Indexed: 05/19/2023]
Abstract
Wheat is an important global crop with an extremely large and complex genome that contains more transposable elements (TEs) than any other known crop species. Here, we generated a chromosome-scale, high-quality reference genome of Aegilops tauschii, the donor of the wheat D genome, in which 92.5% sequences have been anchored to chromosomes. Using this assembly, we accurately characterized genic loci, gene expression, pseudogenes, methylation, recombination ratios, microRNAs and especially TEs on chromosomes. In addition to the discovery of a wave of very recent gene duplications, we detected that TEs occurred in about half of the genes, and found that such genes are expressed at lower levels than those without TEs, presumably because of their elevated methylation levels. We mapped all wheat molecular markers and constructed a high-resolution integrated genetic map corresponding to genome sequences, thereby placing previously detected agronomically important genes/quantitative trait loci (QTLs) on the Ae. tauschii genome for the first time.
Collapse
Affiliation(s)
- Guangyao Zhao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Cheng Zou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Kui Li
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Kai Wang
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Tianbao Li
- Agronomy College, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 450002, Zhengzhou, China
| | - Lifeng Gao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, 100093, Beijing, China
| | - Hongjin Wang
- Center for Information in Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Zujun Yang
- Center for Information in Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Xu Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, 100083, Beijing, China.
| | - Long Mao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Xiuying Kong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, 100093, Beijing, China.
| | - Jizeng Jia
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| |
Collapse
|
102
|
Genomic features shaping the landscape of meiotic double-strand-break hotspots in maize. Proc Natl Acad Sci U S A 2017; 114:12231-12236. [PMID: 29087335 DOI: 10.1073/pnas.1713225114] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination is the most important source of genetic variation in higher eukaryotes. It is initiated by formation of double-strand breaks (DSBs) in chromosomal DNA in early meiotic prophase. The DSBs are subsequently repaired, resulting in crossovers (COs) and noncrossovers (NCOs). Recombination events are not distributed evenly along chromosomes but cluster at recombination hotspots. How specific sites become hotspots is poorly understood. Studies in yeast and mammals linked initiation of meiotic recombination to active chromatin features present upstream from genes, such as absence of nucleosomes and presence of trimethylation of lysine 4 in histone H3 (H3K4me3). Core recombination components are conserved among eukaryotes, but it is unclear whether this conservation results in universal characteristics of recombination landscapes shared by a wide range of species. To address this question, we mapped meiotic DSBs in maize, a higher eukaryote with a large genome that is rich in repetitive DNA. We found DSBs in maize to be frequent in all chromosome regions, including sites lacking COs, such as centromeres and pericentromeric regions. Furthermore, most DSBs are formed in repetitive DNA, predominantly Gypsy retrotransposons, and only one-quarter of DSB hotspots are near genes. Genic and nongenic hotspots differ in several characteristics, and only genic DSBs contribute to crossover formation. Maize hotspots overlap regions of low nucleosome occupancy but show only limited association with H3K4me3 sites. Overall, maize DSB hotspots exhibit distribution patterns and characteristics not reported previously in other species. Understanding recombination patterns in maize will shed light on mechanisms affecting dynamics of the plant genome.
Collapse
|
103
|
Forestan C, Farinati S, Aiese Cigliano R, Lunardon A, Sanseverino W, Varotto S. Maize RNA PolIV affects the expression of genes with nearby TE insertions and has a genome-wide repressive impact on transcription. BMC PLANT BIOLOGY 2017; 17:161. [PMID: 29025411 PMCID: PMC5639751 DOI: 10.1186/s12870-017-1108-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 10/04/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND RNA-directed DNA methylation (RdDM) is a plant-specific epigenetic process that relies on the RNA polymerase IV (Pol IV) for the production of 24 nucleotide small interfering RNAs (siRNA) that guide the cytosine methylation and silencing of genes and transposons. Zea mays RPD1/RMR6 gene encodes the largest subunit of Pol IV and is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs) and transcriptional regulation of specific alleles. RESULTS In this study we applied a total RNA-Seq approach to compare the B73 and rpd1/rmr6 leaf transcriptomes. Although previous studies indicated that loss of siRNAs production in RdDM mutants provokes a strong loss of CHH DNA methylation but not massive gene or TEs transcriptional activation in both Arabidopsis and maize, our total RNA-Seq analysis of rpd1/rmr6 transcriptome reveals that loss of Pol IV activity causes a global increase in the transcribed fraction of the maize genome. Our results point to the genes with nearby TE insertions as being the most strongly affected by Pol IV-mediated gene silencing. TEs modulation of nearby gene expression is linked to alternative methylation profiles on gene flanking regions, and these profiles are strictly dependent on specific characteristics of the TE member inserted. Although Pol IV is essential for the biogenesis of siRNAs, the genes with associated siRNA loci are less affected by the pol IV mutation. CONCLUSIONS This deep and integrated analysis of gene expression, TEs distribution, smallRNA targeting and DNA methylation levels, reveals that loss of Pol IV activity globally affects genome regulation, pointing at TEs as modulator of nearby gene expression and indicating the existence of multiple level epigenetic silencing mechanisms. Our results also suggest a predominant role of the Pol IV-mediated RdDM pathway in genome dominance regulation, and subgenome stability and evolution in maize.
Collapse
Affiliation(s)
- Cristian Forestan
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | - Silvia Farinati
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | | | - Alice Lunardon
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
- Present Address: Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, PA 16802 USA
| | | | - Serena Varotto
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| |
Collapse
|
104
|
Stroud LK, McGinnis KM. Altered nucleosome positions in maize haplotypes and mutants of a subset of SWI/SNF-like proteins. PLANT DIRECT 2017; 1:e00019. [PMID: 31245667 PMCID: PMC6508530 DOI: 10.1002/pld3.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/07/2017] [Accepted: 09/25/2017] [Indexed: 06/09/2023]
Abstract
Chromatin remodelers alter DNA-histone interactions in eukaryotic organisms and have been well characterized in yeast and Arabidopsis. While there are maize proteins with similar domains as known remodelers, the ability of the maize proteins to alter nucleosome position has not been reported. Mutant alleles of several maize proteins (RMR1, CHR101, CHR106, CHR127, and CHR156) with similar functional domains to known chromatin remodelers were identified. Altered gene expression of Chr101, Chr106, Chr127, and Chr156 was demonstrated in plants homozygous for the mutant alleles. These mutant genotypes were subjected to nucleosome position analysis to determine whether misregulation of putative maize chromatin proteins would lead to altered DNA-histone interactions. Nucleosome position changes were observed in plants homozygous for chr101, chr106, chr127, and chr156 mutant alleles, suggesting that CHR101, CHR106, CHR127, and CHR156 may affect chromatin structure. The role of RNA polymerases in altering DNA-histone interactions was also tested. Changes in nucleosome position were demonstrated in homozygous mop2-1 individuals. These changes were demonstrated at the b1 tandem repeats and at newly identified loci. Additionally, differential DNA-histone interactions and altered gene expression of putative chromatin remodelers were demonstrated between different maize haplotypes.
Collapse
Affiliation(s)
- Linda K. Stroud
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| | - Karen M. McGinnis
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| |
Collapse
|
105
|
Huang J, Vendramin S, Shi L, McGinnis KM. Construction and Optimization of a Large Gene Coexpression Network in Maize Using RNA-Seq Data. PLANT PHYSIOLOGY 2017; 175:568-583. [PMID: 28768814 PMCID: PMC5580776 DOI: 10.1104/pp.17.00825] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/31/2017] [Indexed: 05/22/2023]
Abstract
With the emergence of massively parallel sequencing, genomewide expression data production has reached an unprecedented level. This abundance of data has greatly facilitated maize research, but may not be amenable to traditional analysis techniques that were optimized for other data types. Using publicly available data, a gene coexpression network (GCN) can be constructed and used for gene function prediction, candidate gene selection, and improving understanding of regulatory pathways. Several GCN studies have been done in maize (Zea mays), mostly using microarray datasets. To build an optimal GCN from plant materials RNA-Seq data, parameters for expression data normalization and network inference were evaluated. A comprehensive evaluation of these two parameters and a ranked aggregation strategy on network performance, using libraries from 1266 maize samples, were conducted. Three normalization methods and 10 inference methods, including six correlation and four mutual information methods, were tested. The three normalization methods had very similar performance. For network inference, correlation methods performed better than mutual information methods at some genes. Increasing sample size also had a positive effect on GCN. Aggregating single networks together resulted in improved performance compared to single networks.
Collapse
Affiliation(s)
- Ji Huang
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Stefania Vendramin
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Lizhen Shi
- Department of Computer Science, Florida State University, Tallahassee, Florida 32306
| | - Karen M McGinnis
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
106
|
Hsu FM, Yen MR, Wang CT, Lin CY, Wang CJR, Chen PY. Optimized reduced representation bisulfite sequencing reveals tissue-specific mCHH islands in maize. Epigenetics Chromatin 2017; 10:42. [PMID: 28854962 PMCID: PMC5577757 DOI: 10.1186/s13072-017-0148-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/08/2017] [Indexed: 11/11/2022] Open
Abstract
Background
DNA methylation plays important roles in many regulatory processes in plants. It is economically infeasible to profile genome-wide DNA methylation at a single-base resolution in maize, given its genome size of ~2.5 Gb. As an alternative, we adapted region of interest (ROI)-directed reduced representation bisulfite sequencing (RRBS) to survey genome-wide methylation in maize. Results We developed a pipeline for selecting restriction enzymes in silico and experimentally showed that, in the maize genome, MseI- and CviQI-digested fragments are precisely enriched in promoters and gene bodies, respectively. We proceeded with comparisons of epigenomes and transcriptomes between shoots and tassels and found that the occurrences of highly methylated, tissue-specific, mCHH islands upstream of transcription start sites (TSSs) were positively correlated with differential gene expression. Furthermore, 5′ regulatory regions between TSS and mCHH islands often contain putative binding sites of known transcription factors (TFs) that regulate the flowering process and the timing of the transition from the vegetative to the reproductive phase. By integrating MNase-seq and siRNA-seq data, we found that regions of mCHH islands accumulate 21nt-siRNAs in a tissue-specific manner, marking the transition to open chromatin, thereby ensuring the accessibility of TFs for tissue-specific gene regulation. Conclusions Our ROI-directed RRBS pipeline is eminently applicable to DNA methylation profiling of large genomes. Our results provide novel insights into the tissue-specific epigenomic landscapes in maize, demonstrating that DNA methylation and siRNA and chromatin accessibility constitute a critical, interdependent component that orchestrates the transition from the vegetative to the reproductive phase. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0148-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei-Man Hsu
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan.,Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chi-Ting Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chien-Yu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Ju Rachel Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan.
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
107
|
|
108
|
|
109
|
Susek K, Braszewska-Zalewska A, Bewick AJ, Hasterok R, Schmitz RJ, Naganowska B. Epigenomic diversification within the genus Lupinus. PLoS One 2017; 12:e0179821. [PMID: 28640886 PMCID: PMC5480990 DOI: 10.1371/journal.pone.0179821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/05/2017] [Indexed: 12/23/2022] Open
Abstract
Deciphering the various chemical modifications of both DNA and the histone compound of chromatin not only leads to a better understanding of the genome-wide organisation of epigenetic landmarks and their impact on gene expression but may also provide some insights into the evolutionary processes. Although both histone modifications and DNA methylation have been widely investigated in various plant genomes, here we present the first study for the genus Lupinus. Lupins, which are members of grain legumes (pulses), are beneficial for food security, nutrition, health and the environment. In order to gain a better understanding of the epigenetic organisation of genomes in lupins we applied the immunostaining of methylated histone H3 and DNA methylation as well as whole-genome bisulfite sequencing. We revealed variations in the patterns of chromatin modifications at the chromosomal level among three crop lupins, i.e. L. angustifolius (2n = 40), L. albus (2n = 50) and L. luteus (2n = 52), and the legume model plant Medicago truncatula (2n = 16). Different chromosomal patterns were found depending on the specific modification, e.g. H3K4me2 was localised in the terminal parts of L. angustifolius and M. truncatula chromosomes, which is in agreement with the results that have been obtained for other species. Interestingly, in L. albus and L. luteus this modification was limited to one arm in the case of all of the chromosomes in the complement. Additionally, H3K9me2 was detected in all of the analysed species except L. luteus. DNA methylation sequencing (CG, CHG and CHH contexts) of aforementioned crop but also wild lupins such as L. cosentinii (2n = 32), L. digitatus (2n = 36), L. micranthus (2n = 52) and L. pilosus (2n = 42) supported the range of interspecific diversity. The examples of epigenetic modifications illustrate the diversity of lupin genomes and could be helpful for elucidating further epigenetic changes in the evolution of the lupin genome.
Collapse
Affiliation(s)
- Karolina Susek
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Adam J. Bewick
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Poland
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
110
|
Liu H, Ma L, Yang X, Zhang L, Zeng X, Xie S, Peng H, Gao S, Lin H, Pan G, Wu Y, Shen Y. Integrative analysis of DNA methylation, mRNAs, and small RNAs during maize embryo dedifferentiation. BMC PLANT BIOLOGY 2017; 17:105. [PMID: 28619030 PMCID: PMC5472921 DOI: 10.1186/s12870-017-1055-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/06/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND Maize (Zea mays) is an important model crop for transgenic studies. However, genetic transformation of maize requires embryonic calli derived from immature embryo, and the impact of utilizing tissue culture methods on the maize epigenome is poorly understood. Here, we generated whole-genome MeDIP-seq data examining DNA methylation in dedifferentiated and normal immature maize embryos. RESULTS We observed that most of the dedifferentiated embryos exhibited a methylation increase compared to normal embryos. Increased methylation at promoters was associated with down-regulated protein-coding gene expression; however, the correlation was not strong. Analysis of the callus and immature embryos indicated that the methylation increase was induced during induction of embryonic callus, suggesting phenotypic consequences may be caused by perturbations in genomic DNA methylation levels. The correlation between the 21-24nt small RNAs and DNA methylation regions were investigated but only a statistically significant correlation for 24nt small RNAs was observed. CONCLUSIONS These data extend the significance of epigenetic changes during maize embryo callus formation, and the methylation changes might explain some of the observed embryonic callus variation in callus formation.
Collapse
Affiliation(s)
- Hongjun Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Langlang Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xuerong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Lin Zhang
- Department of Agronomy, Northeast Agricultural University, Harbin, 150030 China
| | - Xing Zeng
- Department of Agronomy, Northeast Agricultural University, Harbin, 150030 China
| | - Shupeng Xie
- Suihua Sub-academy, Heilongjiang Academy of Agricultural Sciences, Suihua, 152052 China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, 625014 China
| | - Shibin Gao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Haijian Lin
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
111
|
Lai YS, Zhang X, Zhang W, Shen D, Wang H, Xia Y, Qiu Y, Song J, Wang C, Li X. The association of changes in DNA methylation with temperature-dependent sex determination in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2899-2912. [PMID: 28498935 DOI: 10.1093/jxb/erx144] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/13/2017] [Indexed: 05/26/2023]
Abstract
Cucumber (Cucumis sativus L.) is characterized by its diverse and flexible sexual types. Here, we evaluated the effect of low temperature (LT) exposure on cucumber femaleness under short-day conditions. Shoot apices were subjected to whole-genome bisulfate sequencing (WGBS), mRNA-seq, and sRNA-seq. The results showed that temperature had a substantial and global impact on transposable element (TE)-related small RNA-directed DNA methylation (RdDM) mechanisms, resulting in large amounts of CHH-type cytosine demethylation. In the cucumber genome, TEs are common in regions near genes that are also subject to DNA demethylation. TE-gene interactions showed very strong reactions to LT treatment, as nearly 80% of the differentially methylated regions (DMRs) were distributed in genic regions. Demethylation near genes led to the co-ordinated expression of genes and TEs. More importantly, genome-wide de novo methylation changes also resulted in small amounts of CG- and CHG-type DMRs. Methylation changes in CG-DMRs located <600 bp from the transcription start and end sites (TSSs/TESs) negatively correlated with transcription changes in differentially expressed genes (DEGs), probably indicating epiregulation. Ethylene is called the 'sex hormone' of cucumbers. We observed the up-regulation of ethylene biosynthesis-related CsACO3 and the down-regulation of an Arabidopsis RAP2.4-like ethylene-responsive (AP2/ERF) transcription factor, demonstrating the inferred epiregulation. Our study characterized the response of the apex methylome to LT and predicted the possible epiregulation of temperature-dependent sex determination (TSD) in cucumber.
Collapse
Affiliation(s)
- Yun-Song Lai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaohui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Di Shen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yudong Xia
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Qiu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiangping Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenchen Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xixiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
112
|
Daron J, Slotkin RK. EpiTEome: Simultaneous detection of transposable element insertion sites and their DNA methylation levels. Genome Biol 2017; 18:91. [PMID: 28499400 PMCID: PMC5429532 DOI: 10.1186/s13059-017-1232-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/05/2017] [Indexed: 11/15/2022] Open
Abstract
The genome-wide investigation of DNA methylation levels has been limited to reference transposable element positions. The methylation analysis of non-reference and mobile transposable elements has only recently been performed, but required both genome resequencing and MethylC-seq datasets. We have created epiTEome, a program that detects both new transposable element insertion sites and their methylation states from a single MethylC-seq dataset. EpiTEome outperforms other split-read insertion site detection programs, even while functioning on bisulfite-converted reads. EpiTEome characterizes the previously discarded fraction of DNA methylation at sites of new insertions, enabling future investigation into the epigenetic regulation of non-reference and transposed elements.
Collapse
Affiliation(s)
- Josquin Daron
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - R Keith Slotkin
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
113
|
Bewick AJ, Niederhuth CE, Ji L, Rohr NA, Griffin PT, Leebens-Mack J, Schmitz RJ. The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants. Genome Biol 2017; 18:65. [PMID: 28457232 PMCID: PMC5410703 DOI: 10.1186/s13059-017-1195-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022] Open
Abstract
Background The evolution of gene body methylation (gbM), its origins, and its functional consequences are poorly understood. By pairing the largest collection of transcriptomes (>1000) and methylomes (77) across Viridiplantae, we provide novel insights into the evolution of gbM and its relationship to CHROMOMETHYLASE (CMT) proteins. Results CMTs are evolutionary conserved DNA methyltransferases in Viridiplantae. Duplication events gave rise to what are now referred to as CMT1, 2 and 3. Independent losses of CMT1, 2, and 3 in eudicots, CMT2 and ZMET in monocots and monocots/commelinids, variation in copy number, and non-neutral evolution suggests overlapping or fluid functional evolution of this gene family. DNA methylation within genes is widespread and is found in all major taxonomic groups of Viridiplantae investigated. Genes enriched with methylated CGs (mCG) were also identified in species sister to angiosperms. The proportion of genes and DNA methylation patterns associated with gbM are restricted to angiosperms with a functional CMT3 or ortholog. However, mCG-enriched genes in the gymnosperm Pinus taeda shared some similarities with gbM genes in Amborella trichopoda. Additionally, gymnosperms and ferns share a CMT homolog closely related to CMT2 and 3. Hence, the dependency of gbM on a CMT most likely extends to all angiosperms and possibly gymnosperms and ferns. Conclusions The resulting gene family phylogeny of CMT transcripts from the most diverse sampling of plants to date redefines our understanding of CMT evolution and its evolutionary consequences on DNA methylation. Future, functional tests of homologous and paralogous CMTs will uncover novel roles and consequences to the epigenome. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1195-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam J Bewick
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Chad E Niederhuth
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Nicholas A Rohr
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Patrick T Griffin
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
114
|
Song X, Cao X. Context and Complexity: Analyzing Methylation in Trinucleotide Sequences. TRENDS IN PLANT SCIENCE 2017; 22:351-353. [PMID: 28392157 DOI: 10.1016/j.tplants.2017.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Cytosine methylation in plants occurs in the mCG, mCHG, and mCHH (where H = A, T, or C) sequence contexts and specific pathways maintain methylation in each one. A recent publication revealed that substantial heterogeneity of methylated cytosine levels exists in the CHG/CHH trinucleotide contexts, which is associated with chromomethyltranferase functions in the maintenance of methylation.
Collapse
Affiliation(s)
- Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
115
|
Lauria M, Echegoyen-Nava RA, Rodríguez-Ríos D, Zaina S, Lund G. Inter-individual variation in DNA methylation is largely restricted to tissue-specific differentially methylated regions in maize. BMC PLANT BIOLOGY 2017; 17:52. [PMID: 28231765 PMCID: PMC5324254 DOI: 10.1186/s12870-017-0997-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/08/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Variation in DNA methylation across distinct genetic populations, or in response to specific biotic or abiotic stimuli, has typically been studied in leaf DNA from pooled individuals using either reduced representation bisulfite sequencing, whole genome bisulfite sequencing (WGBS) or methylation sensitive amplified polymorphism (MSAP). The latter represents a useful alterative when sample size is large, or when analysing methylation changes in genomes that have yet to be sequenced. In this study we compared variation in methylation across ten individual leaf and endosperm samples from maize hybrid and inbred lines using MSAP. We also addressed the methodological implications of analysing methylation variation using pooled versus individual DNA samples, in addition to the validity of MSAP compared to WGBS. Finally, we analysed a subset of variable and non-variable fragments with respect to genomic location, vicinity to repetitive elements and expression patterns across leaf and endosperm tissues. RESULTS On average, 30% of individuals showed inter-individual methylation variation, mostly of leaf and endosperm-specific differentially methylated DNA regions. With the exception of low frequency demethylation events, the bulk of inter-individual methylation variation (84 and 80% in leaf and endosperm, respectively) was effectively captured in DNA from pooled individuals. Furthermore, available genome-wide methylation data largely confirmed MSAP leaf methylation profiles. Most variable methylation that mapped within genes was associated with CG methylation, and many of such genes showed tissue-specific expression profiles. Finally, we found that the hAT DNA transposon was the most common class II transposable element found in close proximity to variable DNA regions. CONCLUSIONS The relevance of our results with respect to future studies of methylation variation is the following: firstly, the finding that inter-individual methylation variation is largely restricted to tissue-specific differentially methylated DNA regions, underlines the importance of tissue-type when analysing the methylation response to a defined stimulus. Secondly, we show that pooled sample-based MSAP studies are methodologically appropriate to study methylation variation. Thirdly, we confirm that MSAP is a powerful tool when WGBS is not required or feasible, for example in plant species that have yet to be sequenced.
Collapse
Affiliation(s)
- Massimiliano Lauria
- Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria, I-20133 Milan, Italy
| | - Rodrigo Antonio Echegoyen-Nava
- Gertrud Lund, Department of Genetic Engineering, CINVESTAV - Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-Leon, Apdo. Postal 629, C. P. 36500 Irapuato, GTO Mexico
| | - Dalia Rodríguez-Ríos
- Gertrud Lund, Department of Genetic Engineering, CINVESTAV - Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-Leon, Apdo. Postal 629, C. P. 36500 Irapuato, GTO Mexico
| | - Silvio Zaina
- Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, Guanajuato, Mexico
| | - Gertrud Lund
- Gertrud Lund, Department of Genetic Engineering, CINVESTAV - Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-Leon, Apdo. Postal 629, C. P. 36500 Irapuato, GTO Mexico
| |
Collapse
|
116
|
Epigenetic Control of Gene Expression in Maize. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 328:25-48. [DOI: 10.1016/bs.ircmb.2016.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
117
|
Gouil Q, Baulcombe DC. DNA Methylation Signatures of the Plant Chromomethyltransferases. PLoS Genet 2016; 12:e1006526. [PMID: 27997534 PMCID: PMC5221884 DOI: 10.1371/journal.pgen.1006526] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/09/2017] [Accepted: 12/07/2016] [Indexed: 12/22/2022] Open
Abstract
DNA methylation in plants is traditionally partitioned into CG, CHG and CHH contexts (with H any nucleotide but G). By investigating DNA methylation patterns in trinucleotide contexts in four angiosperm species, we show that such a representation hides spatial and functional partitioning of different methylation pathways and is incomplete. CG methylation (mCG) is largely context-independent whereas, at CHG motifs, there is under-representation of mCCG in pericentric regions of A. thaliana and tomato and throughout the chromosomes of maize and rice. In A. thaliana the biased representation of mCCG in heterochromatin is related to specificities of H3K9 methyltransferase SUVH family members. At CHH motifs there is an over-representation of different variant forms of mCHH that, similarly to mCCG hypomethylation, is partitioned into the pericentric regions of the two dicots but dispersed in the monocot chromosomes. The over-represented mCHH motifs in A. thaliana associate with specific types of transposon including both class I and II elements. At mCHH the contextual bias is due to the involvement of various chromomethyltransferases whereas the context-independent CHH methylation in A. thaliana and tomato is mediated by the RNA-directed DNA methylation process that is most active in the gene-rich euchromatin. This analysis therefore reveals that the sequence context of the methylome of plant genomes is informative about the mechanisms associated with maintenance of methylation and the overlying chromatin structure. Dense cytosine DNA methylation (mC) in eukaryotes is associated with closed chromatin and gene silencing. In plants it is well known that the sequence context of the mC (either mCG, mCHG or mCHH) provides a clue as to which of several mechanisms is involved but now, based on detailed analyses of the DNA methylome in wild type and mutants of four plant species, we reveal that there is additional information in the mC sequence context. Low mCCG and over-representation of mCAA and mCTA or mCAT in A. thaliana and tomato differentiates regions of the chromosomes near the centromere where methylation is dominated by chromomethyltransferases from the chromosome arms in which mCHH is context-independent and predominantly RNA-directed. Rice and maize have similar sequence context-dependent DNA methylation but the corresponding chromosome domains are not spatially separate as in the dicots. The discovery of the subcomponents of plant methylomes based on sequence context will allow greater resolution in past and future analyses of plant methylomes.
Collapse
Affiliation(s)
- Quentin Gouil
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - David C. Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
118
|
Abstract
Despite major progress in dissecting the molecular pathways that control DNA methylation patterns in plants, little is known about the mechanisms that shape plant methylomes over evolutionary time. Drawing on recent intra- and interspecific epigenomic studies, we show that methylome evolution over long timescales is largely a byproduct of genomic changes. By contrast, methylome evolution over short timescales appears to be driven mainly by spontaneous epimutational events. We argue that novel methods based on analyses of the methylation site frequency spectrum (mSFS) of natural populations can provide deeper insights into the evolutionary forces that act at each timescale.
Collapse
Affiliation(s)
- Amaryllis Vidalis
- Population Epigenetics and Epigenomics, Technical University of Munich, Liesel-Beckman-Str. 2, 85354, Freising, Germany
| | - Daniel Živković
- Population Genetics, Technical University of Munich, Liesel-Beckman-Str. 2, 85354, Freising, Germany
| | - René Wardenaar
- Groningen Bioinformatics Centre, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - David Roquis
- Population Epigenetics and Epigenomics, Technical University of Munich, Liesel-Beckman-Str. 2, 85354, Freising, Germany
| | - Aurélien Tellier
- Population Genetics, Technical University of Munich, Liesel-Beckman-Str. 2, 85354, Freising, Germany.
| | - Frank Johannes
- Population Epigenetics and Epigenomics, Technical University of Munich, Liesel-Beckman-Str. 2, 85354, Freising, Germany. .,Institute for Advanced Study, Technical University of Munich, Lichtenbergstr. 2a, 85748, Garching, Germany.
| |
Collapse
|
119
|
|
120
|
Niederhuth CE, Bewick AJ, Ji L, Alabady MS, Kim KD, Li Q, Rohr NA, Rambani A, Burke JM, Udall JA, Egesi C, Schmutz J, Grimwood J, Jackson SA, Springer NM, Schmitz RJ. Widespread natural variation of DNA methylation within angiosperms. Genome Biol 2016; 17:194. [PMID: 27671052 DOI: 10.1101/045880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/09/2016] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND DNA methylation is an important feature of plant epigenomes, involved in the formation of heterochromatin and affecting gene expression. Extensive variation of DNA methylation patterns within a species has been uncovered from studies of natural variation. However, the extent to which DNA methylation varies between flowering plant species is still unclear. To understand the variation in genomic patterning of DNA methylation across flowering plant species, we compared single base resolution DNA methylomes of 34 diverse angiosperm species. RESULTS By analyzing whole-genome bisulfite sequencing data in a phylogenetic context, it becomes clear that there is extensive variation throughout angiosperms in gene body DNA methylation, euchromatic silencing of transposons and repeats, as well as silencing of heterochromatic transposons. The Brassicaceae have reduced CHG methylation levels and also reduced or loss of CG gene body methylation. The Poaceae are characterized by a lack or reduction of heterochromatic CHH methylation and enrichment of CHH methylation in genic regions. Furthermore, low levels of CHH methylation are observed in a number of species, especially in clonally propagated species. CONCLUSIONS These results reveal the extent of variation in DNA methylation in angiosperms and show that DNA methylation patterns are broadly a reflection of the evolutionary and life histories of plant species.
Collapse
Affiliation(s)
- Chad E Niederhuth
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, USA
| | - Adam J Bewick
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, USA
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Magdy S Alabady
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
| | - Qing Li
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Nicholas A Rohr
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, USA
| | - Aditi Rambani
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT, 84602, USA
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Joshua A Udall
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Chiedozie Egesi
- National Root Crops Research Institute (NRCRI), Umudike, Km 8 Ikot Ekpene Road, PMB 7006, Umuahia, 440001, Nigeria
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
| | - Nathan M Springer
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT, 84602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, USA.
| |
Collapse
|
121
|
Niederhuth CE, Bewick AJ, Ji L, Alabady MS, Kim KD, Li Q, Rohr NA, Rambani A, Burke JM, Udall JA, Egesi C, Schmutz J, Grimwood J, Jackson SA, Springer NM, Schmitz RJ. Widespread natural variation of DNA methylation within angiosperms. Genome Biol 2016; 17:194. [PMID: 27671052 PMCID: PMC5037628 DOI: 10.1186/s13059-016-1059-0] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/09/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND DNA methylation is an important feature of plant epigenomes, involved in the formation of heterochromatin and affecting gene expression. Extensive variation of DNA methylation patterns within a species has been uncovered from studies of natural variation. However, the extent to which DNA methylation varies between flowering plant species is still unclear. To understand the variation in genomic patterning of DNA methylation across flowering plant species, we compared single base resolution DNA methylomes of 34 diverse angiosperm species. RESULTS By analyzing whole-genome bisulfite sequencing data in a phylogenetic context, it becomes clear that there is extensive variation throughout angiosperms in gene body DNA methylation, euchromatic silencing of transposons and repeats, as well as silencing of heterochromatic transposons. The Brassicaceae have reduced CHG methylation levels and also reduced or loss of CG gene body methylation. The Poaceae are characterized by a lack or reduction of heterochromatic CHH methylation and enrichment of CHH methylation in genic regions. Furthermore, low levels of CHH methylation are observed in a number of species, especially in clonally propagated species. CONCLUSIONS These results reveal the extent of variation in DNA methylation in angiosperms and show that DNA methylation patterns are broadly a reflection of the evolutionary and life histories of plant species.
Collapse
Affiliation(s)
- Chad E Niederhuth
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, USA
| | - Adam J Bewick
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, USA
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Magdy S Alabady
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
| | - Qing Li
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Nicholas A Rohr
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, USA
| | - Aditi Rambani
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT, 84602, USA
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Joshua A Udall
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Chiedozie Egesi
- National Root Crops Research Institute (NRCRI), Umudike, Km 8 Ikot Ekpene Road, PMB 7006, Umuahia, 440001, Nigeria
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
| | - Nathan M Springer
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT, 84602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, USA.
| |
Collapse
|
122
|
Niederhuth CE, Schmitz RJ. Putting DNA methylation in context: from genomes to gene expression in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:149-156. [PMID: 27590871 DOI: 10.1016/j.bbagrm.2016.08.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 12/26/2022]
Abstract
Plant DNA methylation is its own language, interpreted by the cell to maintain silencing of transposons, facilitate chromatin structure, and to ensure proper expression of some genes. Just as in any language, context is important. Rather than being a simple "on-off switch", DNA methylation has a range of "meanings" dependent upon the underlying sequence and its location in the genome. Differences in the sequence context of individual sites are established, maintained, and interpreted by differing molecular pathways. Varying patterns of methylation within genes and surrounding sequences are associated with a continuous range of expression differences, from silencing to constitutive expression. These often-subtle differences have been pieced together from years of effort, but have taken off with the advent of methods for assessing methylation across entire genomes. Recognizing these patterns and identifying underlying causes is essential for understanding the function of DNA methylation and its systems-wide contribution to a range of processes in plant genomes. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Chad E Niederhuth
- Department of Genetics, The University of Georgia, Athens, GA, 30602, USA
| | - Robert J Schmitz
- Department of Genetics, The University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
123
|
Panda K, Ji L, Neumann DA, Daron J, Schmitz RJ, Slotkin RK. Full-length autonomous transposable elements are preferentially targeted by expression-dependent forms of RNA-directed DNA methylation. Genome Biol 2016; 17:170. [PMID: 27506905 PMCID: PMC4977677 DOI: 10.1186/s13059-016-1032-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/26/2016] [Indexed: 01/06/2023] Open
Abstract
Background Chromatin modifications such as DNA methylation are targeted to transposable elements by small RNAs in a process termed RNA-directed DNA methylation (RdDM). In plants, canonical RdDM functions through RNA polymerase IV to reinforce pre-existing transposable element silencing. Recent investigations have identified a “non-canonical” form of RdDM dependent on RNA polymerase II expression to initiate and re-establish silencing of active transposable elements. This expression-dependent RdDM mechanism functions through RNAi degradation of transposable element mRNAs into small RNAs guided by the RNA-dependent RNA polymerase 6 (RDR6) protein and is therefore referred to as RDR6-RdDM. Results We performed whole-genome MethylC-seq in 20 mutants that distinguish RdDM mechanisms when transposable elements are either transcriptionally silent or active. We identified a new mechanism of expression-dependent RdDM, which functions through DICER-LIKE3 (DCL3) but bypasses the requirement of both RNA polymerase IV and RDR6 (termed DCL3-RdDM). We found that RNA polymerase II expression-dependent forms of RdDM function on over 20 % of transcribed transposable elements, including the majority of full-length elements with all of the domains required for autonomous transposition. Lastly, we find that RDR6-RdDM preferentially targets long transposable elements due to the specificity of primary small RNAs to cleave full-length mRNAs. Conclusions Expression-dependent forms of RdDM function to critically target DNA methylation to full-length and transcriptionally active transposable elements, suggesting that these pathways are key to suppressing mobilization. This targeting specificity is initiated on the mRNA cleavage-level, yet manifested as chromatin-level silencing that in plants is epigenetically inherited from generation to generation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1032-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaushik Panda
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | | | - Josquin Daron
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | | | - R Keith Slotkin
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
124
|
Tan F, Zhou C, Zhou Q, Zhou S, Yang W, Zhao Y, Li G, Zhou DX. Analysis of Chromatin Regulators Reveals Specific Features of Rice DNA Methylation Pathways. PLANT PHYSIOLOGY 2016; 171:2041-54. [PMID: 27208249 PMCID: PMC4936571 DOI: 10.1104/pp.16.00393] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/11/2016] [Indexed: 05/18/2023]
Abstract
Plant DNA methylation that occurs at CG, CHG, and CHH sites (H = A, C, or T) is a hallmark of the repression of repetitive sequences and transposable elements (TEs). The rice (Oryza sativa) genome contains about 40% repetitive sequence and TEs and displays specific patterns of genome-wide DNA methylation. The mechanism responsible for the specific methylation patterns is unclear. Here, we analyzed the function of OsDDM1 (Deficient in DNA Methylation 1) and OsDRM2 (Deficient in DNA Methylation 1) in genome-wide DNA methylation, TE repression, small RNA accumulation, and gene expression. We show that OsDDM1 is essential for high levels of methylation at CHG and, to a lesser extent, CG sites in heterochromatic regions and also is required for CHH methylation that mainly locates in the genic regions of the genome. In addition to a large member of TEs, loss of OsDDM1 leads to hypomethylation and up-regulation of many protein-coding genes, producing very severe growth phenotypes at the initial generation. Importantly, we show that OsDRM2 mutation results in a nearly complete loss of CHH methylation and derepression of mainly small TE-associated genes and that OsDDM1 is involved in facilitating OsDRM2-mediated CHH methylation. Thus, the function of OsDDM1 and OsDRM2 defines distinct DNA methylation pathways in the bulk of DNA methylation of the genome, which is possibly related to the dispersed heterochromatin across chromosomes in rice and suggests that DNA methylation mechanisms may vary among different plant species.
Collapse
Affiliation(s)
- Feng Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China (F.T., C.Z., Q.Z., S.Z., W.Y., Y.Z., G.L., D.-X.Z.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Saclay, Université Paris-sud 11, 91405 Orsay, France (D.-X.Z.)
| | - Chao Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China (F.T., C.Z., Q.Z., S.Z., W.Y., Y.Z., G.L., D.-X.Z.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Saclay, Université Paris-sud 11, 91405 Orsay, France (D.-X.Z.)
| | - Qiangwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China (F.T., C.Z., Q.Z., S.Z., W.Y., Y.Z., G.L., D.-X.Z.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Saclay, Université Paris-sud 11, 91405 Orsay, France (D.-X.Z.)
| | - Shaoli Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China (F.T., C.Z., Q.Z., S.Z., W.Y., Y.Z., G.L., D.-X.Z.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Saclay, Université Paris-sud 11, 91405 Orsay, France (D.-X.Z.)
| | - Wenjing Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China (F.T., C.Z., Q.Z., S.Z., W.Y., Y.Z., G.L., D.-X.Z.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Saclay, Université Paris-sud 11, 91405 Orsay, France (D.-X.Z.)
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China (F.T., C.Z., Q.Z., S.Z., W.Y., Y.Z., G.L., D.-X.Z.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Saclay, Université Paris-sud 11, 91405 Orsay, France (D.-X.Z.)
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China (F.T., C.Z., Q.Z., S.Z., W.Y., Y.Z., G.L., D.-X.Z.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Saclay, Université Paris-sud 11, 91405 Orsay, France (D.-X.Z.)
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China (F.T., C.Z., Q.Z., S.Z., W.Y., Y.Z., G.L., D.-X.Z.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Saclay, Université Paris-sud 11, 91405 Orsay, France (D.-X.Z.)
| |
Collapse
|
125
|
Hirsch CD, Springer NM. Transposable element influences on gene expression in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:157-165. [PMID: 27235540 DOI: 10.1016/j.bbagrm.2016.05.010] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 01/29/2023]
Abstract
Transposable elements (TEs) comprise a major portion of many plant genomes and bursts of TE movements cause novel genomic variation within species. In order to maintain proper gene function, plant genomes have evolved a variety of mechanisms to tolerate the presence of TEs within or near genes. Here, we review our understanding of the interactions between TEs and gene expression in plants by assessing three ways that transposons can influence gene expression. First, there is growing evidence that TE insertions within introns or untranslated regions of genes are often tolerated and have minimal impact on expression level or splicing. However, there are examples in which TE insertions within genes can result in aberrant or novel transcripts. Second, TEs can provide novel alternative promoters, which can lead to new expression patterns or original coding potential of an alternate transcript. Third, TE insertions near genes can influence regulation of gene expression through a variety of mechanisms. For example, TEs may provide novel cis-acting regulatory sites behaving as enhancers or insert within existing enhancers to influence transcript production. Alternatively, TEs may change chromatin modifications in regions near genes, which in turn can influence gene expression levels. Together, the interactions of genes and TEs provide abundant evidence for the role of TEs in changing basic functions within plant genomes beyond acting as latent genomic elements or as simple insertional mutagens. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Cory D Hirsch
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Nathan M Springer
- Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
126
|
Yu P, Ji L, Lee KJ, Yu M, He C, Ambati S, McKinney EC, Jackson C, Baile CA, Schmitz RJ, Meagher RB. Subsets of Visceral Adipose Tissue Nuclei with Distinct Levels of 5-Hydroxymethylcytosine. PLoS One 2016; 11:e0154949. [PMID: 27171244 PMCID: PMC4865362 DOI: 10.1371/journal.pone.0154949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/21/2016] [Indexed: 12/11/2022] Open
Abstract
The reprogramming of cellular memory in specific cell types, and in visceral adipocytes in particular, appears to be a fundamental aspect of obesity and its related negative health outcomes. We explored the hypothesis that adipose tissue contains epigenetically distinct subpopulations of adipocytes that are differentially potentiated to record cellular memories of their environment. Adipocytes are large, fragile, and technically difficult to efficiently isolate and fractionate. We developed fluorescence nuclear cytometry (FNC) and fluorescence activated nuclear sorting (FANS) of cellular nuclei from visceral adipose tissue (VAT) using the levels of the pan-adipocyte protein, peroxisome proliferator-activated receptor gamma-2 (PPARg2), to distinguish classes of PPARg2-Positive (PPARg2-Pos) adipocyte nuclei from PPARg2-Negative (PPARg2-Neg) leukocyte and endothelial cell nuclei. PPARg2-Pos nuclei were 10-fold enriched for most adipocyte marker transcripts relative to PPARg2-Neg nuclei. PPARg2-Pos nuclei showed 2- to 50-fold higher levels of transcripts encoding most of the chromatin-remodeling factors assayed, which regulate the methylation of histones and DNA cytosine (e.g., DNMT1, TET1, TET2, KDM4A, KMT2C, SETDB1, PAXIP1, ARID1A, JMJD6, CARM1, and PRMT5). PPARg2-Pos nuclei were large with decondensed chromatin. TAB-seq demonstrated 5-hydroxymethylcytosine (5hmC) levels were remarkably dynamic in gene bodies of various classes of VAT nuclei, dropping 3.8-fold from the highest quintile of expressed genes to the lowest. In short, VAT-derived adipocytes appear to be more actively remodeling their chromatin than non-adipocytes.
Collapse
Affiliation(s)
- Ping Yu
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
| | - Kevin J. Lee
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
- GRU-UGA Medical Partnership, University of Georgia Health Sciences Campus, Prince Avenue, Athens, GA, 30602, United States of America
| | - Miao Yu
- Department of Chemistry, University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637 USA
| | - Chuan He
- Department of Chemistry, University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637 USA
| | - Suresh Ambati
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
| | - Elizabeth C. McKinney
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
| | - Crystal Jackson
- Abeome Corporation, Athens, GA, 111 Riverbend Road, 30602, United States of America
| | - Clifton A. Baile
- Department of Foods and Nutrition, University of Georgia, 305 Sanford Dr, Athens, GA, 30602, United States of America
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
| | - Richard B. Meagher
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
- * E-mail:
| |
Collapse
|
127
|
Taudt A, Colomé-Tatché M, Johannes F. Genetic sources of population epigenomic variation. Nat Rev Genet 2016; 17:319-32. [DOI: 10.1038/nrg.2016.45] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
128
|
Lachowiec J, Queitsch C, Kliebenstein DJ. Molecular mechanisms governing differential robustness of development and environmental responses in plants. ANNALS OF BOTANY 2016; 117:795-809. [PMID: 26473020 PMCID: PMC4845800 DOI: 10.1093/aob/mcv151] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/08/2015] [Accepted: 08/25/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Robustness to genetic and environmental perturbation is a salient feature of multicellular organisms. Loss of developmental robustness can lead to severe phenotypic defects and fitness loss. However, perfect robustness, i.e. no variation at all, is evolutionarily unfit as organisms must be able to change phenotype to properly respond to changing environments and biotic challenges. Plasticity is the ability to adjust phenotypes predictably in response to specific environmental stimuli, which can be considered a transient shift allowing an organism to move from one robust phenotypic state to another. Plants, as sessile organisms that undergo continuous development, are particularly dependent on an exquisite fine-tuning of the processes that balance robustness and plasticity to maximize fitness. SCOPE AND CONCLUSIONS This paper reviews recently identified mechanisms, both systems-level and molecular, that modulate robustness, and discusses their implications for the optimization of plant fitness. Robustness in living systems arises from the structure of genetic networks, the specific molecular functions of the underlying genes, and their interactions. This very same network responsible for the robustness of specific developmental states also has to be built such that it enables plastic yet robust shifts in response to environmental changes. In plants, the interactions and functions of signal transduction pathways activated by phytohormones and the tendency for plants to tolerate whole-genome duplications, tandem gene duplication and hybridization are emerging as major regulators of robustness in development. Despite their obvious implications for plant evolution and plant breeding, the mechanistic underpinnings by which plants modulate precise levels of robustness, plasticity and evolvability in networks controlling different phenotypes are under-studied.
Collapse
Affiliation(s)
- Jennifer Lachowiec
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48197, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, Seattle, WA 98155, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA and DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
129
|
Provart NJ, Alonso J, Assmann SM, Bergmann D, Brady SM, Brkljacic J, Browse J, Chapple C, Colot V, Cutler S, Dangl J, Ehrhardt D, Friesner JD, Frommer WB, Grotewold E, Meyerowitz E, Nemhauser J, Nordborg M, Pikaard C, Shanklin J, Somerville C, Stitt M, Torii KU, Waese J, Wagner D, McCourt P. 50 years of Arabidopsis research: highlights and future directions. THE NEW PHYTOLOGIST 2016; 209:921-44. [PMID: 26465351 DOI: 10.1111/nph.13687] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/24/2015] [Indexed: 05/14/2023]
Abstract
922 I. 922 II. 922 III. 925 IV. 925 V. 926 VI. 927 VII. 928 VIII. 929 IX. 930 X. 931 XI. 932 XII. 933 XIII. Natural variation and genome-wide association studies 934 XIV. 934 XV. 935 XVI. 936 XVII. 937 937 References 937 SUMMARY: The year 2014 marked the 25(th) International Conference on Arabidopsis Research. In the 50 yr since the first International Conference on Arabidopsis Research, held in 1965 in Göttingen, Germany, > 54 000 papers that mention Arabidopsis thaliana in the title, abstract or keywords have been published. We present herein a citational network analysis of these papers, and touch on some of the important discoveries in plant biology that have been made in this powerful model system, and highlight how these discoveries have then had an impact in crop species. We also look to the future, highlighting some outstanding questions that can be readily addressed in Arabidopsis. Topics that are discussed include Arabidopsis reverse genetic resources, stock centers, databases and online tools, cell biology, development, hormones, plant immunity, signaling in response to abiotic stress, transporters, biosynthesis of cells walls and macromolecules such as starch and lipids, epigenetics and epigenomics, genome-wide association studies and natural variation, gene regulatory networks, modeling and systems biology, and synthetic biology.
Collapse
Affiliation(s)
- Nicholas J Provart
- Department of Cell & Systems Biology/CAGEF, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Jose Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Siobhan M Brady
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Jelena Brkljacic
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, 43210, USA
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Vincent Colot
- Departement de Biologie École Normale Supérieure, Biologie Moleculaire des Organismes Photosynthetiques, F-75230, Paris, France
| | - Sean Cutler
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92507, USA
| | - Jeff Dangl
- Department of Biology and Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Joanna D Friesner
- Department of Plant Biology, Agricultural Sustainability Institute, University of California, Davis, CA, 95616, USA
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Erich Grotewold
- Center for Applied Plant Science, The Ohio State University, Columbus, OH, 43210, USA
| | - Elliot Meyerowitz
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jennifer Nemhauser
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Magnus Nordborg
- Gregor Mendel Institute of Molecular Plant Biology, A-1030, Vienna, Austria
| | - Craig Pikaard
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chris Somerville
- Energy Biosciences Institute, University of California, Berkeley, CA, 94704, USA
| | - Mark Stitt
- Metabolic Networks Department, Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Keiko U Torii
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Jamie Waese
- Department of Cell & Systems Biology/CAGEF, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter McCourt
- Department of Cell & Systems Biology/CAGEF, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
130
|
RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome. Proc Natl Acad Sci U S A 2015; 112:14728-33. [PMID: 26553984 DOI: 10.1073/pnas.1514680112] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The maize genome is relatively large (∼ 2.3 Gb) and has a complex organization of interspersed genes and transposable elements, which necessitates frequent boundaries between different types of chromatin. The examination of maize genes and conserved noncoding sequences revealed that many of these are flanked by regions of elevated asymmetric CHH (where H is A, C, or T) methylation (termed mCHH islands). These mCHH islands are quite short (∼ 100 bp), are enriched near active genes, and often occur at the edge of the transposon that is located nearest to genes. The analysis of DNA methylation in other sequence contexts and several chromatin modifications revealed that mCHH islands mark the transition from heterochromatin-associated modifications to euchromatin-associated modifications. The presence of an mCHH island is fairly consistent in several distinct tissues that were surveyed but shows some variation among different haplotypes. The presence of insertion/deletions in promoters often influences the presence and position of an mCHH island. The mCHH islands are dependent upon RNA-directed DNA methylation activities and are lost in mop1 and mop3 mutants, but the nearby genes rarely exhibit altered expression levels. Instead, loss of an mCHH island is often accompanied by additional loss of DNA methylation in CG and CHG contexts associated with heterochromatin in nearby transposons. This suggests that mCHH islands and RNA-directed DNA methylation near maize genes may act to preserve the silencing of transposons from activity of nearby genes.
Collapse
|
131
|
Li Q, Song J, West PT, Zynda G, Eichten SR, Vaughn MW, Springer NM. Examining the Causes and Consequences of Context-Specific Differential DNA Methylation in Maize. PLANT PHYSIOLOGY 2015; 168:1262-74. [PMID: 25869653 PMCID: PMC4528731 DOI: 10.1104/pp.15.00052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/12/2015] [Indexed: 05/18/2023]
Abstract
DNA methylation is a stable modification of chromatin that can contribute to epigenetic variation through the regulation of genes or transposons. Profiling of DNA methylation in five maize (Zea mays) inbred lines found that while DNA methylation levels for more than 99% of the analyzed genomic regions are similar, there are still 5,000 to 20,000 context-specific differentially methylated regions (DMRs) between any two genotypes. The analysis of identical-by-state genomic regions that have limited genetic variation provided evidence that DMRs can occur without local sequence variation, but they are less common than in regions with genetic variation. Characterization of the sequence specificity of DMRs, location of DMRs relative to genes and transposons, and patterns of DNA methylation in regions flanking DMRs reveals a distinct subset of DMRs. Transcriptome profiling of the same tissue revealed that only approximately 20% of genes with qualitative (on-off) differences in gene expression are associated with DMRs, and there is little evidence for association of DMRs with genes that show quantitative differences in gene expression. We also identify a set of genes that may represent cryptic information that is silenced by DNA methylation in the reference B73 genome. Many of these genes exhibit natural variation in other genotypes, suggesting the potential for selection to act upon existing epigenetic natural variation. This study provides insights into the origin and influences of DMRs in a crop species with a complex genome organization.
Collapse
Affiliation(s)
- Qing Li
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota 55108 (Q.L., P.T.W., S.R.E., N.M.S.); andTexas Advanced Computing Center, University of Texas, Austin, Texas 78758 (J.S., G.Z., M.W.V.)
| | - Jawon Song
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota 55108 (Q.L., P.T.W., S.R.E., N.M.S.); andTexas Advanced Computing Center, University of Texas, Austin, Texas 78758 (J.S., G.Z., M.W.V.)
| | - Patrick T West
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota 55108 (Q.L., P.T.W., S.R.E., N.M.S.); andTexas Advanced Computing Center, University of Texas, Austin, Texas 78758 (J.S., G.Z., M.W.V.)
| | - Greg Zynda
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota 55108 (Q.L., P.T.W., S.R.E., N.M.S.); andTexas Advanced Computing Center, University of Texas, Austin, Texas 78758 (J.S., G.Z., M.W.V.)
| | - Steven R Eichten
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota 55108 (Q.L., P.T.W., S.R.E., N.M.S.); andTexas Advanced Computing Center, University of Texas, Austin, Texas 78758 (J.S., G.Z., M.W.V.)
| | - Matthew W Vaughn
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota 55108 (Q.L., P.T.W., S.R.E., N.M.S.); andTexas Advanced Computing Center, University of Texas, Austin, Texas 78758 (J.S., G.Z., M.W.V.)
| | - Nathan M Springer
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota 55108 (Q.L., P.T.W., S.R.E., N.M.S.); andTexas Advanced Computing Center, University of Texas, Austin, Texas 78758 (J.S., G.Z., M.W.V.)
| |
Collapse
|
132
|
Giacopelli BJ, Hollick JB. Trans-Homolog Interactions Facilitating Paramutation in Maize. PLANT PHYSIOLOGY 2015; 168:1226-36. [PMID: 26149572 PMCID: PMC4528761 DOI: 10.1104/pp.15.00591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/03/2015] [Indexed: 05/13/2023]
Abstract
Paramutations represent locus-specific trans-homolog interactions affecting the heritable silencing properties of endogenous alleles. Although examples of paramutation are well studied in maize (Zea mays), the responsible mechanisms remain unclear. Genetic analyses indicate roles for plant-specific DNA-dependent RNA polymerases that generate small RNAs, and current working models hypothesize that these small RNAs direct heritable changes at sequences often acting as transcriptional enhancers. Several studies have defined specific sequences that mediate paramutation behaviors, and recent results identify a diversity of DNA-dependent RNA polymerase complexes operating in maize. Other reports ascribe broader roles for some of these complexes in normal genome function. This review highlights recent research to understand the molecular mechanisms of paramutation and examines evidence relevant to small RNA-based modes of transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Brian John Giacopelli
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Jay Brian Hollick
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
133
|
Ji L, Neumann DA, Schmitz RJ. Crop Epigenomics: Identifying, Unlocking, and Harnessing Cryptic Variation in Crop Genomes. MOLECULAR PLANT 2015; 8:860-70. [PMID: 25638564 PMCID: PMC5121661 DOI: 10.1016/j.molp.2015.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 05/19/2023]
Abstract
DNA methylation is a key chromatin modification in plant genomes that is meiotically and mitotically heritable, and at times is associated with gene expression and morphological variation. Benefiting from the increased availability of high-quality reference genome assemblies and methods to profile single-base resolution DNA methylation states, DNA methylomes for many crop species are available. These efforts are making it possible to begin answering crucial questions, including understanding the role of DNA methylation in developmental processes, its role in crop species evolution, and whether DNA methylation is dynamically altered and heritable in response to changes in the environment. These genome-wide maps provide evidence for the existence of silent epialleles in plant genomes which, once identified, can be targeted for reactivation leading to phenotypic variation.
Collapse
Affiliation(s)
- Lexiang Ji
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Drexel A Neumann
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
134
|
Williams BP, Pignatta D, Henikoff S, Gehring M. Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLoS Genet 2015; 11:e1005142. [PMID: 25826366 PMCID: PMC4380477 DOI: 10.1371/journal.pgen.1005142] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
Genomes must balance active suppression of transposable elements (TEs) with the need to maintain gene expression. In Arabidopsis, euchromatic TEs are targeted by RNA-directed DNA methylation (RdDM). Conversely, active DNA demethylation prevents accumulation of methylation at genes proximal to these TEs. It is unknown how a cellular balance between methylation and demethylation activities is achieved. Here we show that both RdDM and DNA demethylation are highly active at a TE proximal to the major DNA demethylase gene ROS1. Unexpectedly, and in contrast to most other genomic targets, expression of ROS1 is promoted by DNA methylation and antagonized by DNA demethylation. We demonstrate that inducing methylation in the ROS1 proximal region is sufficient to restore ROS1 expression in an RdDM mutant. Additionally, methylation-sensitive expression of ROS1 is conserved in other species, suggesting it is adaptive. We propose that the ROS1 locus functions as an epigenetic rheostat, tuning the level of demethylase activity in response to methylation alterations, thus ensuring epigenomic stability. Organisms must adapt to dynamic and variable internal and external environments. Maintaining homeostasis in core biological processes is crucial to minimizing the deleterious consequences of environmental fluctuations. Genomes are also dynamic and variable, and must be robust against stresses, including the invasion of genomic parasites, such as transposable elements (TEs). In this work we present the discovery of an epigenetic rheostat in plants that maintains homeostasis in levels of DNA methylation. DNA methylation typically silences transcription of TEs. Because there is positive feedback between existing and de novo DNA methylation, it is critical that methylation is not allowed to spread and potentially silence transcription of genes. To maintain homeostasis, methylation promotes the production of a demethylase enzyme that removes methylation from gene-proximal regions. The demethylation of genes is therefore always maintained in concert with the levels of methylation suppressing TEs. In addition, this DNA demethylating enzyme also represses its own production in a negative feedback loop. Together, these feedback mechanisms shed new light on how the conflict between gene expression and genome defense is maintained in homeostasis. The presence of this rheostat in multiple species suggests it is an evolutionary conserved adaptation.
Collapse
Affiliation(s)
- Ben P. Williams
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Daniela Pignatta
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
135
|
Nascent transcription affected by RNA polymerase IV in Zea mays. Genetics 2015; 199:1107-25. [PMID: 25653306 DOI: 10.1534/genetics.115.174714] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/02/2015] [Indexed: 01/23/2023] Open
Abstract
All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3'-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance.
Collapse
|
136
|
Mach J. DNA methylation in maize: toto, i've a feeling we're not in Arabidopsis anymore. THE PLANT CELL 2014; 26:4565. [PMID: 25538185 PMCID: PMC4311222 DOI: 10.1105/tpc.114.135384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|