101
|
Yang S, Reid G, Challis JRG, Kim SO, Gloor GB, Bocking AD. Is there a role for probiotics in the prevention of preterm birth? Front Immunol 2015; 6:62. [PMID: 25741339 PMCID: PMC4330906 DOI: 10.3389/fimmu.2015.00062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/01/2015] [Indexed: 01/12/2023] Open
Abstract
Preterm birth (PTB) continues to be a global health challenge. An over-production of inflammatory cytokines and chemokines, as well as an altered maternal vaginal microbiome has been implicated in the pathogenesis of inflammation/infection-associated PTB. Lactobacillus represents the dominant species in the vagina of most healthy pregnant women. The depletion of Lactobacillus in women with bacterial vaginosis (BV) has been associated with an increased risk of PTB. It remains unknown at what point an aberrant vaginal microbiome composition specifically induces the cascade leading to PTB. The ability of oral or vaginal lactobacilli probiotics to reduce BV occurrence and/or dampen inflammation is being considered as a means to prevent PTB. Certain anti-inflammatory properties of lactobacilli suggest potential mechanisms. To date, clinical studies have not been powered with sufficiently high rates of PTB, but overall, there is merit in examining this promising area of clinical science.
Collapse
Affiliation(s)
- Siwen Yang
- Department of Physiology, Obstetrics and Gynecology, University of Toronto , Toronto, ON , Canada ; Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital , Toronto, ON , Canada
| | - Gregor Reid
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Lawson Health Research Institute , London, ON , Canada
| | - John R G Challis
- Department of Physiology, Obstetrics and Gynecology, University of Toronto , Toronto, ON , Canada ; Department of Obstetrics and Gynecology, The University of Western Australia , Perth, WA , Australia
| | - Sung O Kim
- Department of Microbiology and Immunology, Western University , London, ON , Canada ; Lawson Health Research Institute , London, ON , Canada
| | - Gregory B Gloor
- Department of Biochemistry, Western University , London, ON , Canada
| | - Alan D Bocking
- Department of Physiology, Obstetrics and Gynecology, University of Toronto , Toronto, ON , Canada ; Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital , Toronto, ON , Canada
| |
Collapse
|
102
|
Piliation of Lactobacillus rhamnosus GG promotes adhesion, phagocytosis, and cytokine modulation in macrophages. Appl Environ Microbiol 2015; 81:2050-62. [PMID: 25576613 DOI: 10.1128/aem.03949-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recently, spaCBA-encoded pili on the cell surface of Lactobacillus rhamnosus GG were identified to be key molecules for binding to human intestinal mucus and Caco-2 intestinal epithelial cells. Here, we investigated the role of the SpaCBA pilus of L. rhamnosus GG in the interaction with macrophages in vitro by comparing the wild type with surface mutants. Our results show that SpaCBA pili play a significant role in the capacity for adhesion to macrophages and also promote bacterial uptake by these phagocytic cells. Interestingly, our data suggest that SpaCBA pili also mediate anti-inflammatory effects by induction of interleukin-10 (IL-10) mRNA and reduction of interleukin-6 (IL-6) mRNA in a murine RAW 264.7 macrophage cell line. These pili appear to mediate these effects indirectly by promoting close contact with the macrophages, facilitating the exertion of anti-inflammatory effects by other surface molecules via yet unknown mechanisms. Blockage of complement receptor 3 (CR3), previously identified to be a receptor for streptococcal pili, significantly decreased the uptake of pilus-expressing strains in RAW 264.7 cells, while the expression of IL-10 and IL-6 mRNA by these macrophages was not affected by this blocking. On the other hand, blockage of Toll-like receptor 2 (TLR2) significantly reduced the expression of IL-6 mRNA irrespective of the presence of pili.
Collapse
|
103
|
Abstract
BACKGROUND Low serum vitamin D concentration has been associated with increased prevalence of bacterial vaginosis (BV) among pregnant women, but the few studies conducted in nonpregnant women have produced inconsistent results. Because serum vitamin D concentration is generally higher in the summer and fall than winter and spring, if vitamin D insufficiency causes BV, then BV would be expected to be more common during seasons with lower vitamin D concentrations. METHODS The Longitudinal Study of Vaginal Flora followed up women in Birmingham, Alabama (33.5° latitude), quarterly for up to 1 year. We used a case-crossover design with conditional logistic regression among women who attended visits in each season, to assess the adjusted association between season and BV. We compared each woman's BV status in summer, fall, and spring to her own status in winter. RESULTS Among the 3620 women in the parent study, 2337 attended visits in each season; BV prevalence was 40% in winter, 38% in spring, and 41% in summer and fall. One thousand three hundred thirty-five women had BV at some but not all visits and were therefore included in the case-crossover analysis. Season was not associated with BV in women who were BV negative at study entry (odds ratio vs. winter were 1.0 for spring, 1.0 for summer, and 0.9 for fall; P = 0.81). Among women BV positive at study entry, the corresponding odds ratios were 0.9, 1.4, and 1.4 (P < 0.001). CONCLUSIONS These results do not support an association between vitamin D, measured through the proxy variable of season, and BV.
Collapse
|
104
|
Férir G, Gordts SC, Schols D. HIV-1 and its resistance to peptidic carbohydrate-binding agents (CBAs): an overview. Molecules 2014; 19:21085-112. [PMID: 25517345 PMCID: PMC6270665 DOI: 10.3390/molecules191221085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/16/2022] Open
Abstract
The glycoproteins on the surfaces of enveloped viruses, such as HIV, can be considered as a unique target for antiviral therapy. Different carbohydrate-binding agents (CBAs) target specific glycans present on viral glycoproteins of enveloped viruses. It has been shown that long-term CBA pressure in vitro can result in mutant HIV-1 isolates with several N-linked glycan deletions on gp120. These studies demonstrated that mainly high-mannose type glycans are deleted. However, interestingly, N241, N262 and N356 on gp120 have never been found to be affected after prolonged CBA exposure. Here, we review the mutation and (cross)-resistance profiles of eleven specific generated CBA-resistant HIV-1 strains. We observed that the broad-neutralizing anti-carbohydrate binding mAb 2G12 became completely inactive against all the generated CBA-resistant HIV-1 clade B isolates. In addition, all of the CBAs discussed in this review, with the exception of NICTABA, interfered with the binding of 2G12 mAb to gp120 expressed on HIV-1-infected T cells. The cross-resistance profiles of mutant HIV-1 strains are varying from increased susceptibility to very high resistance levels, even among different classes of CBAs with dissimilar sugar specificities or binding moieties [e.g., α(1,3), α(1,2), α(1,6)]. Recent studies demonstrated promising results in non-topical formulations (e.g., intranasally or subcutaneously), highlighting their potential for prevention (microbicides) and antiviral therapy.
Collapse
Affiliation(s)
- Geoffrey Férir
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10. Leuven B-3000, Belgium.
| | - Stephanie C Gordts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10. Leuven B-3000, Belgium.
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10. Leuven B-3000, Belgium.
| |
Collapse
|
105
|
Reid G, Brigidi P, Burton JP, Contractor N, Duncan S, Fargier E, Hill C, Lebeer S, Martín R, McBain AJ, Mor G, O'Neill C, Rodríguez JM, Swann J, van Hemert S, Ansell J. Microbes central to human reproduction. Am J Reprod Immunol 2014; 73:1-11. [PMID: 25250861 PMCID: PMC4282787 DOI: 10.1111/aji.12319] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022] Open
Abstract
As studies uncover the breadth of microbes associated with human life, opportunities will emerge to manipulate and augment their functions in ways that improve health and longevity. From involvement in the complexities of reproduction and fetal/infant development, to delaying the onset of disease, and indeed countering many maladies, microbes offer hope for human well-being. Evidence is emerging to suggest that microbes may play a beneficial role in body sites traditionally viewed as being sterile. Although further evidence is required, we propose that much of medical dogma is about to change significantly through recognition and understanding of these hitherto unrecognized microbe–host interactions. A meeting of the International Scientific Association for Probiotics and Prebiotics held in Aberdeen, Scotland (June 2014), presented new views and challenged established concepts on the role of microbes in reproduction and health of the mother and infant. This article summarizes some of the main aspects of these discussions.
Collapse
Affiliation(s)
- Gregor Reid
- Lawson Health Research Institute, London, ON, Canada; Departments of Microbiology & Immunology and Surgery, The University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Human immunodeficiency virus (HIV) primary infection occurs at mucosa tissues, suggesting an intricate interplay between the microbiome and HIV infection. Recent advanced technologies of high-throughput sequencing and bioinformatics allow researchers to explore nonculturable microbes, including bacteria, virus, and fungi, and their association with diseases. HIV/simian immunodeficiency virus infection is associated with microbiome shifts and immune activation that may affect the outcome of disease progression. In this review, the authors focus on microbiome in HIV infection at various mucosal compartments. Understanding the relationship between microbiome and HIV may offer insights into development of better strategies for HIV prevention and treatment.
Collapse
Affiliation(s)
- January T Salas
- Department of Microbiology and Molecular Genetics, Public Health Research Institute, Rutgers-New Jersey Medical School, 225 Warren Street, Newark, NJ 07103, USA
| | - Theresa L Chang
- Department of Microbiology and Molecular Genetics, Public Health Research Institute, Rutgers-New Jersey Medical School, 225 Warren Street, Newark, NJ 07103, USA.
| |
Collapse
|
107
|
Lively CM, de Roode JC, Duffy MA, Graham AL, Koskella B. Interesting open questions in disease ecology and evolution. Am Nat 2014; 184 Suppl 1:S1-8. [PMID: 25061674 DOI: 10.1086/677032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Curtis M Lively
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | | | | | | | | |
Collapse
|
108
|
Ghosh M. Secreted mucosal antimicrobials in the female reproductive tract that are important to consider for HIV prevention. Am J Reprod Immunol 2014; 71:575-88. [PMID: 24754244 DOI: 10.1111/aji.12250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/14/2014] [Indexed: 01/13/2023] Open
Abstract
The mucosal microenvironment of the female reproductive tract (FRT) is rich in secreted endogenous antimicrobials that provide the first line of defense against pathogens. This review focuses on the spectrum of secreted antimicrobials found in the FRT that have anti-HIV functions and are regulated by the natural hormonal changes in women's life cycle. Understanding the complex nature of FRT, mucosal microenvironment will enable us to better design therapeutic interventions for women against sexually transmitted pathogens.
Collapse
Affiliation(s)
- Mimi Ghosh
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| |
Collapse
|
109
|
Al Kassaa I, Hamze M, Hober D, Chihib NE, Drider D. Identification of vaginal lactobacilli with potential probiotic properties isolated from women in North Lebanon. MICROBIAL ECOLOGY 2014; 67:722-734. [PMID: 24549747 DOI: 10.1007/s00248-014-0384-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 01/30/2014] [Indexed: 06/03/2023]
Abstract
The aim of this work was to study the diversity of vaginal lactobacilli in Lebanese women and to evaluate the antagonism, hydrophobicity, and safety characteristics of these strains. This study was performed on samples from 135 women who visited a gynecology clinic in the north of Lebanon, between September 2012 and January 2013. From these samples, 53 different isolates of vaginal lactobacilli were collected from vaginal swabs and identified using biochemical and molecular methods. The use of genotypic Rep-PCR fingerprinting allowed for the organization of these isolates into 23 different groups. Seven of the isolated lactobacilli were antagonistic against the following vaginal pathogens: Gardnerella vaginalis CIP7074T, Staphylococcus aureus ATCC33862, Escherichia coli CIP103982, and Candida albicans ATCC10231. The antagonistic lactobacilli strains were then identified using 16S rDNA sequence. The data of this study show that the antagonistic lactobacilli were non-hemolytic, sensitive to most antibiotic tests, free of plasmid DNA, and exhibited interesting hydrophobicity and autoaggregation properties positioning them as potential candidates for probiotic design.
Collapse
Affiliation(s)
- Imad Al Kassaa
- Laboratoire des Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM), Cité Scientifique, avenue Paul Langevin. Bâtiment-Polytech Lille, 59655, Villeneuve d'Ascq Cedex, France
| | | | | | | | | |
Collapse
|
110
|
Cultivated vaginal microbiomes alter HIV-1 infection and antiretroviral efficacy in colonized epithelial multilayer cultures. PLoS One 2014; 9:e93419. [PMID: 24676219 PMCID: PMC3968159 DOI: 10.1371/journal.pone.0093419] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/04/2014] [Indexed: 01/12/2023] Open
Abstract
There is a pressing need for modeling of the symbiotic and at times dysbiotic relationship established between bacterial microbiomes and human mucosal surfaces. In particular clinical studies have indicated that the complex vaginal microbiome (VMB) contributes to the protection against sexually-transmitted pathogens including the life-threatening human immunodeficiency virus (HIV-1). The human microbiome project has substantially increased our understanding of the complex bacterial communities in the vagina however, as is the case for most microbiomes, very few of the community member species have been successfully cultivated in the laboratory limiting the types of studies that can be completed. A genetically controlled ex vivo model system is critically needed to study the complex interactions and associated molecular dialog. We present the first vaginal mucosal culture model that supports colonization by both healthy and dysbiotic VMB from vaginal swabs collected from routine gynecological patients. The immortalized vaginal epithelial cells used in the model and VMB cryopreservation methods provide the opportunity to reproducibly create replicates for lab-based evaluations of this important mucosal/bacterial community interface. The culture system also contains HIV-1 susceptible cells allowing us to study the impact of representative microbiomes on replication. Our results show that our culture system supports stable and reproducible colonization by VMB representing distinct community state types and that the selected representatives have significantly different effects on the replication of HIV-1. Further, we show the utility of the system to predict unwanted alterations in efficacy or bacterial community profiles following topical application of a front line antiretroviral.
Collapse
|
111
|
Borgdorff H, Tsivtsivadze E, Verhelst R, Marzorati M, Jurriaans S, Ndayisaba GF, Schuren FH, van de Wijgert JHHM. Lactobacillus-dominated cervicovaginal microbiota associated with reduced HIV/STI prevalence and genital HIV viral load in African women. ISME JOURNAL 2014; 8:1781-93. [PMID: 24599071 DOI: 10.1038/ismej.2014.26] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/04/2013] [Accepted: 01/20/2014] [Indexed: 01/28/2023]
Abstract
Cervicovaginal microbiota not dominated by lactobacilli may facilitate transmission of HIV and other sexually transmitted infections (STIs), as well as miscarriages, preterm births and sepsis in pregnant women. However, little is known about the exact nature of the microbiological changes that cause these adverse outcomes. In this study, cervical samples of 174 Rwandan female sex workers were analyzed cross-sectionally using a phylogenetic microarray. Furthermore, HIV-1 RNA concentrations were measured in cervicovaginal lavages of 58 HIV-positive women among them. We identified six microbiome clusters, representing a gradient from low semi-quantitative abundance and diversity dominated by Lactobacillus crispatus (cluster R-I, with R denoting 'Rwanda') and L. iners (R-II) to intermediate (R-V) and high abundance and diversity (R-III, R-IV and R-VI) dominated by a mixture of anaerobes, including Gardnerella, Atopobium and Prevotella species. Women in cluster R-I were less likely to have HIV (P=0.03), herpes simplex virus type 2 (HSV-2; P<0.01), and high-risk human papillomavirus (HPV; P<0.01) and had no bacterial STIs (P=0.15). Statistically significant trends in prevalence of viral STIs were found from low prevalence in cluster R-I, to higher prevalence in clusters R-II and R-V, and highest prevalence in clusters R-III/R-IV/R-VI. Furthermore, only 10% of HIV-positive women in clusters R-I/R-II, compared with 40% in cluster R-V, and 42% in clusters R-III/R-IV/R-VI had detectable cervicovaginal HIV-1 RNA (Ptrend=0.03). We conclude that L. crispatus-dominated, and to a lesser extent L. iners-dominated, cervicovaginal microbiota are associated with a lower prevalence of HIV/STIs and a lower likelihood of genital HIV-1 RNA shedding.
Collapse
Affiliation(s)
- Hanneke Borgdorff
- Amsterdam Institute for Global Health and Development (AIGHD) and Department of Global Health, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Rita Verhelst
- International Center for Reproductive Health (ICRH), Ghent University, Ghent, Belgium
| | - Massimo Marzorati
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Suzanne Jurriaans
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Frank H Schuren
- TNO Microbiology and Systems Biology, Zeist, The Netherlands
| | - Janneke H H M van de Wijgert
- 1] Amsterdam Institute for Global Health and Development (AIGHD) and Department of Global Health, Academic Medical Center, Amsterdam, The Netherlands [2] Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
112
|
Shen R, Smith PD. Mucosal correlates of protection in HIV-1-exposed sero-negative persons. Am J Reprod Immunol 2014; 72:219-27. [PMID: 24428610 DOI: 10.1111/aji.12202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/17/2013] [Indexed: 01/31/2023] Open
Abstract
Resistance to HIV-1 infection in HIV-1-exposed sero-negative (HESN) persons offers a promising opportunity to identify mechanisms of 'natural' protection. Unique features of the mucosa in particular may contribute to this protection. Here, we highlight several key issues pertaining to the mucosal correlates of protection in HESN persons, including humoral immune responses, mechanisms of mucosal HIV-1 neutralization, immune cell activation, and role of the microbiota in mucosal responses. We also discuss mucosal model systems that can be used to investigate the mechanisms of resistance in HESN subjects. A clear understanding of the mucosal correlates of protection against HIV-1 in HESN persons will provide critical new insights for the development of effective vaccine and microbicide strategies for the prevention of HIV-1 transmission.
Collapse
Affiliation(s)
- Ruizhong Shen
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|