101
|
Li J, Huang G, He J, Chen Z, Pun CM, Yu Z, Ling WK, Liu L, Zhou J, Huang J. Shift-channel attention and weighted-region loss function for liver and dense tumor segmentation. Med Phys 2022; 49:7193-7206. [PMID: 35746843 DOI: 10.1002/mp.15816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/07/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To assist physicians in the diagnosis and treatment planning of tumor, a robust and automatic liver and tumor segmentation method is highly demanded in the clinical practice. Recently, numerous researchers have improved the segmentation accuracy of liver and tumor by introducing multiscale contextual information and attention mechanism. However, this tends to introduce more training parameters and suffer from a heavier computational burden. In addition, the tumor has various sizes, shapes, locations, and numbers, which is the main reason for the poor accuracy of automatic segmentation. Although current loss functions can improve the learning ability of the model for hard samples to a certain extent, these loss functions are difficult to optimize the segmentation effect of small tumor regions when the large tumor regions in the sample are in the majority. METHODS We propose a Liver and Tumor Segmentation Network (LiTS-Net) framework. First, the Shift-Channel Attention Module (S-CAM) is designed to model the feature interdependencies in adjacent channels and does not require additional training parameters. Second, the Weighted-Region (WR) loss function is proposed to emphasize the weight of small tumors in dense tumor regions and reduce the weight of easily segmented samples. Moreover, the Multiple 3D Inception Encoder Units (MEU) is adopted to capture the multiscale contextual information for better segmentation of liver and tumor. RESULTS Efficacy of the LiTS-Net is demonstrated through the public dataset of MICCAI 2017 Liver Tumor Segmentation (LiTS) challenge, with Dice per case of 96.9 % ${\bf \%}$ and 75.1 % ${\bf \%}$ , respectively. For the 3D Image Reconstruction for Comparison of Algorithm and DataBase (3Dircadb), Dices are 96.47 % ${\bf \%}$ for the liver and 74.54 % ${\bf \%}$ for tumor segmentation. The proposed LiTS-Net outperforms existing state-of-the-art networks. CONCLUSIONS We demonstrated the effectiveness of LiTS-Net and its core components for liver and tumor segmentation. The S-CAM is designed to model the feature interdependencies in the adjacent channels, which is characterized by no need to add additional training parameters. Meanwhile, we conduct an in-depth study of the feature shift proportion of adjacent channels to determine the optimal shift proportion. In addition, the WR loss function can implicitly learn the weights among regions without the need to manually specify the weights. In dense tumor segmentation tasks, WR aims to enhance the weights of small tumor regions and alleviate the problem that small tumor segmentation is difficult to optimize further when large tumor regions occupy the majority. Last but not least, our proposed method outperforms other state-of-the-art methods on both the LiTS dataset and the 3Dircadb dataset.
Collapse
Affiliation(s)
- Jiajian Li
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
| | - Guoheng Huang
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
| | - Junlin He
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
| | - Ziyang Chen
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
| | - Chi-Man Pun
- Department of Computer and Information Science, University of Macau, Macau, SAR, China
| | - Zhiwen Yu
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Wing-Kuen Ling
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| | - Lizhi Liu
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jian Zhou
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jinhua Huang
- Department of Minimal Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
102
|
Wu W, Lei R, Niu K, Yang R, He Z. Automatic segmentation of colon, small intestine, and duodenum based on scale attention network. Med Phys 2022; 49:7316-7326. [PMID: 35833330 DOI: 10.1002/mp.15862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Automatic segmentation of colon, small intestine, and duodenum is a challenging task because of the great variability in the scale of the target organs. Multi-scale features are the key to alleviating this problem. Previous works focused on extracting discriminative multi-scale features through a hierarchical structure. Instead, the purpose of this work is to exploit these powerful multi-scale features more efficiently. METHODS A Scale Attention Module (SAM) was proposed to recalibrate multi-scale features by explicitly modeling their importance score adaptively. The SAM was introduced into the segmentation model to construct the Scale Attention Network (SANet). The multi-scale features extracted from the encoder were first re-extracted to obtain more specific multi-scale features. Then the SAM was applied to recalibrate the features. Specifically, for the feature of each scale, a summation of Global Average Pooling and Global Max Pooling was used to create scale-wise feature representations. According to the representations, a lightweight network was used to generate the importance score of each scale. The features were recalibrated based on the scores, and a simple pixel-by-pixel summation was used to fuse the multi-scale features. The fused multi-scale feature was fed into a segmentation head to complete the task. RESULTS The models were evaluated using fivefold cross-validation on 70 upper abdominal computed tomography scans of patients in a volume manner. The results showed that SANet could effectively alleviate the scale-variability problem and achieve better performance compared with UNet, Attention UNet, UNet++, Deeplabv3p, and CascadedUNet. The Dice similarity coefficients (DSCs) of colon, small intestine, and duodenum were (84.06 ± 3.66)%, (76.79 ± 5.12)%, and (61.68 ± 4.32)%, respectively. The HD95 were (7.51 ± 2.45) mm, (11.08 ± 2.45) mm, and (12.21 ± 1.95) mm, respectively. The values of relative volume difference were (3.4 ± 0.8)%, (11.6 ± 11.81)%, and (6.2 ± 3.71)%, respectively. The values of center-of-mass distance were 7.85 ± 2.82, 9.89 ± 2.70, and 9.94 ± 1.58, respectively. Compared with other attention modules and multi-scale feature exploitation approaches, SAM could obtain a 0.83-2.71 points improvement in terms of DSC with a comparable or even less number of parameters. The extensive experiments confirmed the effectiveness of SAM. CONCLUSIONS The SANet can efficiently exploit multi-scale features to alleviate the scale-variability problem and improve the segmentation performance on colon, small intestine, and duodenum of the upper abdomen.
Collapse
Affiliation(s)
- Wenbin Wu
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China
| | - Runhong Lei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Kai Niu
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China
| | - Ruijie Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Zhiqiang He
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China
| |
Collapse
|
103
|
Li F, Tang S, Chen Y, Zou H. Deep attentive convolutional neural network for automatic grading of imbalanced diabetic retinopathy in retinal fundus images. BIOMEDICAL OPTICS EXPRESS 2022; 13:5813-5835. [PMID: 36733744 PMCID: PMC9872872 DOI: 10.1364/boe.472176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 06/18/2023]
Abstract
Automated fine-grained diabetic retinopathy (DR) grading was of great significance for assisting ophthalmologists in monitoring DR and designing tailored treatments for patients. Nevertheless, it is a challenging task as a result of high intra-class variations, high inter-class similarities, small lesions, and imbalanced data distributions. The pivotal factor for the success in fine-grained DR grading is to discern more subtle associated lesion features, such as microaneurysms (MA), Hemorrhages (HM), soft exudates (SE), and hard exudates (HE). In this paper, we constructed a simple yet effective deep attentive convolutional neural network (DACNN) for DR grading and lesion discovery with only image-wise supervision. Designed as a top-down architecture, our model incorporated stochastic atrous spatial pyramid pooling (sASPP), global attention mechanism (GAM), category attention mechanism (CAM), and learnable connected module (LCM) to better extract lesion-related features and maximize the DR grading performance. To be concrete, we devised sASPP combining randomness with atrous spatial pyramid pooling (ASPP) to accommodate the various scales of the lesions and struggle against the co-adaptation of multiple atrous convolutions. Then, GAM was introduced to extract class-agnostic global attention feature details, whilst CAM was explored for seeking class-specific distinctive region-level lesion feature information and regarding each DR severity grade in an equal way, which tackled the problem of imbalance DR data distributions. Further, the LCM was designed to automatically and adaptively search the optimal connections among layers for better extracting detailed small lesion feature representations. The proposed approach obtained high accuracy of 88.0% and kappa score of 88.6% for multi-class DR grading task on the EyePACS dataset, respectively, while 98.5% AUC, 93.8% accuracy, 87.9% kappa, 90.7% recall, 94.6% precision, and 92.6% F1-score for referral and non-referral classification on the Messidor dataset. Extensive experimental results on three challenging benchmarks demonstrated that the proposed approach achieved competitive performance in DR grading and lesion discovery using retinal fundus images compared with existing cutting-edge methods, and had good generalization capacity for unseen DR datasets. These promising results highlighted its potential as an efficient and reliable tool to assist ophthalmologists in large-scale DR screening.
Collapse
Affiliation(s)
- Feng Li
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shiqing Tang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuyang Chen
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haidong Zou
- Shanghai Eye Disease Prevention & Treatment Center, Shanghai 200040, China
- Ophthalmology Center, Shanghai General Hospital, Shanghai 200080, China
| |
Collapse
|
104
|
Hu Q, Wei Y, Li X, Wang C, Li J, Wang Y. EA-Net: Edge-aware network for brain structure segmentation via decoupled high and low frequency features. Comput Biol Med 2022; 150:106139. [PMID: 36209556 DOI: 10.1016/j.compbiomed.2022.106139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022]
Abstract
Automatic brain structure segmentation in Magnetic Resonance Image (MRI) plays an important role in the diagnosis of various neuropsychiatric diseases. However, most existing methods yield unsatisfactory results due to blurred boundaries and complex structures. Improving the segmentation ability requires the model to be explicit about the spatial localization and shape appearance of targets, which correspond to the low-frequency content features and the high-frequency edge features, respectively. Therefore, in this paper, to extract rich edge and content feature representations, we focus on the composition of the feature and utilize a frequency decoupling (FD) block to separate the low-frequency and high-frequency parts of the feature. Further, a novel edge-aware network (EA-Net) is proposed for jointly learning to segment brain structures and detect object edges. First, an encoder-decoder sub-network is utilized to obtain multi-level information from the input MRI, which is then sent to the FD block to complete the frequency separation. Further, we use different mechanisms to optimize both the low-frequency and high-frequency features. Finally, these two parts are fused to generate the final prediction. In particular, we extract the content mask and the edge mask from the optimization feature with different supervisions, which forces the network to learn the boundary features of the object. Extensive experiments are performed on two public brain MRI T1 scan datasets (the IBSR dataset and the MALC dataset) to evaluate the effectiveness of the proposed algorithm. The experiments show that the EA-Net achieves the best performance compared with the state-of-the-art methods, and improves the segmentation DSC score by 1.31% at most compared with the U-Net model and its variants. Moreover, we evaluate the EA-Net under different noise disturbances, and the results demonstrate the robustness and superiority of our method under low-quality noisy MRI. Code is available at https://github.com/huqian999/EA-Net.
Collapse
Affiliation(s)
- Qian Hu
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Ying Wei
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; Information Technology R&D Innovation Center of Peking University, Shaoxing, China; Changsha Hisense Intelligent System Research Institute Co., Ltd., China.
| | - Xiang Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Chuyuan Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Jiaguang Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Yuefeng Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
105
|
Impact of Tumour Segmentation Accuracy on Efficacy of Quantitative MRI Biomarkers of Radiotherapy Outcome in Brain Metastasis. Cancers (Basel) 2022; 14:cancers14205133. [PMID: 36291917 PMCID: PMC9601104 DOI: 10.3390/cancers14205133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Radiotherapy is a major treatment option for patients with brain metastasis. However, response to radiotherapy is highly varied among the patients, and it may take months before the response of brain metastasis to radiotherapy is apparent on standard follow-up imaging. This is not desirable, especially given the fact that patients diagnosed with brain metastasis suffer from a short median survival. Recent studies have shown the high potential of machine learning methods for analyzing quantitative imaging features (biomarkers) to predict the response of brain metastasis before or early after radiotherapy. However, these methods require manual delineation of individual tumours on imaging that is tedious and time-consuming, hindering further development and widespread application of these techniques. Here, we investigated the impact of using less accurate but automatically generated tumour outlines on the efficacy of the derived imaging biomarkers for radiotherapy response prediction. Our findings demonstrate that while the effect of tumour delineation accuracy is considerable for automatic contours with low accuracy, imaging biomarkers and prediction models are rather robust to imperfections in the produced tumour masks. The results of this study open the avenue to utilizing automatically generated tumour contours for discovering imaging biomarkers without sacrificing their accuracy. Abstract Significantly affecting patients’ clinical course and quality of life, a growing number of cancer cases are diagnosed with brain metastasis (BM) annually. Stereotactic radiotherapy is now a major treatment option for patients with BM. However, it may take months before the local response of BM to stereotactic radiation treatment is apparent on standard follow-up imaging. While machine learning in conjunction with radiomics has shown great promise in predicting the local response of BM before or early after radiotherapy, further development and widespread application of such techniques has been hindered by their dependency on manual tumour delineation. In this study, we explored the impact of using less-accurate automatically generated segmentation masks on the efficacy of radiomic features for radiotherapy outcome prediction in BM. The findings of this study demonstrate that while the effect of tumour delineation accuracy is substantial for segmentation models with lower dice scores (dice score ≤ 0.85), radiomic features and prediction models are rather resilient to imperfections in the produced tumour masks. Specifically, the selected radiomic features (six shared features out of seven) and performance of the prediction model (accuracy of 80% versus 80%, AUC of 0.81 versus 0.78) were fairly similar for the ground-truth and automatically generated segmentation masks, with dice scores close to 0.90. The positive outcome of this work paves the way for adopting high-throughput automatically generated tumour masks for discovering diagnostic and prognostic imaging biomarkers in BM without sacrificing accuracy.
Collapse
|
106
|
Hao D, Ahsan M, Salim T, Duarte-Rojo A, Esmaeel D, Zhang Y, Arefan D, Wu S. A self-training teacher-student model with an automatic label grader for abdominal skeletal muscle segmentation. Artif Intell Med 2022; 132:102366. [DOI: 10.1016/j.artmed.2022.102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
|
107
|
Li C, Wang L, Li Y. Transformer and group parallel axial attention co-encoder for medical image segmentation. Sci Rep 2022; 12:16117. [PMID: 36167743 PMCID: PMC9515122 DOI: 10.1038/s41598-022-20440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
U-Net has become baseline standard in the medical image segmentation tasks, but it has limitations in explicitly modeling long-term dependencies. Transformer has the ability to capture long-term relevance through its internal self-attention. However, Transformer is committed to modeling the correlation of all elements, but its awareness of local foreground information is not significant. Since medical images are often presented as regional blocks, local information is equally important. In this paper, we propose the GPA-TUNet by considering local and global information synthetically. Specifically, we propose a new attention mechanism to highlight local foreground information, called group parallel axial attention (GPA). Furthermore, we effectively combine GPA with Transformer in encoder part of model. It can not only highlight the foreground information of samples, but also reduce the negative influence of background information on the segmentation results. Meanwhile, we introduced the sMLP block to improve the global modeling capability of network. Sparse connectivity and weight sharing are well achieved by applying it. Extensive experiments on public datasets confirm the excellent performance of our proposed GPA-TUNet. In particular, on Synapse and ACDC datasets, mean DSC(%) reached 80.37% and 90.37% respectively, mean HD95(mm) reached 20.55 and 1.23 respectively.
Collapse
Affiliation(s)
- Chaoqun Li
- College of Information Science and Engineering, Xinjiang University, Ürümqi, 830046, China
| | - Liejun Wang
- College of Information Science and Engineering, Xinjiang University, Ürümqi, 830046, China.
| | - Yongming Li
- College of Information Science and Engineering, Xinjiang University, Ürümqi, 830046, China
| |
Collapse
|
108
|
Wang J, Tian S, Yu L, Wang Y, Wang F, Zhou Z. SBDF-Net: A versatile dual-branch fusion network for medical image segmentation. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
109
|
Ge L, Wei X, Hao Y, Luo J, Xu Y. Unsupervised Histological Image Registration Using Structural Feature Guided Convolutional Neural Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2414-2431. [PMID: 35363611 DOI: 10.1109/tmi.2022.3164088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Registration of multiple stained images is a fundamental task in histological image analysis. In supervised methods, obtaining ground-truth data with known correspondences is laborious and time-consuming. Thus, unsupervised methods are expected. Unsupervised methods ease the burden of manual annotation but often at the cost of inferior results. In addition, registration of histological images suffers from appearance variance due to multiple staining, repetitive texture, and section missing during making tissue sections. To deal with these challenges, we propose an unsupervised structural feature guided convolutional neural network (SFG). Structural features are robust to multiple staining. The combination of low-resolution rough structural features and high-resolution fine structural features can overcome repetitive texture and section missing, respectively. SFG consists of two components of structural consistency constraints according to the formations of structural features, i.e., dense structural component and sparse structural component. The dense structural component uses structural feature maps of the whole image as structural consistency constraints, which represent local contextual information. The sparse structural component utilizes the distance of automatically obtained matched key points as structural consistency constraints because the matched key points in an image pair emphasize the matching of significant structures, which imply global information. In addition, a multi-scale strategy is used in both dense and sparse structural components to make full use of the structural information at low resolution and high resolution to overcome repetitive texture and section missing. The proposed method was evaluated on a public histological dataset (ANHIR) and ranked first as of Jan 18th, 2022.
Collapse
|
110
|
Zhao L, Ma J, Shao Y, Jia C, Zhao J, Yuan H. MM-UNet: A multimodality brain tumor segmentation network in MRI images. Front Oncol 2022; 12:950706. [PMID: 36059677 PMCID: PMC9434799 DOI: 10.3389/fonc.2022.950706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
The global annual incidence of brain tumors is approximately seven out of 100,000, accounting for 2% of all tumors. The mortality rate ranks first among children under 12 and 10th among adults. Therefore, the localization and segmentation of brain tumor images constitute an active field of medical research. The traditional manual segmentation method is time-consuming, laborious, and subjective. In addition, the information provided by a single-image modality is often limited and cannot meet the needs of clinical application. Therefore, in this study, we developed a multimodality feature fusion network, MM-UNet, for brain tumor segmentation by adopting a multi-encoder and single-decoder structure. In the proposed network, each encoder independently extracts low-level features from the corresponding imaging modality, and the hybrid attention block strengthens the features. After fusion with the high-level semantic of the decoder path through skip connection, the decoder restores the pixel-level segmentation results. We evaluated the performance of the proposed model on the BraTS 2020 dataset. MM-UNet achieved the mean Dice score of 79.2% and mean Hausdorff distance of 8.466, which is a consistent performance improvement over the U-Net, Attention U-Net, and ResUNet baseline models and demonstrates the effectiveness of the proposed model.
Collapse
Affiliation(s)
- Liang Zhao
- School of Software Technology, Dalian University of Technology, Dalian, China
| | - Jiajun Ma
- School of Software Technology, Dalian University of Technology, Dalian, China
| | - Yu Shao
- School of Software Technology, Dalian University of Technology, Dalian, China
| | - Chaoran Jia
- School of Software Technology, Dalian University of Technology, Dalian, China
| | - Jingyuan Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Jingyuan Zhao, ; Hong Yuan,
| | - Hong Yuan
- The Affiliated Central Hospital, Dalian University of Technology, Dalian, China
- *Correspondence: Jingyuan Zhao, ; Hong Yuan,
| |
Collapse
|
111
|
A Deep Learning Model Incorporating Knowledge Representation Vectors and Its Application in Diabetes Prediction. DISEASE MARKERS 2022; 2022:7593750. [PMID: 35990251 PMCID: PMC9391170 DOI: 10.1155/2022/7593750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 01/09/2023]
Abstract
The deep learning methods for various disease prediction tasks have become very effective and even surpass human experts. However, the lack of interpretability and medical expertise limits its clinical application. This paper combines knowledge representation learning and deep learning methods, and a disease prediction model is constructed. The model initially constructs the relationship graph between the physical indicator and the test value based on the normal range of human physical examination index. And the human physical examination index for testing value by knowledge representation learning model is encoded. Then, the patient physical examination data is represented as a vector and input into a deep learning model built with self-attention mechanism and convolutional neural network to implement disease prediction. The experimental results show that the model which is used in diabetes prediction yields an accuracy of 97.18% and the recall of 87.55%, which outperforms other machine learning methods (e.g., lasso, ridge, support vector machine, random forest, and XGBoost). Compared with the best performing random forest method, the recall is increased by 5.34%, respectively. Therefore, it can be concluded that the application of medical knowledge into deep learning through knowledge representation learning can be used in diabetes prediction for the purpose of early detection and assisting diagnosis.
Collapse
|
112
|
Real-time instance segmentation of surgical instruments using attention and multi-scale feature fusion. Med Image Anal 2022; 81:102569. [DOI: 10.1016/j.media.2022.102569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
|
113
|
Preda F, Morgan N, Van Gerven A, Nogueira-Reis F, Smolders A, Wang X, Nomidis S, Shaheen E, Willems H, Jacobs R. Deep convolutional neural network-based automated segmentation of the maxillofacial complex from cone-beam computed tomography - A validation study. J Dent 2022; 124:104238. [PMID: 35872223 DOI: 10.1016/j.jdent.2022.104238] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES The present study investigated the accuracy, consistency, and time-efficiency of a novel deep CNN-based model for the automated maxillofacial bone segmentation from CBCT images. METHOD A dataset of 144 scans was acquired from two CBCT devices and randomly divided into three subsets: training set (n= 110), validation set (n= 10) and testing set (n=24). A three-dimensional (3D) U-Net (CNN) model was developed, and the achieved automated segmentation was compared with a manual approach. RESULTS The average time required for automated segmentation was 39.1 seconds with a 204-fold decrease in time consumption compared to manual segmentation (132.7 minutes). The model is highly accurate for identification of the bony structures of the anatomical region of interest with a dice similarity coefficient (DSC) of 92.6%. Additionally, the fully deterministic nature of the CNN model was able to provide 100% consistency without any variability. The inter-observer consistency for expert-based minor correction of the automated segmentation observed an excellent DSC of 99.7%. CONCLUSION The proposed CNN model provided a time-efficient, accurate, and consistent CBCT-based automated segmentation of the maxillofacial complex. CLINICAL SIGNIFICANCE Automated segmentation of the maxillofacial complex could act as a potent alternative to the conventional segmentation techniques for improving the efficiency of the digital workflows. This approach could deliver an accurate and ready-to-print three dimensional (3D) models that are essential to patient-specific digital treatment planning for orthodontics, maxillofacial surgery, and implant placement.
Collapse
Affiliation(s)
- Flavia Preda
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer33, BE-3000 Leuven, Belgium.
| | - Nermin Morgan
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer33, BE-3000 Leuven, Belgium; Department of Oral Medicine, Faculty of Dentistry, Mansoura University, 35516 Mansoura, Dakahlia, Egypt
| | | | - Fernanda Nogueira-Reis
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer33, BE-3000 Leuven, Belgium; Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira 901, Piracicaba, São Paulo 13414‑903, Brazil
| | | | - Xiaotong Wang
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer33, BE-3000 Leuven, Belgium
| | | | - Eman Shaheen
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer33, BE-3000 Leuven, Belgium
| | | | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer33, BE-3000 Leuven, Belgium; Department of Dental Medicine, Karolinska Institutet, Box 4064, 141 04 Huddinge, Stockholm, Sweden
| |
Collapse
|
114
|
Li X, Wei Y, Wang C, Hu Q, Liu C. Contextual-wise discriminative feature extraction and robust network learning for subcortical structure segmentation. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
115
|
Chen X, Wang X, Zhang K, Fung KM, Thai TC, Moore K, Mannel RS, Liu H, Zheng B, Qiu Y. Recent advances and clinical applications of deep learning in medical image analysis. Med Image Anal 2022; 79:102444. [PMID: 35472844 PMCID: PMC9156578 DOI: 10.1016/j.media.2022.102444] [Citation(s) in RCA: 275] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/09/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Deep learning has received extensive research interest in developing new medical image processing algorithms, and deep learning based models have been remarkably successful in a variety of medical imaging tasks to support disease detection and diagnosis. Despite the success, the further improvement of deep learning models in medical image analysis is majorly bottlenecked by the lack of large-sized and well-annotated datasets. In the past five years, many studies have focused on addressing this challenge. In this paper, we reviewed and summarized these recent studies to provide a comprehensive overview of applying deep learning methods in various medical image analysis tasks. Especially, we emphasize the latest progress and contributions of state-of-the-art unsupervised and semi-supervised deep learning in medical image analysis, which are summarized based on different application scenarios, including classification, segmentation, detection, and image registration. We also discuss major technical challenges and suggest possible solutions in the future research efforts.
Collapse
Affiliation(s)
- Xuxin Chen
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Ximin Wang
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ke Zhang
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Theresa C Thai
- Department of Radiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kathleen Moore
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Robert S Mannel
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hong Liu
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Bin Zheng
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Yuchen Qiu
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
116
|
Adiga V S, Dolz J, Lombaert H. Attention-based Dynamic Subspace Learners for Medical Image Analysis. IEEE J Biomed Health Inform 2022; 26:4599-4610. [PMID: 35763468 DOI: 10.1109/jbhi.2022.3186882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Learning similarity is a key aspect in medical image analysis, particularly in recommendation systems or in uncovering the interpretation of anatomical data in images. Most existing methods learn such similarities in the embedding space over image sets using a single metric learner. Images, however, have a variety of object attributes such as color, shape, or artifacts. Encoding such attributes using a single metric learner is inadequate and may fail to generalize. Instead, multiple learners could focus on separate aspects of these attributes in subspaces of an overarching embedding. This, however, implies the number of learners to be found empirically for each new dataset. This work, Dynamic Subspace Learners, proposes to dynamically exploit multiple learners by removing the need of knowing apriori the number of learners and aggregating new subspace learners during training. Furthermore, the visual interpretability of such subspace learning is enforced by integrating an attention module into our method. This integrated attention mechanism provides a visual insight of discriminative image features that contribute to the clustering of image sets and a visual explanation of the embedding features. The benefits of our attention-based dynamic subspace learners are evaluated in the application of image clustering, image retrieval, and weakly supervised segmentation. Our method achieves competitive results with the performances of multiple learners baselines and significantly outperforms the classification network in terms of clustering and retrieval scores on three different public benchmark datasets. Moreover, our method also provides an attention map generated directly during inference to illustrate the visual interpretability of the embedding features. These attention maps offer a proxy-labels, which improves the segmentation accuracy up to 15% in Dice scores when compared to state-of-the-art interpretation techniques.
Collapse
|
117
|
Alahmadi MD. Medical Image Segmentation with Learning Semantic and Global Contextual Representation. Diagnostics (Basel) 2022; 12:diagnostics12071548. [PMID: 35885454 PMCID: PMC9319384 DOI: 10.3390/diagnostics12071548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Automatic medical image segmentation is an essential step toward accurate diseases diagnosis and designing a follow-up treatment. This assistive method facilitates the cancer detection process and provides a benchmark to highlight the affected area. The U-Net model has become the standard design choice. Although the symmetrical structure of the U-Net model enables this network to encode rich semantic representation, the intrinsic locality of the CNN layers limits this network’s capability in modeling long-range contextual dependency. On the other hand, sequence to sequence Transformer models with a multi-head attention mechanism can enable them to effectively model global contextual dependency. However, the lack of low-level information stemming from the Transformer architecture limits its performance for capturing local representation. In this paper, we propose a two parallel encoder model, where in the first path the CNN module captures the local semantic representation whereas the second path deploys a Transformer module to extract the long-range contextual representation. Next, by adaptively fusing these two feature maps, we encode both representations into a single representative tensor to be further processed by the decoder block. An experimental study demonstrates that our design can provide rich and generic representation features which are highly efficient for a fine-grained semantic segmentation task.
Collapse
Affiliation(s)
- Mohammad D Alahmadi
- Department of Software Engineering, College of Computer Science and Engineering, University of Jeddah, Jeddah 23890, Saudi Arabia
| |
Collapse
|
118
|
Li Z, Wang H, Han Q, Liu J, Hou M, Chen G, Tian Y, Weng T. Convolutional Neural Network with Multiscale Fusion and Attention Mechanism for Skin Diseases Assisted Diagnosis. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8390997. [PMID: 35747726 PMCID: PMC9213118 DOI: 10.1155/2022/8390997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022]
Abstract
Melanoma segmentation based on a convolutional neural network (CNN) has recently attracted extensive attention. However, the features captured by CNN are always local that result in discontinuous feature extraction. To solve this problem, we propose a novel multiscale feature fusion network (MSFA-Net). MSFA-Net can extract feature information at different scales through a multiscale feature fusion structure (MSF) in the network and then calibrate and restore the extracted information to achieve the purpose of melanoma segmentation. Specifically, based on the popular encoder-decoder structure, we designed three functional modules, namely MSF, asymmetric skip connection structure (ASCS), and calibration decoder (Decoder). In addition, a weighted cross-entropy loss and two-stage learning rate optimization strategy are designed to train the network more effectively. Compared qualitatively and quantitatively with the representative neural network methods with encoder-decoder structure, such as U-Net, the proposed method can achieve advanced performance.
Collapse
Affiliation(s)
- Zhong Li
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Hongyi Wang
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Qi Han
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jingcheng Liu
- Liquor Making Microbial Application & Detection Technology of Luzhou Key Laboratory, Luzhou Vocational & Technical College, Luzhou, Sichuan 646000, China
| | - Mingyang Hou
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Guorong Chen
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yuan Tian
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Tengfei Weng
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
119
|
An Attention-Preserving Network-Based Method for Assisted Segmentation of Osteosarcoma MRI Images. MATHEMATICS 2022. [DOI: 10.3390/math10101665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteosarcoma is a malignant bone tumor that is extremely dangerous to human health. Not only does it require a large amount of work, it is also a complicated task to outline the lesion area in an image manually, using traditional methods. With the development of computer-aided diagnostic techniques, more and more researchers are focusing on automatic segmentation techniques for osteosarcoma analysis. However, existing methods ignore the size of osteosarcomas, making it difficult to identify and segment smaller tumors. This is very detrimental to the early diagnosis of osteosarcoma. Therefore, this paper proposes a Contextual Axial-Preserving Attention Network (CaPaN)-based MRI image-assisted segmentation method for osteosarcoma detection. Based on the use of Res2Net, a parallel decoder is added to aggregate high-level features which effectively combines the local and global features of osteosarcoma. In addition, channel feature pyramid (CFP) and axial attention (A-RA) mechanisms are used. A lightweight CFP can extract feature mapping and contextual information of different sizes. A-RA uses axial attention to distinguish tumor tissues by mining, which reduces computational costs and thus improves the generalization performance of the model. We conducted experiments using a real dataset provided by the Second Xiangya Affiliated Hospital and the results showed that our proposed method achieves better segmentation results than alternative models. In particular, our method shows significant advantages with respect to small target segmentation. Its precision is about 2% higher than the average values of other models. For the segmentation of small objects, the DSC value of CaPaN is 0.021 higher than that of the commonly used U-Net method.
Collapse
|
120
|
Karthik R, Menaka R, M H, Won D. Contour-enhanced attention CNN for CT-based COVID-19 segmentation. PATTERN RECOGNITION 2022; 125:108538. [PMID: 35068591 PMCID: PMC8767763 DOI: 10.1016/j.patcog.2022.108538] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/14/2021] [Accepted: 01/14/2022] [Indexed: 05/14/2023]
Abstract
Accurate detection of COVID-19 is one of the challenging research topics in today's healthcare sector to control the coronavirus pandemic. Automatic data-powered insights for COVID-19 localization from medical imaging modality like chest CT scan tremendously augment clinical care assistance. In this research, a Contour-aware Attention Decoder CNN has been proposed to precisely segment COVID-19 infected tissues in a very effective way. It introduces a novel attention scheme to extract boundary, shape cues from CT contours and leverage these features in refining the infected areas. For every decoded pixel, the attention module harvests contextual information in its spatial neighborhood from the contour feature maps. As a result of incorporating such rich structural details into decoding via dense attention, the CNN is able to capture even intricate morphological details. The decoder is also augmented with a Cross Context Attention Fusion Upsampling to robustly reconstruct deep semantic features back to high-resolution segmentation map. It employs a novel pixel-precise attention model that draws relevant encoder features to aid in effective upsampling. The proposed CNN was evaluated on 3D scans from MosMedData and Jun Ma benchmarked datasets. It achieved state-of-the-art performance with a high dice similarity coefficient of 85.43% and a recall of 88.10%.
Collapse
Affiliation(s)
- R Karthik
- Centre for Cyber Physical Systems (CCPS), Vellore Institute of Technology, Chennai, India
| | - R Menaka
- Centre for Cyber Physical Systems (CCPS), Vellore Institute of Technology, Chennai, India
| | - Hariharan M
- School of Computing Sciences and Engineering, Vellore Institute of Technology, Chennai, India
| | - Daehan Won
- System Sciences and Industrial Engineering, Binghamton University, United States
| |
Collapse
|
121
|
Wu L, Hu S, Liu C. MR brain segmentation based on DE-ResUnet combining texture features and background knowledge. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
122
|
Multi-task generative adversarial learning for nuclei segmentation with dual attention and recurrent convolution. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
123
|
Li J, Yu H, Chen C, Ding M, Zha S. Category guided attention network for brain tumor segmentation in MRI. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac628a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/30/2022] [Indexed: 12/26/2022]
Abstract
Abstract
Objective. Magnetic resonance imaging (MRI) has been widely used for the analysis and diagnosis of brain diseases. Accurate and automatic brain tumor segmentation is of paramount importance for radiation treatment. However, low tissue contrast in tumor regions makes it a challenging task. Approach. We propose a novel segmentation network named Category Guided Attention U-Net (CGA U-Net). In this model, we design a Supervised Attention Module (SAM) based on the attention mechanism, which can capture more accurate and stable long-range dependency in feature maps without introducing much computational cost. Moreover, we propose an intra-class update approach to reconstruct feature maps by aggregating pixels of the same category. Main results. Experimental results on the BraTS 2019 datasets show that the proposed method outperformers the state-of-the-art algorithms in both segmentation performance and computational complexity. Significance. The CGA U-Net can effectively capture the global semantic information in the MRI image by using the SAM module, while significantly reducing the computational cost. Code is available at https://github.com/delugewalker/CGA-U-Net.
Collapse
|
124
|
Wang J, Wang S, Liang W, Zhang N, Zhang Y. The auto segmentation for cardiac structures using a dual-input deep learning network based on vision saliency and transformer. J Appl Clin Med Phys 2022; 23:e13597. [PMID: 35363415 PMCID: PMC9121042 DOI: 10.1002/acm2.13597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Accurate segmentation of cardiac structures on coronary CT angiography (CCTA) images is crucial for the morphological analysis, measurement, and functional evaluation. In this study, we achieve accurate automatic segmentation of cardiac structures on CCTA image by adopting an innovative deep learning method based on visual attention mechanism and transformer network, and its practical application value is discussed. Methods We developed a dual‐input deep learning network based on visual saliency and transformer (VST), which consists of self‐attention mechanism for cardiac structures segmentation. Sixty patients’ CCTA subjects were randomly selected as a development set, which were manual marked by an experienced technician. The proposed vision attention and transformer mode was trained on the patients CCTA images, with a manual contour‐derived binary mask used as the learning‐based target. We also used the deep supervision strategy by adding auxiliary losses. The loss function of our model was the sum of the Dice loss and cross‐entropy loss. To quantitatively evaluate the segmentation results, we calculated the Dice similarity coefficient (DSC) and Hausdorff distance (HD). Meanwhile, we compare the volume of automatic segmentation and manual segmentation to analyze whether there is statistical difference. Results Fivefold cross‐validation was used to benchmark the segmentation method. The results showed the left ventricular myocardium (LVM, DSC = 0.87), the left ventricular (LV, DSC = 0.94), the left atrial (LA, DSC = 0.90), the right ventricular (RV, DSC = 0.92), the right atrial (RA, DSC = 0.91), and the aortic (AO, DSC = 0.96). The average DSC was 0.92, and HD was 7.2 ± 2.1 mm. In volume comparison, except LVM and LA (p < 0.05), there was no significant statistical difference in other structures. Proposed method for structural segmentation fit well with the true profile of the cardiac substructure, and the model prediction results closed to the manual annotation. Conclusions
The adoption of the dual‐input and transformer architecture based on visual saliency has high sensitivity and specificity to cardiac structures segmentation, which can obviously improve the accuracy of automatic substructure segmentation. This is of gr
Collapse
Affiliation(s)
- Jing Wang
- Department of Electric Information Engineering, Shandong Youth University Of Political Science, Jinan, China
| | - Shuyu Wang
- Department of Electric Information Engineering, Shandong Youth University Of Political Science, Jinan, China
| | - Wei Liang
- Department of Ecological Environment Statistics, Ecological Environment Department of Shandong, Jinan, China
| | - Nan Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Radiology, Shandong Mental Health Center, Shandong University, Jinan, China
| |
Collapse
|
125
|
Wang X, Wang L, Sheng Y, Zhu C, Jiang N, Bai C, Xia M, Shao Z, Gu Z, Huang X, Zhao R, Liu Z. Automatic and accurate segmentation of peripherally inserted central catheter (PICC) from chest X-rays using multi-stage attention-guided learning. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
126
|
Liu Y, Chen Y, Lasang P, Sun Q. Covariance Attention for Semantic Segmentation. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:1805-1818. [PMID: 32976093 DOI: 10.1109/tpami.2020.3026069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The dependency between global and local information can provide important contextual cues for semantic segmentation. Existing attention methods capture this dependency by calculating the pixel wise correlation between the learnt feature maps, which is of high space and time complexity. In this article, a new attention module, covariance attention, is presented, and which is interesting in the following aspects: 1) covariance matrix is used as a new attention module to model the global and local dependency for the feature maps and the local-global dependency is formulated as a simple matrix projection process; 2) since covariance matrix can encode the joint distribution information for the heterogeneous yet complementary statistics, the hand-engineered features are combined with the learnt features effectively using covariance matrix to boost the segmentation performance; 3) a covariance attention mechanism based semantic segmentation framework, CANet, is proposed and very competitive performance has been obtained. Comparisons with the state-of-the-art methods reveal the superiority of the proposed method.
Collapse
|
127
|
DAS-Net: A lung nodule segmentation method based on adaptive dual-branch attention and shadow mapping. APPL INTELL 2022. [DOI: 10.1007/s10489-021-03038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
128
|
Xu Y, Jiang L, Huang S, Liu Z, Zhang J. Dual resolution deep learning network with self-attention mechanism for classification and localisation of colorectal cancer in histopathological images. J Clin Pathol 2022:jclinpath-2021-208042. [PMID: 35273120 DOI: 10.1136/jclinpath-2021-208042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/09/2022] [Indexed: 12/29/2022]
Abstract
AIMS Microscopic examination is a basic diagnostic technology for colorectal cancer (CRC), but it is very laborious. We developed a dual resolution deep learning network with self-attention mechanism (DRSANet) which combines context and details for CRC binary classification and localisation in whole slide images (WSIs), and as a computer-aided diagnosis (CAD) to improve the sensitivity and specificity of doctors' diagnosis. METHODS Representative regions of interest (ROI) of each tissue type were manually delineated in WSIs by pathologists. Based on the same coordinates of centre position, patches were extracted at different magnification levels from the ROI. Specifically, patches from low magnification level contain contextual information, while from high magnification level provide important details. A dual-inputs network was designed to learn context and details simultaneously, and self-attention mechanism was used to selectively learn different positions in the images to enhance the performance. RESULTS In classification task, DRSANet outperformed the benchmark networks which only depended on the high magnification patches on two test set. Furthermore, in localisation task, DRSANet demonstrated a better localisation capability of tumour area in WSI with less areas of misidentification. CONCLUSIONS We compared DRSANet with benchmark networks which only use the patches from high magnification level. Experimental results reveal that the performance of DRSANet is better than the benchmark networks. Both context and details should be considered in deep learning method.
Collapse
Affiliation(s)
- Yan Xu
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| | - Liwen Jiang
- Department of Pathology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Shuting Huang
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| | - Zhenyu Liu
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| | - Jiangyu Zhang
- Department of Pathology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
129
|
Wang G, Zhai S, Lasio G, Zhang B, Yi B, Chen S, Macvittie TJ, Metaxas D, Zhou J, Zhang S. Semi-Supervised Segmentation of Radiation-Induced Pulmonary Fibrosis From Lung CT Scans With Multi-Scale Guided Dense Attention. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:531-542. [PMID: 34606451 PMCID: PMC9271367 DOI: 10.1109/tmi.2021.3117564] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Computed Tomography (CT) plays an important role in monitoring radiation-induced Pulmonary Fibrosis (PF), where accurate segmentation of the PF lesions is highly desired for diagnosis and treatment follow-up. However, the task is challenged by ambiguous boundary, irregular shape, various position and size of the lesions, as well as the difficulty in acquiring a large set of annotated volumetric images for training. To overcome these problems, we propose a novel convolutional neural network called PF-Net and incorporate it into a semi-supervised learning framework based on Iterative Confidence-based Refinement And Weighting of pseudo Labels (I-CRAWL). Our PF-Net combines 2D and 3D convolutions to deal with CT volumes with large inter-slice spacing, and uses multi-scale guided dense attention to segment complex PF lesions. For semi-supervised learning, our I-CRAWL employs pixel-level uncertainty-based confidence-aware refinement to improve the accuracy of pseudo labels of unannotated images, and uses image-level uncertainty for confidence-based image weighting to suppress low-quality pseudo labels in an iterative training process. Extensive experiments with CT scans of Rhesus Macaques with radiation-induced PF showed that: 1) PF-Net achieved higher segmentation accuracy than existing 2D, 3D and 2.5D neural networks, and 2) I-CRAWL outperformed state-of-the-art semi-supervised learning methods for the PF lesion segmentation task. Our method has a potential to improve the diagnosis of PF and clinical assessment of side effects of radiotherapy for lung cancers.
Collapse
|
130
|
Płotka S, Klasa A, Lisowska A, Seliga-Siwecka J, Lipa M, Trzciński T, Sitek A. Deep learning fetal ultrasound video model match human observers in biometric measurements. Phys Med Biol 2022; 67. [PMID: 35051921 DOI: 10.1088/1361-6560/ac4d85] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/20/2022] [Indexed: 11/11/2022]
Abstract
Objective.This work investigates the use of deep convolutional neural networks (CNN) to automatically perform measurements of fetal body parts, including head circumference, biparietal diameter, abdominal circumference and femur length, and to estimate gestational age and fetal weight using fetal ultrasound videos.Approach.We developed a novel multi-task CNN-based spatio-temporal fetal US feature extraction and standard plane detection algorithm (called FUVAI) and evaluated the method on 50 freehand fetal US video scans. We compared FUVAI fetal biometric measurements with measurements made by five experienced sonographers at two time points separated by at least two weeks. Intra- and inter-observer variabilities were estimated.Main results.We found that automated fetal biometric measurements obtained by FUVAI were comparable to the measurements performed by experienced sonographers The observed differences in measurement values were within the range of inter- and intra-observer variability. Moreover, analysis has shown that these differences were not statistically significant when comparing any individual medical expert to our model.Significance.We argue that FUVAI has the potential to assist sonographers who perform fetal biometric measurements in clinical settings by providing them with suggestions regarding the best measuring frames, along with automated measurements. Moreover, FUVAI is able perform these tasks in just a few seconds, which is a huge difference compared to the average of six minutes taken by sonographers. This is significant, given the shortage of medical experts capable of interpreting fetal ultrasound images in numerous countries.
Collapse
Affiliation(s)
- Szymon Płotka
- Sano Centre for Computational Medicine, Czarnowiejska 36, 30-054 Cracow, Poland.,Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland.,Fetai Health Ltd., Warsaw, Poland
| | | | - Aneta Lisowska
- Sano Centre for Computational Medicine, Czarnowiejska 36, 30-054 Cracow, Poland.,Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | | | - Michał Lipa
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, Plac Starynkiewicza 1/3, 02-015 Warsaw, Poland
| | - Tomasz Trzciński
- Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland.,Jagiellonian University, Prof. Stanisława Łojosiewicza 6, 30-348 Cracow, Poland
| | - Arkadiusz Sitek
- Sano Centre for Computational Medicine, Czarnowiejska 36, 30-054 Cracow, Poland
| |
Collapse
|
131
|
Feng Y, Yang X, Qiu D, Zhang H, Wei D, Liu J. PCXRNet: Pneumonia diagnosis from Chest X-Ray Images using Condense attention block and Multiconvolution attention block. IEEE J Biomed Health Inform 2022; 26:1484-1495. [PMID: 35120015 DOI: 10.1109/jbhi.2022.3148317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has become a global pandemic. Many recognition approaches based on convolutional neural networks have been proposed for COVID-19 chest X-ray images. However, only a few of them make good use of the potential inter- and intra-relationships of feature maps. Considering the limitation mentioned above, this paper proposes an attention-based convolutional neural network, called PCXRNet, for diagnosis of pneumonia using chest X-ray images. To utilize the information from the channels of the feature maps, we added a novel condense attention module (CDSE) that comprised of two steps: condensation step and squeeze-excitation step. Unlike traditional channel attention modules, CDSE first downsamples the feature map channel by channel to condense the information, followed by the squeeze-excitation step, in which the channel weights are calculated. To make the model pay more attention to informative spatial parts in every feature map, we proposed a multi-convolution spatial attention module (MCSA). It reduces the number of parameters and introduces more nonlinearity. The CDSE and MCSA complement each other in series to tackle the problem of redundancy in feature maps and provide useful information from and between feature maps. We used the ChestXRay2017 dataset to explore the internal structure of PCXRNet, and the proposed network was applied to COVID-19 diagnosis. Additional experiments were conducted on a tuberculosis dataset to verify the effectiveness of PCXRNet. As a result, the network achieves an accuracy of 94.619%, recall of 94.753%, precision of 95.286%, and F1-score of 94.996% on the COVID-19 dataset.
Collapse
|
132
|
Semantic segmentation of COVID-19 lesions with a multiscale dilated convolutional network. Sci Rep 2022; 12:1847. [PMID: 35115573 PMCID: PMC8814191 DOI: 10.1038/s41598-022-05527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
Automatic segmentation of infected lesions from computed tomography (CT) of COVID-19 patients is crucial for accurate diagnosis and follow-up assessment. The remaining challenges are the obvious scale difference between different types of COVID-19 lesions and the similarity between the lesions and normal tissues. This work aims to segment lesions of different scales and lesion boundaries correctly by utilizing multiscale and multilevel features. A novel multiscale dilated convolutional network (MSDC-Net) is proposed against the scale difference of lesions and the low contrast between lesions and normal tissues in CT images. In our MSDC-Net, we propose a multiscale feature capture block (MSFCB) to effectively capture multiscale features for better segmentation of lesions at different scales. Furthermore, a multilevel feature aggregate (MLFA) module is proposed to reduce the information loss in the downsampling process. Experiments on the publicly available COVID-19 CT Segmentation dataset demonstrate that the proposed MSDC-Net is superior to other existing methods in segmenting lesion boundaries and large, medium, and small lesions, and achieves the best results in Dice similarity coefficient, sensitivity and mean intersection-over-union (mIoU) scores of 82.4%, 81.1% and 78.2%, respectively. Compared with other methods, the proposed model has an average improvement of 10.6% and 11.8% on Dice and mIoU. Compared with the existing methods, our network achieves more accurate segmentation of lesions at various scales and lesion boundaries, which will facilitate further clinical analysis. In the future, we consider integrating the automatic detection and segmentation of COVID-19, and conduct research on the automatic diagnosis system of COVID-19.
Collapse
|
133
|
Chen J, Yang N, Zhou M, Zhang Z, Yang X. A configurable deep learning framework for medical image analysis. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06873-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
134
|
URO-GAN: An untrustworthy region optimization approach for adipose tissue segmentation based on adversarial learning. APPL INTELL 2022. [DOI: 10.1007/s10489-021-02976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
135
|
Connected-UNets: a deep learning architecture for breast mass segmentation. NPJ Breast Cancer 2021; 7:151. [PMID: 34857755 PMCID: PMC8640011 DOI: 10.1038/s41523-021-00358-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
Breast cancer analysis implies that radiologists inspect mammograms to detect suspicious breast lesions and identify mass tumors. Artificial intelligence techniques offer automatic systems for breast mass segmentation to assist radiologists in their diagnosis. With the rapid development of deep learning and its application to medical imaging challenges, UNet and its variations is one of the state-of-the-art models for medical image segmentation that showed promising performance on mammography. In this paper, we propose an architecture, called Connected-UNets, which connects two UNets using additional modified skip connections. We integrate Atrous Spatial Pyramid Pooling (ASPP) in the two standard UNets to emphasize the contextual information within the encoder–decoder network architecture. We also apply the proposed architecture on the Attention UNet (AUNet) and the Residual UNet (ResUNet). We evaluated the proposed architectures on two publically available datasets, the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) and INbreast, and additionally on a private dataset. Experiments were also conducted using additional synthetic data using the cycle-consistent Generative Adversarial Network (CycleGAN) model between two unpaired datasets to augment and enhance the images. Qualitative and quantitative results show that the proposed architecture can achieve better automatic mass segmentation with a high Dice score of 89.52%, 95.28%, and 95.88% and Intersection over Union (IoU) score of 80.02%, 91.03%, and 92.27%, respectively, on CBIS-DDSM, INbreast, and the private dataset.
Collapse
|
136
|
Liu R, Liu M, Sheng B, Li H, Li P, Song H, Zhang P, Jiang L, Shen D. NHBS-Net: A Feature Fusion Attention Network for Ultrasound Neonatal Hip Bone Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3446-3458. [PMID: 34106849 DOI: 10.1109/tmi.2021.3087857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultrasound is a widely used technology for diagnosing developmental dysplasia of the hip (DDH) because it does not use radiation. Due to its low cost and convenience, 2-D ultrasound is still the most common examination in DDH diagnosis. In clinical usage, the complexity of both ultrasound image standardization and measurement leads to a high error rate for sonographers. The automatic segmentation results of key structures in the hip joint can be used to develop a standard plane detection method that helps sonographers decrease the error rate. However, current automatic segmentation methods still face challenges in robustness and accuracy. Thus, we propose a neonatal hip bone segmentation network (NHBS-Net) for the first time for the segmentation of seven key structures. We design three improvements, an enhanced dual attention module, a two-class feature fusion module, and a coordinate convolution output head, to help segment different structures. Compared with current state-of-the-art networks, NHBS-Net gains outstanding performance accuracy and generalizability, as shown in the experiments. Additionally, image standardization is a common need in ultrasonography. The ability of segmentation-based standard plane detection is tested on a 50-image standard dataset. The experiments show that our method can help healthcare workers decrease their error rate from 6%-10% to 2%. In addition, the segmentation performance in another ultrasound dataset (fetal heart) demonstrates the ability of our network.
Collapse
|
137
|
Jiang Y, Xu S, Fan H, Qian J, Luo W, Zhen S, Tao Y, Sun J, Lin H. ALA-Net: Adaptive Lesion-Aware Attention Network for 3D Colorectal Tumor Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3627-3640. [PMID: 34197319 DOI: 10.1109/tmi.2021.3093982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accurate and reliable segmentation of colorectal tumors and surrounding colorectal tissues on 3D magnetic resonance images has critical importance in preoperative prediction, staging, and radiotherapy. Previous works simply combine multilevel features without aggregating representative semantic information and without compensating for the loss of spatial information caused by down-sampling. Therefore, they are vulnerable to noise from complex backgrounds and suffer from misclassification and target incompleteness-related failures. In this paper, we address these limitations with a novel adaptive lesion-aware attention network (ALA-Net) which explicitly integrates useful contextual information with spatial details and captures richer feature dependencies based on 3D attention mechanisms. The model comprises two parallel encoding paths. One of these is designed to explore global contextual features and enlarge the receptive field using a recurrent strategy. The other captures sharper object boundaries and the details of small objects that are lost in repeated down-sampling layers. Our lesion-aware attention module adaptively captures long-range semantic dependencies and highlights the most discriminative features, improving semantic consistency and completeness. Furthermore, we introduce a prediction aggregation module to combine multiscale feature maps and to further filter out irrelevant information for precise voxel-wise prediction. Experimental results show that ALA-Net outperforms state-of-the-art methods and inherently generalizes well to other 3D medical images segmentation tasks, providing multiple benefits in terms of target completeness, reduction of false positives, and accurate detection of ambiguous lesion regions.
Collapse
|
138
|
Bera S, Biswas PK. Noise Conscious Training of Non Local Neural Network Powered by Self Attentive Spectral Normalized Markovian Patch GAN for Low Dose CT Denoising. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3663-3673. [PMID: 34224348 DOI: 10.1109/tmi.2021.3094525] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The explosive rise of the use of Computer tomography (CT) imaging in medical practice has heightened public concern over the patient's associated radiation dose. On the other hand, reducing the radiation dose leads to increased noise and artifacts, which adversely degrades the scan's interpretability. In recent times, the deep learning-based technique has emerged as a promising method for low dose CT(LDCT) denoising. However, some common bottleneck still exists, which hinders deep learning-based techniques from furnishing the best performance. In this study, we attempted to mitigate these problems with three novel accretions. First, we propose a novel convolutional module as the first attempt to utilize neighborhood similarity of CT images for denoising tasks. Our proposed module assisted in boosting the denoising by a significant margin. Next, we moved towards the problem of non-stationarity of CT noise and introduced a new noise aware mean square error loss for LDCT denoising. The loss mentioned above also assisted to alleviate the laborious effort required while training CT denoising network using image patches. Lastly, we propose a novel discriminator function for CT denoising tasks. The conventional vanilla discriminator tends to overlook the fine structural details and focus on the global agreement. Our proposed discriminator leverage self-attention and pixel-wise GANs for restoring the diagnostic quality of LDCT images. Our method validated on a publicly available dataset of the 2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge performed remarkably better than the existing state of the art method. The corresponding source code is available at: https://github.com/reach2sbera/ldct_nonlocal.
Collapse
|
139
|
A novel method for image segmentation: two-stage decoding network with boundary attention. INT J MACH LEARN CYB 2021. [DOI: 10.1007/s13042-021-01459-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
140
|
Abdel-Basset M, Hawash H, Moustafa N, Elkomy OM. Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans. Pattern Recognit Lett 2021; 152:311-319. [PMID: 34728870 PMCID: PMC8554046 DOI: 10.1016/j.patrec.2021.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022]
Abstract
COVID-19 stay threatening the health infrastructure worldwide. Computed tomography (CT) was demonstrated as an informative tool for the recognition, quantification, and diagnosis of this kind of disease. It is urgent to design efficient deep learning (DL) approach to automatically localize and discriminate COVID-19 from other comparable pneumonia on lung CT scans. Thus, this study introduces a novel two-stage DL framework for discriminating COVID-19 from community-acquired pneumonia (CAP) depending on the detected infection region within CT slices. Firstly, a novel U-shaped network is presented to segment the lung area where the infection appears. Then, the concept of transfer learning is applied to the feature extraction network to empower the network capabilities in learning the disease patterns. After that, multi-scale information is captured and pooled via an attention mechanism for powerful classification performance. Thirdly, we propose an infection prediction module that use the infection location to guide the classification decision and hence provides interpretable classification decision. Finally, the proposed model was evaluated on public datasets and achieved great segmentation and classification performance outperforming the cutting-edge studies.
Collapse
Affiliation(s)
- Mohamed Abdel-Basset
- Faculty of Computers and Informatics, Zagazig University, Zagazig, Sharqiyah, 44519, Egypt
| | - Hossam Hawash
- Faculty of Computers and Informatics, Zagazig University, Zagazig, Sharqiyah, 44519, Egypt
| | - Nour Moustafa
- School of Engineering and Information Technology, University of New South Wales @ ADFA, Canberra, ACT 2600, Australia
| | - Osama M Elkomy
- Faculty of Computers and Informatics, Zagazig University, Zagazig, Sharqiyah, 44519, Egypt
| |
Collapse
|
141
|
Li H, Iwamoto Y, Han X, Furukawa A, Kanasaki S, Chen YW. An Efficient and Accurate 3D Multiple-Contextual Semantic Segmentation Network for Medical Volumetric Images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3309-3312. [PMID: 34891948 DOI: 10.1109/embc46164.2021.9629671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Convolutional neural networks have become popular in medical image segmentation, and one of their most notable achievements is their ability to learn discriminative features using large labeled datasets. Two-dimensional (2D) networks are accustomed to extracting multiscale features with deep convolutional neural network extractors, i.e., ResNet-101. However, 2D networks are inefficient in extracting spatial features from volumetric images. Although most of the 2D segmentation networks can be extended to three-dimensional (3D) networks, extended 3D methods are resource and time intensive. In this paper, we propose an efficient and accurate network for fully automatic 3D segmentation. We designed a 3D multiple-contextual extractor (MCE) to simulate multiscale feature extraction and feature fusion to capture rich global contextual dependencies from different feature levels. We also designed a light 3D ResU-Net for efficient volumetric image segmentation. The proposed multiple-contextual extractor and light 3D ResU-Net constituted a complete segmentation network. By feeding the multiple-contextual features to the light 3D ResU-Net, we realized 3D medical image segmentation with high efficiency and accuracy. To validate the 3D segmentation performance of our proposed method, we evaluated the proposed network in the context of semantic segmentation on a private spleen dataset and public liver dataset. The spleen dataset contains 50 patients' CT scans, and the liver dataset contains 131 patients' CT scans.
Collapse
|
142
|
Lin H, Li Z, Yang Z, Wang Y. Variance-aware attention U-Net for multi-organ segmentation. Med Phys 2021; 48:7864-7876. [PMID: 34716711 DOI: 10.1002/mp.15322] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 01/20/2023] Open
Abstract
PURPOSE With the continuous development of deep learning based medical image segmentation technology, it is expected to attain more robust and accurate performance for more challenging tasks, such as multi-organs, small/irregular areas, and ambiguous boundary issues. METHODS We propose a variance-aware attention U-Net to solve the problem of multi-organ segmentation. Specifically, a simple yet effective variance-based uncertainty mechanism is devised to evaluate the discrimination of each voxel via its prediction probability. The proposed variance uncertainty is further embedded into an attention architecture, which not only aggregates multi-level deep features in a global-level but also enforces the network to pay extra attention to voxels with uncertain predictions during training. RESULTS Extensive experiments on challenging abdominal multi-organ CT dataset show that our proposed method consistently outperforms cutting-edge attention networks with respect to the evaluation metrics of Dice index (DSC), 95% Hausdorff distance (95HD) and average symmetric surface distance (ASSD). CONCLUSIONS The proposed network provides an accurate and robust solution for multi-organ segmentation and has the potential to be used for improving other segmentation applications.
Collapse
Affiliation(s)
- Haoneng Lin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Smart Medical Imaging, Learning and Engineering (SMILE) Lab, Shenzhen University, Shenzhen, China
| | - Zongshang Li
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Smart Medical Imaging, Learning and Engineering (SMILE) Lab, Shenzhen University, Shenzhen, China
| | - Zefan Yang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Smart Medical Imaging, Learning and Engineering (SMILE) Lab, Shenzhen University, Shenzhen, China
| | - Yi Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Smart Medical Imaging, Learning and Engineering (SMILE) Lab, Shenzhen University, Shenzhen, China.,Medical UltraSound Image Computing (MUSIC) Lab, Shenzhen University, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
143
|
Zhang Y, Zhong P, Jie D, Wu J, Zeng S, Chu J, Liu Y, Wu EX, Tang X. Brain Tumor Segmentation From Multi-Modal MR Images via Ensembling UNets. FRONTIERS IN RADIOLOGY 2021; 1:704888. [PMID: 37492172 PMCID: PMC10365098 DOI: 10.3389/fradi.2021.704888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/27/2021] [Indexed: 07/27/2023]
Abstract
Glioma is a type of severe brain tumor, and its accurate segmentation is useful in surgery planning and progression evaluation. Based on different biological properties, the glioma can be divided into three partially-overlapping regions of interest, including whole tumor (WT), tumor core (TC), and enhancing tumor (ET). Recently, UNet has identified its effectiveness in automatically segmenting brain tumor from multi-modal magnetic resonance (MR) images. In this work, instead of network architecture, we focus on making use of prior knowledge (brain parcellation), training and testing strategy (joint 3D+2D), ensemble and post-processing to improve the brain tumor segmentation performance. We explore the accuracy of three UNets with different inputs, and then ensemble the corresponding three outputs, followed by post-processing to achieve the final segmentation. Similar to most existing works, the first UNet uses 3D patches of multi-modal MR images as the input. The second UNet uses brain parcellation as an additional input. And the third UNet is inputted by 2D slices of multi-modal MR images, brain parcellation, and probability maps of WT, TC, and ET obtained from the second UNet. Then, we sequentially unify the WT segmentation from the third UNet and the fused TC and ET segmentation from the first and the second UNets as the complete tumor segmentation. Finally, we adopt a post-processing strategy by labeling small ET as non-enhancing tumor to correct some false-positive ET segmentation. On one publicly-available challenge validation dataset (BraTS2018), the proposed segmentation pipeline yielded average Dice scores of 91.03/86.44/80.58% and average 95% Hausdorff distances of 3.76/6.73/2.51 mm for WT/TC/ET, exhibiting superior segmentation performance over other state-of-the-art methods. We then evaluated the proposed method on the BraTS2020 training data through five-fold cross validation, with similar performance having also been observed. The proposed method was finally evaluated on 10 in-house data, the effectiveness of which has been established qualitatively by professional radiologists.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Tencent Music Entertainment, Shenzhen, China
| | - Pinyuan Zhong
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dabin Jie
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jiewei Wu
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
| | - Shanmei Zeng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianping Chu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yilong Liu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaoying Tang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
144
|
Alimjan G, Jiaermuhamaiti Y, Jumahong H, Zhu S, Nurmamat P. An Image Change Detection Algorithm Based on Multi-Feature Self-Attention Fusion Mechanism UNet Network. INT J PATTERN RECOGN 2021. [DOI: 10.1142/s0218001421590497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Various UNet architecture-based image change detection algorithms promote the development of image change detection, but there are still some defects. First, under the encoder–decoder framework, the low-level features are extracted many times in multiple dimensions, which generates redundant information; second, the relationship between each feature layer is not modeled so sufficiently that it cannot produce the optimal feature differentiation representation. This paper proposes a remote image change detection algorithm based on the multi-feature self-attention fusion mechanism UNet network, abbreviated as MFSAF UNet (multi-feature self-attention fusion UNet). We attempt to add multi-feature self-attention mechanism between the encoder and decoder of UNet to obtain richer context dependence and overcome the two above-mentioned restrictions. Since the capacity of convolution-based UNet network is directly proportional to network depth, and a deeper convolutional network means more training parameters, so the convolution of each layer of UNet is replaced as a separated convolution, which makes the entire network to be lighter and the model’s execution efficiency is slightly better than the traditional convolution operation. In addition to these, another innovation point of this paper is using preference to control loss function and meet the demands for different accuracies and recall rates. The simulation test results verify the validity and robustness of this approach.
Collapse
Affiliation(s)
- Gulnaz Alimjan
- Department of Electronics and Information Engineering, Yili Normal University, Yining, Xinjiang Uygur Autonomous Region 835000, P. R. China
| | - Yiliyaer Jiaermuhamaiti
- Department of Electronics and Information Engineering, Yili Normal University, Yining, Xinjiang Uygur Autonomous Region 835000, P. R. China
| | - Huxidan Jumahong
- Department of Electronics and Information Engineering, Yili Normal University, Yining, Xinjiang Uygur Autonomous Region 835000, P. R. China
| | - Shuangling Zhu
- Department of Electronics and Information Engineering, Yili Normal University, Yining, Xinjiang Uygur Autonomous Region 835000, P. R. China
| | - Pazilat Nurmamat
- Department of Electronics and Information Engineering, Yili Normal University, Yining, Xinjiang Uygur Autonomous Region 835000, P. R. China
| |
Collapse
|
145
|
Gou S, Lu Y, Tong N, Huang L, Liu N, Han Q. Automatic segmentation and grading of ankylosing spondylitis on MR images via lightweight hybrid multi-scale convolutional neural network with reinforcement learning. Phys Med Biol 2021; 66. [PMID: 34517352 DOI: 10.1088/1361-6560/ac262a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/13/2021] [Indexed: 11/11/2022]
Abstract
Objective.Ankylosing spondylitis (AS) is a disabling systemic disease that seriously threatens the patient's quality of life. Magnetic resonance imaging (MRI) is highly preferred in clinical diagnosis due to its high contrast and tissue resolution. However, since the uncertainty and intensity inhomogeneous of the AS lesions in MRI, it is still challenging and time-consuming for doctors to quantify the lesions to determine the grade of the patient's condition. Thus, an automatic AS grading method is presented in this study, which integrates the lesion segmentation and grading in a pipeline.Approach. To tackle the large variations in lesion shapes, sizes, and intensity distributions, a lightweight hybrid multi-scale convolutional neural network with reinforcement learning (LHR-Net) is proposed for the AS lesion segmentation. Specifically, the proposed LHR-Net is equipped with the newly proposed hybrid multi-scale module, which consists of multiply convolution layers with different kernel sizes and dilation rates for extracting sufficient multi-scale features. Additionally, a reinforcement learning-based data augmentation module is utilized to deal with the subjects with diffuse and fuzzy lesions that are difficult to segment. Furthermore, to resolve the incomplete segmentation results caused by the inhomogeneous intensity distributions of the AS lesions in MR images, a voxel constraint strategy is proposed to weigh the training voxel labels in the lesion regions. With the accurately segmented AS lesions, automatic AS grading is then performed by a ResNet-50-based classification network.Main results. The performance of the proposed LHR-Net was extensively evaluated on a clinically collected AS MRI dataset, which includes 100 subjects. Dice similarity coefficient (DSC), average surface distance, Hausdorff Distance at95thpercentile (HD95), predicted positive volume, and sensitivity were employed to quantitatively evaluate the segmentation results. The average DSC of the proposed LHR-Net on the AS dataset reached 0.71 on the test set, which outperforms the other state-of-the-art segmentation method by 0.04.Significance. With the accurately segmented lesions, 31 subjects in the test set (38 subjects) were correctly graded, which demonstrates that the proposed LHR-Net might provide a potential automatic method for reproducible computer-assisted diagnosis of AS grading.
Collapse
Affiliation(s)
- Shuiping Gou
- Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi'an, Shaanxi 710071, People's Republic of China.,AI-based Big Medical Imaging Data Frontier Research Center, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi 710071, People's Republic of China
| | - Yunfei Lu
- Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi'an, Shaanxi 710071, People's Republic of China
| | - Nuo Tong
- AI-based Big Medical Imaging Data Frontier Research Center, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi 710071, People's Republic of China
| | - Luguang Huang
- Department of Information section, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Ningtao Liu
- Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi'an, Shaanxi 710071, People's Republic of China
| | - Qing Han
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; National Translational Science Center for Molecular Medicine, Xi'an 710032, People's Republic of China
| |
Collapse
|
146
|
Canayaz M. C+EffxNet: A novel hybrid approach for COVID-19 diagnosis on CT images based on CBAM and EfficientNet. CHAOS, SOLITONS, AND FRACTALS 2021; 151:111310. [PMID: 34376926 PMCID: PMC8339545 DOI: 10.1016/j.chaos.2021.111310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 05/03/2023]
Abstract
COVID-19, one of the biggest diseases of our age, continues to spread rapidly around the world. Studies continue rapidly for the diagnosis and treatment of this disease. It is of great importance that individuals who are infected with this virus be isolated from the rest of the society so that the disease does not spread further. In addition to the tests performed in the detection process of the patients, X-ray and computed tomography are also used. In this study, a new hybrid model that can diagnose COVID-19 from computed tomography images created using EfficientNet, one of the current deep learning models, with a model consisting of attention blocks is proposed. In the first step of this new model, channel attention, spatial attention, and residual blocks are used to extract the most important features from the images. The extracted features are combined in accordance with the hyper-column technique. The combined features are given as input to the EfficientNet models in the second step of the model. The deep features obtained from this proposed hybrid model were classified with the Support Vector Machine classifier after feature selection. Principal Components Analysis was used for feature selection. The approach can accurately predict COVID-19 with a 99% accuracy rate. The first four versions of EfficientNet are used in the approach. In addition, Bayesian optimization was used in the hyper parameter estimation of the Support Vector Machine classifier. Comparative performance analysis of the approach with other approaches in the field is given.
Collapse
Affiliation(s)
- Murat Canayaz
- Department of Computer Engineering,Van Yuzuncu Yil University,65100,Van,Turkey
| |
Collapse
|
147
|
MSGSE-Net: Multi-scale guided squeeze-and-excitation network for subcortical brain structure segmentation. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
148
|
Bouget D, Pedersen A, Hosainey SAM, Solheim O, Reinertsen I. Meningioma Segmentation in T1-Weighted MRI Leveraging Global Context and Attention Mechanisms. FRONTIERS IN RADIOLOGY 2021; 1:711514. [PMID: 37492175 PMCID: PMC10365121 DOI: 10.3389/fradi.2021.711514] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/16/2021] [Indexed: 07/27/2023]
Abstract
Purpose: Meningiomas are the most common type of primary brain tumor, accounting for ~30% of all brain tumors. A substantial number of these tumors are never surgically removed but rather monitored over time. Automatic and precise meningioma segmentation is, therefore, beneficial to enable reliable growth estimation and patient-specific treatment planning. Methods: In this study, we propose the inclusion of attention mechanisms on top of a U-Net architecture used as backbone: (i) Attention-gated U-Net (AGUNet) and (ii) Dual Attention U-Net (DAUNet), using a three-dimensional (3D) magnetic resonance imaging (MRI) volume as input. Attention has the potential to leverage the global context and identify features' relationships across the entire volume. To limit spatial resolution degradation and loss of detail inherent to encoder-decoder architectures, we studied the impact of multi-scale input and deep supervision components. The proposed architectures are trainable end-to-end and each concept can be seamlessly disabled for ablation studies. Results: The validation studies were performed using a five-fold cross-validation over 600 T1-weighted MRI volumes from St. Olavs Hospital, Trondheim University Hospital, Norway. Models were evaluated based on segmentation, detection, and speed performances, and results are reported patient-wise after averaging across all folds. For the best-performing architecture, an average Dice score of 81.6% was reached for an F1-score of 95.6%. With an almost perfect precision of 98%, meningiomas smaller than 3 ml were occasionally missed hence reaching an overall recall of 93%. Conclusion: Leveraging global context from a 3D MRI volume provided the best performances, even if the native volume resolution could not be processed directly due to current GPU memory limitations. Overall, near-perfect detection was achieved for meningiomas larger than 3 ml, which is relevant for clinical use. In the future, the use of multi-scale designs and refinement networks should be further investigated. A larger number of cases with meningiomas below 3 ml might also be needed to improve the performance for the smallest tumors.
Collapse
Affiliation(s)
- David Bouget
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | - André Pedersen
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | | | - Ole Solheim
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
149
|
Abulkhanov SR, Slesarev OV, Strelkov YS, Bayrikov IM. Technology for High-Sensitivity Analysis of Medical Diagnostic Images. Sovrem Tekhnologii Med 2021; 13:6-15. [PMID: 34513072 PMCID: PMC8353719 DOI: 10.17691/stm2021.13.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 11/17/2022] Open
Abstract
Control and analysis of small, inaccessible to human vision changes in medical images make it possible to focus on diagnostically important radiological signs important for the correct diagnosis. The aim of the study was to develop information technology facilitating the early diagnosis of diseases using medical images.
Collapse
Affiliation(s)
- S R Abulkhanov
- Associate Professor, Department of Engine Manufacturing Technologies, Samara National Research University, 34 Moskovskoye Shosse, Samara, 443086, Russia; Senior Researcher, Image Processing Systems Institute of the Russian Academy of Sciences (IPSI RAS) - Branch of the Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences, 151 Molodogvardeyskaya St., Samara, 443001, Russia
| | - O V Slesarev
- Assistant, Department of Maxillofacial Surgery and Dentistry, Samara State Medical University, 89 Chapayevskaya St., Samara, 443099, Russia
| | - Yu S Strelkov
- Researcher, Video Data Mining Laboratory, Image Processing Systems Institute of the Russian Academy of Sciences (IPSI RAS) - Branch of the Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences, 151 Molodogvardeyskaya St., Samara, 443001, Russia
| | - I M Bayrikov
- Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Department and Clinic of Maxillofacial Surgery and Dentistry, Samara State Medical University, 89 Chapayevskaya St., Samara, 443099, Russia
| |
Collapse
|
150
|
Mahmud T, Alam MJ, Chowdhury S, Ali SN, Rahman MM, Anowarul Fattah S, Saquib M. CovTANet: A Hybrid Tri-Level Attention-Based Network for Lesion Segmentation, Diagnosis, and Severity Prediction of COVID-19 Chest CT Scans. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2021; 17:6489-6498. [PMID: 37981913 PMCID: PMC8769034 DOI: 10.1109/tii.2020.3048391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/23/2020] [Accepted: 12/27/2020] [Indexed: 11/21/2023]
Abstract
Rapid and precise diagnosis of COVID-19 is one of the major challenges faced by the global community to control the spread of this overgrowing pandemic. In this article, a hybrid neural network is proposed, named CovTANet, to provide an end-to-end clinical diagnostic tool for early diagnosis, lesion segmentation, and severity prediction of COVID-19 utilizing chest computer tomography (CT) scans. A multiphase optimization strategy is introduced for solving the challenges of complicated diagnosis at a very early stage of infection, where an efficient lesion segmentation network is optimized initially, which is later integrated into a joint optimization framework for the diagnosis and severity prediction tasks providing feature enhancement of the infected regions. Moreover, for overcoming the challenges with diffused, blurred, and varying shaped edges of COVID lesions with novel and diverse characteristics, a novel segmentation network is introduced, namely tri-level attention-based segmentation network. This network has significantly reduced semantic gaps in subsequent encoding-decoding stages, with immense parallelization of multiscale features for faster convergence providing considerable performance improvement over traditional networks. Furthermore, a novel tri-level attention mechanism has been introduced, which is repeatedly utilized over the network, combining channel, spatial, and pixel attention schemes for faster and efficient generalization of contextual information embedded in the feature map through feature recalibration and enhancement operations. Outstanding performances have been achieved in all three tasks through extensive experimentation on a large publicly available dataset containing 1110 chest CT-volumes, which signifies the effectiveness of the proposed scheme at the current stage of the pandemic.
Collapse
Affiliation(s)
- Tanvir Mahmud
- Department of Electrical and Electronic EngineeringBangladesh University of Engineering and TechnologyDhaka1000Bangladesh
| | - Md. Jahin Alam
- Department of Electrical and Electronic EngineeringBangladesh University of Engineering and TechnologyDhaka1000Bangladesh
| | - Sakib Chowdhury
- Department of Electrical and Electronic EngineeringBangladesh University of Engineering and TechnologyDhaka1000Bangladesh
| | - Shams Nafisa Ali
- Department of Biomedical EngineeringBangladesh University of Engineering and TechnologyDhaka1205Bangladesh
| | - Md. Maisoon Rahman
- Department of Electrical and Electronic EngineeringBangladesh University of Engineering and TechnologyDhaka1000Bangladesh
| | - Shaikh Anowarul Fattah
- Department of Electrical and Electronic EngineeringBangladesh University of Engineering and TechnologyDhaka1000Bangladesh
| | - Mohammad Saquib
- Department of Electrical EngineeringThe University of Texas at DallasRichardsonTX75080USA
| |
Collapse
|