101
|
Zhang P, Cheng Y, Tamura S. Shape prior-constrained deep learning network for medical image segmentation. Comput Biol Med 2024; 180:108932. [PMID: 39079416 DOI: 10.1016/j.compbiomed.2024.108932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
We propose a shape prior representation-constrained multi-scale features fusion segmentation network for medical image segmentation, including training and testing stages. The novelty of our training framework lies in two modules comprised of the shape prior constraint and the multi-scale features fusion. The shape prior learning model is embedded into a segmentation neural network to solve the problems of low contrast and neighboring organs with intensities similar to the target organ. The latter can provide both local and global contexts to address the issues of large variations in patient postures as well as organ's shape. In the testing stage, we propose a circular collaboration framework strategy which combines a shape generator auto-encoder network model with a segmentation network model, allowing the two models to collaborate with each other, resulting in a cooperative effect that leads to accurate segmentations. Our proposed method is evaluated and demonstrated on the ACDC MICCAI'17 Challenge Dataset, CT scans datasets, namely, in COVID-19 CT lung, and LiTS2017 liver from three different datasets, and its results are compared with the recent state of the art in these areas. Our method ranked 1st on the ACDC Dataset in terms of Dice score and achieved very competitive performance on COVID-19 CT lung and LiTS2017 liver segmentation.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yuanzhi Cheng
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China; School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong 266061, China.
| | - Shinichi Tamura
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
102
|
Åkesson J, Töger J, Heiberg E. Random effects during training: Implications for deep learning-based medical image segmentation. Comput Biol Med 2024; 180:108944. [PMID: 39096609 DOI: 10.1016/j.compbiomed.2024.108944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND A single learning algorithm can produce deep learning-based image segmentation models that vary in performance purely due to random effects during training. This study assessed the effect of these random performance fluctuations on the reliability of standard methods of comparing segmentation models. METHODS The influence of random effects during training was assessed by running a single learning algorithm (nnU-Net) with 50 different random seeds for three multiclass 3D medical image segmentation problems, including brain tumour, hippocampus, and cardiac segmentation. Recent literature was sampled to find the most common methods for estimating and comparing the performance of deep learning segmentation models. Based on this, segmentation performance was assessed using both hold-out validation and 5-fold cross-validation and the statistical significance of performance differences was measured using the Paired t-test and the Wilcoxon signed rank test on Dice scores. RESULTS For the different segmentation problems, the seed producing the highest mean Dice score statistically significantly outperformed between 0 % and 76 % of the remaining seeds when estimating performance using hold-out validation, and between 10 % and 38 % when estimating performance using 5-fold cross-validation. CONCLUSION Random effects during training can cause high rates of statistically-significant performance differences between segmentation models from the same learning algorithm. Whilst statistical testing is widely used in contemporary literature, our results indicate that a statistically-significant difference in segmentation performance is a weak and unreliable indicator of a true performance difference between two learning algorithms.
Collapse
Affiliation(s)
- Julius Åkesson
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Johannes Töger
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Einar Heiberg
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
103
|
Shaker A, Maaz M, Rasheed H, Khan S, Yang MH, Shahbaz Khan F. UNETR++: Delving Into Efficient and Accurate 3D Medical Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3377-3390. [PMID: 38722726 DOI: 10.1109/tmi.2024.3398728] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Owing to the success of transformer models, recent works study their applicability in 3D medical segmentation tasks. Within the transformer models, the self-attention mechanism is one of the main building blocks that strives to capture long-range dependencies, compared to the local convolutional-based design. However, the self-attention operation has quadratic complexity which proves to be a computational bottleneck, especially in volumetric medical imaging, where the inputs are 3D with numerous slices. In this paper, we propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed. The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features using a pair of inter-dependent branches based on spatial and channel attention. Our spatial attention formulation is efficient and has linear complexity with respect to the input. To enable communication between spatial and channel-focused branches, we share the weights of query and key mapping functions that provide a complimentary benefit (paired attention), while also reducing the complexity. Our extensive evaluations on five benchmarks, Synapse, BTCV, ACDC, BraTS, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy. On Synapse, our UNETR++ sets a new state-of-the-art with a Dice Score of 87.2%, while significantly reducing parameters and FLOPs by over 71%, compared to the best method in the literature. Our code and models are available at: https://tinyurl.com/2p87x5xn.
Collapse
|
104
|
Aromiwura AA, Cavalcante JL, Kwong RY, Ghazipour A, Amini A, Bax J, Raman S, Pontone G, Kalra DK. The role of artificial intelligence in cardiovascular magnetic resonance imaging. Prog Cardiovasc Dis 2024; 86:13-25. [PMID: 38925255 DOI: 10.1016/j.pcad.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Cardiovascular magnetic resonance (CMR) imaging is the gold standard test for myocardial tissue characterization and chamber volumetric and functional evaluation. However, manual CMR analysis can be time-consuming and is subject to intra- and inter-observer variability. Artificial intelligence (AI) is a field that permits automated task performance through the identification of high-level and complex data relationships. In this review, we review the rapidly growing role of AI in CMR, including image acquisition, sequence prescription, artifact detection, reconstruction, segmentation, and data reporting and analysis including quantification of volumes, function, myocardial infarction (MI) and scar detection, and prediction of outcomes. We conclude with a discussion of the emerging challenges to widespread adoption and solutions that will allow for successful, broader uptake of this powerful technology.
Collapse
Affiliation(s)
| | | | - Raymond Y Kwong
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Aryan Ghazipour
- Medical Imaging Laboratory, Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY, USA
| | - Amir Amini
- Medical Imaging Laboratory, Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY, USA
| | - Jeroen Bax
- Department of Cardiology, Leiden University, Leiden, the Netherlands
| | - Subha Raman
- Division of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gianluca Pontone
- Department of Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, University of Milan, Milan, Italy
| | - Dinesh K Kalra
- Division of Cardiology, Department of Medicine, University of Louisville, Louisville, KY, USA; Center for Artificial Intelligence in Radiological Sciences (CAIRS), Department of Radiology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
105
|
Engelhardt S. Why thorough open data descriptions matters more than ever in the age of AI: opportunities for cardiovascular research. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2024; 5:507-508. [PMID: 39318694 PMCID: PMC11417475 DOI: 10.1093/ehjdh/ztae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Affiliation(s)
- Sandy Engelhardt
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- Department of Cardiac Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
- AI Health Innovation Cluster (AIH), Heidelberg, Germany
- Informatics for Life Institute, Heidelberg, Germany
| |
Collapse
|
106
|
Zwijnen AW, Watzema L, Ridwan Y, van Der Pluijm I, Smal I, Essers J. Self-adaptive deep learning-based segmentation for universal and functional clinical and preclinical CT image analysis. Comput Biol Med 2024; 179:108853. [PMID: 39013341 DOI: 10.1016/j.compbiomed.2024.108853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Methods to monitor cardiac functioning non-invasively can accelerate preclinical and clinical research into novel treatment options for heart failure. However, manual image analysis of cardiac substructures is resource-intensive and error-prone. While automated methods exist for clinical CT images, translating these to preclinical μCT data is challenging. We employed deep learning to automate the extraction of quantitative data from both CT and μCT images. METHODS We collected a public dataset of cardiac CT images of human patients, as well as acquired μCT images of wild-type and accelerated aging mice. The left ventricle, myocardium, and right ventricle were manually segmented in the μCT training set. After template-based heart detection, two separate segmentation neural networks were trained using the nnU-Net framework. RESULTS The mean Dice score of the CT segmentation results (0.925 ± 0.019, n = 40) was superior to those achieved by state-of-the-art algorithms. Automated and manual segmentations of the μCT training set were nearly identical. The estimated median Dice score (0.940) of the test set results was comparable to existing methods. The automated volume metrics were similar to manual expert observations. In aging mice, ejection fractions had significantly decreased, and myocardial volume increased by age 24 weeks. CONCLUSIONS With further optimization, automated data extraction expands the application of (μ)CT imaging, while reducing subjectivity and workload. The proposed method efficiently measures the left and right ventricular ejection fraction and myocardial mass. With uniform translation between image types, cardiac functioning in diastolic and systolic phases can be monitored in both animals and humans.
Collapse
Affiliation(s)
- Anne-Wietje Zwijnen
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Yanto Ridwan
- AMIE Core Facility, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ingrid van Der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ihor Smal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
107
|
Tan D, Hao R, Zhou X, Xia J, Su Y, Zheng C. A Novel Skip-Connection Strategy by Fusing Spatial and Channel Wise Features for Multi-Region Medical Image Segmentation. IEEE J Biomed Health Inform 2024; 28:5396-5409. [PMID: 38809722 DOI: 10.1109/jbhi.2024.3406786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Recent methods often introduce attention mechanisms into the skip connections of U-shaped networks to capture features. However, these methods usually overlook spatial information extraction in skip connections and exhibit inefficiency in capturing spatial and channel information. This issue prompts us to reevaluate the design of the skip-connection mechanism and propose a new deep-learning network called the Fusing Spatial and Channel Attention Network, abbreviated as FSCA-Net. FSCA-Net is a novel U-shaped network architecture that utilizes the Parallel Attention Transformer (PAT) to enhance the extraction of spatial and channel features in the skip-connection mechanism, further compensating for downsampling losses. We design the Cross-Attention Bridge Layer (CAB) to mitigate excessive feature and resolution loss when downsampling to the lowest level, ensuring meaningful information fusion during upsampling at the lowest level. Finally, we construct the Dual-Path Channel Attention (DPCA) module to guide channel and spatial information filtering for Transformer features, eliminating ambiguities with decoder features and better concatenating features with semantic inconsistencies between the Transformer and the U-Net decoder. FSCA-Net is designed explicitly for fine-grained segmentation tasks of multiple organs and regions. Our approach achieves over 48% reduction in FLOPs and over 32% reduction in parameters compared to the state-of-the-art method. Moreover, FSCA-Net outperforms existing segmentation methods on seven public datasets, demonstrating exceptional performance.
Collapse
|
108
|
Čepová L, Elangovan M, Ramesh JVN, Chohan MK, Verma A, Mohammad F. Improving privacy-preserving multi-faceted long short-term memory for accurate evaluation of encrypted time-series MRI images in heart disease. Sci Rep 2024; 14:20218. [PMID: 39215022 PMCID: PMC11364645 DOI: 10.1038/s41598-024-70593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
In therapeutic diagnostics, early diagnosis and monitoring of heart disease is dependent on fast time-series MRI data processing. Robust encryption techniques are necessary to guarantee patient confidentiality. While deep learning (DL) algorithm have improved medical imaging, privacy and performance are still hard to balance. In this study, a novel approach for analyzing homomorphivally-encrypted (HE) time-series MRI data is introduced: The Multi-Faceted Long Short-Term Memory (MF-LSTM). This method includes privacy protection. The MF-LSTM architecture protects patient's privacy while accurately categorizing and forecasting cardiac disease, with accuracy (97.5%), precision (96.5%), recall (98.3%), and F1-score (97.4%). While segmentation methods help to improve interpretability by identifying important region in encrypted MRI images, Generalized Histogram Equalization (GHE) improves image quality. Extensive testing on selected dataset if encrypted time-series MRI images proves the method's stability and efficacy, outperforming previous approaches. The finding shows that the suggested technique can decode medical image to expose visual representation as well as sequential movement while protecting privacy and providing accurate medical image evaluation.
Collapse
Affiliation(s)
- Lenka Čepová
- Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 70800, Ostrava, Czech Republic
| | - Muniyandy Elangovan
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602 105, India.
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
| | - Janjhyam Venkata Naga Ramesh
- Department of CSE, Graphic Era Hill University, Dehradun, 248002, India
- Department of CSE, Graphic Era Deemed To Be University, Dehradun, Uttarakhand, 248002, India
| | - Mandeep Kaur Chohan
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, India
- Department of Computer Science and Engineering, Vivekananda Global University, Jaipur, India
| | - Amit Verma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Faruq Mohammad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
109
|
Beste NC, Jende J, Kronlage M, Kurz F, Heiland S, Bendszus M, Meredig H. Automated peripheral nerve segmentation for MR-neurography. Eur Radiol Exp 2024; 8:97. [PMID: 39186183 PMCID: PMC11347527 DOI: 10.1186/s41747-024-00503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Magnetic resonance neurography (MRN) is increasingly used as a diagnostic tool for peripheral neuropathies. Quantitative measures enhance MRN interpretation but require nerve segmentation which is time-consuming and error-prone and has not become clinical routine. In this study, we applied neural networks for the automated segmentation of peripheral nerves. METHODS A neural segmentation network was trained to segment the sciatic nerve and its proximal branches on the MRN scans of the right and left upper leg of 35 healthy individuals, resulting in 70 training examples, via 5-fold cross-validation (CV). The model performance was evaluated on an independent test set of one-sided MRN scans of 60 healthy individuals. RESULTS Mean Dice similarity coefficient (DSC) in CV was 0.892 (95% confidence interval [CI]: 0.888-0.897) with a mean Jaccard index (JI) of 0.806 (95% CI: 0.799-0.814) and mean Hausdorff distance (HD) of 2.146 (95% CI: 2.184-2.208). For the independent test set, DSC and JI were lower while HD was higher, with a mean DSC of 0.789 (95% CI: 0.760-0.815), mean JI of 0.672 (95% CI: 0.642-0.699), and mean HD of 2.118 (95% CI: 2.047-2.190). CONCLUSION The deep learning-based segmentation model showed a good performance for the task of nerve segmentation. Future work will focus on extending training data and including individuals with peripheral neuropathies in training to enable advanced peripheral nerve disease characterization. RELEVANCE STATEMENT The results will serve as a baseline to build upon while developing an automated quantitative MRN feature analysis framework for application in routine reading of MRN examinations. KEY POINTS Quantitative measures enhance MRN interpretation, requiring complex and challenging nerve segmentation. We present a deep learning-based segmentation model with good performance. Our results may serve as a baseline for clinical automated quantitative MRN segmentation.
Collapse
Affiliation(s)
- Nedim Christoph Beste
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany.
| | - Johann Jende
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Moritz Kronlage
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Felix Kurz
- DKFZ German Cancer Research Center, Heidelberg, Germany
| | - Sabine Heiland
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Hagen Meredig
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
110
|
Manzke M, Iseke S, Böttcher B, Klemenz AC, Weber MA, Meinel FG. Development and performance evaluation of fully automated deep learning-based models for myocardial segmentation on T1 mapping MRI data. Sci Rep 2024; 14:18895. [PMID: 39143126 PMCID: PMC11324648 DOI: 10.1038/s41598-024-69529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
To develop a deep learning-based model capable of segmenting the left ventricular (LV) myocardium on native T1 maps from cardiac MRI in both long-axis and short-axis orientations. Models were trained on native myocardial T1 maps from 50 healthy volunteers and 75 patients using manual segmentation as the reference standard. Based on a U-Net architecture, we systematically optimized the model design using two different training metrics (Sørensen-Dice coefficient = DSC and Intersection-over-Union = IOU), two different activation functions (ReLU and LeakyReLU) and various numbers of training epochs. Training with DSC metric and a ReLU activation function over 35 epochs achieved the highest overall performance (mean error in T1 10.6 ± 17.9 ms, mean DSC 0.88 ± 0.07). Limits of agreement between model results and ground truth were from -35.5 to + 36.1 ms. This was superior to the agreement between two human raters (-34.7 to + 59.1 ms). Segmentation was as accurate for long-axis views (mean error T1: 6.77 ± 8.3 ms, mean DSC: 0.89 ± 0.03) as for short-axis images (mean error ΔT1: 11.6 ± 19.7 ms, mean DSC: 0.88 ± 0.08). Fully automated segmentation and quantitative analysis of native myocardial T1 maps is possible in both long-axis and short-axis orientations with very high accuracy.
Collapse
Affiliation(s)
- Mathias Manzke
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Simon Iseke
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Benjamin Böttcher
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Ann-Christin Klemenz
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Felix G Meinel
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.
| |
Collapse
|
111
|
He Q, Yan K, Luo Q, Yi D, Wang P, Han H, Liu D. Exploring Unlabeled Data in Multiple Aspects for Semi-Supervised MRI Segmentation. HEALTH DATA SCIENCE 2024; 4:0166. [PMID: 39104600 PMCID: PMC11298716 DOI: 10.34133/hds.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024]
Abstract
Background: MRI segmentation offers crucial insights for automatic analysis. Although deep learning-based segmentation methods have attained cutting-edge performance, their efficacy heavily relies on vast sets of meticulously annotated data. Methods: In this study, we propose a novel semi-supervised MRI segmentation model that is able to explore unlabeled data in multiple aspects based on various semi-supervised learning technologies. Results: We compared the performance of our proposed method with other deep learning-based methods on 2 public datasets, and the results demonstrated that we have achieved Dice scores of 90.3% and 89.4% on the LA and ACDC datasets, respectively. Conclusions: We explored the synergy of various semi-supervised learning technologies for MRI segmentation, and our investigation will inspire research that focuses on designing MRI segmentation models.
Collapse
Affiliation(s)
- Qingyuan He
- Radiology Department,
Peking University Third Hospital, Beijing, China
- Peking University Third Hospital, Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Beijing, China
| | - Kun Yan
- School of Computer Science,
Peking University, Beijing, China
| | - Qipeng Luo
- Department of Pain Medicine,
Peking University Third Hospital, Beijing, China
| | - Duan Yi
- Department of Pain Medicine,
Peking University Third Hospital, Beijing, China
| | - Ping Wang
- School of Software and Microelectronics,
Peking University, Beijing, China
- National Engineering Research Center for Software Engineering,
Peking University, Beijing, China
- Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, Beijing, China
| | - Hongbin Han
- Radiology Department,
Peking University Third Hospital, Beijing, China
- Peking University Third Hospital, Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Beijing, China
| | - Defeng Liu
- Peking University Third Hospital, Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Beijing, China
- Department of Obstetrics and Gynecology,
Peking University Third Hospital, Beijing, China
| |
Collapse
|
112
|
Hua Y, Xu K, Yang X. Variational image registration with learned prior using multi-stage VAEs. Comput Biol Med 2024; 178:108785. [PMID: 38925089 DOI: 10.1016/j.compbiomed.2024.108785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/16/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Variational Autoencoders (VAEs) are an efficient variational inference technique coupled with the generated network. Due to the uncertainty provided by variational inference, VAEs have been applied in medical image registration. However, a critical problem in VAEs is that the simple prior cannot provide suitable regularization, which leads to the mismatch between the variational posterior and prior. An optimal prior can close the gap between the evidence's real and variational posterior. In this paper, we propose a multi-stage VAE to learn the optimal prior, which is the aggregated posterior. A lightweight VAE is used to generate the aggregated posterior as a whole. It is an effective way to estimate the distribution of the high-dimensional aggregated posterior that commonly exists in medical image registration based on VAEs. A factorized telescoping classifier is trained to estimate the density ratio of a simple given prior and aggregated posterior, aiming to calculate the KL divergence between the variational and aggregated posterior more accurately. We analyze the KL divergence and find that the finer the factorization, the smaller the KL divergence is. However, too fine a partition is not conducive to registration accuracy. Moreover, the diagonal hypothesis of the variational posterior's covariance ignores the relationship between latent variables in image registration. To address this issue, we learn a covariance matrix with low-rank information to enable correlations with each dimension of the variational posterior. The covariance matrix is further used as a measure to reduce the uncertainty of deformation fields. Experimental results on four public medical image datasets demonstrate that our proposed method outperforms other methods in negative log-likelihood (NLL) and achieves better registration accuracy.
Collapse
Affiliation(s)
- Yong Hua
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Kangrong Xu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Xuan Yang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
113
|
Chang Q, Wang Y, Zhang J. Independently Trained Multi-Scale Registration Network Based on Image Pyramid. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1557-1566. [PMID: 38441699 PMCID: PMC11300729 DOI: 10.1007/s10278-024-01019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 08/07/2024]
Abstract
Image registration is a fundamental task in various applications of medical image analysis and plays a crucial role in auxiliary diagnosis, treatment, and surgical navigation. However, cardiac image registration is challenging due to the large non-rigid deformation of the heart and the complex anatomical structure. To address this challenge, this paper proposes an independently trained multi-scale registration network based on an image pyramid. By down-sampling the original input image multiple times, we can construct image pyramid pairs, and design a multi-scale registration network using image pyramid pairs of different resolutions as the training set. Using image pairs of different resolutions, train each registration network independently to extract image features from the image pairs at different resolutions. During the testing stage, the large deformation registration is decomposed into a multi-scale registration process. The deformation fields of different resolutions are fused by a step-by-step deformation method, thereby addressing the challenge of directly handling large deformations. Experiments were conducted on the open cardiac dataset ACDC (Automated Cardiac Diagnosis Challenge); the proposed method achieved an average Dice score of 0.828 in the experimental results. Through comparative experiments, it has been demonstrated that the proposed method effectively addressed the challenge of heart image registration and achieved superior registration results for cardiac images.
Collapse
Affiliation(s)
- Qing Chang
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China.
| | - Yaqi Wang
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Jieming Zhang
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
114
|
Huang H, Chen Z, Zou Y, Lu M, Chen C, Song Y, Zhang H, Yan F. Channel prior convolutional attention for medical image segmentation. Comput Biol Med 2024; 178:108784. [PMID: 38941900 DOI: 10.1016/j.compbiomed.2024.108784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/01/2024] [Accepted: 06/15/2024] [Indexed: 06/30/2024]
Abstract
Characteristics such as low contrast and significant organ shape variations are often exhibited in medical images. The improvement of segmentation performance in medical imaging is limited by the generally insufficient adaptive capabilities of existing attention mechanisms. An efficient Channel Prior Convolutional Attention (CPCA) method is proposed in this paper, supporting the dynamic distribution of attention weights in both channel and spatial dimensions. Spatial relationships are effectively extracted while preserving the channel prior by employing a multi-scale depth-wise convolutional module. The ability to focus on informative channels and important regions is possessed by CPCA. A segmentation network called CPCANet for medical image segmentation is proposed based on CPCA. CPCANet is validated on two publicly available datasets. Improved segmentation performance is achieved by CPCANet while requiring fewer computational resources through comparisons with state-of-the-art algorithms. Our code is publicly available at https://github.com/Cuthbert-Huang/CPCANet.
Collapse
Affiliation(s)
- Hejun Huang
- School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Zuguo Chen
- School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Ying Zou
- School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Ming Lu
- School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Chaoyang Chen
- School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Youzhi Song
- Rucheng County Hospital of Traditional Chinese Medicine, Chenzhou, 424100, China
| | - Hongqiang Zhang
- School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Feng Yan
- Changsha Nonferrous Metallurgy Design & Research Institute Co., Changsha, 410019, China
| |
Collapse
|
115
|
Yuan W, Cheng J, Gong Y, He L, Zhang J. MACG-Net: Multi-axis cross gating network for deformable medical image registration. Comput Biol Med 2024; 178:108673. [PMID: 38905891 DOI: 10.1016/j.compbiomed.2024.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/18/2024] [Accepted: 05/26/2024] [Indexed: 06/23/2024]
Abstract
Deformable Image registration is a fundamental yet vital task for preoperative planning, intraoperative information fusion, disease diagnosis and follow-ups. It solves the non-rigid deformation field to align an image pair. Latest approaches such as VoxelMorph and TransMorph compute features from a simple concatenation of moving and fixed images. However, this often leads to weak alignment. Moreover, the convolutional neural network (CNN) or the hybrid CNN-Transformer based backbones are constrained to have limited sizes of receptive field and cannot capture long range relations while full Transformer based approaches are computational expensive. In this paper, we propose a novel multi-axis cross grating network (MACG-Net) for deformable medical image registration, which combats these limitations. MACG-Net uses a dual stream multi-axis feature fusion module to capture both long-range and local context relationships from the moving and fixed images. Cross gate blocks are integrated with the dual stream backbone to consider both independent feature extractions in the moving-fixed image pair and the relationship between features from the image pair. We benchmark our method on several different datasets including 3D atlas-based brain MRI, inter-patient brain MRI and 2D cardiac MRI. The results demonstrate that the proposed method has achieved state-of-the-art performance. The source code has been released at https://github.com/Valeyards/MACG.
Collapse
Affiliation(s)
- Wei Yuan
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Cheng
- Institute for Infocomm Research, Agency for Science, Technology and Research, 138632, Singapore
| | - Yuhang Gong
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Ling He
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
| | - Jing Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
116
|
Xie Q, Chen Y, Liu S, Lu X. SSCFormer: Revisiting ConvNet-Transformer Hybrid Framework From Scale-Wise and Spatial-Channel-Aware Perspectives for Volumetric Medical Image Segmentation. IEEE J Biomed Health Inform 2024; 28:4830-4841. [PMID: 38648142 DOI: 10.1109/jbhi.2024.3392488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Accurate and robust medical image segmentation is crucial for assisting disease diagnosis, making treatment plan, and monitoring disease progression. Adaptive to different scale variations and regions of interest is essential for high accuracy in automatic segmentation methods. Existing methods based on the U-shaped architecture respectively tackling intra- and inter-scale problem with a hierarchical encoder, however, are restricted by the scope of multi-scale modeling. In addition, global attention and scaling attention in regions of interest have not been appropriately adopted, especially for the salient features. To address these two issues, we propose a ConvNet-Transformer hybrid framework named SSCFormer for accurate and versatile medical image segmentation. The intra-scale ResInception and inter-scale transformer bridge are designed to collaboratively capture the intra- and inter-scale features, facilitating the interaction of small-scale disparity information at a single stage with large-scale from multiple stages. Global attention and scaling attention are cleverly integrated from a spatial-channel-aware perspective. The proposed SSCFormer is tested on four different medical image segmentation tasks. Comprehensive experimental results show that SSCFormer outperforms the current state-of-the-art methods.
Collapse
|
117
|
Daudé P, Ramasawmy R, Javed A, Lederman RJ, Chow K, Campbell-Washburn AE. Inline automatic quality control of 2D phase-contrast flow MRI for subject-specific scan time adaptation. Magn Reson Med 2024; 92:751-760. [PMID: 38469944 PMCID: PMC11142871 DOI: 10.1002/mrm.30083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/01/2024] [Accepted: 02/24/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE To develop an inline automatic quality control to achieve consistent diagnostic image quality with subject-specific scan time, and to demonstrate this method for 2D phase-contrast flow MRI to reach a predetermined SNR. METHODS We designed a closed-loop feedback framework between image reconstruction and data acquisition to intermittently check SNR (every 20 s) and automatically stop the acquisition when a target SNR is achieved. A free-breathing 2D pseudo-golden-angle spiral phase-contrast sequence was modified to listen for image-quality messages from the reconstructions. Ten healthy volunteers and 1 patient were imaged at 0.55 T. Target SNR was selected based on retrospective analysis of cardiac output error, and performance of the automatic SNR-driven "stop" was assessed inline. RESULTS SNR calculation and automated segmentation was feasible within 20 s with inline deployment. The SNR-driven acquisition time was 2 min 39 s ± 67 s (aorta) and 3 min ± 80 s (main pulmonary artery) with a min/max acquisition time of 1 min 43 s/4 min 52 s (aorta) and 1 min 43 s/5 min 50 s (main pulmonary artery) across 6 healthy volunteers, while ensuring a diagnostic measurement with relative absolute error in quantitative flow measurement lower than 2.1% (aorta) and 6.3% (main pulmonary artery). CONCLUSION The inline quality control enables subject-specific optimized scan times while ensuring consistent diagnostic image quality. The distribution of automated stopping times across the population revealed the value of a subject-specific scan time.
Collapse
Affiliation(s)
- Pierre Daudé
- Laboratory of Imaging Technology, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung & Blood Institute, NIH, USA
| | - Rajiv Ramasawmy
- Laboratory of Imaging Technology, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung & Blood Institute, NIH, USA
| | - Ahsan Javed
- Laboratory of Imaging Technology, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung & Blood Institute, NIH, USA
| | - Robert J Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung & Blood Institute, NIH, USA
| | - Kelvin Chow
- Siemens Healthcare Ltd., Calgary, AB, Canada
| | - Adrienne E. Campbell-Washburn
- Laboratory of Imaging Technology, Cardiovascular Branch, Division of Intramural Research, National Heart, Lung & Blood Institute, NIH, USA
| |
Collapse
|
118
|
Liu Z, Kainth K, Zhou A, Deyer TW, Fayad ZA, Greenspan H, Mei X. A review of self-supervised, generative, and few-shot deep learning methods for data-limited magnetic resonance imaging segmentation. NMR IN BIOMEDICINE 2024; 37:e5143. [PMID: 38523402 DOI: 10.1002/nbm.5143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/26/2024]
Abstract
Magnetic resonance imaging (MRI) is a ubiquitous medical imaging technology with applications in disease diagnostics, intervention, and treatment planning. Accurate MRI segmentation is critical for diagnosing abnormalities, monitoring diseases, and deciding on a course of treatment. With the advent of advanced deep learning frameworks, fully automated and accurate MRI segmentation is advancing. Traditional supervised deep learning techniques have advanced tremendously, reaching clinical-level accuracy in the field of segmentation. However, these algorithms still require a large amount of annotated data, which is oftentimes unavailable or impractical. One way to circumvent this issue is to utilize algorithms that exploit a limited amount of labeled data. This paper aims to review such state-of-the-art algorithms that use a limited number of annotated samples. We explain the fundamental principles of self-supervised learning, generative models, few-shot learning, and semi-supervised learning and summarize their applications in cardiac, abdomen, and brain MRI segmentation. Throughout this review, we highlight algorithms that can be employed based on the quantity of annotated data available. We also present a comprehensive list of notable publicly available MRI segmentation datasets. To conclude, we discuss possible future directions of the field-including emerging algorithms, such as contrastive language-image pretraining, and potential combinations across the methods discussed-that can further increase the efficacy of image segmentation with limited labels.
Collapse
Affiliation(s)
- Zelong Liu
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Komal Kainth
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexander Zhou
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy W Deyer
- East River Medical Imaging, New York, New York, USA
- Department of Radiology, Cornell Medicine, New York, New York, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hayit Greenspan
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Xueyan Mei
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
119
|
Nerella S, Bandyopadhyay S, Zhang J, Contreras M, Siegel S, Bumin A, Silva B, Sena J, Shickel B, Bihorac A, Khezeli K, Rashidi P. Transformers and large language models in healthcare: A review. Artif Intell Med 2024; 154:102900. [PMID: 38878555 PMCID: PMC11638972 DOI: 10.1016/j.artmed.2024.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 08/09/2024]
Abstract
With Artificial Intelligence (AI) increasingly permeating various aspects of society, including healthcare, the adoption of the Transformers neural network architecture is rapidly changing many applications. Transformer is a type of deep learning architecture initially developed to solve general-purpose Natural Language Processing (NLP) tasks and has subsequently been adapted in many fields, including healthcare. In this survey paper, we provide an overview of how this architecture has been adopted to analyze various forms of healthcare data, including clinical NLP, medical imaging, structured Electronic Health Records (EHR), social media, bio-physiological signals, biomolecular sequences. Furthermore, which have also include the articles that used the transformer architecture for generating surgical instructions and predicting adverse outcomes after surgeries under the umbrella of critical care. Under diverse settings, these models have been used for clinical diagnosis, report generation, data reconstruction, and drug/protein synthesis. Finally, we also discuss the benefits and limitations of using transformers in healthcare and examine issues such as computational cost, model interpretability, fairness, alignment with human values, ethical implications, and environmental impact.
Collapse
Affiliation(s)
- Subhash Nerella
- Department of Biomedical Engineering, University of Florida, Gainesville, United States
| | | | - Jiaqing Zhang
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, United States
| | - Miguel Contreras
- Department of Biomedical Engineering, University of Florida, Gainesville, United States
| | - Scott Siegel
- Department of Biomedical Engineering, University of Florida, Gainesville, United States
| | - Aysegul Bumin
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, United States
| | - Brandon Silva
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, United States
| | - Jessica Sena
- Department Of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Benjamin Shickel
- Department of Medicine, University of Florida, Gainesville, United States
| | - Azra Bihorac
- Department of Medicine, University of Florida, Gainesville, United States
| | - Kia Khezeli
- Department of Biomedical Engineering, University of Florida, Gainesville, United States
| | - Parisa Rashidi
- Department of Biomedical Engineering, University of Florida, Gainesville, United States.
| |
Collapse
|
120
|
Zhu E, Feng H, Chen L, Lai Y, Chai S. MP-Net: A Multi-Center Privacy-Preserving Network for Medical Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2718-2729. [PMID: 38478456 DOI: 10.1109/tmi.2024.3377248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In this paper, we present the Multi-Center Privacy-Preserving Network (MP-Net), a novel framework designed for secure medical image segmentation in multi-center collaborations. Our methodology offers a new approach to multi-center collaborative learning, capable of reducing the volume of data transmission and enhancing data privacy protection. Unlike federated learning, which requires the transmission of model data between the central server and local servers in each round, our method only necessitates a single transfer of encrypted data. The proposed MP-Net comprises a three-layer model, consisting of encryption, segmentation, and decryption networks. We encrypt the image data into ciphertext using an encryption network and introduce an improved U-Net for image ciphertext segmentation. Finally, the segmentation mask is obtained through a decryption network. This architecture enables ciphertext-based image segmentation through computable image encryption. We evaluate the effectiveness of our approach on three datasets, including two cardiac MRI datasets and a CTPA dataset. Our results demonstrate that the MP-Net can securely utilize data from multiple centers to establish a more robust and information-rich segmentation model.
Collapse
|
121
|
Wan Q, Yan Z, Yu L. FedIOD: Federated Multi-Organ Segmentation From Partial Labels by Exploring Inter-Organ Dependency. IEEE J Biomed Health Inform 2024; 28:4105-4117. [PMID: 38557615 DOI: 10.1109/jbhi.2024.3381844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Multi-organ segmentation is a fundamental task and existing approaches usually rely on large-scale fully-labeled images for training. However, data privacy and incomplete/partial labels make those approaches struggle in practice. Federated learning is an emerging tool to address data privacy but federated learning with partial labels is under-explored. In this work, we explore generating full supervision by building and aggregating inter-organ dependency based on partial labels and propose a single-encoder-multi-decoder framework named FedIOD. To simulate the annotation process where each organ is labeled by referring to other closely-related organs, a transformer module is introduced and the learned self-attention matrices modeling pairwise inter-organ dependency are used to build pseudo full labels. By using those pseudo-full labels for regularization in each client, the shared encoder is trained to extract rich and complete organ-related features rather than being biased toward certain organs. Then, each decoder in FedIOD projects the shared organ-related features into a specific space trained by the corresponding partial labels. Experimental results based on five widely-used datasets, including LiTS, KiTS, MSD, BCTV, and ACDC, demonstrate the effectiveness of FedIOD, outperforming the state-of-the-art approaches under in-federation evaluation and achieving the second-best performance under out-of-federation evaluation for multi-organ segmentation from partial labels.
Collapse
|
122
|
Rivera Boadla ME, Sharma NR, Varghese J, Lamichhane S, Khan MH, Gulati A, Khurana S, Tan S, Sharma A. Multimodal Cardiac Imaging Revisited by Artificial Intelligence: An Innovative Way of Assessment or Just an Aid? Cureus 2024; 16:e64272. [PMID: 39130913 PMCID: PMC11315592 DOI: 10.7759/cureus.64272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Cardiovascular disease remains a leading global health challenge, necessitating advanced diagnostic approaches. This review explores the integration of artificial intelligence (AI) in multimodal cardiac imaging, tracing its evolution from early X-rays to contemporary techniques such as CT, MRI, and nuclear imaging. AI, particularly machine learning and deep learning, significantly enhances cardiac diagnostics by estimating biological heart age, predicting disease risk, and optimizing heart failure management through adaptive algorithms without explicit programming or feature engineering. Key contributions include AI's transformative role in non-invasive coronary artery disease diagnosis, arrhythmia detection via wearable devices, and personalized treatment strategies. Despite substantial progress, challenges including data standardization, algorithm validation, regulatory approval, and ethical considerations must be addressed to fully harness AI's potential. Collaborative efforts among clinicians, scientists, industry stakeholders, and regulatory bodies are essential for the safe and effective deployment of AI in cardiac imaging, promising enhanced diagnostics and personalized patient care.
Collapse
Affiliation(s)
| | - Nava R Sharma
- Internal Medicine, Maimonides Medical Center, Brooklyn, USA
- Medicine, Manipal College of Medical Sciences, Pokhara, NPL
| | - Jeffy Varghese
- Internal Medicine, Maimonides Medical Center, Brooklyn, USA
| | - Saral Lamichhane
- Internal Medicine, NYC Health + Hospitals/Woodhull, Brooklyn, USA
- Internal Medicine, Gandaki Medical College, Pokhara, NPL
| | | | - Amit Gulati
- Cardiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Samuel Tan
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Anupam Sharma
- Hematology and Oncology, Fortis Hospital, Noida, IND
| |
Collapse
|
123
|
Guan H, Yap PT, Bozoki A, Liu M. Federated learning for medical image analysis: A survey. PATTERN RECOGNITION 2024; 151:110424. [PMID: 38559674 PMCID: PMC10976951 DOI: 10.1016/j.patcog.2024.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Machine learning in medical imaging often faces a fundamental dilemma, namely, the small sample size problem. Many recent studies suggest using multi-domain data pooled from different acquisition sites/centers to improve statistical power. However, medical images from different sites cannot be easily shared to build large datasets for model training due to privacy protection reasons. As a promising solution, federated learning, which enables collaborative training of machine learning models based on data from different sites without cross-site data sharing, has attracted considerable attention recently. In this paper, we conduct a comprehensive survey of the recent development of federated learning methods in medical image analysis. We have systematically gathered research papers on federated learning and its applications in medical image analysis published between 2017 and 2023. Our search and compilation were conducted using databases from IEEE Xplore, ACM Digital Library, Science Direct, Springer Link, Web of Science, Google Scholar, and PubMed. In this survey, we first introduce the background of federated learning for dealing with privacy protection and collaborative learning issues. We then present a comprehensive review of recent advances in federated learning methods for medical image analysis. Specifically, existing methods are categorized based on three critical aspects of a federated learning system, including client end, server end, and communication techniques. In each category, we summarize the existing federated learning methods according to specific research problems in medical image analysis and also provide insights into the motivations of different approaches. In addition, we provide a review of existing benchmark medical imaging datasets and software platforms for current federated learning research. We also conduct an experimental study to empirically evaluate typical federated learning methods for medical image analysis. This survey can help to better understand the current research status, challenges, and potential research opportunities in this promising research field.
Collapse
Affiliation(s)
- Hao Guan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrea Bozoki
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
124
|
Aghapanah H, Rasti R, Kermani S, Tabesh F, Banaem HY, Aliakbar HP, Sanei H, Segars WP. CardSegNet: An adaptive hybrid CNN-vision transformer model for heart region segmentation in cardiac MRI. Comput Med Imaging Graph 2024; 115:102382. [PMID: 38640619 PMCID: PMC11552193 DOI: 10.1016/j.compmedimag.2024.102382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Cardiovascular MRI (CMRI) is a non-invasive imaging technique adopted for assessing the blood circulatory system's structure and function. Precise image segmentation is required to measure cardiac parameters and diagnose abnormalities through CMRI data. Because of anatomical heterogeneity and image variations, cardiac image segmentation is a challenging task. Quantification of cardiac parameters requires high-performance segmentation of the left ventricle (LV), right ventricle (RV), and left ventricle myocardium from the background. The first proposed solution here is to manually segment the regions, which is a time-consuming and error-prone procedure. In this context, many semi- or fully automatic solutions have been proposed recently, among which deep learning-based methods have revealed high performance in segmenting regions in CMRI data. In this study, a self-adaptive multi attention (SMA) module is introduced to adaptively leverage multiple attention mechanisms for better segmentation. The convolutional-based position and channel attention mechanisms with a patch tokenization-based vision transformer (ViT)-based attention mechanism in a hybrid and end-to-end manner are integrated into the SMA. The CNN- and ViT-based attentions mine the short- and long-range dependencies for more precise segmentation. The SMA module is applied in an encoder-decoder structure with a ResNet50 backbone named CardSegNet. Furthermore, a deep supervision method with multi-loss functions is introduced to the CardSegNet optimizer to reduce overfitting and enhance the model's performance. The proposed model is validated on the ACDC2017 (n=100), M&Ms (n=321), and a local dataset (n=22) using the 10-fold cross-validation method with promising segmentation results, demonstrating its outperformance versus its counterparts.
Collapse
Affiliation(s)
- Hamed Aghapanah
- School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Rasti
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Saeed Kermani
- School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Faezeh Tabesh
- Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Yousefi Banaem
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Pour Aliakbar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Sanei
- Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - William Paul Segars
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|
125
|
Zhang H, Cai Z. ConvNextUNet: A small-region attentioned model for cardiac MRI segmentation. Comput Biol Med 2024; 177:108592. [PMID: 38781642 DOI: 10.1016/j.compbiomed.2024.108592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Cardiac MRI segmentation is a significant research area in medical image processing, holding immense clinical and scientific importance in assisting the diagnosis and treatment of heart diseases. Currently, existing cardiac MRI segmentation algorithms are often constrained by specific datasets and conditions, leading to a notable decrease in segmentation performance when applied to diverse datasets. These limitations affect the algorithm's overall performance and generalization capabilities. Inspired by ConvNext, we introduce a two-dimensional cardiac MRI segmentation U-shaped network called ConvNextUNet. It is the first application of a combination of ConvNext and the U-shaped architecture in the field of cardiac MRI segmentation. Firstly, we incorporate up-sampling modules into the original ConvNext architecture and combine it with the U-shaped framework to achieve accurate reconstruction. Secondly, we integrate Input Stem into ConvNext, and introduce attention mechanisms along the bridging path. By merging features extracted from both the encoder and decoder, a probability distribution is obtained through linear and nonlinear transformations, serving as attention weights, thereby enhancing the signal of the same region of interest. The resulting attention weights are applied to the decoder features, highlighting the region of interest. This allows the model to simultaneously consider local context and global details during the learning phase, fully leveraging the advantages of both global and local perception for a more comprehensive understanding of cardiac anatomical structures. Consequently, the model demonstrates a clear advantage and robust generalization capability, especially in small-region segmentation. Experimental results on the ACDC, LVQuan19, and RVSC datasets confirm that the ConvNextUNet model outperforms the current state-of-the-art models, particularly in small-region segmentation tasks. Furthermore, we conducted cross-dataset training and testing experiments, which revealed that the pre-trained model can accurately segment diverse cardiac datasets, showcasing its powerful generalization capabilities. The source code of this project is available at https://github.com/Zemin-Cai/ConvNextUNet.
Collapse
Affiliation(s)
- Huiyi Zhang
- The Department of Electronic Engineering, Shantou University, Shantou, Guangdong 515063, PR China; Key Laboratory of Digital Signal and Image Processing of Guangdong Province, Shantou, Guangdong 515063, PR China
| | - Zemin Cai
- The Department of Electronic Engineering, Shantou University, Shantou, Guangdong 515063, PR China; Key Laboratory of Digital Signal and Image Processing of Guangdong Province, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
126
|
Villegas-Martinez M, de Villedon de Naide V, Muthurangu V, Bustin A. The beating heart: artificial intelligence for cardiovascular application in the clinic. MAGMA (NEW YORK, N.Y.) 2024; 37:369-382. [PMID: 38907767 DOI: 10.1007/s10334-024-01180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/25/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Artificial intelligence (AI) integration in cardiac magnetic resonance imaging presents new and exciting avenues for advancing patient care, automating post-processing tasks, and enhancing diagnostic precision and outcomes. The use of AI significantly streamlines the examination workflow through the reduction of acquisition and postprocessing durations, coupled with the automation of scan planning and acquisition parameters selection. This has led to a notable improvement in examination workflow efficiency, a reduction in operator variability, and an enhancement in overall image quality. Importantly, AI unlocks new possibilities to achieve spatial resolutions that were previously unattainable in patients. Furthermore, the potential for low-dose and contrast-agent-free imaging represents a stride toward safer and more patient-friendly diagnostic procedures. Beyond these benefits, AI facilitates precise risk stratification and prognosis evaluation by adeptly analysing extensive datasets. This comprehensive review article explores recent applications of AI in the realm of cardiac magnetic resonance imaging, offering insights into its transformative potential in the field.
Collapse
Affiliation(s)
- Manuel Villegas-Martinez
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Hôpital Xavier Arnozan, Université de Bordeaux-INSERM U1045, Avenue du Haut Lévêque, 33604, Pessac, France
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604, Pessac, France
| | - Victor de Villedon de Naide
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Hôpital Xavier Arnozan, Université de Bordeaux-INSERM U1045, Avenue du Haut Lévêque, 33604, Pessac, France
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604, Pessac, France
| | - Vivek Muthurangu
- Center for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, University College London, London, WC1N 1EH, UK
| | - Aurélien Bustin
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Hôpital Xavier Arnozan, Université de Bordeaux-INSERM U1045, Avenue du Haut Lévêque, 33604, Pessac, France.
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604, Pessac, France.
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
127
|
Wang H, Jin Q, Li S, Liu S, Wang M, Song Z. A comprehensive survey on deep active learning in medical image analysis. Med Image Anal 2024; 95:103201. [PMID: 38776841 DOI: 10.1016/j.media.2024.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Deep learning has achieved widespread success in medical image analysis, leading to an increasing demand for large-scale expert-annotated medical image datasets. Yet, the high cost of annotating medical images severely hampers the development of deep learning in this field. To reduce annotation costs, active learning aims to select the most informative samples for annotation and train high-performance models with as few labeled samples as possible. In this survey, we review the core methods of active learning, including the evaluation of informativeness and sampling strategy. For the first time, we provide a detailed summary of the integration of active learning with other label-efficient techniques, such as semi-supervised, self-supervised learning, and so on. We also summarize active learning works that are specifically tailored to medical image analysis. Additionally, we conduct a thorough comparative analysis of the performance of different AL methods in medical image analysis with experiments. In the end, we offer our perspectives on the future trends and challenges of active learning and its applications in medical image analysis. An accompanying paper list and code for the comparative analysis is available in https://github.com/LightersWang/Awesome-Active-Learning-for-Medical-Image-Analysis.
Collapse
Affiliation(s)
- Haoran Wang
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, China
| | - Qiuye Jin
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Shiman Li
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, China
| | - Siyu Liu
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, China
| | - Manning Wang
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, China.
| | - Zhijian Song
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, China.
| |
Collapse
|
128
|
Rajamani ST, Rajamani K, J A, R K, Schuller BW. CBAM_SAUNet: A novel attention U-Net for effective segmentation of corner cases. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039820 DOI: 10.1109/embc53108.2024.10782335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
U-Net has been demonstrated to be effective for the task of medical image segmentation. Additionally, integrating attention mechanism into U-Net has been shown to yield significant benefits. The Shape Attentive U-Net (SAUNet) is one such recently proposed attention U-Net that also focuses on interpretability. Furthermore, recent research has focused on identification and reporting of corner cases in segmentation to accelerate the utilisation of deep learning models in clinical practise. However, achieving good model performance on such corner cases is a less-explored research area. In this paper, we propose CBAM_SAUNet which enhances the dual attention decoder block of SAUNet to improve its performance on corner cases. We achieve this by utilising a novel variant of the Convolutional Block Attention Module (CBAM)'s channel attention in the decoder block of SAUNet. We demonstrate the effectiveness of CBAM_SAUNet in the Automated Cardiac Diagnosis Challenge (ACDC) cardiac MRI segmentation challenge. Our proposed novel approach results in improvement in the Dice scores of 12% for Left Ventricle (LV) as well as Right Ventricle (RV) segmentation and 8% for Myocardium (MYO) for the identified corner-case dataset.
Collapse
|
129
|
Mao K, Li R, Cheng J, Huang D, Song Z, Liu Z. PL-Net: progressive learning network for medical image segmentation. Front Bioeng Biotechnol 2024; 12:1414605. [PMID: 38994123 PMCID: PMC11236745 DOI: 10.3389/fbioe.2024.1414605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
In recent years, deep convolutional neural network-based segmentation methods have achieved state-of-the-art performance for many medical analysis tasks. However, most of these approaches rely on optimizing the U-Net structure or adding new functional modules, which overlooks the complementation and fusion of coarse-grained and fine-grained semantic information. To address these issues, we propose a 2D medical image segmentation framework called Progressive Learning Network (PL-Net), which comprises Internal Progressive Learning (IPL) and External Progressive Learning (EPL). PL-Net offers the following advantages: 1) IPL divides feature extraction into two steps, allowing for the mixing of different size receptive fields and capturing semantic information from coarse to fine granularity without introducing additional parameters; 2) EPL divides the training process into two stages to optimize parameters and facilitate the fusion of coarse-grained information in the first stage and fine-grained information in the second stage. We conducted comprehensive evaluations of our proposed method on five medical image segmentation datasets, and the experimental results demonstrate that PL-Net achieves competitive segmentation performance. It is worth noting that PL-Net does not introduce any additional learnable parameters compared to other U-Net variants.
Collapse
Affiliation(s)
- Kunpeng Mao
- Chongqing City Management College, Chongqing, China
| | - Ruoyu Li
- College of Computer Science, Sichuan University, Chengdu, China
| | - Junlong Cheng
- College of Computer Science, Sichuan University, Chengdu, China
| | - Danmei Huang
- Chongqing City Management College, Chongqing, China
| | - Zhiping Song
- Chongqing University of Engineering, Chongqing, China
| | - ZeKui Liu
- Chongqing University of Engineering, Chongqing, China
| |
Collapse
|
130
|
Zhang Q, Fotaki A, Ghadimi S, Wang Y, Doneva M, Wetzl J, Delfino JG, O'Regan DP, Prieto C, Epstein FH. Improving the efficiency and accuracy of cardiovascular magnetic resonance with artificial intelligence-review of evidence and proposition of a roadmap to clinical translation. J Cardiovasc Magn Reson 2024; 26:101051. [PMID: 38909656 PMCID: PMC11331970 DOI: 10.1016/j.jocmr.2024.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) is an important imaging modality for the assessment of heart disease; however, limitations of CMR include long exam times and high complexity compared to other cardiac imaging modalities. Recently advancements in artificial intelligence (AI) technology have shown great potential to address many CMR limitations. While the developments are remarkable, translation of AI-based methods into real-world CMR clinical practice remains at a nascent stage and much work lies ahead to realize the full potential of AI for CMR. METHODS Herein we review recent cutting-edge and representative examples demonstrating how AI can advance CMR in areas such as exam planning, accelerated image reconstruction, post-processing, quality control, classification and diagnosis. RESULTS These advances can be applied to speed up and simplify essentially every application including cine, strain, late gadolinium enhancement, parametric mapping, 3D whole heart, flow, perfusion and others. AI is a unique technology based on training models using data. Beyond reviewing the literature, this paper discusses important AI-specific issues in the context of CMR, including (1) properties and characteristics of datasets for training and validation, (2) previously published guidelines for reporting CMR AI research, (3) considerations around clinical deployment, (4) responsibilities of clinicians and the need for multi-disciplinary teams in the development and deployment of AI in CMR, (5) industry considerations, and (6) regulatory perspectives. CONCLUSIONS Understanding and consideration of all these factors will contribute to the effective and ethical deployment of AI to improve clinical CMR.
Collapse
Affiliation(s)
- Qiang Zhang
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Big Data Institute, University of Oxford, Oxford, UK.
| | - Anastasia Fotaki
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Sona Ghadimi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Yu Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | | | - Jens Wetzl
- Siemens Healthineers AG, Erlangen, Germany.
| | - Jana G Delfino
- US Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratories (OSEL), Silver Spring, MD, USA.
| | - Declan P O'Regan
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
131
|
Li K, Zhu Y, Yu L, Heng PA. A Dual Enrichment Synergistic Strategy to Handle Data Heterogeneity for Domain Incremental Cardiac Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2279-2290. [PMID: 38345948 DOI: 10.1109/tmi.2024.3364240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Upon remarkable progress in cardiac image segmentation, contemporary studies dedicate to further upgrading model functionality toward perfection, through progressively exploring the sequentially delivered datasets over time by domain incremental learning. Existing works mainly concentrated on addressing the heterogeneous style variations, but overlooked the critical shape variations across domains hidden behind the sub-disease composition discrepancy. In case the updated model catastrophically forgets the sub-diseases that were learned in past domains but are no longer present in the subsequent domains, we proposed a dual enrichment synergistic strategy to incrementally broaden model competence for a growing number of sub-diseases. The data-enriched scheme aims to diversify the shape composition of current training data via displacement-aware shape encoding and decoding, to gradually build up the robustness against cross-domain shape variations. Meanwhile, the model-enriched scheme intends to strengthen model capabilities by progressively appending and consolidating the latest expertise into a dynamically-expanded multi-expert network, to gradually cultivate the generalization ability over style-variated domains. The above two schemes work in synergy to collaboratively upgrade model capabilities in two-pronged manners. We have extensively evaluated our network with the ACDC and M&Ms datasets in single-domain and compound-domain incremental learning settings. Our approach outperformed other competing methods and achieved comparable results to the upper bound.
Collapse
|
132
|
Petmezas G, Papageorgiou VE, Vassilikos V, Pagourelias E, Tsaklidis G, Katsaggelos AK, Maglaveras N. Recent advancements and applications of deep learning in heart failure: Α systematic review. Comput Biol Med 2024; 176:108557. [PMID: 38728995 DOI: 10.1016/j.compbiomed.2024.108557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Heart failure (HF), a global health challenge, requires innovative diagnostic and management approaches. The rapid evolution of deep learning (DL) in healthcare necessitates a comprehensive review to evaluate these developments and their potential to enhance HF evaluation, aligning clinical practices with technological advancements. OBJECTIVE This review aims to systematically explore the contributions of DL technologies in the assessment of HF, focusing on their potential to improve diagnostic accuracy, personalize treatment strategies, and address the impact of comorbidities. METHODS A thorough literature search was conducted across four major electronic databases: PubMed, Scopus, Web of Science and IEEE Xplore, yielding 137 articles that were subsequently categorized into five primary application areas: cardiovascular disease (CVD) classification, HF detection, image analysis, risk assessment, and other clinical analyses. The selection criteria focused on studies utilizing DL algorithms for HF assessment, not limited to HF detection but extending to any attempt in analyzing and interpreting HF-related data. RESULTS The analysis revealed a notable emphasis on CVD classification and HF detection, with DL algorithms showing significant promise in distinguishing between affected individuals and healthy subjects. Furthermore, the review highlights DL's capacity to identify underlying cardiomyopathies and other comorbidities, underscoring its utility in refining diagnostic processes and tailoring treatment plans to individual patient needs. CONCLUSIONS This review establishes DL as a key innovation in HF management, highlighting its role in advancing diagnostic accuracy and personalized care. The insights provided advocate for the integration of DL in clinical settings and suggest directions for future research to enhance patient outcomes in HF care.
Collapse
Affiliation(s)
- Georgios Petmezas
- 2nd Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; Centre for Research and Technology Hellas, Thessaloniki, Greece.
| | | | - Vasileios Vassilikos
- 3rd Department of Cardiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efstathios Pagourelias
- 3rd Department of Cardiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Tsaklidis
- Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aggelos K Katsaggelos
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Nicos Maglaveras
- 2nd Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
133
|
Li Z, Zheng Y, Shan D, Yang S, Li Q, Wang B, Zhang Y, Hong Q, Shen D. ScribFormer: Transformer Makes CNN Work Better for Scribble-Based Medical Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2254-2265. [PMID: 38324425 DOI: 10.1109/tmi.2024.3363190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Most recent scribble-supervised segmentation methods commonly adopt a CNN framework with an encoder-decoder architecture. Despite its multiple benefits, this framework generally can only capture small-range feature dependency for the convolutional layer with the local receptive field, which makes it difficult to learn global shape information from the limited information provided by scribble annotations. To address this issue, this paper proposes a new CNN-Transformer hybrid solution for scribble-supervised medical image segmentation called ScribFormer. The proposed ScribFormer model has a triple-branch structure, i.e., the hybrid of a CNN branch, a Transformer branch, and an attention-guided class activation map (ACAM) branch. Specifically, the CNN branch collaborates with the Transformer branch to fuse the local features learned from CNN with the global representations obtained from Transformer, which can effectively overcome limitations of existing scribble-supervised segmentation methods. Furthermore, the ACAM branch assists in unifying the shallow convolution features and the deep convolution features to improve model's performance further. Extensive experiments on two public datasets and one private dataset show that our ScribFormer has superior performance over the state-of-the-art scribble-supervised segmentation methods, and achieves even better results than the fully-supervised segmentation methods. The code is released at https://github.com/HUANGLIZI/ScribFormer.
Collapse
|
134
|
Chang Q, Wang Y. Structure-aware independently trained multi-scale registration network for cardiac images. Med Biol Eng Comput 2024; 62:1795-1808. [PMID: 38381202 DOI: 10.1007/s11517-024-03039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Image registration is a primary task in various medical image analysis applications. However, cardiac image registration is difficult due to the large non-rigid deformation of the heart and the complex anatomical structure. This paper proposes a structure-aware independently trained multi-scale registration network (SIMReg) to address this challenge. Using image pairs of different resolutions, independently train each registration network to extract image features of large deformation image pairs at different resolutions. In the testing stage, the large deformation registration is decomposed into a multi-scale registration process, and the deformation fields of different resolutions are fused by a step-by-step deformation method, thus solving the difficulty of directly processing large deformation. Meanwhile, the targeted introduction of MIND (modality independent neighborhood descriptor) structural features to guide network training enhances the registration of cardiac structural contours and improves the registration effect of local details. Experiments were carried out on the open cardiac dataset ACDC (automated cardiac diagnosis challenge), and the average Dice value of the experimental results of the proposed method was 0.833. Comparative experiments showed that the proposed SIMReg could better solve the problem of heart image registration and achieve a better registration effect on cardiac images.
Collapse
Affiliation(s)
- Qing Chang
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Yaqi Wang
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
135
|
Liu X, Sanchez P, Thermos S, O'Neil AQ, Tsaftaris SA. Compositionally Equivariant Representation Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2169-2179. [PMID: 38277249 DOI: 10.1109/tmi.2024.3358955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Deep learning models often need sufficient supervision (i.e., labelled data) in order to be trained effectively. By contrast, humans can swiftly learn to identify important anatomy in medical images like MRI and CT scans, with minimal guidance. This recognition capability easily generalises to new images from different medical facilities and to new tasks in different settings. This rapid and generalisable learning ability is largely due to the compositional structure of image patterns in the human brain, which are not well represented in current medical models. In this paper, we study the utilisation of compositionality in learning more interpretable and generalisable representations for medical image segmentation. Overall, we propose that the underlying generative factors that are used to generate the medical images satisfy compositional equivariance property, where each factor is compositional (e.g., corresponds to human anatomy) and also equivariant to the task. Hence, a good representation that approximates well the ground truth factor has to be compositionally equivariant. By modelling the compositional representations with learnable von-Mises-Fisher (vMF) kernels, we explore how different design and learning biases can be used to enforce the representations to be more compositionally equivariant under un-, weakly-, and semi-supervised settings. Extensive results show that our methods achieve the best performance over several strong baselines on the task of semi-supervised domain-generalised medical image segmentation. Code will be made publicly available upon acceptance at https://github.com/vios-s.
Collapse
|
136
|
Moreno A, Bautista LX, Martínez F. Cardiac disease discrimination from 3D-convolutional kinematic patterns on cine-MRI sequences. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:89-100. [PMID: 39079140 PMCID: PMC11418829 DOI: 10.7705/biomedica.7115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/13/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Cine-MRI (cine-magnetic resonance imaging) sequences are a key diagnostic tool to visualize anatomical information, allowing experts to localize and determine suspicious pathologies. Nonetheless, such analysis remains subjective and prone to diagnosis errors. OBJECTIVE To develop a binary and multi-class classification considering various cardiac conditions using a spatiotemporal model that highlights kinematic movements to characterize each disease. MATERIALS AND METHODS This research focuses on a 3D convolutional representation to characterize cardiac kinematic patterns during the cardiac cycle, which may be associated with pathologies. The kinematic maps are obtained from the apparent velocity maps computed from a dense optical flow strategy. Then, a 3D convolutional scheme learns to differentiate pathologies from kinematic maps. RESULTS The proposed strategy was validated with respect to the capability to discriminate among myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy, abnormal right ventricle, and normal cardiac sequences. The proposed method achieves an average accuracy of 78.00% and a F1 score of 75.55%. Likewise, the approach achieved 92.31% accuracy for binary classification between pathologies and control cases. CONCLUSION The proposed method can support the identification of kinematically abnormal patterns associated with a pathological condition. The resultant descriptor, learned from the 3D convolutional net, preserves detailed spatiotemporal correlations and could emerge as possible digital biomarkers of cardiac diseases.
Collapse
Affiliation(s)
- Alejandra Moreno
- Biomedical Imaging, Vision, and Learning Laboratory (BIVL2ab), Universidad Industrial de Santander, Bucaramanga, ColombiaUniversidad Industrial de SantanderUniversidad Industrial de SantanderBucaramangaColombia
| | - Lola Xiomara Bautista
- Biomedical Imaging, Vision, and Learning Laboratory (BIVL2ab), Universidad Industrial de Santander, Bucaramanga, ColombiaUniversidad Industrial de SantanderUniversidad Industrial de SantanderBucaramangaColombia
| | - Fabio Martínez
- Biomedical Imaging, Vision, and Learning Laboratory (BIVL2ab), Universidad Industrial de Santander, Bucaramanga, ColombiaUniversidad Industrial de SantanderUniversidad Industrial de SantanderBucaramangaColombia
| |
Collapse
|
137
|
Brüggemann D, Cener D, Kuzo N, Anwer S, Kebernik J, Eberhard M, Alkadhi H, Tanner FC, Konukoglu E. Predicting mortality after transcatheter aortic valve replacement using preprocedural CT. Sci Rep 2024; 14:12526. [PMID: 38822074 PMCID: PMC11143216 DOI: 10.1038/s41598-024-63022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Transcatheter aortic valve replacement (TAVR) is a widely used intervention for patients with severe aortic stenosis. Identifying high-risk patients is crucial due to potential postprocedural complications. Currently, this involves manual clinical assessment and time-consuming radiological assessment of preprocedural computed tomography (CT) images by an expert radiologist. In this study, we introduce a probabilistic model that predicts post-TAVR mortality automatically using unprocessed, preprocedural CT and 25 baseline patient characteristics. The model utilizes CT volumes by automatically localizing and extracting a region of interest around the aortic root and ascending aorta. It then extracts task-specific features with a 3D deep neural network and integrates them with patient characteristics to perform outcome prediction. As missing measurements or even missing CT images are common in TAVR planning, the proposed model is designed with a probabilistic structure to allow for marginalization over such missing information. Our model demonstrates an AUROC of 0.725 for predicting all-cause mortality during postprocedure follow-up on a cohort of 1449 TAVR patients. This performance is on par with what can be achieved with lengthy radiological assessments performed by experts. Thus, these findings underscore the potential of the proposed model in automatically analyzing CT volumes and integrating them with patient characteristics for predicting mortality after TAVR.
Collapse
Affiliation(s)
- David Brüggemann
- Computer Vision Laboratory, ETH Zurich, 8092, Zurich, Switzerland
| | - Denis Cener
- Computer Vision Laboratory, ETH Zurich, 8092, Zurich, Switzerland
| | - Nazar Kuzo
- Department of Cardiology, University Heart Center, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Shehab Anwer
- Department of Cardiology, University Heart Center, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Julia Kebernik
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Matthias Eberhard
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Hatem Alkadhi
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Felix C Tanner
- Department of Cardiology, University Heart Center, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Ender Konukoglu
- Computer Vision Laboratory, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
138
|
Abouei E, Pan S, Hu M, Kesarwala AH, Qiu RLJ, Zhou J, Roper J, Yang X. Cardiac MRI segmentation using shifted-window multilayer perceptron mixer networks. Phys Med Biol 2024; 69:115048. [PMID: 38744300 DOI: 10.1088/1361-6560/ad4b91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Objectives. In this work, we proposed a deep-learning segmentation algorithm for cardiac magnetic resonance imaging to aid in contouring of the left ventricle, right ventricle, and Myocardium (Myo).Approach.We proposed a shifted window multilayer perceptron (Swin-MLP) mixer network which is built upon a 3D U-shaped symmetric encoder-decoder structure. We evaluated our proposed network using public data from 100 individuals. The network performance was quantitatively evaluated using 3D volume similarity between the ground truth contours and the predictions using Dice score coefficient, sensitivity, and precision as well as 2D surface similarity using Hausdorff distance (HD), mean surface distance (MSD) and residual mean square distance (RMSD). We benchmarked the performance against two other current leading edge networks known as Dynamic UNet and Swin-UNetr on the same public dataset.Results.The proposed network achieved the following volume similarity metrics when averaged over three cardiac segments: Dice = 0.952 ± 0.017, precision = 0.948 ± 0.016, sensitivity = 0.956 ± 0.022. The average surface similarities were HD = 1.521 ± 0.121 mm, MSD = 0.266 ± 0.075 mm, and RMSD = 0.668 ± 0.288 mm. The network shows statistically significant improvement in comparison to the Dynamic UNet and Swin-UNetr algorithms for most volumetric and surface metrics withp-value less than 0.05. Overall, the proposed Swin-MLP mixer network demonstrates better or comparable performance than competing methods.Significance.The proposed Swin-MLP mixer network demonstrates more accurate segmentation performance compared to current leading edge methods. This robust method demonstrates the potential to streamline clinical workflows for multiple applications.
Collapse
Affiliation(s)
- Elham Abouei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Shaoyan Pan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, United States of America
| | - Mingzhe Hu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, United States of America
| | - Aparna H Kesarwala
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Richard L J Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, United States of America
| |
Collapse
|
139
|
Ma ZP, Wang SW, Xue LY, Zhang XD, Zheng W, Zhao YX, Yuan SR, Li GY, Yu YN, Wang JN, Zhang TL. A study on the application of radiomics based on cardiac MR non-enhanced cine sequence in the early diagnosis of hypertensive heart disease. BMC Med Imaging 2024; 24:124. [PMID: 38802736 PMCID: PMC11129462 DOI: 10.1186/s12880-024-01301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The prevalence of hypertensive heart disease (HHD) is high and there is currently no easy way to detect early HHD. Explore the application of radiomics using cardiac magnetic resonance (CMR) non-enhanced cine sequences in diagnosing HHD and latent cardiac changes caused by hypertension. METHODS 132 patients who underwent CMR scanning were divided into groups: HHD (42), hypertension with normal cardiac structure and function (HWN) group (46), and normal control (NOR) group (44). Myocardial regions of the end-diastolic (ED) and end-systolic (ES) phases of the CMR short-axis cine sequence images were segmented into regions of interest (ROI). Three feature subsets (ED, ES, and ED combined with ES) were established after radiomic least absolute shrinkage and selection operator feature selection. Nine radiomic models were built using random forest (RF), support vector machine (SVM), and naive Bayes. Model performance was analyzed using receiver operating characteristic curves, and metrics like accuracy, area under the curve (AUC), precision, recall, and specificity. RESULTS The feature subsets included first-order, shape, and texture features. SVM of ED combined with ES achieved the highest accuracy (0.833), with a macro-average AUC of 0.941. AUCs for HHD, HWN, and NOR identification were 0.967, 0.876, and 0.963, respectively. Precisions were 0.972, 0.740, and 0.826; recalls were 0.833, 0.804, and 0.863, respectively; and specificities were 0.989, 0.863, and 0.909, respectively. CONCLUSIONS Radiomics technology using CMR non-enhanced cine sequences can detect early cardiac changes due to hypertension. It holds promise for future use in screening for latent cardiac damage in early HHD.
Collapse
Affiliation(s)
- Ze-Peng Ma
- Department of Radiology, Affiliated Hospital of Hebei University/ Clinical Medical College, Hebei University, Baoding, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Baoding, 071000, China
| | - Shi-Wei Wang
- College of Quality and Technical Supervision, Hebei University, Baoding, 071002, China
| | - Lin-Yan Xue
- College of Quality and Technical Supervision, Hebei University, Baoding, 071002, China
| | - Xiao-Dan Zhang
- Department of Ultrasound, Affiliated Hospital of Hebei University, 212 Yuhua East Road, Baoding, 071000, China.
| | - Wei Zheng
- College of Electronic and Information Engineering, Hebei University, Baoding, 071002, China
| | - Yong-Xia Zhao
- Department of Radiology, Affiliated Hospital of Hebei University/ Clinical Medical College, Hebei University, Baoding, 071000, China
| | - Shuang-Rui Yuan
- Department of Radiology, Affiliated Hospital of Hebei University/ Clinical Medical College, Hebei University, Baoding, 071000, China
| | - Gao-Yang Li
- Department of Radiology, Affiliated Hospital of Hebei University/ Clinical Medical College, Hebei University, Baoding, 071000, China
| | - Ya-Nan Yu
- Department of Radiology, Affiliated Hospital of Hebei University/ Clinical Medical College, Hebei University, Baoding, 071000, China
| | - Jia-Ning Wang
- Department of Radiology, Affiliated Hospital of Hebei University/ Clinical Medical College, Hebei University, Baoding, 071000, China
| | - Tian-Le Zhang
- Department of Radiology, Affiliated Hospital of Hebei University/ Clinical Medical College, Hebei University, Baoding, 071000, China
| |
Collapse
|
140
|
Kim J, Seok J. ctGAN: combined transformation of gene expression and survival data with generative adversarial network. Brief Bioinform 2024; 25:bbae325. [PMID: 38980369 PMCID: PMC11232285 DOI: 10.1093/bib/bbae325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024] Open
Abstract
Recent studies have extensively used deep learning algorithms to analyze gene expression to predict disease diagnosis, treatment effectiveness, and survival outcomes. Survival analysis studies on diseases with high mortality rates, such as cancer, are indispensable. However, deep learning models are plagued by overfitting owing to the limited sample size relative to the large number of genes. Consequently, the latest style-transfer deep generative models have been implemented to generate gene expression data. However, these models are limited in their applicability for clinical purposes because they generate only transcriptomic data. Therefore, this study proposes ctGAN, which enables the combined transformation of gene expression and survival data using a generative adversarial network (GAN). ctGAN improves survival analysis by augmenting data through style transformations between breast cancer and 11 other cancer types. We evaluated the concordance index (C-index) enhancements compared with previous models to demonstrate its superiority. Performance improvements were observed in nine of the 11 cancer types. Moreover, ctGAN outperformed previous models in seven out of the 11 cancer types, with colon adenocarcinoma (COAD) exhibiting the most significant improvement (median C-index increase of ~15.70%). Furthermore, integrating the generated COAD enhanced the log-rank p-value (0.041) compared with using only the real COAD (p-value = 0.797). Based on the data distribution, we demonstrated that the model generated highly plausible data. In clustering evaluation, ctGAN exhibited the highest performance in most cases (89.62%). These findings suggest that ctGAN can be meaningfully utilized to predict disease progression and select personalized treatments in the medical field.
Collapse
Affiliation(s)
- Jaeyoon Kim
- School of Electrical and Computer Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Junhee Seok
- School of Electrical and Computer Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea
| |
Collapse
|
141
|
Zhao X, Wang W. Semi-Supervised Medical Image Segmentation Based on Deep Consistent Collaborative Learning. J Imaging 2024; 10:118. [PMID: 38786572 PMCID: PMC11122630 DOI: 10.3390/jimaging10050118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
In the realm of medical image analysis, the cost associated with acquiring accurately labeled data is prohibitively high. To address the issue of label scarcity, semi-supervised learning methods are employed, utilizing unlabeled data alongside a limited set of labeled data. This paper presents a novel semi-supervised medical segmentation framework, DCCLNet (deep consistency collaborative learning UNet), grounded in deep consistent co-learning. The framework synergistically integrates consistency learning from feature and input perturbations, coupled with collaborative training between CNN (convolutional neural networks) and ViT (vision transformer), to capitalize on the learning advantages offered by these two distinct paradigms. Feature perturbation involves the application of auxiliary decoders with varied feature disturbances to the main CNN backbone, enhancing the robustness of the CNN backbone through consistency constraints generated by the auxiliary and main decoders. Input perturbation employs an MT (mean teacher) architecture wherein the main network serves as the student model guided by a teacher model subjected to input perturbations. Collaborative training aims to improve the accuracy of the main networks by encouraging mutual learning between the CNN and ViT. Experiments conducted on publicly available datasets for ACDC (automated cardiac diagnosis challenge) and Prostate datasets yielded Dice coefficients of 0.890 and 0.812, respectively. Additionally, comprehensive ablation studies were performed to demonstrate the effectiveness of each methodological contribution in this study.
Collapse
Affiliation(s)
- Xin Zhao
- College of Information Engineering, Dalian University, Dalian 116622, China;
| | | |
Collapse
|
142
|
Peng J, Wang P, Pedersoli M, Desrosiers C. Boundary-aware information maximization for self-supervised medical image segmentation. Med Image Anal 2024; 94:103150. [PMID: 38574545 DOI: 10.1016/j.media.2024.103150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/24/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
Self-supervised representation learning can boost the performance of a pre-trained network on downstream tasks for which labeled data is limited. A popular method based on this paradigm, known as contrastive learning, works by constructing sets of positive and negative pairs from the data, and then pulling closer the representations of positive pairs while pushing apart those of negative pairs. Although contrastive learning has been shown to improve performance in various classification tasks, its application to image segmentation has been more limited. This stems in part from the difficulty of defining positive and negative pairs for dense feature maps without having access to pixel-wise annotations. In this work, we propose a novel self-supervised pre-training method that overcomes the challenges of contrastive learning in image segmentation. Our method leverages Information Invariant Clustering (IIC) as an unsupervised task to learn a local representation of images in the decoder of a segmentation network, but addresses three important drawbacks of this approach: (i) the difficulty of optimizing the loss based on mutual information maximization; (ii) the lack of clustering consistency for different random transformations of the same image; (iii) the poor correspondence of clusters obtained by IIC with region boundaries in the image. Toward this goal, we first introduce a regularized mutual information maximization objective that encourages the learned clusters to be balanced and consistent across different image transformations. We also propose a boundary-aware loss based on cross-correlation, which helps the learned clusters to be more representative of important regions in the image. Compared to contrastive learning applied in dense features, our method does not require computing positive and negative pairs and also enhances interpretability through the visualization of learned clusters. Comprehensive experiments involving four different medical image segmentation tasks reveal the high effectiveness of our self-supervised representation learning method. Our results show the proposed method to outperform by a large margin several state-of-the-art self-supervised and semi-supervised approaches for segmentation, reaching a performance close to full supervision with only a few labeled examples.
Collapse
Affiliation(s)
- Jizong Peng
- ETS Montréal, 1100 Notre-Dame St W, Montreal H3C 1K3, QC, Canada.
| | - Ping Wang
- ETS Montréal, 1100 Notre-Dame St W, Montreal H3C 1K3, QC, Canada
| | - Marco Pedersoli
- ETS Montréal, 1100 Notre-Dame St W, Montreal H3C 1K3, QC, Canada
| | | |
Collapse
|
143
|
Onnis C, van Assen M, Muscogiuri E, Muscogiuri G, Gershon G, Saba L, De Cecco CN. The Role of Artificial Intelligence in Cardiac Imaging. Radiol Clin North Am 2024; 62:473-488. [PMID: 38553181 DOI: 10.1016/j.rcl.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Artificial intelligence (AI) is having a significant impact in medical imaging, advancing almost every aspect of the field, from image acquisition and postprocessing to automated image analysis with outreach toward supporting decision making. Noninvasive cardiac imaging is one of the main and most exciting fields for AI development. The aim of this review is to describe the main applications of AI in cardiac imaging, including CT and MR imaging, and provide an overview of recent advancements and available clinical applications that can improve clinical workflow, disease detection, and prognostication in cardiac disease.
Collapse
Affiliation(s)
- Carlotta Onnis
- Translational Laboratory for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, 100 Woodruff Circle, Atlanta, GA 30322, USA; Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, SS 554 km 4,500 Monserrato, Cagliari 09042, Italy. https://twitter.com/CarlottaOnnis
| | - Marly van Assen
- Translational Laboratory for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, 100 Woodruff Circle, Atlanta, GA 30322, USA. https://twitter.com/marly_van_assen
| | - Emanuele Muscogiuri
- Translational Laboratory for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, 100 Woodruff Circle, Atlanta, GA 30322, USA; Division of Thoracic Imaging, Department of Radiology, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Giuseppe Muscogiuri
- Department of Diagnostic and Interventional Radiology, Papa Giovanni XXIII Hospital, Piazza OMS, 1, Bergamo BG 24127, Italy. https://twitter.com/GiuseppeMuscog
| | - Gabrielle Gershon
- Translational Laboratory for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, 100 Woodruff Circle, Atlanta, GA 30322, USA. https://twitter.com/gabbygershon
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, SS 554 km 4,500 Monserrato, Cagliari 09042, Italy. https://twitter.com/lucasabaITA
| | - Carlo N De Cecco
- Translational Laboratory for Cardiothoracic Imaging and Artificial Intelligence, Department of Radiology and Imaging Sciences, Emory University, 100 Woodruff Circle, Atlanta, GA 30322, USA; Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University, Emory University Hospital, 1365 Clifton Road Northeast, Suite AT503, Atlanta, GA 30322, USA.
| |
Collapse
|
144
|
Zhang T, Wei D, Zhu M, Gu S, Zheng Y. Self-supervised learning for medical image data with anatomy-oriented imaging planes. Med Image Anal 2024; 94:103151. [PMID: 38527405 DOI: 10.1016/j.media.2024.103151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/29/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Self-supervised learning has emerged as a powerful tool for pretraining deep networks on unlabeled data, prior to transfer learning of target tasks with limited annotation. The relevance between the pretraining pretext and target tasks is crucial to the success of transfer learning. Various pretext tasks have been proposed to utilize properties of medical image data (e.g., three dimensionality), which are more relevant to medical image analysis than generic ones for natural images. However, previous work rarely paid attention to data with anatomy-oriented imaging planes, e.g., standard cardiac magnetic resonance imaging views. As these imaging planes are defined according to the anatomy of the imaged organ, pretext tasks effectively exploiting this information can pretrain the networks to gain knowledge on the organ of interest. In this work, we propose two complementary pretext tasks for this group of medical image data based on the spatial relationship of the imaging planes. The first is to learn the relative orientation between the imaging planes and implemented as regressing their intersecting lines. The second exploits parallel imaging planes to regress their relative slice locations within a stack. Both pretext tasks are conceptually straightforward and easy to implement, and can be combined in multitask learning for better representation learning. Thorough experiments on two anatomical structures (heart and knee) and representative target tasks (semantic segmentation and classification) demonstrate that the proposed pretext tasks are effective in pretraining deep networks for remarkably boosted performance on the target tasks, and superior to other recent approaches.
Collapse
Affiliation(s)
- Tianwei Zhang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dong Wei
- Jarvis Research Center, Tencent YouTu Lab, Shenzhen 518057, China
| | - Mengmeng Zhu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shi Gu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yefeng Zheng
- Jarvis Research Center, Tencent YouTu Lab, Shenzhen 518057, China
| |
Collapse
|
145
|
Lyu J, Wang S, Tian Y, Zou J, Dong S, Wang C, Aviles-Rivero AI, Qin J. STADNet: Spatial-Temporal Attention-Guided Dual-Path Network for cardiac cine MRI super-resolution. Med Image Anal 2024; 94:103142. [PMID: 38492252 DOI: 10.1016/j.media.2024.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Cardiac cine magnetic resonance imaging (MRI) is a commonly used clinical tool for evaluating cardiac function and morphology. However, its diagnostic accuracy may be compromised by the low spatial resolution. Current methods for cine MRI super-resolution reconstruction still have limitations. They typically rely on 3D convolutional neural networks or recurrent neural networks, which may not effectively capture long-range or non-local features due to their limited receptive fields. Optical flow estimators are also commonly used to align neighboring frames, which may cause information loss and inaccurate motion estimation. Additionally, pre-warping strategies may involve interpolation, leading to potential loss of texture details and complicated anatomical structures. To overcome these challenges, we propose a novel Spatial-Temporal Attention-Guided Dual-Path Network (STADNet) for cardiac cine MRI super-resolution. We utilize transformers to model long-range dependencies in cardiac cine MR images and design a cross-frame attention module in the location-aware spatial path, which enhances the spatial details of the current frame by using complementary information from neighboring frames. We also introduce a recurrent flow-enhanced attention module in the motion-aware temporal path that exploits the correlation between cine MRI frames and extracts the motion information of the heart. Experimental results demonstrate that STADNet outperforms SOTA approaches and has significant potential for clinical practice.
Collapse
Affiliation(s)
- Jun Lyu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Shuo Wang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yapeng Tian
- Department of Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| | - Jing Zou
- Centre for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong
| | - Shunjie Dong
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, China
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, Shanghai, China.
| | - Angelica I Aviles-Rivero
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Jing Qin
- Centre for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
146
|
Baccouch W, Oueslati S, Solaiman B, Lahidheb D, Labidi S. Automatic left ventricle volume and mass quantification from 2D cine-MRI: Investigating papillary muscle influence. Med Eng Phys 2024; 127:104162. [PMID: 38692762 DOI: 10.1016/j.medengphy.2024.104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVE Early detection of cardiovascular diseases is based on accurate quantification of the left ventricle (LV) function parameters. In this paper, we propose a fully automatic framework for LV volume and mass quantification from 2D-cine MR images already segmented using U-Net. METHODS The general framework consists of three main steps: Data preparation including automatic LV localization using a convolution neural network (CNN) and application of morphological operations to exclude papillary muscles from the LV cavity. The second step consists in automatically extracting the LV contours using U-Net architecture. Finally, by integrating temporal information which is manifested by a spatial motion of myocytes as a third dimension, we calculated LV volume, LV ejection fraction (LVEF) and left ventricle mass (LVM). Based on these parameters, we detected and quantified cardiac contraction abnormalities using Python software. RESULTS CNN was trained with 35 patients and tested on 15 patients from the ACDC database with an accuracy of 99,15 %. U-Net architecture was trained using ACDC database and evaluated using local dataset with a Dice similarity coefficient (DSC) of 99,78 % and a Hausdorff Distance (HD) of 4.468 mm (p < 0,001). Quantification results showed a strong correlation with physiological measures with a Pearson correlation coefficient (PCC) of 0,991 for LV volume, 0.962 for LVEF, 0.98 for stroke volume (SV) and 0.923 for LVM after pillars' elimination. Clinically, our method allows regional and accurate identification of pathological myocardial segments and can serve as a diagnostic aid tool of cardiac contraction abnormalities. CONCLUSION Experimental results prove the usefulness of the proposed method for LV volume and function quantification and verify its potential clinical applicability.
Collapse
Affiliation(s)
- Wafa Baccouch
- University of Tunis El Manar, Higher institute of Medical Technologies of Tunis, Research laboratory of Biophysics and Medical Technologies LR13ES07, Tunis, 1006, Tunisia.
| | - Sameh Oueslati
- University of Tunis El Manar, Higher institute of Medical Technologies of Tunis, Research laboratory of Biophysics and Medical Technologies LR13ES07, Tunis, 1006, Tunisia
| | - Basel Solaiman
- Image & Information Processing Department (iTi), IMT-Atlantique, Technopôle Brest Iroise CS 83818, 29238, Brest Cedex, France
| | - Dhaker Lahidheb
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; Department of Cardiology, Military Hospital of Tunis, Tunis, Tunisia
| | - Salam Labidi
- University of Tunis El Manar, Higher institute of Medical Technologies of Tunis, Research laboratory of Biophysics and Medical Technologies LR13ES07, Tunis, 1006, Tunisia
| |
Collapse
|
147
|
Yi C, Niu G, Zhang Y, Rao J, Liu G, Yang W, Fei X. Advances in artificial intelligence in thyroid-associated ophthalmopathy. Front Endocrinol (Lausanne) 2024; 15:1356055. [PMID: 38715793 PMCID: PMC11075148 DOI: 10.3389/fendo.2024.1356055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/10/2024] [Indexed: 05/23/2024] Open
Abstract
Thyroid-associated ophthalmopathy (TAO), also referred to as Graves' ophthalmopathy, is a medical condition wherein ocular complications arise due to autoimmune thyroid illness. The diagnosis of TAO, reliant on imaging, typical ocular symptoms, and abnormalities in thyroid function or thyroid-associated antibodies, is generally graded and staged. In recent years, Artificial intelligence(AI), particularly deep learning(DL) technology, has gained widespread use in the diagnosis and treatment of ophthalmic diseases. This paper presents a discussion on specific studies involving AI, specifically DL, in the context of TAO, highlighting their applications in TAO diagnosis, staging, grading, and treatment decisions. Additionally, it addresses certain limitations in AI research on TAO and potential future directions for the field.
Collapse
Affiliation(s)
- Chenyuan Yi
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Geng Niu
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Yinghuai Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Jing Rao
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Guiqin Liu
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Weihua Yang
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - XingZhen Fei
- Department of Endocrinology, First People’s Hospital of Huzhou, Huzhou University, Huzhou, China
| |
Collapse
|
148
|
Li B, Xu Y, Wang Y, Li L, Zhang B. The student-teacher framework guided by self-training and consistency regularization for semi-supervised medical image segmentation. PLoS One 2024; 19:e0300039. [PMID: 38648206 PMCID: PMC11034649 DOI: 10.1371/journal.pone.0300039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 04/25/2024] Open
Abstract
Due to the high suitability of semi-supervised learning for medical image segmentation, a plethora of valuable research has been conducted and has achieved noteworthy success in this field. However, many approaches tend to confine their focus to a singular semi-supervised framework, thereby overlooking the potential enhancements in segmentation performance offered by integrating several frameworks. In this paper, we propose a novel semi-supervised framework named Pesudo-Label Mean Teacher (PLMT), which synergizes the self-training pipeline with pseudo-labeling and consistency regularization techniques. In particular, we integrate the student-teacher structure with consistency loss into the self-training pipeline to facilitate a mutually beneficial enhancement between the two methods. This structure not only generates remarkably accurate pseudo-labels for the self-training pipeline but also furnishes additional pseudo-label supervision for the student-teacher framework. Moreover, to explore the impact of different semi-supervised losses on the segmentation performance of the PLMT framework, we introduce adaptive loss weights. The PLMT could dynamically adjust the weights of different semi-supervised losses during the training process. Extension experiments on three public datasets demonstrate that our framework achieves the best performance and outperforms the other five semi-supervised methods. The PLMT is an initial exploration of the framework that melds the self-training pipeline with consistency regularization and offers a comparatively innovative perspective in semi-supervised image segmentation.
Collapse
Affiliation(s)
- Boliang Li
- Department of control science and engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yaming Xu
- Department of control science and engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yan Wang
- Department of control science and engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Luxiu Li
- Faculty of Robot Science and Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Bo Zhang
- Sergeant schools of Army Academy of Armored Forces, Changchun, Jilin, China
| |
Collapse
|
149
|
Jiang N, Zhang Y, Li Q, Fu X, Fang D. A cardiac MRI motion artifact reduction method based on edge enhancement network. Phys Med Biol 2024; 69:095004. [PMID: 38537303 DOI: 10.1088/1361-6560/ad3884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
Cardiac magnetic resonance imaging (MRI) usually requires a long acquisition time. The movement of the patients during MRI acquisition will produce image artifacts. Previous studies have shown that clear MR image texture edges are of great significance for pathological diagnosis. In this paper, a motion artifact reduction method for cardiac MRI based on edge enhancement network is proposed. Firstly, the four-plane normal vector adaptive fractional differential mask is applied to extract the edge features of blurred images. The four-plane normal vector method can reduce the noise information in the edge feature maps. The adaptive fractional order is selected according to the normal mean gradient and the local Gaussian curvature entropy of the images. Secondly, the extracted edge feature maps and blurred images are input into the de-artifact network. In this network, the edge fusion feature extraction network and the edge fusion transformer network are specially designed. The former combines the edge feature maps with the fuzzy feature maps to extract the edge feature information. The latter combines the edge attention network and the fuzzy attention network, which can focus on the blurred image edges. Finally, extensive experiments show that the proposed method can obtain higher peak signal-to-noise ratio and structural similarity index measure compared to state-of-art methods. The de-artifact images have clear texture edges.
Collapse
Affiliation(s)
- Nanhe Jiang
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, People's Republic of China
| | - Yucun Zhang
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, People's Republic of China
| | - Qun Li
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, People's Republic of China
| | - Xianbin Fu
- Hebei University of Environmental Engineering, Qinhuangdao, 066102, Hebei, People's Republic of China
| | - Dongqing Fang
- Capital Aerospace Machinery Co, Ltd, Fengtai, 100076, Beijing, People's Republic of China
| |
Collapse
|
150
|
Zheng S, Sun Q, Ye X, Li W, Yu L, Yang C. Multi-scale adversarial learning with difficult region supervision learning models for primary tumor segmentation. Phys Med Biol 2024; 69:085009. [PMID: 38471170 DOI: 10.1088/1361-6560/ad3321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Objective.Recently, deep learning techniques have found extensive application in accurate and automated segmentation of tumor regions. However, owing to the variety of tumor shapes, complex types, and unpredictability of spatial distribution, tumor segmentation still faces major challenges. Taking cues from the deep supervision and adversarial learning, we have devised a cascade-based methodology incorporating multi-scale adversarial learning and difficult-region supervision learning in this study to tackle these challenges.Approach.Overall, the method adheres to a coarse-to-fine strategy, first roughly locating the target region, and then refining the target object with multi-stage cascaded binary segmentation which converts complex multi-class segmentation problems into multiple simpler binary segmentation problems. In addition, a multi-scale adversarial learning difficult supervised UNet (MSALDS-UNet) is proposed as our model for fine-segmentation, which applies multiple discriminators along the decoding path of the segmentation network to implement multi-scale adversarial learning, thereby enhancing the accuracy of network segmentation. Meanwhile, in MSALDS-UNet, we introduce a difficult region supervision loss to effectively utilize structural information for segmenting difficult-to-distinguish areas, such as blurry boundary areas.Main results.A thorough validation of three independent public databases (KiTS21, MSD's Brain and Pancreas datasets) shows that our model achieves satisfactory results for tumor segmentation in terms of key evaluation metrics including dice similarity coefficient, Jaccard similarity coefficient, and HD95.Significance.This paper introduces a cascade approach that combines multi-scale adversarial learning and difficult supervision to achieve precise tumor segmentation. It confirms that the combination can improve the segmentation performance, especially for small objects (our codes are publicly availabled onhttps://zhengshenhai.github.io/).
Collapse
Affiliation(s)
- Shenhai Zheng
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Qiuyu Sun
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Xin Ye
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Weisheng Li
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Lei Yu
- Emergency Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Chaohui Yang
- Nanpeng Artificial Intelligence Research Institute, Chongqing, People's Republic of China
| |
Collapse
|