101
|
Montez M, Majchrowska M, Krzyszton M, Bokota G, Sacharowski S, Wrona M, Yatusevich R, Massana F, Plewczynski D, Swiezewski S. Promoter-pervasive transcription causes RNA polymerase II pausing to boost DOG1 expression in response to salt. EMBO J 2023; 42:e112443. [PMID: 36705062 PMCID: PMC9975946 DOI: 10.15252/embj.2022112443] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Eukaryotic genomes are pervasively transcribed by RNA polymerase II. Yet, the molecular and biological implications of such a phenomenon are still largely puzzling. Here, we describe noncoding RNA transcription upstream of the Arabidopsis thaliana DOG1 gene, which governs salt stress responses and is a key regulator of seed dormancy. We find that expression of the DOG1 gene is induced by salt stress, thereby causing a delay in seed germination. We uncover extensive transcriptional activity on the promoter of the DOG1 gene, which produces a variety of lncRNAs. These lncRNAs, named PUPPIES, are co-directionally transcribed and extend into the DOG1 coding region. We show that PUPPIES RNAs respond to salt stress and boost DOG1 expression, resulting in delayed germination. This positive role of pervasive PUPPIES transcription on DOG1 gene expression is associated with augmented pausing of RNA polymerase II, slower transcription and higher transcriptional burst size. These findings highlight the positive role of upstream co-directional transcription in controlling transcriptional dynamics of downstream genes.
Collapse
Affiliation(s)
- Miguel Montez
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Maria Majchrowska
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Grzegorz Bokota
- Laboratory of Functional and Structural Genomics, Centre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Sebastian Sacharowski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Magdalena Wrona
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Ruslan Yatusevich
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Ferran Massana
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Dariusz Plewczynski
- Laboratory of Functional and Structural Genomics, Centre of New TechnologiesUniversity of WarsawWarsawPoland
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland
| | - Szymon Swiezewski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| |
Collapse
|
102
|
Vats S, Kumar V, Mandlik R, Patil G, Sonah H, Roy J, Sharma TR, Deshmukh R. Reference Guided De Novo Genome Assembly of Transformation Pliable Solanum lycopersicum cv. Pusa Ruby. Genes (Basel) 2023; 14:570. [PMID: 36980842 PMCID: PMC10047940 DOI: 10.3390/genes14030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Solanum lycopersicum cv. Pusa Ruby (PR) is a superior tomato cultivar routinely used as a model tomato variety. Here, we report a reference-guided genome assembly for PR, covering 97.6% of the total single-copy genes in the solanales order. The PR genome contains 34,075 genes and 423,288 variants, out of which 127,131 are intragenic and 1232 are of high impact. The assembly was packaged according to PanSol guidelines (N50 = 60,396,827) with the largest scaffold measuring 85 megabases. The similarity of the PR genome assembly to Heinz1706, M82, and Fla.8924 was measured and the results suggest PR has the lowest affinity towards the hybrid Fla.8924. We then analyzed the regeneration efficiency of PR in comparison to another variety, Pusa Early Dwarf (PED). PR was found to have a high regeneration rate (45.51%) and therefore, we performed allele mining for genes associated with regeneration and found that only AGAMOUS-LIKE15 has a null mutation. Further, allele mining for fruit quality-related genes was also executed. The PR genome has an Ovate mutation leading to round fruit shape, causing economically undesirable fruit cracking. This genomic data can be potentially used for large scale crop improvement programs as well as functional annotation studies.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Virender Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh 160014, Punjab, India
| | - Gunvant Patil
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79410, USA
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
| | - Tilak Raj Sharma
- Department of Crop Science, Indian Council of Agriculture Research (ICAR), Krishi Bhavan, New Delhi 110001, Delhi, India
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh 123031, Haryana, India
| |
Collapse
|
103
|
Casas-Mollano JA, Zinselmeier M, Sychla A, Smanski MJ. Efficient gene activation in plants by the MoonTag programmable transcriptional activator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528671. [PMID: 36824723 PMCID: PMC9948947 DOI: 10.1101/2023.02.15.528671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
CRISPR/Cas-based transcriptional activators have been developed to induce gene expression in eukaryotic and prokaryotic organisms. The main advantages of CRISPR-Cas based systems is that they can achieve high levels of transcriptional activation and are very easy to program via pairing between the guide RNA and the DNA target strand. SunTag is a second-generation system that activates transcription by recruiting multiple copies of an activation domain (AD) to its target promoters. SunTag is a strong activator; however, in some species it is difficult to stably express. To overcome this problem, we designed MoonTag, a new activator that worked on the same basic principle as SunTag, but whose components are better tolerated when stably expressed in transgenic plants. We demonstrate that MoonTag is capable of inducing high levels of transcription in all plants tested. In Setaria, MoonTag is capable of inducing high levels of transcription of reporter genes as well as of endogenous genes. More important, MoonTag components are expressed in transgenic plants to high levels without any deleterious effects. MoonTag is also able to efficiently activate genes in eudicotyledonous species such as Arabidopsis and tomato. Finally, we show that MoonTag activation is functional across a range of temperatures, which is promising for potential field applications.
Collapse
Affiliation(s)
- J Armando Casas-Mollano
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108
| | - Matthew Zinselmeier
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108
- Department of Genetics, Cellular, and Developmental Biology, University of Minnesota, Saint Paul, MN 55108
| | - Adam Sychla
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108
| | - Michael J Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108
| |
Collapse
|
104
|
Sustek-Sánchez F, Rognli OA, Rostoks N, Sõmera M, Jaškūnė K, Kovi MR, Statkevičiūtė G, Sarmiento C. Improving abiotic stress tolerance of forage grasses - prospects of using genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1127532. [PMID: 36824201 PMCID: PMC9941169 DOI: 10.3389/fpls.2023.1127532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Due to an increase in the consumption of food, feed, and fuel and to meet global food security needs for the rapidly growing human population, there is a necessity to obtain high-yielding crops that can adapt to future climate changes. Currently, the main feed source used for ruminant livestock production is forage grasses. In temperate climate zones, perennial grasses grown for feed are widely distributed and tend to suffer under unfavorable environmental conditions. Genome editing has been shown to be an effective tool for the development of abiotic stress-resistant plants. The highly versatile CRISPR-Cas system enables increasingly complex modifications in genomes while maintaining precision and low off-target frequency mutations. In this review, we provide an overview of forage grass species that have been subjected to genome editing. We offer a perspective view on the generation of plants resilient to abiotic stresses. Due to the broad factors contributing to these stresses the review focuses on drought, salt, heat, and cold stresses. The application of new genomic techniques (e.g., CRISPR-Cas) allows addressing several challenges caused by climate change and abiotic stresses for developing forage grass cultivars with improved adaptation to the future climatic conditions. Genome editing will contribute towards developing safe and sustainable food systems.
Collapse
Affiliation(s)
- Ferenz Sustek-Sánchez
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Odd Arne Rognli
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Nils Rostoks
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristina Jaškūnė
- Laboratory of Genetics and Physiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Mallikarjuna Rao Kovi
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gražina Statkevičiūtė
- Laboratory of Genetics and Physiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
105
|
Rahman SU, McCoy E, Raza G, Ali Z, Mansoor S, Amin I. Improvement of Soybean; A Way Forward Transition from Genetic Engineering to New Plant Breeding Technologies. Mol Biotechnol 2023; 65:162-180. [PMID: 35119645 DOI: 10.1007/s12033-022-00456-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/21/2022] [Indexed: 01/18/2023]
Abstract
Soybean is considered one of the important crops among legumes. Due to high nutritional contents in seed (proteins, sugars, oil, fatty acids, and amino acids), soybean is used globally for food, feed, and fuel. The primary consumption of soybean is vegetable oil and feed for chickens and livestock. Apart from this, soybean benefits soil fertility by fixing atmospheric nitrogen through root nodular bacteria. While conventional breeding is practiced for soybean improvement, with the advent of new biotechnological methods scientists have also engineered soybean to improve different traits (herbicide, insect, and disease resistance) to fulfill consumer requirements and to meet the global food deficiency. Genetic engineering (GE) techniques such as transgenesis and gene silencing help to minimize the risks and increase the adaptability of soybean. Recently, new plant breeding technologies (NPBTs) emerged such as zinc-finger nucleases, transcription activator-like effector nucleases, and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9), which paved the way for enhanced genetic modification of soybean. These NPBTs have the potential to improve soybean via gene functional characterization precision genome engineering for trait improvement. Importantly, these NPBTs address the ethical and public acceptance issues related to genetic modifications and transgenesis in soybean. In the present review, we summarized the improvement of soybean through GE and NPBTs. The valuable traits that have been improved through GE for different constraints have been discussed. Moreover, the traits that have been improved through NPBTs and potential targets for soybean improvements via NPBTs and solutions for ethical and public acceptance are also presented.
Collapse
Affiliation(s)
- Saleem Ur Rahman
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Evan McCoy
- Center for Applied Genetic Technologies (CAGT), University of Georgia, Athens, USA
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Zahir Ali
- Laboratory for Genome Engineering, Center for Desert Agriculture and Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan.
| |
Collapse
|
106
|
Zhong V, Archibald BN, Brophy JAN. Transcriptional and post-transcriptional controls for tuning gene expression in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102315. [PMID: 36462457 DOI: 10.1016/j.pbi.2022.102315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Plant biotechnologists seek to modify plants through genetic reprogramming, but our ability to precisely control gene expression in plants is still limited. Here, we review transcription and translation in the model plants Arabidopsis thaliana and Nicotiana benthamiana with an eye toward control points that may be used to predictably modify gene expression. We highlight differences in gene expression requirements between these plants and other species, and discuss the ways in which our understanding of gene expression has been used to engineer plants. This review is intended to serve as a resource for plant scientists looking to achieve precise control over gene expression.
Collapse
Affiliation(s)
- Vivian Zhong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Bella N Archibald
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
107
|
Ahouvi Y, Haber Z, Zach YY, Rosental L, Toubiana D, Sharma D, Alseekh S, Tajima H, Fernie AR, Brotman Y, Blumwald E, Sade N. The Alteration of Tomato Chloroplast Vesiculation Positively Affects Whole-Plant Source-Sink Relations and Fruit Metabolism under Stress Conditions. PLANT & CELL PHYSIOLOGY 2023; 63:2008-2026. [PMID: 36161338 DOI: 10.1093/pcp/pcac133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Changes in climate conditions can negatively affect the productivity of crop plants. They can induce chloroplast degradation (senescence), which leads to decreased source capacity, as well as decreased whole-plant carbon/nitrogen assimilation and allocation. The importance, contribution and mechanisms of action regulating source-tissue capacity under stress conditions in tomato (Solanum lycopersicum) are not well understood. We hypothesized that delaying chloroplast degradation by altering the activity of the tomato chloroplast vesiculation (CV) under stress would lead to more efficient use of carbon and nitrogen and to higher yields. Tomato CV is upregulated under stress conditions. Specific induction of CV in leaves at the fruit development stage resulted in stress-induced senescence and negatively affected fruit yield, without any positive effects on fruit quality. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/CAS9) knockout CV plants, generated using a near-isogenic tomato line with enhanced sink capacity, exhibited stress tolerance at both the vegetative and the reproductive stages, leading to enhanced fruit quantity, quality and harvest index. Detailed metabolic and transcriptomic network analysis of sink tissue revealed that the l-glutamine and l-arginine biosynthesis pathways are associated with stress-response conditions and also identified putative novel genes involved in tomato fruit quality under stress. Our results are the first to demonstrate the feasibility of delayed stress-induced senescence as a stress-tolerance trait in a fleshy fruit crop, to highlight the involvement of the CV pathway in the regulation of source strength under stress and to identify genes and metabolic pathways involved in increased tomato sink capacity under stress conditions.
Collapse
Affiliation(s)
- Yoav Ahouvi
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Zechariah Haber
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Yair Yehoshua Zach
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Leah Rosental
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 1 David Ben Gurion Blvd., Beer-Sheva 8410501, Israel
| | - David Toubiana
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Davinder Sharma
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Saleh Alseekh
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, 1 Am Mühlenberg, Golm, Potsdam 14476, Germany
- Department of Plant Metabolomics, Center for Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv 4000, Bulgaria
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Alisdair R Fernie
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, 1 Am Mühlenberg, Golm, Potsdam 14476, Germany
- Department of Plant Metabolomics, Center for Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv 4000, Bulgaria
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 1 David Ben Gurion Blvd., Beer-Sheva 8410501, Israel
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| |
Collapse
|
108
|
Ma Z, Ma L, Zhou J. Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. MOLECULAR HORTICULTURE 2023; 3:1. [PMID: 37789479 PMCID: PMC10515014 DOI: 10.1186/s43897-023-00049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/10/2023] [Indexed: 10/05/2023]
Abstract
Fruit crops, consist of climacteric and non-climacteric fruits, are the major sources of nutrients and fiber for human diet. Since 2013, CRISPR/Cas (Clustered Regularly Interspersed Short Palindromic Repeats and CRISPR-Associated Protein) genome editing system has been widely employed in different plants, leading to unprecedented progress in the genetic improvement of many agronomically important fruit crops. Here, we summarize latest advancements in CRISPR/Cas genome editing of fruit crops, including efforts to decipher the mechanisms behind plant development and plant immunity, We also highlight the potential challenges and improvements in the application of genome editing tools to fruit crops, including optimizing the expression of CRISPR/Cas cassette, improving the delivery efficiency of CRISPR/Cas reagents, increasing the specificity of genome editing, and optimizing the transformation and regeneration system. In addition, we propose the perspectives on the application of genome editing in crop breeding especially in fruit crops and highlight the potential challenges. It is worth noting that efforts to manipulate fruit crops with genome editing systems are urgently needed for fruit crops breeding and demonstration.
Collapse
Affiliation(s)
- Zhimin Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Lijing Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Junhui Zhou
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China.
| |
Collapse
|
109
|
May D, Paldi K, Altpeter F. Targeted mutagenesis with sequence-specific nucleases for accelerated improvement of polyploid crops: Progress, challenges, and prospects. THE PLANT GENOME 2023:e20298. [PMID: 36692095 DOI: 10.1002/tpg2.20298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Many of the world's most important crops are polyploid. The presence of more than two sets of chromosomes within their nuclei and frequently aberrant reproductive biology in polyploids present obstacles to conventional breeding. The presence of a larger number of homoeologous copies of each gene makes random mutation breeding a daunting task for polyploids. Genome editing has revolutionized improvement of polyploid crops as multiple gene copies and/or alleles can be edited simultaneously while preserving the key attributes of elite cultivars. Most genome-editing platforms employ sequence-specific nucleases (SSNs) to generate DNA double-stranded breaks at their target gene. Such DNA breaks are typically repaired via the error-prone nonhomologous end-joining process, which often leads to frame shift mutations, causing loss of gene function. Genome editing has enhanced the disease resistance, yield components, and end-use quality of polyploid crops. However, identification of candidate targets, genotyping, and requirement of high mutagenesis efficiency remain bottlenecks for targeted mutagenesis in polyploids. In this review, we will survey the tremendous progress of SSN-mediated targeted mutagenesis in polyploid crop improvement, discuss its challenges, and identify optimizations needed to sustain further progress.
Collapse
Affiliation(s)
- David May
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Katalin Paldi
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Fredy Altpeter
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
- Plant Cellular and Molecular Biology Program, Genetics Institute, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
| |
Collapse
|
110
|
Abstract
Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) systems have been developed as important tools for plant genome engineering. Here, we demonstrate that the hypercompact CasΦ nuclease is able to generate stably inherited gene edits in Arabidopsis, and that CasΦ guide RNAs can be expressed with either the Pol-III U6 promoter or a Pol-II promoter together with ribozyme mediated RNA processing. Using the Arabidopsis fwa epiallele, we show that CasΦ displays higher editing efficiency when the target locus is not DNA methylated, suggesting that CasΦ is sensitive to chromatin environment. Importantly, two CasΦ protein variants, vCasΦ and nCasΦ, both showed much higher editing efficiency relative to the wild-type CasΦ enzyme. Consistently, vCasΦ and nCasΦ yielded offspring plants with inherited edits at much higher rates compared to WTCasΦ. Extensive genomic analysis of gene edited plants showed no off-target editing, suggesting that CasΦ is highly specific. The hypercompact size, T-rich minimal protospacer adjacent motif (PAM), and wide range of working temperatures make CasΦ an excellent supplement to existing plant genome editing systems.
Collapse
|
111
|
Abstract
The advent of clustered regularly interspaced short palindromic repeat (CRISPR) genome editing, coupled with advances in computing and imaging capabilities, has initiated a new era in which genetic diseases and individual disease susceptibilities are both predictable and actionable. Likewise, genes responsible for plant traits can be identified and altered quickly, transforming the pace of agricultural research and plant breeding. In this Review, we discuss the current state of CRISPR-mediated genetic manipulation in human cells, animals, and plants along with relevant successes and challenges and present a roadmap for the future of this technology.
Collapse
Affiliation(s)
- Joy Y Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jennifer A Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.,Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Gladstone Institutes, University of California, San Francisco, San Francisco, CA, USA.,Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| |
Collapse
|
112
|
Nascimento FDS, Rocha ADJ, Soares JMDS, Mascarenhas MS, Ferreira MDS, Morais Lino LS, Ramos APDS, Diniz LEC, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Gene Editing for Plant Resistance to Abiotic Factors: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:305. [PMID: 36679018 PMCID: PMC9860801 DOI: 10.3390/plants12020305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 05/22/2023]
Abstract
Agricultural crops are exposed to various abiotic stresses, such as salinity, water deficits, temperature extremes, floods, radiation, and metal toxicity. To overcome these challenges, breeding programs seek to improve methods and techniques. Gene editing by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR/Cas-is a versatile tool for editing in all layers of the central dogma with focus on the development of cultivars of plants resistant or tolerant to multiple biotic or abiotic stresses. This systematic review (SR) brings new contributions to the study of the use of CRISPR/Cas in gene editing for tolerance to abiotic stress in plants. Articles deposited in different electronic databases, using a search string and predefined inclusion and exclusion criteria, were evaluated. This SR demonstrates that the CRISPR/Cas system has been applied to several plant species to promote tolerance to the main abiotic stresses. Among the most studied crops are rice and Arabidopsis thaliana, an important staple food for the population, and a model plant in genetics/biotechnology, respectively, and more recently tomato, whose number of studies has increased since 2021. Most studies were conducted in Asia, specifically in China. The Cas9 enzyme is used in most articles, and only Cas12a is used as an additional gene editing tool in plants. Ribonucleoproteins (RNPs) have emerged as a DNA-free strategy for genome editing without exogenous DNA. This SR also identifies several genes edited by CRISPR/Cas, and it also shows that plant responses to stress factors are mediated by many complex-signaling pathways. In addition, the quality of the articles included in this SR was validated by a risk of bias analysis. The information gathered in this SR helps to understand the current state of CRISPR/Cas in the editing of genes and noncoding sequences, which plays a key role in the regulation of various biological processes and the tolerance to multiple abiotic stresses, with potential for use in plant genetic improvement programs.
Collapse
Affiliation(s)
| | - Anelita de Jesus Rocha
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | - Mileide dos Santos Ferreira
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Deng J, Shi Y, Peng X, He Y, Chen X, Li M, Lin X, Liao W, Huang Y, Jiang T, Lilley DJ, Miao Z, Huang L. Ribocentre: a database of ribozymes. Nucleic Acids Res 2023; 51:D262-D268. [PMID: 36177882 PMCID: PMC9825448 DOI: 10.1093/nar/gkac840] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 01/29/2023] Open
Abstract
Ribozymes are excellent systems in which to study 'sequence - structure - function' relationships in RNA molecules. Understanding these relationships may greatly help structural modeling and design of functional RNA structures and some functional structural modules could be repurposed in molecular design. At present, there is no comprehensive database summarising all the natural ribozyme families. We have therefore created Ribocentre, a database that collects together sequence, structure and mechanistic data on 21 ribozyme families. This includes available information on timelines, sequence families, secondary and tertiary structures, catalytic mechanisms, applications of the ribozymes together with key publications. The database is publicly available at https://www.ribocentre.org.
Collapse
Affiliation(s)
- Jie Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yaohuang Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Xuemei Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuanlin He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaoxue Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Mengxiao Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaowei Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wenjian Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuanyin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Taijiao Jiang
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Zhichao Miao
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
114
|
Current status and future prospects in cannabinoid production through in vitro culture and synthetic biology. Biotechnol Adv 2023; 62:108074. [PMID: 36481387 DOI: 10.1016/j.biotechadv.2022.108074] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
For centuries, cannabis has been a rich source of fibrous, pharmaceutical, and recreational ingredients. Phytocannabinoids are the most important and well-known class of cannabis-derived secondary metabolites and display a broad range of health-promoting and psychoactive effects. The unique characteristics of phytocannabinoids (e.g., metabolite likeness, multi-target spectrum, and safety profile) have resulted in the development and approval of several cannabis-derived drugs. While most work has focused on the two main cannabinoids produced in the plant, over 150 unique cannabinoids have been identified. To meet the rapidly growing phytocannabinoid demand, particularly many of the minor cannabinoids found in low amounts in planta, biotechnology offers promising alternatives for biosynthesis through in vitro culture and heterologous systems. In recent years, the engineered production of phytocannabinoids has been obtained through synthetic biology both in vitro (cell suspension culture and hairy root culture) and heterologous systems. However, there are still several bottlenecks (e.g., the complexity of the cannabinoid biosynthetic pathway and optimizing the bioprocess), hampering biosynthesis and scaling up the biotechnological process. The current study reviews recent advances related to in vitro culture-mediated cannabinoid production. Additionally, an integrated overview of promising conventional approaches to cannabinoid production is presented. Progress toward cannabinoid production in heterologous systems and possible avenues for avoiding autotoxicity are also reviewed and highlighted. Machine learning is then introduced as a powerful tool to model, and optimize bioprocesses related to cannabinoid production. Finally, regulation and manipulation of the cannabinoid biosynthetic pathway using CRISPR- mediated metabolic engineering is discussed.
Collapse
|
115
|
Wu FH, Hsu CT, Lin CS. Targeted Insertion in Nicotiana benthamiana Genomes via Protoplast Regeneration. Methods Mol Biol 2023; 2653:297-315. [PMID: 36995634 DOI: 10.1007/978-1-0716-3131-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Insertion of a specific sequence in a targeted region for precise editing is still a major challenge in plants. Current protocols rely on inefficient homology-directed repair or non-homologous end-joining with modified double-stranded oligodeoxyribonucleotides (dsODNs) as donors. We developed a simple protocol that eliminates the need for expensive equipment, chemicals, modifications of donor DNA, and complicated vector construction. The protocol uses polyethylene glycol (PEG)-calcium to deliver low-cost, unmodified single-stranded oligodeoxyribonucleotides (ssODNs) and CRISPR/Cas9 ribonucleoprotein (RNP) complexes into Nicotiana benthamiana protoplasts. Regenerated plants were obtained from edited protoplasts with an editing frequency of up to 50% at the target locus. The inserted sequence was inherited to the next generation; this method thus opens the possibility for the future exploration of genomes by targeted insertion in plants.
Collapse
Affiliation(s)
- Fu-Hui Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chen-Tran Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
116
|
Lawrenson T, Atkinson N, Forner M, Harwood W. Highly Efficient Gene Knockout in Medicago truncatula Genotype R108 Using CRISPR-Cas9 System and an Optimized Agrobacterium Transformation Method. Methods Mol Biol 2023; 2653:221-252. [PMID: 36995630 DOI: 10.1007/978-1-0716-3131-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Medicago truncatula is the model plant species for studying symbioses with nitrogen-fixing rhizobia and arbuscular mycorrhizae, where edited mutants are invaluable for elucidating the contributions of known genes in these processes. Streptococcus pyogenes Cas9 (SpCas9)-based genome editing is a facile means of achieving loss of function, including where multiple gene knockouts are desired in a single generation. We describe how the user can customize our vector to target single or multiple genes, then how the vector is used to make M. truncatula transgenic plants containing target site mutations. Finally, obtaining transgene-free homozygous mutants is covered.
Collapse
|
117
|
Zhang D, Spiegelhalder RP, Abrash EB, Nunes TDG, Hidalgo I, Anleu Gil MX, Jesenofsky B, Lindner H, Bergmann DC, Raissig MT. Opposite polarity programs regulate asymmetric subsidiary cell divisions in grasses. eLife 2022; 11:e79913. [PMID: 36537077 PMCID: PMC9767456 DOI: 10.7554/elife.79913] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Grass stomata recruit lateral subsidiary cells (SCs), which are key to the unique stomatal morphology and the efficient plant-atmosphere gas exchange in grasses. Subsidiary mother cells (SMCs) strongly polarise before an asymmetric division forms a SC. Yet apart from a proximal polarity module that includes PANGLOSS1 (PAN1) and guides nuclear migration, little is known regarding the developmental processes that form SCs. Here, we used comparative transcriptomics of developing wild-type and SC-less bdmute leaves in the genetic model grass Brachypodium distachyon to identify novel factors involved in SC formation. This approach revealed BdPOLAR, which forms a novel, distal polarity domain in SMCs that is opposite to the proximal PAN1 domain. Both polarity domains are required for the formative SC division yet exhibit various roles in guiding pre-mitotic nuclear migration and SMC division plane orientation, respectively. Nonetheless, the domains are linked as the proximal domain controls polarisation of the distal domain. In summary, we identified two opposing polarity domains that coordinate the SC division, a process crucial for grass stomatal physiology.
Collapse
Affiliation(s)
- Dan Zhang
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | | | - Emily B Abrash
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Tiago DG Nunes
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Inés Hidalgo
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | | | - Barbara Jesenofsky
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Heike Lindner
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
- Institute of Plant Sciences, University of BernBernSwitzerland
| | - Dominique C Bergmann
- Department of Biology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Michael T Raissig
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
- Institute of Plant Sciences, University of BernBernSwitzerland
| |
Collapse
|
118
|
Tek MI, Calis O, Fidan H, Shah MD, Celik S, Wani SH. CRISPR/Cas9 based mlo-mediated resistance against Podosphaera xanthii in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1081506. [PMID: 36600929 PMCID: PMC9806270 DOI: 10.3389/fpls.2022.1081506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Powdery mildews (PM) are common and severe pathogen groups that threaten plants, and PM resistance is complex and polygenic in cucumbers. Previously mlo-based resistance was reported in various plants, including cucumber, with generated loss-of CsaMLO function mutants. However, mlo-based resistance in cucumber is also complex and involves additional mechanisms such as hypersensitive response (HR) and papillae formation. For this reason, we focused on determining the mlo-based powdery mildew resistance mechanism in cucumber. CRISPR/Cas9 was used in the present study to generate loss-of-function mutants for CsaMLO1, CsaMLO8, and CsaMLO11 of PM susceptible ADR27 cucumber inbred lines and CsaMLO mutants were obtained and validated. Trypan Blue and DAB staining were performed to detect Podosphaera xanthii germination/penetration rates and accumulation of Reactive Oxygen Species (ROS). Our results indicate that PM-susceptibility associated CsaMLOs in cucumber are negative regulators in different defense mechanisms against powdery mildew at early and late stages of infection. Further, the experiment results indicated that CsaMLO8 mutation-based resistance was associated with the pre-invasive response, while CsaMLO1 and CsaMLO11 could be negative regulators in the post-invasive defense response in cucumber against P. xanthii. Although the loss-of CsaMLO8 function confers the highest penetration resistance, CsaMLO1 and CsaMLO11 double mutations could be potential candidates for HR-based resistance against PM pathogen in cucumber. These results highlighted the crucial role of CRISPR/Cas9 to develop PM resistant cucumber cultivars, possessing strong pre-invasive defense with CsaMLO8 or post-invasive with CsaMLO1/CsaMLO11 mutations.
Collapse
Affiliation(s)
- Mumin Ibrahim Tek
- Plant Protection Department, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
| | - Ozer Calis
- Plant Protection Department, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
| | - Hakan Fidan
- Plant Protection Department, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
| | - Mehraj D. Shah
- Plant Virology and Molecular Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Sefanur Celik
- Plant Protection Department, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
| | - Shabir Hussain Wani
- Plant Protection Department, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
119
|
Miroshnichenko D, Timerbaev V, Klementyeva A, Pushin A, Sidorova T, Litvinov D, Nazarova L, Shulga O, Divashuk M, Karlov G, Salina E, Dolgov S. CRISPR/Cas9-induced modification of the conservative promoter region of VRN-A1 alters the heading time of hexaploid bread wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1048695. [PMID: 36544871 PMCID: PMC9760837 DOI: 10.3389/fpls.2022.1048695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
In cereals, the vernalization-related gene network plays an important role in regulating the transition from the vegetative to the reproductive phase to ensure optimal reproduction in a temperate climate. In hexaploid bread wheat (Triticum aestivum L.), the spring growth habit is associated with the presence of at least one dominant locus of VERNALIZATION 1 gene (VRN-1), which usually differs from recessive alleles due to mutations in the regulatory sequences of the promoter or/and the first intron. VRN-1 gene is a key regulator of floral initiation; various combinations of dominant and recessive alleles, especially VRN-A1 homeologs, determine the differences in the timing of wheat heading/flowering. In the present study, we attempt to expand the types of VRN-A1 alleles using CRISPR/Cas9 targeted modification of the promoter sequence. Several mono- and biallelic changes were achieved within the 125-117 bp upstream sequence of the start codon of the recessive vrn-A1 gene in plants of semi-winter cv. 'Chinese Spring'. New mutations stably inherited in subsequent progenies and transgene-free homozygous plants carrying novel VRN-A1 variants were generated. Minor changes in the promoter sequence, such as 1-4 nucleotide insertions/deletions, had no effect on the heading time of plants, whereas the CRISPR/Cas9-mediated 8 bp deletion between -125 and -117 bp of the vrn-A1 promoter shortened the time of head emergence by up to 2-3 days. Such a growth habit was consistently observed in homozygous mutant plants under nonvernalized cultivation using different long day regimes (16, 18, or 22 h), whereas the cold treatment (from two weeks and more) completely leveled the effect of the 8 bp deletion. Importantly, comparison with wild-type plants showed that the implemented alteration has no negative effects on main yield characteristics. Our results demonstrate the potential to manipulate the heading time of wheat through targeted editing of the VRN-A1 gene promoter sequence on an otherwise unchanged genetic background.
Collapse
Affiliation(s)
- Dmitry Miroshnichenko
- Kurchatov Genomic Center — All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- Branch of Institute of Bioorganic Chemistry RAS, Pushchino, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Vadim Timerbaev
- Kurchatov Genomic Center — All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- Branch of Institute of Bioorganic Chemistry RAS, Pushchino, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Anna Klementyeva
- Branch of Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - Alexander Pushin
- Branch of Institute of Bioorganic Chemistry RAS, Pushchino, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Tatiana Sidorova
- Branch of Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - Dmitry Litvinov
- Kurchatov Genomic Center — All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Lubov Nazarova
- Kurchatov Genomic Center — All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Olga Shulga
- Kurchatov Genomic Center — All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Mikhail Divashuk
- Kurchatov Genomic Center — All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Gennady Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Elena Salina
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| | - Sergey Dolgov
- Branch of Institute of Bioorganic Chemistry RAS, Pushchino, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
120
|
Barrero LS, Willmann MR, Craft EJ, Akther KM, Harrington SE, Garzon‐Martinez GA, Glahn RP, Piñeros MA, McCouch SR. Identifying genes associated with abiotic stress tolerance suitable for CRISPR/Cas9 editing in upland rice cultivars adapted to acid soils. PLANT DIRECT 2022; 6:e469. [PMID: 36514785 PMCID: PMC9737570 DOI: 10.1002/pld3.469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Five genes of large phenotypic effect known to confer abiotic stress tolerance in rice were selected to characterize allelic variation in commercial Colombian tropical japonica upland rice cultivars adapted to drought-prone acid soil environments (cv. Llanura11 and Porvenir12). Allelic variants of the genes ART1, DRO1, SUB1A, PSTOL1, and SPDT were characterized by PCR and/or Sanger sequencing in the two upland cultivars and compared with the Nipponbare and other reference genomes. Two genes were identified as possible targets for gene editing: SUB1A (Submergence 1A), to improve tolerance to flooding, and SPDT (SULTR3;4) (SULTR-like Phosphorus Distribution Transporter), to improve phosphorus utilization efficiency and grain quality. Based on technical and regulatory considerations, SPDT was targeted for editing. The two upland cultivars were shown to carry the SPDT wild-type (nondesirable) allele based on sequencing, RNA expression, and phenotypic evaluations under hydroponic and greenhouse conditions. A gene deletion was designed using the CRISPR/Cas9 system, and specialized reagents were developed for SPDT editing, including vectors targeting the gene and a protoplast transfection transient assay. The desired edits were confirmed in protoplasts and serve as the basis for ongoing plant transformation experiments aiming to improve the P-use efficiency of upland rice grown in acidic soils.
Collapse
Affiliation(s)
- Luz S. Barrero
- Corporacion Colombiana de Investigacion AgropecuariaAGROSAVIAMosqueraColombia
- Plant Breeding & Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Matthew R. Willmann
- Plant Transformation Facility, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
- Present address:
USDA‐ARS, Robert W. Holley CenterIthacaNew YorkUSA
| | - Eric J. Craft
- Present address:
USDA‐ARS, Robert W. Holley CenterIthacaNew YorkUSA
| | - Kazi M. Akther
- Plant Breeding & Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Sandra E. Harrington
- Plant Breeding & Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | | | - Raymond P. Glahn
- Present address:
USDA‐ARS, Robert W. Holley CenterIthacaNew YorkUSA
| | | | - Susan R. McCouch
- Plant Breeding & Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
121
|
Kuluev BR, Mikhailova EV, Kuluev AR, Galimova AA, Zaikina EA, Khlestkina EK. Genome Editing in Species of the Tribe Triticeae with the CRISPR/Cas System. Mol Biol 2022. [DOI: 10.1134/s0026893322060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
122
|
Ul Haq SI, Zheng D, Feng N, Jiang X, Qiao F, He JS, Qiu QS. Progresses of CRISPR/Cas9 genome editing in forage crops. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153860. [PMID: 36371870 DOI: 10.1016/j.jplph.2022.153860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated-genome editing has evolved into a powerful tool that is widely used in plant species to induce editing in the genome for analyzing gene function and crop improvement. CRISPR/Cas9 is an RNA-guided genome editing tool consisting of a Cas9 nuclease and a single-guide RNA (sgRNA). The CRISPR/Cas9 system enables more accurate and efficient genome editing in crops. In this review, we summarized the advances of the CRISPR/Cas9 technology in plant genome editing and its applications in forage crops. We described briefly about the development of CRISPR/Cas9 technology in plant genome editing. We assessed the progress of CRISPR/Cas9-mediated targeted-mutagenesis in various forage crops, including alfalfa, Medicago truncatula, Hordeum vulgare, Sorghum bicolor, Setaria italica and Panicum virgatum. The potentials and challenges of CRISPR/Cas9 in forage breeding were discussed.
Collapse
Affiliation(s)
- Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xingyu Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Feng Qiao
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China; Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
123
|
Zhang Z, Zeng W, Zhang W, Li J, Kong D, Zhang L, Wang R, Peng F, Kong Z, Ke Y, Zhang H, Kim C, Zhang H, Botella JR, Zhu JK, Miki D. Insights into the molecular mechanisms of CRISPR/Cas9-mediated gene targeting at multiple loci in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:2203-2216. [PMID: 36106983 PMCID: PMC9706422 DOI: 10.1093/plphys/kiac431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination-mediated gene targeting (GT) enables precise sequence knockin or sequence replacement, and thus is a powerful tool for heritable precision genome engineering. We recently established a clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9)-mediated approach for heritable GT in Arabidopsis (Arabidopsis thaliana), but its broad utility was not tested, and the underlying molecular mechanism was unclear. Here, we achieved precise GT at 14 out of 27 tested endogenous target loci using the sequential transformation approach and obtained vector-free GT plants by backcrossing. Thus, the sequential transformation GT method provides a broadly applicable technology for precise genome manipulation. We show that our approach generates heritable GT in the egg cell or early embryo of T1 Arabidopsis plants. Analysis of imprecise GT events suggested that single-stranded transfer DNA (T-DNA)/VirD2 complexes produced during the Agrobacterium (Agrobacterium tumefaciens) transformation process may serve as the donor templates for homologous recombination-mediated repair in the GT process. This study provides new insights into the molecular mechanisms of CRISPR/Cas9-mediated GT in Arabidopsis.
Collapse
Affiliation(s)
- Zhengjing Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjie Zeng
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxin Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dali Kong
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Wang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangnan Peng
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Kong
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongping Ke
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jose Ramón Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
124
|
Kushalappa AC, Hegde NG, Gunnaiah R, Sathe A, Yogendra KN, Ajjamada L. Apoptotic-like PCD inducing HRC gene when silenced enhances multiple disease resistance in plants. Sci Rep 2022; 12:20402. [PMID: 36437285 PMCID: PMC9701806 DOI: 10.1038/s41598-022-24831-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Programmed cell death (PCD) plays an important role in plant environmental stress and has the potential to be manipulated to enhance disease resistance. Plants have innate immunity and, following pathogen perception, the host induces a Hypersensitive Response PCD (HR-PCD), leading to pattern (PTI) or effector triggered immunity (ETI). Here we report a non-HR type or Apoptotic-Like PCD (AL-PCD) in pathogen infected wheat and potato based on apoptotic-like DNA fragmentation. A deletion mutation in the gene encoding histidine rich calcium binding protein (TaHRC) in FHB-resistant wheat (R-NIL) failed to induce AL-PCD. Similarly, the CRISPR-Cas9 based silencing of StHRC gene in Russet Burbank potato failed to induce apoptotic-like DNA fragmentation, proved based on DNA laddering and TUNEL assays. The absence of AL-PCD in wheat R-NIL reduced pathogen biomass and mycotoxins, increasing the accumulation of resistance metabolites and FHB-resistance, and in potato it enhanced resistance to multiple pathogens. In addition, the reduced expressions of metacaspase (StMC7) and Ca2+ dependent endonuclease 2 (StCaN2) genes in potato with Sthrc indicated an involvement of a hierarchy of genes in the induction of AL-PCD. The HRC in commercial varieties of different crops, if functional, can be silenced by genome editing possibly to enhance resistance to multiple pathogens.
Collapse
Affiliation(s)
- A. C. Kushalappa
- grid.14709.3b0000 0004 1936 8649Plant Science Department, McGill University, Ste. Anne de Bellevue, Quebec, H9X3V9 Canada
| | - N. G. Hegde
- grid.14709.3b0000 0004 1936 8649Plant Science Department, McGill University, Ste. Anne de Bellevue, Quebec, H9X3V9 Canada
| | - R. Gunnaiah
- grid.14709.3b0000 0004 1936 8649Plant Science Department, McGill University, Ste. Anne de Bellevue, Quebec, H9X3V9 Canada ,grid.449749.30000 0004 1772 7097Present Address: University of Horticultural Sciences, Bagalkot, Karnataka India
| | - A. Sathe
- grid.14709.3b0000 0004 1936 8649Plant Science Department, McGill University, Ste. Anne de Bellevue, Quebec, H9X3V9 Canada
| | - K. N. Yogendra
- grid.419337.b0000 0000 9323 1772International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana India
| | - L. Ajjamada
- grid.14709.3b0000 0004 1936 8649Division of Hematology-OncologyJewish General Hospital, McGill University, Montreal, QC Canada
| |
Collapse
|
125
|
Cao L, Wang Z, Ma H, Liu T, Ji J, Duan K. Multiplex CRISPR/Cas9-mediated raffinose synthase gene editing reduces raffinose family oligosaccharides in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:1048967. [PMID: 36457532 PMCID: PMC9706108 DOI: 10.3389/fpls.2022.1048967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Soybean [Glycine max (L.) Merr.] is an important world economic crop. It is rich in oil, protein, and starch, and soluble carbohydrates in soybean seeds are also important for human and livestock consumption. The predominant soluble carbohydrate in soybean seed is composed of sucrose and raffinose family oligosaccharides (RFOs). Among these carbohydrates, only sucrose can be digested by humans and monogastric animals and is beneficial for metabolizable energy, while RFOs are anti-nutritional factors in diets, usually leading to flatulence and indigestion, ultimately reducing energy efficiency. Hence, breeding efforts to remove RFOs from soybean seeds can increase metabolizable energy and improve nutritional quality. The objective of this research is to use the multiplex Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9-mediated gene editing system to induce the knockout of soybean raffinose synthase (RS) genes RS2 and RS3 simultaneously to reduce RFOs in mature seeds. First, we constructed five types of multiplex gene editing systems and compared their editing efficiency in soybean hairy roots. We confirmed that the two-component transcriptional unit (TCTU) and single transcriptional unit (STU) systems with transfer RNA (tRNA) as the cleavage site performed better than other systems. The average editing efficiency at the four targets with TCTU-tRNA and STU-tRNA was 50.5% and 46.7%, respectively. Then, we designed four single-guide RNA (sgRNA) targets to induce mutations at RS2 and RS3 by using the TCTU-tRNA system. After the soybean transformation, we obtained several RS2 and RS3 mutation plants, and a subset of alleles was successfully transferred to the progeny. We identified null single and double mutants at the T2 generation and analyzed the seed carbohydrate content of their progeny. The RS2 and RS3 double mutants and the RS2 single mutant exhibited dramatically reduced levels of raffinose and stachyose in mature seeds. Further analysis of the growth and development of these mutants showed that there were no penalties on these phenotypes. Our results indicate that knocking out RS genes by multiplex CRISPR/Cas9-mediated gene editing is an efficient way to reduce RFOs in soybean. This research demonstrates the potential of using elite soybean cultivars to improve the soybean meal trait by multiplex CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9-mediated gene editing.
Collapse
|
126
|
Abdul Aziz M, Brini F, Rouached H, Masmoudi K. Genetically engineered crops for sustainably enhanced food production systems. FRONTIERS IN PLANT SCIENCE 2022; 13:1027828. [PMID: 36426158 PMCID: PMC9680014 DOI: 10.3389/fpls.2022.1027828] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Genetic modification of crops has substantially focused on improving traits for desirable outcomes. It has resulted in the development of crops with enhanced yields, quality, and tolerance to biotic and abiotic stresses. With the advent of introducing favorable traits into crops, biotechnology has created a path for the involvement of genetically modified (GM) crops into sustainable food production systems. Although these plants heralded a new era of crop production, their widespread adoption faces diverse challenges due to concerns about the environment, human health, and moral issues. Mitigating these concerns with scientific investigations is vital. Hence, the purpose of the present review is to discuss the deployment of GM crops and their effects on sustainable food production systems. It provides a comprehensive overview of the cultivation of GM crops and the issues preventing their widespread adoption, with appropriate strategies to overcome them. This review also presents recent tools for genome editing, with a special focus on the CRISPR/Cas9 platform. An outline of the role of crops developed through CRSIPR/Cas9 in achieving sustainable development goals (SDGs) by 2030 is discussed in detail. Some perspectives on the approval of GM crops are also laid out for the new age of sustainability. The advancement in molecular tools through plant genome editing addresses many of the GM crop issues and facilitates their development without incorporating transgenic modifications. It will allow for a higher acceptance rate of GM crops in sustainable agriculture with rapid approval for commercialization. The current genetic modification of crops forecasts to increase productivity and prosperity in sustainable agricultural practices. The right use of GM crops has the potential to offer more benefit than harm, with its ability to alleviate food crises around the world.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Hatem Rouached
- Michigan State University, Plant and Soil Science Building, East Lansing, MI, United States
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| |
Collapse
|
127
|
Kalaitzandonakes N, Willig C, Zahringer K. The economics and policy of genome editing in crop improvement. THE PLANT GENOME 2022:e20248. [PMID: 36321718 DOI: 10.1002/tpg2.20248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 06/16/2023]
Abstract
In this review article we analyze the economics of genome editing and its potential long-term effect on crop improvement and agriculture. We describe the emergence of genome editing as a novel platform for crop improvement, distinct from the existing platforms of plant breeding and genetic engineering. We review key technical characteristics of genome editing and describe how it enables faster trait development, lower research and development costs, and the development of novel traits not possible through previous crop improvement methods. Given these fundamental technical and economic advantages, we describe how genome editing can greatly increase the productivity and broaden the scope of crop improvement with potential outsized economic effects. We further discuss how the global regulatory policy environment, which is still emerging, can shape the ultimate path of genome editing innovation, its effect on crop improvement, and its overall socioeconomic benefits to society.
Collapse
Affiliation(s)
| | | | - Kenneth Zahringer
- Division of Applied Social Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
128
|
Yan D, Tajima H, Cline LC, Fong RY, Ottaviani JI, Shapiro H, Blumwald E. Genetic modification of flavone biosynthesis in rice enhances biofilm formation of soil diazotrophic bacteria and biological nitrogen fixation. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2135-2148. [PMID: 35869808 PMCID: PMC9616522 DOI: 10.1111/pbi.13894] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 05/06/2023]
Abstract
Improving biological nitrogen fixation (BNF) in cereal crops is a long-sought objective; however, no successful modification of cereal crops showing increased BNF has been reported. Here, we described a novel approach in which rice plants were modified to increase the production of compounds that stimulated biofilm formation in soil diazotrophic bacteria, promoted bacterial colonization of plant tissues and improved BNF with increased grain yield at limiting soil nitrogen contents. We first used a chemical screening to identify plant-produced compounds that induced biofilm formation in nitrogen-fixing bacteria and demonstrated that apigenin and other flavones induced BNF. We then used CRISPR-based gene editing targeting apigenin breakdown in rice, increasing plant apigenin contents and apigenin root exudation. When grown at limiting soil nitrogen conditions, modified rice plants displayed increased grain yield. Biofilm production also modified the root microbiome structure, favouring the enrichment of diazotrophic bacteria recruitment. Our results support the manipulation of the flavone biosynthetic pathway as a feasible strategy for the induction of biological nitrogen fixation in cereals and a reduction in the use of inorganic nitrogen fertilizers.
Collapse
Affiliation(s)
- Dawei Yan
- Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Hiromi Tajima
- Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Reedmond Y. Fong
- Department of NutritionUniversity of CaliforniaDavisCaliforniaUSA
| | - Javier I. Ottaviani
- Department of NutritionUniversity of CaliforniaDavisCaliforniaUSA
- Mars Inc.McLeanVirginiaUSA
| | | | - Eduardo Blumwald
- Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
129
|
Hassan MM, Yuan G, Liu Y, Alam M, Eckert CA, Tuskan GA, Golz JF, Yang X. Precision genome editing in plants using gene targeting and prime editing: existing and emerging strategies. Biotechnol J 2022; 17:e2100673. [PMID: 35766313 DOI: 10.1002/biot.202100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
Precise modification of plant genomes, such as seamless insertion, deletion, or replacement of DNA sequences at a predefined site, is a challenging task. Gene targeting (GT) and prime editing are currently the best approaches for this purpose. However, these techniques are inefficient in plants, which limits their applications for crop breeding programs. Recently, substantial developments have been made to improve the efficiency of these techniques in plants. Several strategies, such as RNA donor templating, chemically modified donor DNA template, and tandem-repeat homology-directed repair, are aimed at improving GT. Additionally, improved prime editing gRNA design, use of engineered reverse transcriptase enzymes, and splitting prime editing components have improved the efficacy of prime editing in plants. These emerging strategies and existing technologies are reviewed along with various perspectives on their future improvement and the development of robust precision genome editing technologies for plants.
Collapse
Affiliation(s)
- Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Mobashwer Alam
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Nambour, Queensland, Australia
| | - Carrie A Eckert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - John F Golz
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Victoria, 3010, Australia
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| |
Collapse
|
130
|
Zhang L, Dong D, Wang J, Wang Z, Zhang J, Bai RY, Wang X, Rubio Wilhelmi MDM, Blumwald E, Zhang N, Guo YD. A zinc finger protein SlSZP1 protects SlSTOP1 from SlRAE1-mediated degradation to modulate aluminum resistance. THE NEW PHYTOLOGIST 2022; 236:165-181. [PMID: 35739643 DOI: 10.1111/nph.18336] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
In acidic soils, aluminum (Al) toxicity is the main factor inhibiting plant root development and reducing crops yield. STOP1 (SENSITIVE TO PROTON RHIZOTOXICITY 1) was a critical factor in detoxifying Al stress. Under Al stress, STOP1 expression was not induced, although STOP1 protein accumulated, even in the presence of RAE1 (STOP1 DEGRADATION E3-LIGASE). How the Al stress triggers and stabilises the accumulation of STOP1 is still unknown. Here, we characterised SlSTOP1-interacting zinc finger protein (SlSZP1) using a yeast-two-hybrid screening, and generated slstop1, slszp1 and slstop1/slszp1 knockout mutants using clustered regularly interspaced short palindromic repeats (CRISPR) in tomato. SlSZP1 is induced by Al stress but it is not regulated by SlSTOP1. The slstop1, slszp1 and slstop1/slszp1 knockout mutants exhibited hypersensitivity to Al stress. The expression of SlSTOP1-targeted genes, such as SlRAE1 and SlASR2 (ALUMINUM SENSITIVE), was inhibited in both slstop1 and slszp1 mutants, but not directly regulated by SlSZP1. Furthermore, the degradation of SlSTOP1 by SlRAE1 was prevented by SlSZP1. Al stress increased the accumulation of SlSTOP1 in wild-type (WT) but not in slszp1 mutants. The overexpression of either SlSTOP1 or SlSZP1 did not enhance plant Al resistance. Altogether, our results show that SlSZP1 is an important factor for protecting SlSTOP1 from SlRAE1-mediated degradation.
Collapse
Affiliation(s)
- Lei Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Danhui Dong
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jinfang Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Zhirong Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiaojiao Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ru-Yue Bai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuewei Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | | | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
131
|
Weiss T, Crisp PA, Rai KM, Song M, Springer NM, Zhang F. Epigenetic features drastically impact CRISPR-Cas9 efficacy in plants. PLANT PHYSIOLOGY 2022; 190:1153-1164. [PMID: 35689624 PMCID: PMC9516779 DOI: 10.1093/plphys/kiac285] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/25/2022] [Indexed: 05/19/2023]
Abstract
CRISPR-Cas9-mediated genome editing has been widely adopted for basic and applied biological research in eukaryotic systems. While many studies consider DNA sequences of CRISPR target sites as the primary determinant for CRISPR mutagenesis efficiency and mutation profiles, increasing evidence reveals the substantial role of chromatin context. Nonetheless, most prior studies are limited by the lack of sufficient epigenetic resources and/or by only transiently expressing CRISPR-Cas9 in a short time window. In this study, we leveraged the wealth of high-resolution epigenomic resources in Arabidopsis (Arabidopsis thaliana) to address the impact of chromatin features on CRISPR-Cas9 mutagenesis using stable transgenic plants. Our results indicated that DNA methylation and chromatin features could lead to substantial variations in mutagenesis efficiency by up to 250-fold. Low mutagenesis efficiencies were mostly associated with repressive heterochromatic features. This repressive effect appeared to persist through cell divisions but could be alleviated through substantial reduction of DNA methylation at CRISPR target sites. Moreover, specific chromatin features, such as H3K4me1, H3.3, and H3.1, appear to be associated with significant variation in CRISPR-Cas9 mutation profiles mediated by the non-homologous end joining repair pathway. Our findings provide strong evidence that specific chromatin features could have substantial and lasting impacts on both CRISPR-Cas9 mutagenesis efficiency and DNA double-strand break repair outcomes.
Collapse
Affiliation(s)
- Trevor Weiss
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, Minnesota 55108, USA
- Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, Minnesota 55108, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Peter A Crisp
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, Minnesota 55108, USA
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Krishan M Rai
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Meredith Song
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | | |
Collapse
|
132
|
Om K, Arias NN, Jambor CC, MacGregor A, Rezachek AN, Haugrud C, Kunz HH, Wang Z, Huang P, Zhang Q, Rosnow J, Brutnell TP, Cousins AB, Chastain CJ. Pyruvate, phosphate dikinase regulatory protein impacts light response of C4 photosynthesis in Setaria viridis. PLANT PHYSIOLOGY 2022; 190:1117-1133. [PMID: 35876823 PMCID: PMC9516741 DOI: 10.1093/plphys/kiac333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
In C4 plants, the pyruvate (Pyr), phosphate dikinase regulatory protein (PDRP) regulates the activity of the C4 pathway enzyme Pyr, phosphate dikinase (PPDK) in a light-/dark-dependent manner. The importance of this regulatory action to C4 pathway function and overall C4 photosynthesis is unknown. To resolve this question, we assessed in vivo PPDK phospho-regulation and whole leaf photophysiology in a CRISPR-Cas9 PDRP knockout (KO) mutant of the NADP-ME C4 grass green millet (Setaria viridis). PDRP enzyme activity was undetectable in leaf extracts from PDRP KO lines. Likewise, PPDK phosphorylated at the PDRP-regulatory Thr residue was immunologically undetectable in leaf extracts. PPDK enzyme activity in rapid leaf extracts was constitutively high in the PDRP KO lines, irrespective of light or dark pretreatment of leaves. Gas exchange analysis of net CO2 assimilation revealed PDRP KO leaves had markedly slower light induction kinetics when leaves transition from dark to high-light or low-light to high-light. In the initial 30 min of the light induction phase, KO leaves had an ∼15% lower net CO2 assimilation rate versus the wild-type (WT). Despite the impaired slower induction kinetics, we found growth and vigor of the KO lines to be visibly indistinguishable from the WT when grown in normal air and under standard growth chamber conditions. However, the PDRP KO plants grown under a fluctuating light regime exhibited a gradual multi-day decline in Fv/Fm, indicative of progressive photosystem II damage due to the absence of PDRP. Collectively, our results demonstrate that one of PDRP's functions in C4 photosynthesis is to ensure optimal photosynthetic light induction kinetics during dynamic changes in incident light.
Collapse
Affiliation(s)
- Kuenzang Om
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA
| | - Nico N Arias
- Department of Biosciences, Minnesota State University-Moorhead, Moorhead, Minnesota 56563, USA
| | - Chaney C Jambor
- Department of Biosciences, Minnesota State University-Moorhead, Moorhead, Minnesota 56563, USA
| | - Alexandra MacGregor
- Department of Biosciences, Minnesota State University-Moorhead, Moorhead, Minnesota 56563, USA
| | - Ashley N Rezachek
- Department of Biosciences, Minnesota State University-Moorhead, Moorhead, Minnesota 56563, USA
| | - Carlan Haugrud
- Department of Biosciences, Minnesota State University-Moorhead, Moorhead, Minnesota 56563, USA
| | | | - Zhonghui Wang
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | | | - Quan Zhang
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Josh Rosnow
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | | | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA
| | | |
Collapse
|
133
|
Chen B, Xue L, Wei T, Wang N, Zhong J, Ye Z, Guo L, Lin J. Multiplex gene precise editing and large DNA fragment deletion by the CRISPR-Cas9-TRAMA system in edible mushroom Cordyceps militaris. Microb Biotechnol 2022; 15:2982-2991. [PMID: 36134724 PMCID: PMC9733643 DOI: 10.1111/1751-7915.14147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 12/14/2022] Open
Abstract
The medicinal mushroom Cordyceps militaris contains abundant valuable bioactive ingredients that have attracted a great deal of attention in the pharmaceutical and cosmetic industries. However, the development of this valuable mushroom faces the obstacle of lacking powerful genomic engineering tools. Here, by excavating the endogenous tRNA-processed element, introducing the extrachromosomal plasmid and alongside with homologous template, we develop a marker-free CRISPR-Cas9-TRAMA genomic editing system to achieve the multiplex gene precise editing and large synthetic cluster deletion in C. militaris. We further operated editing in the synthetases of cordycepin and ergothioneine to demonstrate the application of Cas9-TRAMA system in protein modification, promoter strength evaluation and 10 kb metabolic synthetic cluster deletion. The Cas9-TRAMA system provides a scalable method for excavating the valuable metabolic resource of medicinal mushrooms and constructing a mystical cellular pathway to elucidate the complex cell behaviours of the edible mushroom.
Collapse
Affiliation(s)
- Bai‐Xiong Chen
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Ling‐Na Xue
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Tao Wei
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Na Wang
- Guangzhou Alchemy Biotechnology Co., LtdGuangzhouChina
| | - Jing‐Ru Zhong
- Guangzhou Alchemy Biotechnology Co., LtdGuangzhouChina
| | - Zhi‐Wei Ye
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Li‐Qiong Guo
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Jun‐Fang Lin
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| |
Collapse
|
134
|
Gao P, Qin L, Nguyen H, Sheng H, Quilichini TD, Xiang D, Kochian LV, Wei Y, Datla R. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9-generated diallelic mutants reveal Arabidopsis actin-related protein 2 function in the trafficking of syntaxin PEN1. FRONTIERS IN PLANT SCIENCE 2022; 13:934002. [PMID: 36204067 PMCID: PMC9531028 DOI: 10.3389/fpls.2022.934002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
In plants, the actin cytoskeleton plays a critical role in defense against diverse pathogens. The formation of actin patches is essential for the intracellular transport of organelles and molecules toward pathogen penetration sites and the formation of papillae for an early cellular response to powdery mildew attack in Arabidopsis thaliana. This response process is regulated by the actin-related protein (ARP)2/3 complex and its activator, the WAVE/SCAR complex (W/SRC). The ARP2/3 complex is also required for maintaining steady-state levels of the defense-associated protein, PENETRATION 1 (PEN1), at the plasma membrane and for its deposition into papillae. However, specific ARP2 functionalities in this context remain unresolved, as knockout mutants expressing GFP-PEN1 reporter constructs could not be obtained by conventional crossing approaches. In this study, employing a CRISPR/Cas9 multiplexing-mediated genome editing approach, we produced an ARP2 knockout expressing the GFP-PEN1 marker in Arabidopsis. This study successfully identified diallelic somatic mutations with both ARP2 alleles edited among the primary T1 transgenic plants, and also obtained independent lines with stable arp2/arp2 mutations in the T2 generation. Further analyses on these arp2/arp2 mutants showed similar biological functions of ARP2 to ARP3 in the accumulation of PEN1 against fungal invasion. Together, this CRISPR/Cas9-based approach offers highly efficient simultaneous disruption of the two ARP2 alleles in GFP-PEN1-expressing lines, and a rapid method for performing live-cell imaging to facilitate the investigation of important plant-pathogen interactions using a well-established and widely applied GFP marker system, thus gaining insights and elucidating the contributions of ARP2 upon fungal attack.
Collapse
Affiliation(s)
- Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK, Canada
| | - Li Qin
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hanh Nguyen
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Huajin Sheng
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Teagen D. Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Leon V. Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yangdou Wei
- College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
135
|
Aksoy E, Yildirim K, Kavas M, Kayihan C, Yerlikaya BA, Çalik I, Sevgen İ, Demirel U. General guidelines for CRISPR/Cas-based genome editing in plants. Mol Biol Rep 2022; 49:12151-12164. [DOI: 10.1007/s11033-022-07773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
|
136
|
Danila F, Schreiber T, Ermakova M, Hua L, Vlad D, Lo S, Chen Y, Lambret‐Frotte J, Hermanns AS, Athmer B, von Caemmerer S, Yu S, Hibberd JM, Tissier A, Furbank RT, Kelly S, Langdale JA. A single promoter-TALE system for tissue-specific and tuneable expression of multiple genes in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1786-1806. [PMID: 35639605 PMCID: PMC9398400 DOI: 10.1111/pbi.13864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
In biological discovery and engineering research, there is a need to spatially and/or temporally regulate transgene expression. However, the limited availability of promoter sequences that are uniquely active in specific tissue-types and/or at specific times often precludes co-expression of multiple transgenes in precisely controlled developmental contexts. Here, we developed a system for use in rice that comprises synthetic designer transcription activator-like effectors (dTALEs) and cognate synthetic TALE-activated promoters (STAPs). The system allows multiple transgenes to be expressed from different STAPs, with the spatial and temporal context determined by a single promoter that drives expression of the dTALE. We show that two different systems-dTALE1-STAP1 and dTALE2-STAP2-can activate STAP-driven reporter gene expression in stable transgenic rice lines, with transgene transcript levels dependent on both dTALE and STAP sequence identities. The relative strength of individual STAP sequences is consistent between dTALE1 and dTALE2 systems but differs between cell-types, requiring empirical evaluation in each case. dTALE expression leads to off-target activation of endogenous genes but the number of genes affected is substantially less than the number impacted by the somaclonal variation that occurs during the regeneration of transformed plants. With the potential to design fully orthogonal dTALEs for any genome of interest, the dTALE-STAP system thus provides a powerful approach to fine-tune the expression of multiple transgenes, and to simultaneously introduce different synthetic circuits into distinct developmental contexts.
Collapse
Affiliation(s)
- Florence Danila
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Sciences Division, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Tom Schreiber
- Department of Cell and Metabolic BiologyLeibniz Institute of Plant BiochemistryHalleGermany
| | - Maria Ermakova
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Sciences Division, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Lei Hua
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Daniela Vlad
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Shuen‐Fang Lo
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| | - Yi‐Shih Chen
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| | | | - Anna S. Hermanns
- Department of Plant SciencesUniversity of OxfordOxfordUK
- Present address:
Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Benedikt Athmer
- Department of Cell and Metabolic BiologyLeibniz Institute of Plant BiochemistryHalleGermany
| | - Susanne von Caemmerer
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Sciences Division, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Su‐May Yu
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| | | | - Alain Tissier
- Department of Cell and Metabolic BiologyLeibniz Institute of Plant BiochemistryHalleGermany
| | - Robert T. Furbank
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Sciences Division, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Steven Kelly
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | | |
Collapse
|
137
|
Beyene G, Chauhan RD, Villmer J, Husic N, Wang N, Gebre E, Girma D, Chanyalew S, Assefa K, Tabor G, Gehan M, McGrone M, Yang M, Lenderts B, Schwartz C, Gao H, Gordon‐Kamm W, Taylor NJ, MacKenzie DJ. CRISPR/Cas9-mediated tetra-allelic mutation of the 'Green Revolution' SEMIDWARF-1 (SD-1) gene confers lodging resistance in tef (Eragrostis tef). PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1716-1729. [PMID: 35560779 PMCID: PMC9398311 DOI: 10.1111/pbi.13842] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/28/2022] [Indexed: 05/17/2023]
Abstract
Tef is a staple food and a valuable cash crop for millions of people in Ethiopia. Lodging is a major limitation to tef production, and for decades, the development of lodging resistant varieties proved difficult with conventional breeding approaches. We used CRISPR/Cas9 to introduce knockout mutations in the tef orthologue of the rice SEMIDWARF-1 (SD-1) gene to confer semidwarfism and ultimately lodging resistance. High frequency recovery of transgenic and SD-1 edited tef lines was achieved in two tef cultivars by Agrobacterium-mediated delivery into young leaf explants of gene editing reagents along with transformation and regeneration enhancing morphogenic genes, BABY BOOM (BBM) and WUSCHEL2 (WUS2). All of the 23 lines analyzed by next-generation sequencing had at least two or more alleles of SD-1 mutated. Of these, 83% had tetra-allelic frameshift mutations in the SD-1 gene in primary tef regenerants, which were inherited in subsequent generations. Phenotypic data generated on T1 and T2 generations revealed that the sd-1 lines have reduced culm and internode lengths with no reduction in either panicle or peduncle lengths. These characteristics are comparable with rice sd-1 plants. Measurements of lodging, in greenhouse-grown plants, showed that sd-1 lines have significantly higher resistance to lodging at the heading stage compared with the controls. This is the first demonstration of the feasibility of high frequency genetic transformation and CRISPR/Cas9-mediated genome editing in this highly valuable but neglected crop. The findings reported here highlight the potential of genome editing for the improvement of lodging resistance and other important traits in tef.
Collapse
Affiliation(s)
- Getu Beyene
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | | | - Nada Husic
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | | | - Dejene Girma
- Ethiopian Institute of Agricultural ResearchAddis AbabaEthiopia
| | | | - Kebebew Assefa
- Ethiopian Institute of Agricultural ResearchAddis AbabaEthiopia
| | | | - Malia Gehan
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Deng F, Zeng F, Shen Q, Abbas A, Cheng J, Jiang W, Chen G, Shah AN, Holford P, Tanveer M, Zhang D, Chen ZH. Molecular evolution and functional modification of plant miRNAs with CRISPR. TRENDS IN PLANT SCIENCE 2022; 27:890-907. [PMID: 35165036 DOI: 10.1016/j.tplants.2022.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Gene editing using clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) has revolutionized biotechnology and provides genetic tools for medicine and life sciences. However, the application of this technology to miRNAs, with the function as negative gene regulators, has not been extensively reviewed in plants. Here, we summarize the evolution, biogenesis, and structure of miRNAs, as well as their interactions with mRNAs and computational models for predicting target genes. In addition, we review current advances in CRISPR/Cas for functional analysis and for modulating miRNA genes in plants. Extending our knowledge of miRNAs and their manipulation with CRISPR will provide fundamental understanding of the functions of plant miRNAs and facilitate more sustainable and publicly acceptable genetic engineering of crops.
Collapse
Affiliation(s)
- Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fanrong Zeng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qiufang Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jianhui Cheng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Jiang
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7004, Australia.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, SA, Australia.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
139
|
Sankari S, Babu VM, Bian K, Alhhazmi A, Andorfer MC, Avalos DM, Smith TA, Yoon K, Drennan CL, Yaffe MB, Lourido S, Walker GC. A haem-sequestering plant peptide promotes iron uptake in symbiotic bacteria. Nat Microbiol 2022; 7:1453-1465. [PMID: 35953657 PMCID: PMC9420810 DOI: 10.1038/s41564-022-01192-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Symbiotic partnerships with rhizobial bacteria enable legumes to grow without nitrogen fertilizer because rhizobia convert atmospheric nitrogen gas into ammonia via nitrogenase. After Sinorhizobium meliloti penetrate the root nodules that they have elicited in Medicago truncatula, the plant produces a family of about 700 nodule cysteine-rich (NCR) peptides that guide the differentiation of endocytosed bacteria into nitrogen-fixing bacteroids. The sequences of the NCR peptides are related to the defensin class of antimicrobial peptides, but have been adapted to play symbiotic roles. Using a variety of spectroscopic, biophysical and biochemical techniques, we show here that the most extensively characterized NCR peptide, 24 amino acid NCR247, binds haem with nanomolar affinity. Bound haem molecules and their iron are initially made biologically inaccessible through the formation of hexamers (6 haem/6 NCR247) and then higher-order complexes. We present evidence that NCR247 is crucial for effective nitrogen-fixing symbiosis. We propose that by sequestering haem and its bound iron, NCR247 creates a physiological state of haem deprivation. This in turn induces an iron-starvation response in rhizobia that results in iron import, which itself is required for nitrogenase activity. Using the same methods as for L-NCR247, we show that the D-enantiomer of NCR247 can bind and sequester haem in an equivalent manner. The special abilities of NCR247 and its D-enantiomer to sequester haem suggest a broad range of potential applications related to human health.
Collapse
Affiliation(s)
- Siva Sankari
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Vignesh M.P. Babu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ke Bian
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Areej Alhhazmi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Mary C. Andorfer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Dante M. Avalos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Tyler A. Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kwan Yoon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Catherine L. Drennan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Michael B. Yaffe
- Departments of Biology and Biological Engineering, and Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, MA 02139, USA.,Divisions of Acute Care Surgery, Trauma, and Surgical Critical Care, and Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Sebastian Lourido
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
140
|
Xia K, Zhang D, Xu X, Liu G, Yang Y, Chen Z, Wang X, Zhang GQ, Sun HX, Gu Y. Protoplast technology enables the identification of efficient multiplex genome editing tools in Phalaenopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111368. [PMID: 35780949 DOI: 10.1016/j.plantsci.2022.111368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Phalaenopsis orchids are popular ornamental plants worldwide. The application and optimization of efficient CRISPR-Cas genome editing toolkits in Phalaenopsis greatly accelerate the development of orchid gene function and breeding research. However, these methods are greatly hindered by the deficiency of a rapid screening system. In this study, we established a fast and convenient Phalaenopsis protoplast technology for the identification of functional genome editing tools. Two multiplex genome editing tools, PTG-Cas9-HPG (PTG, polycistronic tRNA-gRNA) system and RMC-Cpf1-HPG (RMC, ribozyme-based multi-crRNA) system, were developed for Phalaenopsis genome editing and further evaluated by established protoplast technology. We successfully detected various editing events comprising substitution and indel at designed target sites of the PDS gene and MADS gene, showing that both PTG-Cas9-HPG and RMC-Cpf1-HPG multiplex genome editing systems are functional in Phalaenopsis. Additionally, by optimizing the promoter that drives Cpf1 expression, we found that Super promoter can significantly improve the editing efficiency of the RMC-Cpf1-HPG system. Altogether, we successfully developed two efficient multiplex genome editing systems, PTG-Cas9-HPG and RMC-Cpf1-HPG, for Phalaenopsis, and the established protoplast-based screening technology provides a valuable foundation for developing more diverse and efficient genome editing toolkits and facilitating the development of orchid precision breeding.
Collapse
Affiliation(s)
- Keke Xia
- BGI-Shenzhen, Shenzhen 518083, China.
| | | | - Xiaojing Xu
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yong Yang
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Guo-Qiang Zhang
- Laboratory for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, The National Orchid Conservation Center of China, Shenzhen 518114, China
| | - Hai-Xi Sun
- BGI-Shenzhen, Shenzhen 518083, China; BGI-Beijing, Beijing 100101, China.
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China.
| |
Collapse
|
141
|
Mohr T, Horstman J, Gu YQ, Elarabi NI, Abdallah NA, Thilmony R. CRISPR-Cas9 Gene Editing of the Sal1 Gene Family in Wheat. PLANTS 2022; 11:plants11172259. [PMID: 36079639 PMCID: PMC9460255 DOI: 10.3390/plants11172259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
The highly conserved Sal1 encodes a bifunctional enzyme with inositol polyphosphate-1-phosphatase and 3′ (2′), 5′-bisphosphate nucleotidase activity and has been shown to alter abiotic stress tolerance in plants when disrupted. Precise gene editing techniques were used to generate Sal1 mutants in hexaploid bread wheat. The CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats) Cas9 system with three guide RNAs (gRNAs) was used to inactivate six Sal1 homologous genes within the Bobwhite wheat genome. The resulting mutant wheat plants with all their Sal1 genes disabled had slimmer stems, had a modest reduction in biomass and senesced more slowly in water limiting conditions, but did not exhibit improved yield under drought conditions. Our results show that multiplexed gRNAs enabled effective targeted gene editing of the Sal1 gene family in hexaploid wheat. These Sal1 mutant wheat plants will be a resource for further research studying the function of this gene family in wheat.
Collapse
Affiliation(s)
- Toni Mohr
- USDA-ARS, Crop Improvement and Genetics Unit, Albany, CA 94710, USA
| | - James Horstman
- USDA-ARS, Crop Improvement and Genetics Unit, Albany, CA 94710, USA
| | - Yong Q. Gu
- USDA-ARS, Crop Improvement and Genetics Unit, Albany, CA 94710, USA
| | - Nagwa I. Elarabi
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Naglaa A. Abdallah
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Roger Thilmony
- USDA-ARS, Crop Improvement and Genetics Unit, Albany, CA 94710, USA
- Correspondence: ; Tel.: +1-(510)-559-5761
| |
Collapse
|
142
|
Biswas S, Bridgeland A, Irum S, Thomson MJ, Septiningsih EM. Optimization of Prime Editing in Rice, Peanut, Chickpea, and Cowpea Protoplasts by Restoration of GFP Activity. Int J Mol Sci 2022; 23:9809. [PMID: 36077206 PMCID: PMC9456013 DOI: 10.3390/ijms23179809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 01/23/2023] Open
Abstract
Precise editing of the plant genome has long been desired for functional genomic research and crop breeding. Prime editing is a newly developed precise editing technology based on CRISPR-Cas9, which uses an engineered reverse transcriptase (RT), a catalytically impaired Cas9 endonuclease (nCas9), and a prime editing guide RNA (pegRNA). In addition, prime editing has a wider range of editing types than base editing and can produce nearly all types of edits. Although prime editing was first established in human cells, it has recently been applied to plants. As a relatively new technique, optimization will be needed to increase the editing efficiency in different crops. In this study, we successfully edited a mutant GFP in rice, peanut, chickpea, and cowpea protoplasts. In rice, up to 16 times higher editing efficiency was achieved with a dual pegRNA than the single pegRNA containing vectors. Edited-mutant GFP protoplasts have also been obtained in peanut, chickpea, and cowpea after transformation with the dual pegRNA vectors, albeit with much lower editing efficiency than in rice, ranging from 0.2% to 0.5%. These initial results promise to expedite the application of prime editing in legume breeding programs to accelerate crop improvement.
Collapse
Affiliation(s)
- Sudip Biswas
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Aya Bridgeland
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Samra Irum
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Michael J. Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Endang M. Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
143
|
Singh J, Sharma D, Brar GS, Sandhu KS, Wani SH, Kashyap R, Kour A, Singh S. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants. Mol Biol Rep 2022; 49:11443-11467. [PMID: 36002653 DOI: 10.1007/s11033-022-07741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/22/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022]
Abstract
Crop plants are prone to several yield-reducing biotic and abiotic stresses. The crop yield reductions due to these stresses need addressing to maintain an adequate balance between the increasing world population and food production to avoid food scarcities in the future. It is impossible to increase the area under food crops proportionately to meet the rising food demand. In such an adverse scenario overcoming the biotic and abiotic stresses through biotechnological interventions may serve as a boon to help meet the globe's food requirements. Under the current genomic era, the wide availability of genomic resources and genome editing technologies such as Transcription Activator-Like Effector Nucleases (TALENs), Zinc Finger Nucleases (ZFNs), and Clustered-Regularly Interspaced Palindromic Repeats/CRISPR-associated proteins (CRISPR/Cas) has widened the scope of overcoming these stresses for several food crops. These techniques have made gene editing more manageable and accessible with changes at the embryo level by adding or deleting DNA sequences of the target gene(s) from the genome. The CRISPR construct consists of a single guide RNA having complementarity with the nucleotide fragments of the target gene sequence, accompanied by a protospacer adjacent motif. The target sequence in the organism's genome is then cleaved by the Cas9 endonuclease for obtaining a desired trait of interest. The current review describes the components, mechanisms, and types of CRISPR/Cas techniques and how this technology has helped to functionally characterize genes associated with various biotic and abiotic stresses in a target organism. This review also summarizes the application of CRISPR/Cas technology targeting these stresses in crops through knocking down/out of associated genes.
Collapse
Affiliation(s)
- Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, 110012, New Delhi, India.,Guru Angad Dev Veterinary and Animal Science University, KVK, Barnala, India
| | - Dimple Sharma
- Department of Food Science and Human Nutrition, Michigan State University, 48824, East Lansing, MI, USA
| | - Gagandeep Singh Brar
- Department of Biological Sciences, North Dakota State University, 58102, Fargo, ND, USA
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, 99163, Pullman, WA, USA
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology Srinagar, Khudwani, Srinagar, Jammu, Kashmir, India
| | - Ruchika Kashyap
- Department of Agronomy, Horticulture, and Plant Sciences, South Dakota State University, 57007, Brookings, SD, USA
| | - Amardeep Kour
- Regional Research Station, Punjab Agricultural University, 151001, Bathinda, Punjab, India
| | - Satnam Singh
- Regional Research Station, Punjab Agricultural University, 151203, Faridkot, Punjab, India.
| |
Collapse
|
144
|
Yuan G, Martin S, Hassan MM, Tuskan GA, Yang X. PARA: A New Platform for the Rapid Assembly of gRNA Arrays for Multiplexed CRISPR Technologies. Cells 2022; 11:2467. [PMID: 36010544 PMCID: PMC9406951 DOI: 10.3390/cells11162467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Multiplexed CRISPR technologies have great potential for pathway engineering and genome editing. However, their applications are constrained by complex, laborious and time-consuming cloning steps. In this research, we developed a novel method, PARA, which allows for the one-step assembly of multiple guide RNAs (gRNAs) into a CRISPR vector with up to 18 gRNAs. Here, we demonstrate that PARA is capable of the efficient assembly of transfer RNA/Csy4/ribozyme-based gRNA arrays. To aid in this process and to streamline vector construction, we developed a user-friendly PARAweb tool for designing PCR primers and component DNA parts and simulating assembled gRNA arrays and vector sequences.
Collapse
Affiliation(s)
- Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stanton Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
145
|
Uetz P, Melnik S, Grünwald-Gruber C, Strasser R, Stoger E. CRISPR/Cas9-mediated knockout of a prolyl-4-hydroxylase subfamily in Nicotiana benthamiana using DsRed2 for plant selection. Biotechnol J 2022; 17:e2100698. [PMID: 35427441 DOI: 10.1002/biot.202100698] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
The properties of host plants used for molecular farming can be modified by CRISPR/Cas9 genome editing to improve the quality and yield of recombinant proteins. However, it is often necessary to target multiple genes simultaneously, particularly when using host plants with large and complex genomes. This is the case for Nicotiana benthamiana, an allotetraploid relative of tobacco frequently used for transient protein expression. A multiplex genome editing system incorporating the DsRed2 fluorescent marker for the identification and selection of transgenic plants was established. As proof of principle, NbP4H4 was targeted encoding a prolyl-4-hydroxylase involved in protein O-linked glycosylation. Using preselected gRNAs with efficiencies confirmed by transient expression, transgenic plant lines with knockout mutations in all four NbP4H4 genes were obtained. Leaf fluorescence was then used to screen for the absence of the SpCas9 transgene in T1 plants, and transgene-free lines with homozygous or biallelic mutations were identified. The analysis of plant-produced recombinant IgA1 as a reporter protein revealed changes in the number of peptides containing hydroxyproline residues and pentoses in the knockout plants. The selection of efficient gRNAs combined with the DsRed2 marker reduces the effort needed to generate N. benthamiana mutants and simplifies the screening processes to obtain transgene-free progeny.
Collapse
Affiliation(s)
- Pia Uetz
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Stanislav Melnik
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
146
|
Read A, Weiss T, Crisp PA, Liang Z, Noshay J, Menard CC, Wang C, Song M, Hirsch CN, Springer NM, Zhang F. Genome-wide loss of CHH methylation with limited transcriptome changes in Setaria viridis DOMAINS REARRANGED METHYLTRANSFERASE (DRM) mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:103-116. [PMID: 35436373 PMCID: PMC9541237 DOI: 10.1111/tpj.15781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/12/2022] [Indexed: 05/17/2023]
Abstract
The DOMAINS REARRANGED METHYLTRANSFERASEs (DRMs) are crucial for RNA-directed DNA methylation (RdDM) in plant species. Setaria viridis is a model monocot species with a relatively compact genome that has limited transposable element (TE) content. CRISPR-based genome editing approaches were used to create loss-of-function alleles for the two putative functional DRM genes in S. viridis to probe the role of RdDM. Double mutant (drm1ab) plants exhibit some morphological abnormalities but are fully viable. Whole-genome methylation profiling provided evidence for the widespread loss of methylation in CHH sequence contexts, particularly in regions with high CHH methylation in wild-type plants. Evidence was also found for the locus-specific loss of CG and CHG methylation, even in some regions that lack CHH methylation. Transcriptome profiling identified genes with altered expression in the drm1ab mutants. However, the majority of genes with high levels of CHH methylation directly surrounding the transcription start site or in nearby promoter regions in wild-type plants do not have altered expression in the drm1ab mutant, even when this methylation is lost, suggesting limited regulation of gene expression by RdDM. Detailed analysis of the expression of TEs identified several transposons that are transcriptionally activated in drm1ab mutants. These transposons are likely to require active RdDM for the maintenance of transcriptional repression.
Collapse
Affiliation(s)
- Andrew Read
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMinnesota55108USA
| | - Trevor Weiss
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSaint PaulMinnesota55108USA
| | - Peter A. Crisp
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMinnesota55108USA
- School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQueensland4072Australia
| | - Zhikai Liang
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMinnesota55108USA
| | - Jaclyn Noshay
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMinnesota55108USA
| | - Claire C. Menard
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMinnesota55108USA
| | - Chunfang Wang
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSaint PaulMinnesota55108USA
| | - Meredith Song
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaMinneapolisMinnesota55108USA
| | - Candice N. Hirsch
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMinnesota55108USA
| | - Nathan M. Springer
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSaint PaulMinnesota55108USA
| | - Feng Zhang
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSaint PaulMinnesota55108USA
| |
Collapse
|
147
|
Liu X, Dong J, Liao J, Tian L, Qiu H, Wu T, Ge F, Zhu J, Shi L, Jiang A, Yu H, Zhao M, Ren A. Establishment of CRISPR/Cas9 Genome-Editing System Based on Dual sgRNAs in Flammulina filiformis. J Fungi (Basel) 2022; 8:jof8070693. [PMID: 35887449 PMCID: PMC9318071 DOI: 10.3390/jof8070693] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Flammulina filiformis, previously known as Asian Flammulina velutipes, is one of the most commercially important edible fungi, with nutritional value and medicinal properties worldwide. However, precision genome editing using CRISPR/Cas9, which is a revolutionary technology and provides a powerful tool for molecular breeding, has not been established in F. filiformis. Here, plasmids harboring expression cassettes of Basidiomycete codon-optimized Cas9 and dual sgRNAs targeting pyrG under the control of the gpd promoter and FfU6 promoter, respectively, were delivered into protoplasts of F. filiformis Dan3 strain through PEG-mediated transformation. The results showed that an efficient native U6 promoter of F. filiformis was identified, and ultimately several pyrG mutants exhibiting 5-fluorooric acid (5-FOA) resistance were obtained. Additionally, diagnostic PCR followed by Sanger sequencing revealed that fragment deletion between the two sgRNA target sites or small insertions and deletions (indels) were introduced in these pyrG mutants through the nonhomologous end joining (NHEJ) pathway, resulting in heritable changes in genomic information. Taken together, this is the first report in which a successful CRISPR/Cas9 genome-editing system based on dual sgRNAs was established in F. filiformis, which broadens the application of this advanced tool in Basidiomycetes.
Collapse
Affiliation(s)
- Xiaotian Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Jianghan Dong
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Jian Liao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Li Tian
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Hao Qiu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Tao Wu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Feng Ge
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Jing Zhu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Liang Shi
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Ailiang Jiang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Hanshou Yu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Mingwen Zhao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
| | - Ang Ren
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (J.D.); (J.L.); (L.T.); (H.Q.); (T.W.); (F.G.); (J.Z.); (L.S.); (A.J.); (H.Y.); (M.Z.)
- Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
- Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China
- Correspondence: ; Tel./Fax: +86-25-84395602
| |
Collapse
|
148
|
Pan W, Liu X, Li D, Zhang H. Establishment of an Efficient Genome Editing System in Lettuce Without Sacrificing Specificity. FRONTIERS IN PLANT SCIENCE 2022; 13:930592. [PMID: 35812897 PMCID: PMC9257259 DOI: 10.3389/fpls.2022.930592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The efficiency of the CRISPR/Cas9 genome editing system remains limited in many crops. Utilizing strong promoters to boost the expression level of Cas9 are commonly used to improve the editing efficiency. However, these strategies also increase the risk of off-target mutation. Here, we developed a new strategy to utilize intron-mediated enhancement (IME)-assisted 35S promoter to drive Cas9 and sgRNA in a single transcript, which escalates the editing efficiency by moderately enhancing the expression of both Cas9 and sgRNA. In addition, we developed another strategy to enrich cells highly expressing Cas9/sgRNA by co-expressing the developmental regulator gene GRF5, which has been proved to ameliorate the transformation efficiency, and the transgenic plants from these cells also exhibited enhanced editing efficiency. This system elevated the genome editing efficiency from 14-28% to 54-81% on three targets tested in lettuce (Lactuca sativa) without increasing the off-target editing efficiency. Thus, we established a new genome editing system with highly improved on-target editing efficiency and without obvious increasement in off-target effects, which can be used to characterize genes of interest in lettuce and other crops.
Collapse
Affiliation(s)
- Wenbo Pan
- Peking University Institute of Advanced Agricultural Science, Weifang, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xue Liu
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Huawei Zhang
- Peking University Institute of Advanced Agricultural Science, Weifang, China
| |
Collapse
|
149
|
Zhang RX, Li BB, Yang ZG, Huang JQ, Sun WH, Bhanbhro N, Liu WT, Chen KM. Dissecting Plant Gene Functions Using CRISPR Toolsets for Crop Improvement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7343-7359. [PMID: 35695482 DOI: 10.1021/acs.jafc.2c01754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The CRISPR-based gene editing technology has become more and more powerful in genome manipulation for agricultural breeding, with numerous improved toolsets springing up. In recent years, many CRISPR toolsets for gene editing, such as base editors (BEs), CRISPR interference (CRISPRi), CRISPR activation (CRISPRa), and plant epigenetic editors (PEEs), have been developed to clarify gene function and full-level gene regulation. Here, we comprehensively summarize the application and capacity of the different CRISPR toolsets in the study of plant gene expression regulation, highlighting their potential application in gene regulatory networks' analysis. The general problems in CRISPR application and the optimal solutions in the existing schemes for high-throughput gene function analysis are also discussed. The CRISPR toolsets targeting gene manipulation discussed here provide new solutions for further genetic improvement and molecular breeding of crops.
Collapse
Affiliation(s)
- Rui-Xiang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zheng-Guang Yang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia-Qi Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nadeem Bhanbhro
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
150
|
Thomson MJ, Biswas S, Tsakirpaloglou N, Septiningsih EM. Functional Allele Validation by Gene Editing to Leverage the Wealth of Genetic Resources for Crop Improvement. Int J Mol Sci 2022; 23:ijms23126565. [PMID: 35743007 PMCID: PMC9223900 DOI: 10.3390/ijms23126565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
Advances in molecular technologies over the past few decades, such as high-throughput DNA marker genotyping, have provided more powerful plant breeding approaches, including marker-assisted selection and genomic selection. At the same time, massive investments in plant genetics and genomics, led by whole genome sequencing, have led to greater knowledge of genes and genetic pathways across plant genomes. However, there remains a gap between approaches focused on forward genetics, which start with a phenotype to map a mutant locus or QTL with the goal of cloning the causal gene, and approaches using reverse genetics, which start with large-scale sequence data and work back to the gene function. The recent establishment of efficient CRISPR-Cas-based gene editing promises to bridge this gap and provide a rapid method to functionally validate genes and alleles identified through studies of natural variation. CRISPR-Cas techniques can be used to knock out single or multiple genes, precisely modify genes through base and prime editing, and replace alleles. Moreover, technologies such as protoplast isolation, in planta transformation, and the use of developmental regulatory genes promise to enable high-throughput gene editing to accelerate crop improvement.
Collapse
|