101
|
Kwon S, Rupp O, Brachmann A, Blum CF, Kraege A, Goesmann A, Feldbrügge M. mRNA Inventory of Extracellular Vesicles from Ustilago maydis. J Fungi (Basel) 2021; 7:jof7070562. [PMID: 34356940 PMCID: PMC8306574 DOI: 10.3390/jof7070562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) can transfer diverse RNA cargo for intercellular communication. EV-associated RNAs have been found in diverse fungi and were proposed to be relevant for pathogenesis in animal hosts. In plant-pathogen interactions, small RNAs are exchanged in a cross-kingdom RNAi warfare and EVs were considered to be a delivery mechanism. To extend the search for EV-associated molecules involved in plant-pathogen communication, we have characterised the repertoire of EV-associated mRNAs secreted by the maize smut pathogen, Ustilago maydis. For this initial survey, we examined EV-enriched fractions from axenic filamentous cultures that mimic infectious hyphae. EV-associated RNAs were resistant to degradation by RNases and the presence of intact mRNAs was evident. The set of mRNAs enriched inside EVs relative to the fungal cells are functionally distinct from those that are depleted from EVs. mRNAs encoding metabolic enzymes are particularly enriched. Intriguingly, mRNAs of some known effectors and other proteins linked to virulence were also found in EVs. Furthermore, several mRNAs enriched in EVs are also upregulated during infection, suggesting that EV-associated mRNAs may participate in plant-pathogen interactions.
Collapse
Affiliation(s)
- Seomun Kwon
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.K.); (A.K.)
| | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, 35392 Giessen, Germany; (O.R.); (A.G.)
| | - Andreas Brachmann
- Biocenter of the LMU Munich, Genetics Section, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany;
| | - Christopher Frederik Blum
- Institute for Mathematical Modelling of Biological Systems, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Anton Kraege
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.K.); (A.K.)
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, 35392 Giessen, Germany; (O.R.); (A.G.)
| | - Michael Feldbrügge
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (S.K.); (A.K.)
- Correspondence: ; Tel.: +49-211-81-14720
| |
Collapse
|
102
|
Cai Q, He B, Wang S, Fletcher S, Niu D, Mitter N, Birch PRJ, Jin H. Message in a Bubble: Shuttling Small RNAs and Proteins Between Cells and Interacting Organisms Using Extracellular Vesicles. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:497-524. [PMID: 34143650 PMCID: PMC8369896 DOI: 10.1146/annurev-arplant-081720-010616] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Communication between plant cells and interacting microorganisms requires the secretion and uptake of functional molecules to and from the extracellular environment and is essential for the survival of both plants and their pathogens. Extracellular vesicles (EVs) are lipid bilayer-enclosed spheres that deliver RNA, protein, and metabolite cargos from donor to recipient cells and participate in many cellular processes. Emerging evidencehas shown that both plant and microbial EVs play important roles in cross-kingdom molecular exchange between hosts and interacting microbes to modulate host immunity and pathogen virulence. Recent studies revealed that plant EVs function as a defense system by encasing and delivering small RNAs (sRNAs) into pathogens, thereby mediating cross-species and cross-kingdom RNA interference to silence virulence-related genes. This review focuses on the latest advances in our understanding of plant and microbial EVs and their roles in transporting regulatory molecules, especially sRNAs, between hosts and pathogens. EV biogenesis and secretion are also discussed, as EV function relies on these important processes.
Collapse
Affiliation(s)
- Qiang Cai
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA;
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Baoye He
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA;
| | - Shumei Wang
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA;
| | - Stephen Fletcher
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Paul R J Birch
- Division of Plant Sciences, School of Life Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Hailing Jin
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA;
| |
Collapse
|
103
|
Kameli N, Dragojlovic-Kerkache A, Savelkoul P, Stassen FR. Plant-Derived Extracellular Vesicles: Current Findings, Challenges, and Future Applications. MEMBRANES 2021; 11:membranes11060411. [PMID: 34072600 PMCID: PMC8226527 DOI: 10.3390/membranes11060411] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.
Collapse
Affiliation(s)
- Nader Kameli
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6200MD Maastricht, The Netherlands; (N.K.); (A.D.-K.); (P.S.)
- Department of Medical Microbiology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Anya Dragojlovic-Kerkache
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6200MD Maastricht, The Netherlands; (N.K.); (A.D.-K.); (P.S.)
| | - Paul Savelkoul
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6200MD Maastricht, The Netherlands; (N.K.); (A.D.-K.); (P.S.)
- Department of Medical Microbiology and Infection Control, VU University Medical Center, 1007MB Amsterdam, The Netherlands
| | - Frank R. Stassen
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6200MD Maastricht, The Netherlands; (N.K.); (A.D.-K.); (P.S.)
- Correspondence:
| |
Collapse
|
104
|
Extracellular Vesicles from Plants: Current Knowledge and Open Questions. Int J Mol Sci 2021; 22:ijms22105366. [PMID: 34065193 PMCID: PMC8160738 DOI: 10.3390/ijms22105366] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
The scientific interest in the beneficial properties of natural substances has been recognized for decades, as well as the growing attention in extracellular vesicles (EVs) released by different organisms, in particular from animal cells. However, there is increasing interest in the isolation and biological and functional characterization of these lipoproteic structures in the plant kingdom. Similar to animal vesicles, these plant-derived extracellular vesicles (PDEVs) exhibit a complex content of small RNAs, proteins, lipids, and other metabolites. This sophisticated composition enables PDEVs to be therapeutically attractive. In this review, we report and discuss current knowledge on PDEVs in terms of isolation, characterization of their content, biological properties, and potential use as drug delivery systems. In conclusion, we outline controversial issues on which the scientific community shall focus the attention shortly.
Collapse
|
105
|
Pinedo M, de la Canal L, de Marcos Lousa C. A call for Rigor and standardization in plant extracellular vesicle research. J Extracell Vesicles 2021; 10:e12048. [PMID: 33936567 PMCID: PMC8077130 DOI: 10.1002/jev2.12048] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Marcela Pinedo
- Instituto de Investigaciones Biológicas Universidad Nacional de Mar del Plata-CONICET Funes Mar del Plata Argentina
| | - Laura de la Canal
- Instituto de Investigaciones Biológicas Universidad Nacional de Mar del Plata-CONICET Funes Mar del Plata Argentina
| | - Carine de Marcos Lousa
- Centre for Biomedical Sciences Leeds Beckett University Leeds UK.,Centre for Plant Sciences University of Leeds Leeds UK
| |
Collapse
|
106
|
Raimondo S, Nikolic D, Conigliaro A, Giavaresi G, Lo Sasso B, Giglio RV, Chianetta R, Manno M, Raccosta S, Corleone V, Ferrante G, Citarrella R, Rizzo M, De Leo G, Ciaccio M, Montalto G, Alessandro R. Preliminary Results of CitraVes™ Effects on Low Density Lipoprotein Cholesterol and Waist Circumference in Healthy Subjects after 12 Weeks: A Pilot Open-Label Study. Metabolites 2021; 11:276. [PMID: 33925596 PMCID: PMC8145538 DOI: 10.3390/metabo11050276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Appropriate monitoring and control of modifiable risk factors, such as the level of low-density lipoprotein cholesterol (LDL-C) and other types of dyslipidemia, have an important role in the prevention of cardiovascular diseases (CVD). Recently, various nutraceuticals with lipid-lowering effects have gained attention. In addition to the plant-derived bioactive compounds, recent studies suggested that plant cells are able to release small lipoproteic structures named extracellular vesicles (EVs). The interaction between EVs and mammalian cells could lead to beneficial effects through anti-inflammatory and antioxidant activities. The present study aimed to assess the safety of the new patented plant-based product citraVes™, containing extracellular vesicles (EVs) from Citrus limon (L.) Osbeck juice, and to investigate its ability to modulate different CV risk factors in healthy subjects. A cohort of 20 healthy volunteers was recruited in a prospective open-label study. All participants received the supplement in a spray-dried formulation at a stable dose of 1000 mg/day for 3 months. Anthropometric and hematobiochemical parameters were analyzed at the baseline and after the follow-up period of 1 and 3 months. We observed that the supplement has an effect on two key factors of cardiometabolic risk in healthy subjects. A significant change in waist circumference was found in women after 4 (85.4 [79.9, 91.0] cm, p < 0.005) and 12 (85.0 [80.0, 90.0] cm, p < 0.0005) weeks, when compared to the baseline value (87.6 [81.7, 93.6] cm). No difference was found in men (baseline: 100.3 [95.4, 105.2] cm; 4 weeks: 102.0 [95.7, 108.3] cm; 12 weeks: 100.0 [95.3, 104.7] cm). The level of LDL-C was significantly lower at 12 weeks versus 4 weeks (p = 0.0064). Our study evaluated, for the first time, the effects of a natural product containing plant-derived EVs on modifiable risk factors in healthy volunteers. The results support the use of EV extracts to manage cardiometabolic risk factors successfully.
Collapse
Affiliation(s)
- Stefania Raimondo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (D.N.); (A.C.); (G.D.L.)
- Navhetec s.r.l, Via Elvira ed Enzo Sellerio, 90141 Palermo, Italy;
| | - Dragana Nikolic
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (D.N.); (A.C.); (G.D.L.)
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.C.); (R.C.); (M.R.); (G.M.)
| | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (D.N.); (A.C.); (G.D.L.)
- Navhetec s.r.l, Via Elvira ed Enzo Sellerio, 90141 Palermo, Italy;
| | - Gianluca Giavaresi
- IRCSS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche-SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy;
| | - Bruna Lo Sasso
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (B.L.S.); (R.V.G.); (M.C.)
- Department of Laboratory Medicine, University-Hospital “P. Giaccone” of Palermo, 90127 Palermo, Italy
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (B.L.S.); (R.V.G.); (M.C.)
| | - Roberta Chianetta
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.C.); (R.C.); (M.R.); (G.M.)
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (M.M.); (S.R.)
| | - Samuele Raccosta
- Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (M.M.); (S.R.)
| | - Valeria Corleone
- Navhetec s.r.l, Via Elvira ed Enzo Sellerio, 90141 Palermo, Italy;
- Agrumaria Corleone s.p.a., Via S. Corleone, 12-Zona Ind. Brancaccio, 90124 Palermo, Italy;
| | - Giovanni Ferrante
- Agrumaria Corleone s.p.a., Via S. Corleone, 12-Zona Ind. Brancaccio, 90124 Palermo, Italy;
| | - Roberto Citarrella
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.C.); (R.C.); (M.R.); (G.M.)
| | - Manfredi Rizzo
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.C.); (R.C.); (M.R.); (G.M.)
| | - Giacomo De Leo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (D.N.); (A.C.); (G.D.L.)
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (B.L.S.); (R.V.G.); (M.C.)
- Department of Laboratory Medicine, University-Hospital “P. Giaccone” of Palermo, 90127 Palermo, Italy
| | - Giuseppe Montalto
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.C.); (R.C.); (M.R.); (G.M.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (D.N.); (A.C.); (G.D.L.)
- Navhetec s.r.l, Via Elvira ed Enzo Sellerio, 90141 Palermo, Italy;
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
107
|
Roszkowski M, Mansuy IM. High Efficiency RNA Extraction From Sperm Cells Using Guanidinium Thiocyanate Supplemented With Tris(2-Carboxyethyl)Phosphine. Front Cell Dev Biol 2021; 9:648274. [PMID: 33968930 PMCID: PMC8097045 DOI: 10.3389/fcell.2021.648274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/30/2021] [Indexed: 01/08/2023] Open
Abstract
The extraction of high-quality ribonucleic acid (RNA) from tissues and cells is a key step in many biological assays. Guanidinium thiocyanate-phenol-chloroform (AGPC) is a widely used and efficient method to obtain pure RNA from most tissues and cells. However, it is not efficient with some cells like sperm cells because they are resistant to chaotropic lysis solutions containing guanidinium thiocyanate such as Buffer RLT+ and Trizol. Here, we show that disulfide bonds are responsible for the chemical resistance of sperm cells to RNA extraction reagents. We show that while β-mercaptoethanol (βME) can increase sperm lysis in Buffer RLT+, it has no effect in Trizol and leaves sperm cells intact. We measured the reduction of disulfide bonds in 2,2′-dithiodipyridine (DTDP) and observed that βME has a pH-dependent activity in chaotropic solutions, suggesting that pH is a limiting factor. We identified tris(2-carboxyethyl)phosphine (TCEP) as an efficient lysis enhancer of AGPC solutions that can retain reducing activity even at acidic pH. Trizol supplemented with TCEP allows the complete and rapid lysis of sperm cells, increasing RNA yield by 100-fold and resulting in RNA with optimal quality for reverse transcription and polymerase chain reaction. Our findings highlight the importance of efficient cell lysis and extraction of various macromolecules for bulk and single-cell assays, and can be applied to other lysis-resistant cells and vesicles, thereby optimizing the amount of required starting material and animals.
Collapse
Affiliation(s)
- Martin Roszkowski
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, and Institute for Neuroscience, Department of Health Science and Technology of the ETH Zurich, Zurich, Switzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, and Institute for Neuroscience, Department of Health Science and Technology of the ETH Zurich, Zurich, Switzerland
| |
Collapse
|
108
|
Plant-Derived Nano and Microvesicles for Human Health and Therapeutic Potential in Nanomedicine. Pharmaceutics 2021; 13:pharmaceutics13040498. [PMID: 33917448 PMCID: PMC8067521 DOI: 10.3390/pharmaceutics13040498] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest. PDVs have also been shown to be also involved in the intercellular transfer of small non-coding RNAs such as microRNAs, suggesting fascinating mechanisms of long-distance gene regulation and horizontal transfer of regulatory RNAs and inter-kingdom communications. High loading capacity, intrinsic biological activities, biocompatibility, and easy permeabilization in cell compartments make plant-derived vesicles excellent natural or bioengineered nanotools for biomedical applications. Growing evidence indicates that PDVs may exert anti-inflammatory, anti-oxidant, and anticancer activities in different in vitro and in vivo models. In addition, clinical trials are currently in progress to test the effectiveness of plant EVs in reducing insulin resistance and in preventing side effects of chemotherapy treatments. In this review, we concisely introduce PDVs, discuss shortly their most important biological and physiological roles in plants and provide clues on the use and the bioengineering of plant nano and microvesicles to develop innovative therapeutic tools in nanomedicine, able to encompass the current drawbacks in the delivery systems in nutraceutical and pharmaceutical technology. Finally, we predict that the advent of intense research efforts on PDVs may disclose new frontiers in plant biotechnology applied to nanomedicine.
Collapse
|
109
|
Díez-Sainz E, Lorente-Cebrián S, Aranaz P, Riezu-Boj JI, Martínez JA, Milagro FI. Potential Mechanisms Linking Food-Derived MicroRNAs, Gut Microbiota and Intestinal Barrier Functions in the Context of Nutrition and Human Health. Front Nutr 2021; 8:586564. [PMID: 33768107 PMCID: PMC7985180 DOI: 10.3389/fnut.2021.586564] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules from 18 to 24 nucleotides that are produced by prokaryote and eukaryote organisms, which play a crucial role in regulating gene expression through binding to their mRNA targets. MiRNAs have acquired special attention for their potential in cross kingdom communication, notably food-derived microRNAs (xenomiRs), which could have an impact on microorganism and mammal physiology. In this review, we mainly aim to deal with new perspectives on: (1) The mechanism by which food-derived xenomiRs (mainly dietary plant xenomiRs) could be incorporated into humans through diet, in a free form, associated with proteins or encapsulated in exosome-like nanoparticles. (2) The impact of dietary plant-derived miRNAs in modulating gut microbiota composition, which in turn, could regulate intestinal barrier permeability and therefore, affect dietary metabolite, postbiotics or food-derived miRNAs uptake efficiency. Individual gut microbiota signature/composition could be also involved in xenomiR uptake efficiency through several mechanisms such us increasing the bioavailability of exosome-like nanoparticles miRNAs. (3) Gut microbiota dysbiosis has been proposed to contribute to disease development by affecting gut epithelial barrier permeability. For his reason, the availability and uptake of dietary plant xenomiRs might depend, among other factors, on this microbiota-related permeability of the intestine. We hypothesize and critically review that xenomiRs-microbiota interaction, which has been scarcely explored yet, could contribute to explain, at least in part, the current disparity of evidences found dealing with dietary miRNA uptake and function in humans. Furthermore, dietary plant xenomiRs could be involved in the establishment of the multiple gut microenvironments, in which microorganism would adapt in order to optimize the resources and thrive in them. Additionally, a particular xenomiR could preferentially accumulate in a specific region of the gastrointestinal tract and participate in the selection and functions of specific gut microbial communities.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Silvia Lorente-Cebrián
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Paula Aranaz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - José I. Riezu-Boj
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - J. Alfredo Martínez
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
110
|
Santos D, Remans S, Van den Brande S, Vanden Broeck J. RNAs on the Go: Extracellular Transfer in Insects with Promising Prospects for Pest Management. PLANTS (BASEL, SWITZERLAND) 2021; 10:484. [PMID: 33806650 PMCID: PMC8001424 DOI: 10.3390/plants10030484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/16/2023]
Abstract
RNA-mediated pathways form an important regulatory layer of myriad biological processes. In the last decade, the potential of RNA molecules to contribute to the control of agricultural pests has not been disregarded, specifically via the RNA interference (RNAi) mechanism. In fact, several proofs-of-concept have been made in this scope. Furthermore, a novel research field regarding extracellular RNAs and RNA-based intercellular/interorganismal communication is booming. In this article, we review key discoveries concerning extracellular RNAs in insects, insect RNA-based cell-to-cell communication, and plant-insect transfer of RNA. In addition, we overview the molecular mechanisms implicated in this form of communication and discuss future biotechnological prospects, namely from the insect pest-control perspective.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (S.R.); (S.V.d.B.); (J.V.B.)
| | | | | | | |
Collapse
|
111
|
Dukowic-Schulze S, van der Linde K. Oxygen, secreted proteins and small RNAs: mobile elements that govern anther development. PLANT REPRODUCTION 2021; 34:1-19. [PMID: 33492519 PMCID: PMC7902584 DOI: 10.1007/s00497-020-00401-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/24/2020] [Indexed: 05/24/2023]
Abstract
Correct anther development is essential for male fertility and subsequently agricultural yield. Defects in anther development range from the early stage of stamen formation until the late stage of tapetum degeneration. In particular, the specification of the four distinct somatic layers and the inner sporogenous cells need perfect orchestration relying on precise cell-cell communication. Up to now, several signals, which coordinate the anther´s developmental program, have been identified. Among the known signals are phytohormones, environmental conditions sensed via glutaredoxins, several receptor-like kinases triggered by ligands like MAC1, and small RNAs such as miRNAs and the monocot-prevalent reproductive phasiRNAs. Rather than giving a full review on anther development, here we discuss anther development with an emphasis on mobile elements like ROS/oxygen, secreted proteins and small RNAs (only briefly touching on phytohormones), how they might act and interact, and what the future of this research area might reveal.
Collapse
Affiliation(s)
- Stefanie Dukowic-Schulze
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| | - Karina van der Linde
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
112
|
Panax ginseng-Derived Extracellular Vesicles Facilitate Anti-Senescence Effects in Human Skin Cells: An Eco-Friendly and Sustainable Way to Use Ginseng Substances. Cells 2021; 10:cells10030486. [PMID: 33668388 PMCID: PMC7996359 DOI: 10.3390/cells10030486] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023] Open
Abstract
Ginseng is a traditional herbal medicine in eastern Asian countries. Most active constituents in ginseng are prepared via fermentation or organic acid pretreatment. Extracellular vesicles (EVs) are released by most organisms from prokaryotes to eukaryotes and play central roles in intra- and inter-species communications. Plants produce EVs upon exposure to microbes; however, their direct functions and utility for human health are barely known, except for being proposed as delivery vehicles. In this study, we isolated EVs from ginseng roots (GrEVs) or the culture supernatants of ginseng cells (GcEVs) derived from Panax ginseng C.A. Meyer and investigated their biological effects on human skin cells. GrEV or GcEV treatments improved the replicative senescent or senescence-associated pigmented phenotypes of human dermal fibroblasts or ultraviolet B radiation-treated human melanocytes, respectively, by downregulating senescence-associated molecules and/or melanogenesis-related proteins. Based on comprehensive lipidomic analysis using liquid chromatography mass spectrometry, the lipidomic profile of GrEVs differed from that of the parental root extracts, showing significant increases in 70 of 188 identified lipid species and prominent increases in diacylglycerols, some phospholipids (phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine), and sphingomyelin, revealing their unique vesicular properties. Therefore, our results imply that GEVs represent a novel type of bioactive and sustainable nanomaterials that can be applied to human tissues for improving tissue conditions and targeted delivery of active constituents.
Collapse
|
113
|
Ma X, Liu C, Kong X, Liu J, Zhang S, Liang S, Luan W, Cao X. Extensive profiling of the expressions of tRNAs and tRNA-derived fragments (tRFs) reveals the complexities of tRNA and tRF populations in plants. SCIENCE CHINA-LIFE SCIENCES 2021; 64:495-511. [DOI: 10.1007/s11427-020-1891-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
|
114
|
Perut F, Roncuzzi L, Avnet S, Massa A, Zini N, Sabbadini S, Giampieri F, Mezzetti B, Baldini N. Strawberry-Derived Exosome-Like Nanoparticles Prevent Oxidative Stress in Human Mesenchymal Stromal Cells. Biomolecules 2021; 11:biom11010087. [PMID: 33445656 PMCID: PMC7828105 DOI: 10.3390/biom11010087] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Plant-derived exosome-like nanovesicles (EPDENs) have recently been isolated and evaluated as potential bioactive nutraceutical biomolecules. It has been hypothesized that EPDENs may exert their activity on mammalian cells through their specific cargo. In this study, we isolated and purified EPDENs from the strawberry juice of Fragaria x ananassa (cv. Romina), a new cultivar characterized by a high content of anthocyanins, folic acid, flavonols, and vitamin C and an elevated antioxidant capacity. Fragaria-derived EPDENs were purified by a series of centrifugation and filtration steps. EPDENs showed size and morphology similar to mammalian extracellular nanovesicles. The internalization of Fragaria-derived EPDENs by human mesenchymal stromal cells (MSCs) did not negatively affect their viability, and the pretreatment of MSCs with Fragaria-derived EPDENs prevented oxidative stress in a dose-dependent manner. This is possibly due to the presence of vitamin C inside the nanovesicle membrane. The analysis of EPDEN cargo also revealed the presence of small RNAs and miRNAs. These findings suggest that Fragaria-derived EPDENs may be considered nanoshuttles contained in food, with potential health-promoting activity.
Collapse
Affiliation(s)
- Francesca Perut
- BST Biomedical Sciences and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.P.); (L.R.); (S.A.); (A.M.)
| | - Laura Roncuzzi
- BST Biomedical Sciences and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.P.); (L.R.); (S.A.); (A.M.)
| | - Sofia Avnet
- BST Biomedical Sciences and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.P.); (L.R.); (S.A.); (A.M.)
| | - Annamaria Massa
- BST Biomedical Sciences and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.P.); (L.R.); (S.A.); (A.M.)
| | - Nicoletta Zini
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, 40100 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy; (S.S.); (B.M.)
| | - Francesca Giampieri
- Department of Clinical Specialistic and Odontostomatological Sciences, University Politecnica delle Marche, 60121 Ancona, Italy;
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy; (S.S.); (B.M.)
| | - Nicola Baldini
- BST Biomedical Sciences and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.P.); (L.R.); (S.A.); (A.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence: ; Tel.: +39-051-6366566
| |
Collapse
|
115
|
Grapefruit-Derived Micro and Nanovesicles Show Distinct Metabolome Profiles and Anticancer Activities in the A375 Human Melanoma Cell Line. Cells 2020; 9:cells9122722. [PMID: 33371199 PMCID: PMC7766354 DOI: 10.3390/cells9122722] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Fruit juice is one of the most easily accessible resources for the isolation of plant-derived vesicles. Here we found that micro- and nano-sized vesicles (MVs and NVs) from four Citrus species, C. sinensis, C. limon, C. paradisi and C. aurantium, specifically inhibit the proliferation of lung, skin and breast cancer cells, with no substantial effect on the growth of non-cancer cells. Cellular and molecular analyses demonstrate that grapefruit-derived vesicles cause cell cycle arrest at G2/M checkpoint associated with a reduced cyclins B1 and B2 expression levels and the upregulation of cell cycle inhibitor p21. Further data suggest the inhibition of Akt and ERK signalling, reduced intercellular cell adhesion molecule-1 and cathepsins expressions, and the presence of cleaved PARP-1, all associated with the observed changes at the cellular level. Gas chromatography-mass spectrometry-based metabolomics reveals distinct metabolite profiles for the juice and vesicle fractions. NVs exhibit a high relative amount of amino acids and organic acids whereas MVs and fruit juice are characterized by a high percentage of sugars and sugar derivatives. Grapefruit-derived NVs are in particular rich in alpha–hydroxy acids and leucine/isoleucine, myo-inositol and doconexent, while quininic acid was detected in MVs. Our findings reveal the metabolite signatures of grapefruit-derived vesicles and substantiate their potential use in new anticancer strategies.
Collapse
|
116
|
Plant Roots Release Small Extracellular Vesicles with Antifungal Activity. PLANTS 2020; 9:plants9121777. [PMID: 33333782 PMCID: PMC7765200 DOI: 10.3390/plants9121777] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Extracellular Vesicles (EVs) play pivotal roles in cell-to-cell and inter-kingdom communication. Despite their relevant biological implications, the existence and role of plant EVs released into the environment has been unexplored. Herein, we purified round-shaped small vesicles (EVs) by differential ultracentrifugation of a sampling solution containing root exudates of hydroponically grown tomato plants. Biophysical analyses, by means of dynamic light scattering, microfluidic resistive pulse sensing and scanning electron microscopy, showed that the size of root-released EVs range in the nanometric scale (50-100 nm). Shot-gun proteomics of tomato EVs identified 179 unique proteins, several of which are known to be involved in plant-microbe interactions. In addition, the application of root-released EVs induced a significant inhibition of spore germination and of germination tube development of the plant pathogens Fusarium oxysporum, Botrytis cinerea and Alternaria alternata. Interestingly, these EVs contain several proteins involved in plant defense, suggesting that they could be new components of the plant innate immune system.
Collapse
|
117
|
Bokka R, Ramos AP, Fiume I, Manno M, Raccosta S, Turiák L, Sugár S, Adamo G, Csizmadia T, Pocsfalvi G. Biomanufacturing of Tomato-Derived Nanovesicles. Foods 2020; 9:E1852. [PMID: 33322632 PMCID: PMC7764365 DOI: 10.3390/foods9121852] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Micro- and nano-sized vesicles (MVs and NVs, respectively) from edible plant resources are gaining increasing interest as green, sustainable, and biocompatible materials for the development of next-generation delivery vectors. The isolation of vesicles from complex plant matrix is a significant challenge considering the trade-off between yield and purity. Here, we used differential ultracentrifugation (dUC) for the bulk production of MVs and NVs from tomato (Solanum lycopersicum L.) fruit and analyzed their physical and morphological characteristics and biocargo profiles. The protein and phospholipid cargo shared considerable similarities between MVs and NVs. Phosphatidic acid was the most abundant phospholipid identified in NVs and MVs. The bulk vesicle isolates were further purified using sucrose density gradient ultracentrifugation (gUC) or size-exclusion chromatography (SEC). We showed that SEC using gravity column efficiently removed co-purifying matrix components including proteins and small molecular species. dUC/SEC yielded a high yield of purified vesicles in terms of number of particles (2.6 × 1015 particles) and protein quantities (6.9 ± 1.5 mg) per kilogram of tomato. dUC/gUC method separated two vesicle populations on the basis of buoyant density. Proteomics and in silico studies of the SEC-purified MVs and NVs support the presence of different intra- and extracellular vesicles with highly abundant lipoxygenase (LOX), ATPases, and heat shock proteins (HSPs), as well as a set of proteins that overlaps with that previously reported in tomato chromoplast.
Collapse
Affiliation(s)
- Ramesh Bokka
- Extracellular Vesicles and Mass Spectrometry Group, Institute of Biosciences and BioResources, National Research Council of Italy, 80131 Naples, Italy; (R.B.); (A.P.R.); (I.F.)
| | - Anna Paulina Ramos
- Extracellular Vesicles and Mass Spectrometry Group, Institute of Biosciences and BioResources, National Research Council of Italy, 80131 Naples, Italy; (R.B.); (A.P.R.); (I.F.)
| | - Immacolata Fiume
- Extracellular Vesicles and Mass Spectrometry Group, Institute of Biosciences and BioResources, National Research Council of Italy, 80131 Naples, Italy; (R.B.); (A.P.R.); (I.F.)
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (M.M.)
| | - Samuele Raccosta
- Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (M.M.)
| | - Lilla Turiák
- MS Proteomics Research Group, Hungarian Academy of Sciences, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.T.); (S.S.)
| | - Simon Sugár
- MS Proteomics Research Group, Hungarian Academy of Sciences, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.T.); (S.S.)
| | - Giorgia Adamo
- Institute for Biomedical Research and Innovation, National Research Council of Italy, 90146 Palermo, Italy;
| | - Tamás Csizmadia
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, 1117 Budapest, Hungary;
| | - Gabriella Pocsfalvi
- Extracellular Vesicles and Mass Spectrometry Group, Institute of Biosciences and BioResources, National Research Council of Italy, 80131 Naples, Italy; (R.B.); (A.P.R.); (I.F.)
| |
Collapse
|
118
|
Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol Ther 2020; 29:13-31. [PMID: 33278566 DOI: 10.1016/j.ymthe.2020.11.030] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022] Open
Abstract
Plant exosome-like nanovesicles, being innately replete with bioactive lipids, proteins, RNA, and other pharmacologically active molecules, offer unique morphological and compositional characteristics as natural nanocarriers. Furthermore, their compelling physicochemical traits underpin their modulative role in physiological processes, all of which have fostered the concept that these nanovesicles may be highly proficient in the development of next-generation biotherapeutic and drug delivery nanoplatforms to meet the ever-stringent demands of current clinical challenges. This review systemically deals with various facets of plant exosome-like nanovesicles ranging from their origin and isolation to identification of morphological composition, biological functions, and cargo-loading mechanisms. Efforts are made to encompass their biotherapeutic roles by elucidating their immunological modulating, anti-tumor, regenerative, and anti-inflammatory roles. We also shed light on re-engineering these nanovesicles into robust, innocuous, and non-immunogenic nanovectors for drug delivery through multiple stringent biological hindrances to various targeted organs such as intestine and brain. Finally, recent advances centered around plant exosome-like nanovesicles along with new insights into transdermal, transmembrane and targeting mechanisms of these vesicles are also elucidated. We expect that the continuing development of plant exosome-like nanovesicle-based therapeutic and delivery nanoplatforms will promote their clinical applications.
Collapse
Affiliation(s)
- Haseeb Anwar Dad
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ting-Wei Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ao-Qing Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Lu-Qi Huang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| |
Collapse
|
119
|
|
120
|
Rutter BD, Innes RW. Growing pains: addressing the pitfalls of plant extracellular vesicle research. THE NEW PHYTOLOGIST 2020; 228:1505-1510. [PMID: 32506490 DOI: 10.1111/nph.16725] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Extracellular vesicles (EVs) are small, membrane-enclosed compartments that mediate the intercellular transport of proteins and small RNAs. In plants, EVs are thought to play a prominent role in immune responses and are being championed as the long-sought-after mechanism for host-induced gene silencing. However, parallel research on mammalian EVs is raising concerns about potential pitfalls faced by all EV researchers that will need to be addressed in order to convincingly establish that EVs are the primary mediators of small RNA transfer between organisms. Here we discuss these pitfalls in the context of plant EV research, with a focus on experimental approaches required to distinguish bona fide EV cargo from merely co-purifying contaminants.
Collapse
Affiliation(s)
- Brian D Rutter
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
121
|
Park MS, Sim G, Kehling AC, Nakanishi K. Human Argonaute2 and Argonaute3 are catalytically activated by different lengths of guide RNA. Proc Natl Acad Sci U S A 2020; 117:28576-28578. [PMID: 33122430 PMCID: PMC7682322 DOI: 10.1073/pnas.2015026117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA interfering is a eukaryote-specific gene silencing by 20∼23-nucleotide (nt) microRNAs and small interfering RNAs that recruit Argonaute proteins to complementary RNAs for degradation. In humans, Argonaute2 (AGO2) has been known as the only slicer while Argonaute3 (AGO3) barely cleaves RNAs. Therefore, the intrinsic slicing activity of AGO3 remains controversial and a long-standing question. Here, we report 14-nt 3' end-shortened variants of let-7a, miR-27a, and specific miR-17-92 families that make AGO3 an extremely competent slicer, increasing target cleavage up to ∼82-fold in some instances. These RNAs, named cleavage-inducing tiny guide RNAs (cityRNAs), conversely lower the activity of AGO2, demonstrating that AGO2 and AGO3 have different optimum guide lengths for target cleavage. Our study sheds light on the role of tiny guide RNAs.
Collapse
Affiliation(s)
- Mi Seul Park
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - GeunYoung Sim
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
- Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210
| | - Audrey C Kehling
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210;
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
- Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
122
|
Abstract
Plant diseases caused by a variety of pathogens can have severe effects on crop plants and even plants in natural ecosystems. Despite many effective conventional approaches to control plant diseases, new, efficacious, environmentally sound and cost-effective approaches are needed, particularly with our increasing human population and the effects on crop production and plant health caused by climate change. RNA interference (RNAi) is a gene regulation and antiviral response mechanism in eukaryotes; transgenic and non transgenic plant-based RNAi approaches have shown great effectiveness and potential to target specific plant pathogens and help control plant diseases, especially when no alternatives are available. Here we discuss ways in which RNAi has been used against different plant pathogens, and some new potential applications for plant disease control.
Collapse
|
123
|
Dávalos A, Pinilla L, López de Las Hazas MC, Pinto-Hernández P, Barbé F, Iglesias-Gutiérrez E, de Gonzalo-Calvo D. Dietary microRNAs and cancer: A new therapeutic approach? Semin Cancer Biol 2020; 73:19-29. [PMID: 33086083 DOI: 10.1016/j.semcancer.2020.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Cancer is one of the leading causes of premature death and constitutes a challenge for both low- and high-income societies. Previous evidence supports a close association between modifiable risk factors, including dietary habits, and cancer risk. Investigation of molecular mechanisms that mediate the pro-oncogenic and anti-oncogenic effects of diet is therefore fundamental. MicroRNAs (miRNAs) have received much attention in the past few decades as crucial molecular elements of human physiology and disease. Aberrant expression patterns of these small noncoding transcripts have been observed in a wide array of cancers. Interestingly, human miRNAs not only can be modulated by bioactive dietary components, but it has also been proposed that diet-derived miRNAs may contribute to the pool of human miRNAs. Results from independent groups have suggested that these exogenous miRNAs may be functional in organisms. These findings open the door to novel and innovative approaches to cancer therapy. Here, we provide an overview of the biology of miRNAs, with a special focus on plant-derived dietary miRNAs, summarize recent findings in the field of cancer, address the possible applications to clinical practice and discuss obstacles and challenges in the field.
Collapse
Affiliation(s)
- Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Crta. de, Carr. de Canto Blanco, nº8, E, 28049 Madrid, Spain
| | - Lucía Pinilla
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Crta. de, Carr. de Canto Blanco, nº8, E, 28049 Madrid, Spain
| | - Paola Pinto-Hernández
- Department of Functional Biology, Physiology, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Eduardo Iglesias-Gutiérrez
- Department of Functional Biology, Physiology, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Av. Roma, s/n, 33011 Oviedo, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain.
| |
Collapse
|
124
|
Liu Y, Teng C, Xia R, Meyers BC. PhasiRNAs in Plants: Their Biogenesis, Genic Sources, and Roles in Stress Responses, Development, and Reproduction. THE PLANT CELL 2020; 32:3059-3080. [PMID: 32817252 PMCID: PMC7534485 DOI: 10.1105/tpc.20.00335] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 05/08/2023]
Abstract
Phased secondary small interfering RNAs (phasiRNAs) constitute a major category of small RNAs in plants, but most of their functions are still poorly defined. Some phasiRNAs, known as trans-acting siRNAs, are known to target complementary mRNAs for degradation and to function in development. However, the targets or biological roles of other phasiRNAs remain speculative. New insights into phasiRNA biogenesis, their conservation, and their variation across the flowering plants continue to emerge due to the increased availability of plant genomic sequences, deeper and more sophisticated sequencing approaches, and improvements in computational biology and biochemical/molecular/genetic analyses. In this review, we survey recent progress in phasiRNA biology, with a particular focus on two classes associated with male reproduction: 21-nucleotide (accumulate early in anther ontogeny) and 24-nucloetide (produced in somatic cells during meiosis) phasiRNAs. We describe phasiRNA biogenesis, function, and evolution and define the unanswered questions that represent topics for future research.
Collapse
Affiliation(s)
- Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510640, China
- College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Chong Teng
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510640, China
- College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, Missouri 65211
| |
Collapse
|
125
|
Maizel A, Markmann K, Timmermans M, Wachter A. To move or not to move: roles and specificity of plant RNA mobility. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:52-60. [PMID: 32634685 DOI: 10.1016/j.pbi.2020.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/07/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Intercellular communication in plants coordinates cellular functions during growth and development, and in response to environmental cues. RNAs figure prominently among the mobile signaling molecules used. Many hundreds of RNA species move over short and long distances, and can be mutually exchanged in biotic interactions. Understanding the specificity determinants of RNA mobility and the physiological relevance of this phenomenon are areas of active research. Here, we highlight the recent progress in our knowledge of small RNA and messenger RNA movement. Particular emphasis is given to novel insight into the specificity determinants of messenger RNA mobility, the role of small RNA movement in development, and the specificity of RNA exchange in plant-plant and plant-microbe interactions.
Collapse
Affiliation(s)
- Alexis Maizel
- Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Katharina Markmann
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Marja Timmermans
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| | - Andreas Wachter
- Institute for Molecular Physiology (imP), University of Mainz, Johannes von Müller-Weg 6, 55128 Mainz, Germany
| |
Collapse
|
126
|
Huang K, Demirci F, Batish M, Treible W, Meyers BC, Caplan JL. Quantitative, super-resolution localization of small RNAs with sRNA-PAINT. Nucleic Acids Res 2020; 48:e96. [PMID: 32716042 PMCID: PMC7498346 DOI: 10.1093/nar/gkaa623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
Small RNAs are non-coding RNAs that play important roles in the lives of both animals and plants. They are 21- to 24-nt in length and ∼10 nm in size. Their small size and high diversity have made it challenging to develop detection methods that have sufficient resolution and specificity to multiplex and quantify. We created a method, sRNA-PAINT, for the detection of small RNAs with 20 nm resolution by combining the super-resolution method, DNA-based points accumulation in nanoscale topography (DNA-PAINT), and the specificity of locked nucleic acid (LNA) probes for the in situ detection of multiple small RNAs. The method relies on designing probes to target small RNAs that combine DNA oligonucleotides (oligos) for PAINT with LNA-containing oligos for hybridization; therefore, we developed an online tool called 'Vetting & Analysis of RNA for in situ Hybridization probes' (VARNISH) for probe design. Our method utilizes advances in DNA-PAINT methodologies, including qPAINT for quantification, and Exchange-PAINT for multiplexing. We demonstrated these capabilities of sRNA-PAINT by detecting and quantifying small RNAs in different cell layers of early developmental stage maize anthers that are important for male sexual reproduction.
Collapse
Affiliation(s)
- Kun Huang
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Feray Demirci
- FiDoSoft Software Consulting, Redmond, WA 98052, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Wayne Treible
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
- University of Missouri – Columbia, Division of Plant Sciences, 52 Agriculture Lab, Columbia, MO 65211, USA
| | - Jeffrey L Caplan
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
127
|
Hill EH, Solomon PS. Extracellular vesicles from the apoplastic fungal wheat pathogen Zymoseptoria tritici. Fungal Biol Biotechnol 2020; 7:13. [PMID: 32968488 PMCID: PMC7501697 DOI: 10.1186/s40694-020-00103-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The fungal pathogen Zymoseptoria tritici is a significant constraint to wheat production in temperate cropping regions around the world. Despite its agronomic impacts, the mechanisms allowing the pathogen to asymptomatically invade and grow in the apoplast of wheat leaves before causing extensive host cell death remain elusive. Given recent evidence of extracellular vesicles (EVs)-secreted, membrane-bound nanoparticles containing molecular cargo-being implicated in extracellular communication between plants and fungal pathogen, we have initiated an in vitro investigation of EVs from this apoplastic fungal wheat pathogen. We aimed to isolate EVs from Z. tritici broth cultures and examine their protein composition in relation to the soluble protein in the culture filtrate and to existing fungal EV proteomes. RESULTS Zymoseptoria tritici EVs were isolated from broth culture filtrates using differential ultracentrifugation (DUC) and examined with transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Z. tritici EVs were observed as a heterogeneous population of particles, with most between 50 and 250 nm. These particles were found in abundance in the culture filtrates of viable Z. tritici cultures, but not heat-killed cultures incubated for an equivalent time and of comparable biomass. Bottom-up proteomic analysis using LC-MS/MS, followed by stringent filtering revealed 240 Z. tritici EV proteins. These proteins were distinct from soluble proteins identified in Z. tritici culture filtrates, but were similar to proteins identified in EVs from other fungi, based on sequence similarity analyses. Notably, a putative marker protein recently identified in Candida albicans EVs was also consistently detected in Z. tritici EVs. CONCLUSION We have shown EVs can be isolated from the devastating fungal wheat pathogen Z. tritici and are similar to protein composition to previously characterised fungal EVs. EVs from human pathogenic fungi are implicated in virulence, but the role of EVs in the interaction of phytopathogenic fungi and their hosts is unknown. These in vitro analyses provide a basis for expanding investigations of Z. tritici EVs in planta, to examine their involvement in the infection process of this apoplastic wheat pathogen and more broadly, advance understanding of noncanonical secretion in filamentous plant pathogens.
Collapse
Affiliation(s)
- Erin H. Hill
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Peter S. Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| |
Collapse
|
128
|
Zhang J, Qiu Y, Xu K. Characterization of GFP-AtPEN1 as a marker protein for extracellular vesicles isolated from Nicotiana benthamiana leaves. PLANT SIGNALING & BEHAVIOR 2020; 15:1791519. [PMID: 32657215 PMCID: PMC8550176 DOI: 10.1080/15592324.2020.1791519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Plant extracellular vesicles (EVs) are cell-secreted membrane structures enclosing cytosolic components, including pathogenesis-related proteins, tiny RNAs, and microRNAs et al. Their roles are shown to be involved in plant-microbe interactions. Albeit several marker proteins were developed for EVs labeling for Arabidopsis thaliana and other plant species, we lack similar knowledge on EVs isolated from model plant Nicotiana benthamiana, which serves as an excellent host for plant pathogen studies. Here, we transiently expressed two arabidopsis EV markers AtPEN1 and AtTET8 and one ESCRT protein VPS4 in Nicotiana benthamiana leaves and tested for their ability in EV labeling. We found that GFP tagged AtPEN1 expression in Nicotiana benthamiana leaves is more stable than other proteins tested, and GFP-AtPEN1 accumulated in Nicotiana benthamiana EVs. Furthermore, we showed that EVs isolated from Nicotiana benthamiana leaf apoplast have typical EV density and vesicle-like morphology. Our finding demonstrates that GFP-AtPEN1 can be used as an excellent marker protein to label Nicotiana benthamiana EVs.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - Yanglin Qiu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| |
Collapse
|
129
|
Jaswal R, Kiran K, Rajarammohan S, Dubey H, Singh PK, Sharma Y, Deshmukh R, Sonah H, Gupta N, Sharma TR. Effector Biology of Biotrophic Plant Fungal Pathogens: Current Advances and Future Prospects. Microbiol Res 2020; 241:126567. [PMID: 33080488 DOI: 10.1016/j.micres.2020.126567] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
The interaction of fungal pathogens with their host requires a novel invading mechanism and the presence of various virulence-associated components responsible for promoting the infection. The small secretory proteins, explicitly known as effector proteins, are one of the prime mechanisms of host manipulation utilized by the pathogen to disarm the host. Several effector proteins are known to translocate from fungus to the plant cell for host manipulation. Many fungal effectors have been identified using genomic, transcriptomic, and bioinformatics approaches. Most of the effector proteins are devoid of any conserved signatures, and their prediction based on sequence homology is very challenging, therefore by combining the sequence consensus based upon machine learning features, multiple tools have also been developed for predicting apoplastic and cytoplasmic effectors. Various post-genomics approaches like transcriptomics of virulent isolates have also been utilized for identifying active consortia of effectors. Significant progress has been made in understanding biotrophic effectors; however, most of it is underway due to their complex interaction with host and complicated recognition and signaling networks. This review discusses advances, and challenges in effector identification and highlighted various features of the potential effector proteins and approaches for understanding their genetics and strategies for regulation.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India; Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India
| | - Kanti Kiran
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | | | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | - Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India.
| | - T R Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India.
| |
Collapse
|
130
|
Spinler JK, Oezguen N, Runge JK, Luna RA, Karri V, Yang J, Hirschi KD. Dietary impact of a plant-derived microRNA on the gut microbiome. ACTA ACUST UNITED AC 2020; 2. [PMID: 33542959 PMCID: PMC7856875 DOI: 10.1186/s41544-020-00053-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Global estimations of 4 billion people living on plant-based diets signify tremendous diversity in plant consumption and their assorted miRNAs, which presents a challenging model to experimentally address how plant-based miRNAs impact the microbiome. Here we establish baseline gut microbiome composition for a mouse model deficient in the specific mammalian miR-146a shown to alter gut microbiomes. We then asses the effect on the gut microbiome when miR-146a-deficient mice are fed a transgenic plant-based diet expressing the murine-derived miR-146a. Mice deficient in miR-146a were maintained either on a baseline diet until 7 weeks of age (day 0) and then fed either vector or miR-146a-expressing plant-based diets for 21 days. The gut microbiomes of mice were examined by comparing the V4 region of 16S rRNA gene sequences of DNA isolated from fecal samples at days 0 (baseline diet) and 21 (vector or miR-146a expressing plant-based diets). Results: Beta-diversity analysis demonstrated that the transition from baseline chow to a plant-based diet resulted in significant longitudinal shifts in microbial community structure attributable to increased fiber intake. Bipartite network analysis suggests that miR-146a-deficient mice fed a plant diet rich in miR-146a have a microbiome population modestly different than mice fed an isogenic control plant diet deficient in miR-146a. Conclusion: A mouse diet composed of a transgenic plant expressing a mouse miR-146a may fine tune microbial communities but does not appear to have global effects on microbiome structure and composition.
Collapse
Affiliation(s)
- Jennifer K Spinler
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, 1102 Bates Ave, Houston, TX 77030, USA
| | - Numan Oezguen
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, 1102 Bates Ave, Houston, TX 77030, USA
| | - Jessica K Runge
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, 1102 Bates Ave, Houston, TX 77030, USA
| | - Ruth Ann Luna
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, 1102 Bates Ave, Houston, TX 77030, USA
| | | | - Jian Yang
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, 1100 Bates Ave, Houston, TX 77030, USA
| | - Kendal D Hirschi
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, 1100 Bates Ave, Houston, TX 77030, USA
| |
Collapse
|
131
|
Tosar JP, Cayota A. Extracellular tRNAs and tRNA-derived fragments. RNA Biol 2020; 17:1149-1167. [PMID: 32070197 PMCID: PMC7549618 DOI: 10.1080/15476286.2020.1729584] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 01/08/2023] Open
Abstract
Fragmentation of tRNAs generates a family of small RNAs collectively known as tRNA-derived fragments. These fragments vary in sequence and size but have been shown to regulate many processes involved in cell homoeostasis and adaptations to stress. Additionally, the field of extracellular RNAs (exRNAs) is rapidly growing because exRNAs are a promising source of biomarkers in liquid biopsies, and because exRNAs seem to play key roles in intercellular and interspecies communication. Herein, we review recent descriptions of tRNA-derived fragments in the extracellular space in all domains of life, both in biofluids and in cell culture. The purpose of this review is to find consensus on which tRNA-derived fragments are more prominent in each extracellular fraction (including extracellular vesicles, lipoproteins and ribonucleoprotein complexes). We highlight what is becoming clear and what is still controversial in this field, in order to stimulate future hypothesis-driven studies which could clarify the role of full-length tRNAs and tRNA-derived fragments in the extracellular space.
Collapse
Affiliation(s)
- Juan Pablo Tosar
- Analytical Biochemistry Unit, Nuclear Research Center, Faculty of Science, Universidad de la República, Montevideo, Uruguay
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alfonso Cayota
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Department of Medicine, University Hospital, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
132
|
Ren T, Wang Y, Chen H, Wang K, Gao X, Liu L, Zhang Y, Sun Y. MicroRNA-4331-5p promotes FMDV replication through inhibiting interferon pathways in PK-15 cells. Virus Res 2020; 286:198064. [PMID: 32574680 DOI: 10.1016/j.virusres.2020.198064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/22/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022]
Abstract
MicroRNAs play vital roles in regulating the battle between pathogens and host cells during viral challenging. MiR-4331 aggravates transmissible gastroenteritis virus (TGEV) -induced mitochondrial damage, also suppresses transcription of TGEV gene 7 via targeting cellular CDCA7. Otherwise, miR-4331-5p affects H1N1/2009 influenza A virus replication by targeting viral HA and NS. However, whether microRNA ssc-miR-4331-5p (miR-4331-5p) regulates foot and mouth virus (FMDV) replication remains unclear. To explore the role of miR-4331-5p in FMDV infection, we detected the expression level of miR-4331-5p in porcine kidney (PK-15) cells. The results showed that FMDV infection directly upregulates miR-4331-5p expression, while transfection of mimics or inhibitor of miR-4331-5p promotes or inhibits FMDV replication. Further investigation clearly showed that miR-4331-5p increases FMDV replication through inhibiting type I interferon pathways. These data demonstrate that miR-4331-5p plays an important role in regulating FMDV replication.
Collapse
Affiliation(s)
- Tingting Ren
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Yanxue Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Haotai Chen
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Kailing Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Xin Gao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Lei Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| | - Yuefeng Sun
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
133
|
Abundant expression of maternal siRNAs is a conserved feature of seed development. Proc Natl Acad Sci U S A 2020; 117:15305-15315. [PMID: 32541052 DOI: 10.1073/pnas.2001332117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Small RNAs are abundant in plant reproductive tissues, especially 24-nucleotide (nt) small interfering RNAs (siRNAs). Most 24-nt siRNAs are dependent on RNA Pol IV and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and establish DNA methylation at thousands of genomic loci in a process called RNA-directed DNA methylation (RdDM). In Brassica rapa, RdDM is required in the maternal sporophyte for successful seed development. Here, we demonstrate that a small number of siRNA loci account for over 90% of siRNA expression during B. rapa seed development. These loci exhibit unique characteristics with regard to their copy number and association with genomic features, but they resemble canonical 24-nt siRNA loci in their dependence on RNA Pol IV/RDR2 and role in RdDM. These loci are expressed in ovules before fertilization and in the seed coat, embryo, and endosperm following fertilization. We observed a similar pattern of 24-nt siRNA expression in diverse angiosperms despite rapid sequence evolution at siren loci. In the endosperm, siren siRNAs show a marked maternal bias, and siren expression in maternal sporophytic tissues is required for siren siRNA accumulation. Together, these results demonstrate that seed development occurs under the influence of abundant maternal siRNAs that might be transported to, and function in, filial tissues.
Collapse
|
134
|
Amari K, Niehl A. Nucleic acid-mediated PAMP-triggered immunity in plants. Curr Opin Virol 2020; 42:32-39. [DOI: 10.1016/j.coviro.2020.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022]
|
135
|
|
136
|
Wang M, Dean RA. Movement of small RNAs in and between plants and fungi. MOLECULAR PLANT PATHOLOGY 2020; 21:589-601. [PMID: 32027079 PMCID: PMC7060135 DOI: 10.1111/mpp.12911] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 05/12/2023]
Abstract
RNA interference is a biological process whereby small RNAs inhibit gene expression through neutralizing targeted mRNA molecules. This process is conserved in eukaryotes. Here, recent work regarding the mechanisms of how small RNAs move within and between organisms is examined. Small RNAs can move locally and systemically in plants through plasmodesmata and phloem, respectively. In fungi, transportation of small RNAs may also be achieved by septal pores and vesicles. Recent evidence also supports bidirectional cross-kingdom communication of small RNAs between host plants and adapted fungal pathogens to affect the outcome of infection. We discuss several mechanisms for small RNA trafficking and describe evidence for transport through naked form, combined with RNA-binding proteins or enclosed by vesicles.
Collapse
Affiliation(s)
- Mengying Wang
- Fungal Genomics LaboratoryCenter for Integrated Fungal ResearchDepartment of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Ralph A. Dean
- Fungal Genomics LaboratoryCenter for Integrated Fungal ResearchDepartment of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
137
|
Abstract
Many filamentous pathogens invade plant cells through specialized hyphae called haustoria. These infection structures are enveloped by a newly synthesized plant-derived membrane called the extrahaustorial membrane (EHM). This specialized membrane is the ultimate interface between the plant and pathogen, and is key to the success or failure of infection. Strikingly, the EHM is reminiscent of host-derived membrane interfaces that engulf intracellular metazoan parasites. These perimicrobial interfaces are critical sites where pathogens facilitate nutrient uptake and deploy virulence factors to disarm cellular defenses mounted by their hosts. Although the mechanisms underlying the biogenesis and functions of these host-microbe interfaces are poorly understood, recent studies have provided new insights into the cellular and molecular mechanisms involved. In this Cell Science at a Glance and the accompanying poster, we summarize these recent advances with a specific focus on the haustorial interfaces associated with filamentous plant pathogens. We highlight the progress in the field that fundamentally underpin this research topic. Furthermore, we relate our knowledge of plant-filamentous pathogen interfaces to those generated by other plant-associated organisms. Finally, we compare the similarities between host-pathogen interfaces in plants and animals, and emphasize the key questions in this research area.
Collapse
Affiliation(s)
- Tolga O Bozkurt
- Imperial College London, Department of Life Sciences, London, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
138
|
Liu S, Jaouannet M, Dempsey DA, Imani J, Coustau C, Kogel KH. RNA-based technologies for insect control in plant production. Biotechnol Adv 2020; 39:107463. [DOI: 10.1016/j.biotechadv.2019.107463] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022]
|
139
|
Chivasa S, Goodman HL. Stress-adaptive gene discovery by exploiting collective decision-making of decentralized plant response systems. THE NEW PHYTOLOGIST 2020; 225:2307-2313. [PMID: 31625607 DOI: 10.1111/nph.16273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Despite having a network of cytoplasmic interconnections (plasmodesmata) facilitating rapid exchange of metabolites and signal molecules, plant cells use the extracellular matrix as an alternative route for cell-cell communication. The need for extracellular signalling in plasmodesmata-networked tissues is baffling. A hypothesis is proposed that this phenomenon defines the plant extracellular matrix as a 'democratic space' for collective decision-making in a decentralized system, similar to quorum-sensing in bacteria. Extracellular communication enables signal integration and coordination across several cell layers through ligand-activated plasma membrane receptors. Recent results from drought stress-adaptive responses and light-mediated signalling in cell death activation show operational utility of this decision-making process. Opportunities are discussed for new innovations in drought gene discovery using platforms targeting the extracellular matrix.
Collapse
Affiliation(s)
- Stephen Chivasa
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | | |
Collapse
|
140
|
Diaz-Baena M, Galvez-Valdivieso G, Delgado-Garcia E, Pineda M, Piedras P. Nuclease and ribonuclease activities in response to salt stress: Identification of PvRNS3, a T2/S-like ribonuclease induced in common bean radicles by salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:235-241. [PMID: 31881432 DOI: 10.1016/j.plaphy.2019.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 05/28/2023]
Abstract
The increase in soil salinization due to global climate change could cause large losses in crop productivity affecting, among other biological processes, to germination and seedling development. We have studied how salt stress affects nucleic acid degrading activities in radicles of common bean during seedling development. In radicles of common bean, a main nuclease of 37 kDa and two ribonucleases of 17 and 19 kDa were detected. Saline stress did not alter these three activities but induced a new ribonuclease of 16 kDa. All three ribonucleases are acidic enzymes that were inhibited by Zn. The 16 and 17 kDa ribonucleases are inhibited by guanilates. In the genome of common bean, we have identified 13 genes belonging to the T2 ribonuclease family and that are grouped in the 3 classes of T2 ribonucleases. The analysis of the expression of the 3 genes belonging to Class I (PvRNS1 to 3) and the unique gene from Class II (PvRNS4) in radicles showed that PvRNS3 is highly induced under salt stress.
Collapse
Affiliation(s)
- Mercedes Diaz-Baena
- Departamento de Botánica, Ecología y Fisiología Vegetal, Plants Molecular Physiology and Biotechnology Group, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Gregorio Galvez-Valdivieso
- Departamento de Botánica, Ecología y Fisiología Vegetal, Plants Molecular Physiology and Biotechnology Group, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Elena Delgado-Garcia
- Departamento de Botánica, Ecología y Fisiología Vegetal, Plants Molecular Physiology and Biotechnology Group, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal, Plants Molecular Physiology and Biotechnology Group, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Pedro Piedras
- Departamento de Botánica, Ecología y Fisiología Vegetal, Plants Molecular Physiology and Biotechnology Group, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
141
|
Vincent D, Rafiqi M, Job D. The Multiple Facets of Plant-Fungal Interactions Revealed Through Plant and Fungal Secretomics. FRONTIERS IN PLANT SCIENCE 2020; 10:1626. [PMID: 31969889 PMCID: PMC6960344 DOI: 10.3389/fpls.2019.01626] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/19/2019] [Indexed: 05/14/2023]
Abstract
The plant secretome is usually considered in the frame of proteomics, aiming at characterizing extracellular proteins, their biological roles and the mechanisms accounting for their secretion in the extracellular space. In this review, we aim to highlight recent results pertaining to secretion through the conventional and unconventional protein secretion pathways notably those involving plant exosomes or extracellular vesicles. Furthermore, plants are well known to actively secrete a large array of different molecules from polymers (e.g. extracellular RNA and DNA) to small compounds (e.g. ATP, phytochemicals, secondary metabolites, phytohormones). All of these play pivotal roles in plant-fungi (or oomycetes) interactions, both for beneficial (mycorrhizal fungi) and deleterious outcomes (pathogens) for the plant. For instance, recent work reveals that such secretion of small molecules by roots is of paramount importance to sculpt the rhizospheric microbiota. Our aim in this review is to extend the definition of the plant and fungal secretomes to a broader sense to better understand the functioning of the plant/microorganisms holobiont. Fundamental perspectives will be brought to light along with the novel tools that should support establishing an environment-friendly and sustainable agriculture.
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Maryam Rafiqi
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Dominique Job
- CNRS/Université Claude Bernard Lyon 1/Institut National des Sciences Appliquées/Bayer CropScience Joint Laboratory (UMR 5240), Bayer CropScience, Lyon, France
| |
Collapse
|
142
|
Sun FY, Liu L, Yu Y, Ruan XM, Wang CY, Hu QW, Wu DX, Sun G. MicroRNA-mediated responses to colchicine treatment in barley. PLANTA 2020; 251:44. [PMID: 31907626 DOI: 10.1007/s00425-019-03326-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
In Hordeum vulgare, nine differentially expressed novel miRNAs were induced by colchicine. Five novel miRNA in colchicine solution showed the opposite expression patterns as those in water. Colchicine is a commonly used agent for plant chromosome set doubling. MicroRNA-mediated responses to colchicine treatment in plants have not been characterized. Here, we characterized new microRNAs induced by colchicine treatment in Hordeum vulgare using high-throughput sequencing. Our results showed that 39 differentially expressed miRNAs were affected by water treatment, including 34 novel miRNAs and 5 known miRNAs; 42 miRNAs, including 37 novel miRNAs and 5 known miRNAs, were synergistically affected by colchicine and water, and 9 differentially expressed novel miRNAs were induced by colchicine. The novel_mir69, novel_mir57, novel_mir75, novel_mir38, and novel_mir56 in colchicine treatment showed the opposite expression patterns as those in water. By analyzing these 9 differentially expressed novel miRNAs and their targets, we found that novel_mir69, novel_mir56 and novel_mir25 co-target the genes involving the DNA repair pathway. Based on our results, microRNA-target regulation network under colchicine treatment was proposed, which involves actin, cell cycle regulation, cell wall synthesis, and the regulation of oxidative stress. Overall, the results demonstrated the critical role of microRNAs mediated responses to colchicine treatment in plants.
Collapse
Affiliation(s)
- Fang-Yao Sun
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Lin Liu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yi Yu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xin-Ming Ruan
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Cheng-Yu Wang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Qun-Wen Hu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - De-Xiang Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, NS, B3H 3C3, Canada.
| |
Collapse
|
143
|
Coordination and Crosstalk between Autophagosome and Multivesicular Body Pathways in Plant Stress Responses. Cells 2020; 9:cells9010119. [PMID: 31947769 PMCID: PMC7017292 DOI: 10.3390/cells9010119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic cells, autophagosomes and multivesicular bodies (MVBs) are two closely related partners in the lysosomal/vacuolar protein degradation system. Autophagosomes are double membrane-bound organelles that transport cytoplasmic components, including proteins and organelles for autophagic degradation in the lysosomes/vacuoles. MVBs are single-membrane organelles in the endocytic pathway that contain intraluminal vesicles whose content is either degraded in the lysosomes/vacuoles or recycled to the cell surface. In plants, both autophagosome and MVB pathways play important roles in plant responses to biotic and abiotic stresses. More recent studies have revealed that autophagosomes and MVBs also act together in plant stress responses in a variety of processes, including deployment of defense-related molecules, regulation of cell death, trafficking and degradation of membrane and soluble constituents, and modulation of plant hormone metabolism and signaling. In this review, we discuss these recent findings on the coordination and crosstalk between autophagosome and MVB pathways that contribute to the complex network of plant stress responses.
Collapse
|
144
|
Hudzik C, Hou Y, Ma W, Axtell MJ. Exchange of Small Regulatory RNAs between Plants and Their Pests. PLANT PHYSIOLOGY 2020; 182:51-62. [PMID: 31636103 PMCID: PMC6945882 DOI: 10.1104/pp.19.00931] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/02/2019] [Indexed: 05/09/2023]
Abstract
Regulatory small RNAs are well known as antiviral agents, regulators of gene expression, and defenders of genome integrity in plants. Several studies over the last decade have also shown that some small RNAs are exchanged between plants and their pathogens and parasites. Naturally occurring trans-species small RNAs are used by host plants to silence mRNAs in pathogens. These gene-silencing events are thought to be detrimental to the pathogen and beneficial to the host. Conversely, trans-species small RNAs from pathogens and parasites are deployed to silence host mRNAs; these events are thought to be beneficial for the pests. The natural ability of plants to exchange small RNAs with invading eukaryotic organisms can be exploited to provide disease resistance. This review gives an overview of the current state of trans-species small RNA research in plants and discusses several outstanding questions for future research.
Collapse
Affiliation(s)
- Collin Hudzik
- Department of Biology, Intercollege Ph.D. Program in Plant Biology, and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Michael J Axtell
- Department of Biology, Intercollege Ph.D. Program in Plant Biology, and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
145
|
Cui Y, Gao J, He Y, Jiang L. Plant extracellular vesicles. PROTOPLASMA 2020; 257:3-12. [PMID: 31468195 DOI: 10.1007/s00709-019-01435-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/19/2019] [Indexed: 05/20/2023]
Abstract
Exocytosis is a key mechanism for delivering materials into the extracellular space for cell function and communication. In plant cells, conventional protein secretion (CPS) is achieved via an ER (endoplasmic reticulum)-Golgi-TGN (trans-Golgi network)-PM (plasma membrane) pathway. Unconventional protein secretion (UPS) bypassing these secretory organelles is also in operation and can potentially lead to the formation of extracellular vesicles (EVs) in plant cells. Although multiple types of EVs have been identified and shown to play important roles in mediating intercellular communications in mammalian cells, there has been a long debate about the possible existence of EVs in plants because of the presence of the cell wall. However, increasing evidence suggests that plants also release EVs having various functions including unconventional protein secretion, RNA transport, and defense against pathogens. In this review, we present an update on the current knowledge about the nature, secretory mechanism, and function of various types of EVs in plants. The key regulators involved in EV secretion are also summarized and discussed. We pay special attention to the function of EVs in plant defense and symbiosis.
Collapse
Affiliation(s)
- Yong Cui
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Jiayang Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yilin He
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
146
|
Huang CY, Wang H, Hu P, Hamby R, Jin H. Small RNAs - Big Players in Plant-Microbe Interactions. Cell Host Microbe 2019; 26:173-182. [PMID: 31415750 DOI: 10.1016/j.chom.2019.07.021] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 01/08/2023]
Abstract
Eukaryotic small RNAs (sRNAs) are short non-coding regulatory molecules that induce RNA interference (RNAi). During microbial infection, host RNAi machinery is highly regulated and contributes to reprogramming gene expression and balancing plant immunity and growth. While most sRNAs function endogenously, some can travel across organismal boundaries between hosts and microbes and silence genes in trans in interacting organisms, a mechanism called "cross-kingdom RNAi." During the co-evolutionary arms race between fungi and plants, some fungi developed a novel virulence mechanism, sending sRNAs as effector molecules into plant cells to silence plant immunity genes, whereas plants also transport sRNAs, mainly using extracellular vesicles, into the pathogens to suppress virulence-related genes. In this Review, we highlight recent discoveries on these key roles of sRNAs and RNAi machinery. Understanding the molecular mechanisms of sRNA biogenesis, trafficking, and RNAi machinery will help us develop innovative strategies for crop protection.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Huan Wang
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Po Hu
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Rachael Hamby
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
147
|
The green peach aphid gut contains host plant microRNAs identified by comprehensive annotation of Brassica oleracea small RNA data. Sci Rep 2019; 9:18904. [PMID: 31827121 PMCID: PMC6906386 DOI: 10.1038/s41598-019-54488-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022] Open
Abstract
Like all organisms, aphids, plant sap-sucking insects that house a bacterial endosymbiont called Buchnera, are members of a species interaction network. Ecological interactions across such networks can result in phenotypic change in network members mediated by molecular signals, like microRNAs. Here, we interrogated small RNA data from the aphid, Myzus persicae, to determine the source of reads that did not map to the aphid or Buchnera genomes. Our analysis revealed that the pattern was largely explained by reads that mapped to the host plant, Brassica oleracea, and a facultative symbiont, Regiella. To start elucidating the function of plant small RNA in aphid gut, we annotated 213 unique B. oleracea miRNAs; 32/213 were present in aphid gut as mature and star miRNAs. Next, we predicted targets in the B. oleracea and M. persicae genomes for these 32 plant miRNAs. We found that plant targets were enriched for genes associated with transcription, while the distribution of targets in the aphid genome was similar to the functional distribution of all genes in the aphid genome. We discuss the potential of plant miRNAs to regulate aphid gene expression and the mechanisms involved in processing, export and uptake of plant miRNAs by aphids.
Collapse
|
148
|
Goodfellow S, Zhang D, Wang MB, Zhang R. Bacterium-Mediated RNA Interference: Potential Application in Plant Protection. PLANTS (BASEL, SWITZERLAND) 2019; 8:E572. [PMID: 31817412 PMCID: PMC6963952 DOI: 10.3390/plants8120572] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023]
Abstract
RNAi has emerged as a promising tool for targeting agricultural pests and pathogens and could provide an environmentally friendly alternative to traditional means of control. However, the deployment of this technology is still limited by a lack of suitable exogenous- or externally applied delivery mechanisms. Numerous means of overcoming this limitation are being explored. One such method, bacterium-mediated RNA interference, or bmRNAi, has been explored in other systems and shows great potential for application to agriculture. Here, we review the current state of bmRNAi, examine the technical limitations and possible improvements, and discuss its potential applications in crop protection.
Collapse
Affiliation(s)
- Simon Goodfellow
- School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2522, Australia
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Daai Zhang
- School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2522, Australia
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Ming-Bo Wang
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Ren Zhang
- School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
149
|
Cai Q, He B, Weiberg A, Buck AH, Jin H. Small RNAs and extracellular vesicles: New mechanisms of cross-species communication and innovative tools for disease control. PLoS Pathog 2019; 15:e1008090. [PMID: 31887135 PMCID: PMC6936782 DOI: 10.1371/journal.ppat.1008090] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Qiang Cai
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| | - Baoye He
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| | - Arne Weiberg
- Department of Biology, Ludwig-Maximilians University of Munich (LMU), Munich, Germany
| | - Amy H. Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| |
Collapse
|
150
|
Saeed B, Brillada C, Trujillo M. Dissecting the plant exocyst. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:69-76. [PMID: 31509792 DOI: 10.1016/j.pbi.2019.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/12/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
The exocyst is an evolutionary conserved complex that mediates tethering of post-Golgi vesicles derived from the conventional secretory pathway to the plasma membrane (PM), before SNARE-mediated fusion. Through its tethering function, connecting secretory vesicles to the PM, it mediates spatiotemporal regulation of exocytosis. As an integral element of the secretory machinery, the exocyst has been implicated in a large variety of processes. However, emerging evidence suggests that it may also cater for unconventional secretory pathways, as well as autophagy. The exocyst entertains a multitude of interactions with proteins and membrane phospholipids, reflecting its highly dynamic nature and the complex regulatory processes that hardwire it with cellular signalling networks. However, our molecular understanding of this essential complex remains fragmentary. Here we review recent work focusing on the molecular features that have revealed both commonalities with yeast and animals, as well as unique characteristics of the plant exocyst.
Collapse
Affiliation(s)
- Bushra Saeed
- Albert-Ludwigs-University Freiburg, Faculty of Biology, Institute of Biology II, 79104 Freiburg, Germany
| | - Carla Brillada
- Albert-Ludwigs-University Freiburg, Faculty of Biology, Institute of Biology II, 79104 Freiburg, Germany
| | - Marco Trujillo
- Albert-Ludwigs-University Freiburg, Faculty of Biology, Institute of Biology II, 79104 Freiburg, Germany.
| |
Collapse
|