101
|
Iseppi R, de Niederhäusern S, Bondi M, Messi P, Sabia C. Extended-Spectrum β-Lactamase, AmpC, and MBL-Producing Gram-Negative Bacteria on Fresh Vegetables and Ready-to-Eat Salads Sold in Local Markets. Microb Drug Resist 2018; 24:1156-1164. [PMID: 29451428 DOI: 10.1089/mdr.2017.0198] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We investigated the occurrence of extended-spectrum β-lactamase (ESBL), AmpC, and carbapenemase-producing Gram-negative bacteria isolated from 160 samples of fresh vegetables (n = 80) and ready-to-eat (RTE) prepacked salads (n = 80). Phenotypic and genotypic analyses were carried out on the isolates in terms of the species present and relative resistance. Resistance to β-lactam antibiotics was found in only 44 (24 from fresh vegetables and 20 from RTE salads) of a total of 312 Gram-negative strains (14.1%). The prevalence of ESBL-producing strains from fresh vegetables was 83.3% (20/24) and 16.7% (4/24) for AmpC. Among the 20 bacterial isolates from RTE salads, 80% (16/20) were identified as ESBL-producing strains and the remaining 20% (4/20) as MBL-producing strains. PCR and sequencing confirmed the presence of blaSHV-12, blaCTX-M-1, blaCTX-M-15, blaRHAN-1, blaACC-1, blaDHA-1, blaVIM-1, and blaIMP-1. Seven different replicons were identified, where IncHI1, FIA, and I1 were the most representative types; when compared with the Inc types, isolates from fresh vegetables and RTE salads were similar. The location of genes on a conjugative plasmid was confirmed by positive results obtained with conjugation assays. Our study has demonstrated the occurrence and distribution of ESBL/AmpC and MBL strains in fresh vegetables and RTE salads in Italy and possible public health risks associated with consumption of these fresh products.
Collapse
Affiliation(s)
- Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena, Italy
| | | | - Moreno Bondi
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena, Italy
| | - Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena, Italy
| | - Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena, Italy
| |
Collapse
|
102
|
Perez-Lewis KL, Yegin Y, Cisneros-Zevallos L, Castillo A, Kerth CR, Akbulut M, Taylor TM. Geraniol-Loaded Polymeric Nanoparticles Inhibit Enteric Pathogens on Spinach during Posttreatment Refrigerated and Temperature Abuse Storage. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
103
|
Singh P, Hung YC, Qi H. Efficacy of Peracetic Acid in Inactivating Foodborne Pathogens on Fresh Produce Surface. J Food Sci 2018; 83:432-439. [PMID: 29369360 DOI: 10.1111/1750-3841.14028] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/05/2017] [Indexed: 11/29/2022]
Abstract
Washing treatment with effective sanitizer is one of the critical steps in ensuring fresh produce safety. This study was to evaluate the efficacy of peracetic acid (PAA; VigorOx® 15 F&V), chlorine-based sanitizers (acidic electrolyzed water [AEO], near neutral electrolyzed water and bleach), lactic acid, and deionized (DI) water to reduce Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium DT104 from fresh produce surfaces. A 5-strain cocktail of E. coli O157:H7, L. monocytogenes, and S. Typhimurium DT104 was separately prepared and used for surface inoculation on produce samples (E. coli O157:H7 on romaine lettuce, lemons, tomatoes, and blueberries; L. monocytogenes on romaine lettuce and cantaloupe; S. Typhimurium DT104 on lemons, tomatoes, cantaloupe, and blueberries). PAA at 45, 85, and 100 mg/L; AEO, NNEO, and bleach at 100 mg/L of free chlorine; lactic acid at 2%; and DI water were used for washing inoculated produce in an automated produce washer for 5 min. In general, PAA at 100 mg/L achieved the highest microbial inactivation of E. coli O157:H7 (lettuce, lemon, tomato, and blueberry at 2.2, 5.7, 5.5, and 6.7 log CFU/g, respectively), S. Typhimurium DT104 (lemon, tomato, cantaloupe, blueberry at 5.4, 6.8, 4.5, and 5.9 log CFU/g, respectively), and L. monocytogenes (lettuce and cantaloupe at 2.4 and 4.4 log CFU/g, respectively). Efficacy of sanitizers on produce with coarse surface (for example, lettuce and cantaloupe) was lower than produce with smooth texture (lemon, tomato, and blueberry). Cross-contamination of E. coli O157:H7 among romaine lettuce heads during simulated retail crisping process was greatly reduced by the application of PAA and NNEO. PRACTICAL APPLICATION NNEO and PAA showed high efficacy in foodborne pathogen removal from fresh produce. Produce surface texture plays an important role in pathogen removal. NNEO and PAA effectively prevented cross-contamination during the crisping process.
Collapse
Affiliation(s)
- Prashant Singh
- Dept. of Nutrition Food and Exercise Sciences, Florida State Univ., Tallahassee, FL, 32306
| | - Yen-Con Hung
- Dept. of Food Science & Technology, Univ. of Georgia, 1109 Experiment Street, Griffin, GA, 30223, U.S.A
| | - Hang Qi
- Dept. of Food Science & Technology, Univ. of Georgia, 1109 Experiment Street, Griffin, GA, 30223, U.S.A
| |
Collapse
|
104
|
Yun J, Wu C, Li X, Fan X. Improving the Microbial Food Safety of Fresh Fruits and Vegetables with Aqueous and Vaporous Essential Oils. NATURAL AND BIO-BASED ANTIMICROBIALS FOR FOOD APPLICATIONS 2018. [DOI: 10.1021/bk-2018-1287.ch005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Juan Yun
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China
| | - Changqing Wu
- Department of Animal and Food Science, University of Delaware, Newark, Delaware 19716, United States
| | - Xihong Li
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China
| | - Xuetong Fan
- Eastern Regional Research Center, ARS, USDA, Wyndmoor, Pennsylvania 19038, United States
| |
Collapse
|
105
|
saeedi E, Jonaidi Jafari N, Salehzadeh A. Detection of Giardia lamblia Cysts in Surface Waters of Rasht City, Iran. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2018. [DOI: 10.29252/jommid.6.1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
106
|
Javanmard E, Mirjalali H, Niyyati M, Sharifdini M, Jalilzadeh E, Seyed Tabaei SJ, Asadzadeh Aghdaei H, Rostami R, Nazemalhosseini-Mojarad E, Haghighi A, Zali MR. Small-scale risk assessment of transmission of parasites from wastewater treatment plant to downstream vegetable farms. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2018; 11:352-358. [PMID: 30425815 PMCID: PMC6204253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
AIM The aim of the present study was to simultaneously investigate parasitic contamination of treated wastewater and downstream vegetable farms that are irrigated with treated sewage, during a year. BACKGROUND (Oo) Cysts and eggs of parasites are resistant to most of routine wastewater treatment process. Irrigation of vegetables farms with either treated wastewater or illegally use of raw wastewaters enhances the risk of contamination with enteric pathogens. METHODS The treated wastewater samples were taken after chlorination from a wastewater treatment plant located at the south of Tehran. In addition, 60 vegetable samples (5 samples from each farm) were collected from the selected downstream farms that routinely used treated wastewater for irrigation of crops. Parasitological tests were performed using Ziehl-Neelsen, conventional lugol's iodine staining and direct microscopical examination. RESULTS Parasites including free living larvae, eggs of Toxoascaris leonina, egg of Toxocara sp. Trichuris sp, Trichostrongylus sp and amoeboid trophozoite were seen in 5/12 (41.7%) of vegetable samples gathered during a year. There was no statistically significant correlation between the season and parasitic contamination of the vegetables (P= 1). Furthermore, parasitic contamination was observed in 7/12 (53.8%) of treated wastewater samples. The correlation between season and parasitic contamination of treated wastewater was evaluated that the results showed a higher contamination of treated wastewater in spring and autumn (P<0.05). Fisher's exact test also showed that there was no significant correlation between parasitic contaminations of vegetable samples and treated wastewater according to seasonal change. CONCLUSION The results showed parasites in both treated wastewater plant and downstream crops farms that suggests the public health importance of the quality of water resources that routinely used for irrigation of vegetable farms.
Collapse
Affiliation(s)
- Ehsan Javanmard
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Niyyati
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Sharifdini
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Esfandiar Jalilzadeh
- Department of Water and Wastewater Quality Control Laboratory, Water and Wastewater Company, Tehran, Iran
| | - Seyed Javad Seyed Tabaei
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Roghieh Rostami
- Department of Water and Wastewater Quality Control Laboratory, Water and Wastewater Company, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Haghighi
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
107
|
Cook KL, Givan EC, Mayton HM, Parekh RR, Taylor R, Walker SL. Using the agricultural environment to select better surrogates for foodborne pathogens associated with fresh produce. Int J Food Microbiol 2017; 262:80-88. [PMID: 28968533 DOI: 10.1016/j.ijfoodmicro.2017.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/25/2017] [Accepted: 09/24/2017] [Indexed: 01/26/2023]
Abstract
Despite continuing efforts to reduce foodborne pathogen contamination of fresh produce, significant outbreaks continue to occur. Identification of appropriate surrogates for foodborne pathogens facilitates relevant research to identify reservoirs and amplifiers of these contaminants in production and processing environments. Therefore, the objective of this study was to identify environmental Escherichia coli isolates from manures (poultry, swine and dairy) and surface water sources with properties similar to those of the produce associated foodborne pathogens E. coli O157:H7 and Salmonella enterica serotype Typhimurium. The most similar environmental E. coli isolates were from poultry (n=3) and surface water (n=1) sources. The best environmental E. coli surrogates had cell surface characteristics (zeta potential, hydrophobicity and exopolysaccharide composition) that were similar (i.e., within 15%) to those of S. Typhimurium and/or formed biofilms more often when grown in low nutrient media prepared from lettuce lysates (24%) than when grown on high nutrient broth (7%). The rate of attachment of environmental isolates to lettuce leaves was also similar to that of S. Typhimurium. In contrast, E. coli O157:H7, a commonly used E. coli quality control strain and swine isolates behaved similarly; all were in the lowest 10% of isolates for biofilm formation and leaf attachment. These data suggest that the environment may provide a valuable resource for selection of surrogates for foodborne pathogens.
Collapse
Affiliation(s)
- Kimberly L Cook
- USDA-ARS, Food Animal Environmental Systems Research Unit, Bowling Green, KY, USA.
| | - Ethan C Givan
- Western Kentucky University, Department of Public Health, Bowling Green, KY, USA.
| | - Holly M Mayton
- University of California, Bourns College of Engineering, Riverside, CA, USA.
| | - Rohan R Parekh
- USDA-ARS, Food Animal Environmental Systems Research Unit, Bowling Green, KY, USA.
| | - Ritchie Taylor
- Western Kentucky University, Department of Public Health, Bowling Green, KY, USA.
| | - Sharon L Walker
- University of California, Bourns College of Engineering, Riverside, CA, USA.
| |
Collapse
|
108
|
Hertrich SM, Boyd G, Sites J, Niemira BA. Cold Plasma Inactivation of Salmonella in Prepackaged, Mixed Salads Is Influenced by Cross-Contamination Sequence. J Food Prot 2017; 80:2132-2136. [PMID: 29166173 DOI: 10.4315/0362-028x.jfp-17-242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Customer demand for convenient food products has led to an increased production of prepackaged and ready-to-eat food products. Most of these products rely mainly on surface disinfection and other traditional approaches to ensure shelf life and safety. Novel processing techniques, such as cold plasma, are currently being investigated to enhance the safety and shelf life of prepacked foods. The purpose of this study was to determine the effects of cold plasma corona discharge on the inactivation of Salmonella on prepackaged, tomato-and-lettuce mixed salads. Two different inoculation methods were evaluated to address cross-contamination of Salmonella from cherry tomatoes to lettuce and vice versa. In separate studies, a sample of either cherry tomatoes (55 g) or romaine lettuce (10 g) was inoculated with a Salmonella cocktail (6.93 ± 0.99 log CFU/mL), placed into a commercial polyethylene terephthalate plastic container, and thoroughly mixed together with its noninoculated counterpart. Mixed salads were allowed to dry in a biosafety cabinet for 1 h. Samples were treated with 35 kV cold plasma corona discharge inside plastic containers for 3 min. Samples were stomached and serially diluted in buffered peptone water and then were plated onto aerobic plate count Petrifilm and incubated for 18 h at 37°C. When lettuce was the inoculated counterpart, log kill of Salmonella was significantly greater on tomatoes (0.75 log CFU/g) compared with lettuce (0.34 log CFU/g) (P = 0.0001). Salmonella was reduced on mixed salad only when lettuce was the inoculated counterpart (0.29 log CFU/g) (P = 0.002). Cold plasma can kill Salmonella in a prepackaged mixed salad, with efficacy dependent on the nature of contamination, direction of transfer, and the surface topography of the contaminated commodity.
Collapse
Affiliation(s)
- Sarah M Hertrich
- Food Safety and Intervention Technologies Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | - Glenn Boyd
- Food Safety and Intervention Technologies Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | - Joseph Sites
- Food Safety and Intervention Technologies Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | - Brendan A Niemira
- Food Safety and Intervention Technologies Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| |
Collapse
|
109
|
Ryan U, Hijjawi N, Xiao L. Foodborne cryptosporidiosis. Int J Parasitol 2017; 48:1-12. [PMID: 29122606 DOI: 10.1016/j.ijpara.2017.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 11/26/2022]
Abstract
Foodborne illness, the majority of which is caused by enteric infectious agents, costs global economies billions of dollars each year. The protozoan parasite Cryptosporidium is particularly suited to foodborne transmission and is responsible for >8 million cases of foodborne illness annually. Procedures have been developed for sensitive detection of Cryptosporidium oocysts on fresh produce and molecular diagnostic assays have been widely used in case linkages and infection source tracking, especially during outbreak investigations. The integrated use of advanced diagnostic techniques with conventional epidemiological studies is essential to improve our understanding of the occurrence, source and epidemiology of foodborne cryptosporidiosis. The implementation of food safety management tools such as Good Hygienic Practices (GHP), Hazard Analysis and Critical Control Points (HACCP), and Quantitative Microbial Risk Assessment (QMRA) in industrialised nations and Water, Sanitation, and Hygiene (WASH) in developing countries is central for prevention and control and foodborne cryptosporidiosis in the future.
Collapse
Affiliation(s)
- Una Ryan
- School of Veterinary and Life Sciences, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, PO Box 150459, Zarqa 13115, Jordan
| | - Lihua Xiao
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
110
|
Characterization of antibiotic resistant and pathogenic Escherichia coli in irrigation water and vegetables in household farms. Int J Food Microbiol 2017; 257:192-200. [DOI: 10.1016/j.ijfoodmicro.2017.06.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 11/21/2022]
|
111
|
Fiedler G, Kabisch J, Böhnlein C, Huch M, Becker B, Cho GS, Franz CM. Presence of Human Pathogens in Produce from Retail Markets in Northern Germany. Foodborne Pathog Dis 2017; 14:502-509. [DOI: 10.1089/fpd.2016.2258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gregor Fiedler
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Christina Böhnlein
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Melanie Huch
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Biserka Becker
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Charles M.A.P. Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| |
Collapse
|
112
|
Colavecchio A, Cadieux B, Lo A, Goodridge LD. Bacteriophages Contribute to the Spread of Antibiotic Resistance Genes among Foodborne Pathogens of the Enterobacteriaceae Family - A Review. Front Microbiol 2017; 8:1108. [PMID: 28676794 PMCID: PMC5476706 DOI: 10.3389/fmicb.2017.01108] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/31/2017] [Indexed: 01/21/2023] Open
Abstract
Foodborne illnesses continue to have an economic impact on global health care systems. There is a growing concern regarding the increasing frequency of antibiotic resistance in foodborne bacterial pathogens and how such resistance may affect treatment outcomes. In an effort to better understand how to reduce the spread of resistance, many research studies have been conducted regarding the methods by which antibiotic resistance genes are mobilized and spread between bacteria. Transduction by bacteriophages (phages) is one of many horizontal gene transfer mechanisms, and recent findings have shown phage-mediated transduction to be a significant contributor to dissemination of antibiotic resistance genes. Here, we review the viability of transduction as a contributing factor to the dissemination of antibiotic resistance genes in foodborne pathogens of the Enterobacteriaceae family, including non-typhoidal Salmonella and Shiga toxin-producing Escherichia coli, as well as environmental factors that increase transduction of antibiotic resistance genes.
Collapse
Affiliation(s)
- Anna Colavecchio
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-BellevueQC, Canada
| | - Brigitte Cadieux
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-BellevueQC, Canada
| | - Amanda Lo
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-BellevueQC, Canada
| | - Lawrence D Goodridge
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-BellevueQC, Canada
| |
Collapse
|
113
|
Quantitative assessment of the impact of cross-contamination during the washing step of ready-to-eat leafy greens on the risk of illness caused by Salmonella. Food Res Int 2017; 92:106-112. [DOI: 10.1016/j.foodres.2016.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/18/2016] [Accepted: 12/23/2016] [Indexed: 11/22/2022]
|
114
|
Ofred JM, Robinson HM, Lughano JMK, Anders D. Occurrence of Escherichia coli in Brassica rapa L. chinensis irrigated with low quality water in urban areas of Morogoro, Tanzania. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajb2016.15671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
115
|
Microbiology of organic and conventionally grown fresh produce. Braz J Microbiol 2016; 47 Suppl 1:99-105. [PMID: 27825766 PMCID: PMC5156503 DOI: 10.1016/j.bjm.2016.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/05/2016] [Indexed: 11/23/2022] Open
Abstract
Fresh produce is a generalized term for a group of farm-produced crops, including fruits and vegetables. Organic agriculture has been on the rise and attracting the attention of the food production sector, since it uses eco-agricultural principles that are ostensibly environmentally-friendly and provides products potentially free from the residues of agrochemicals. Organic farming practices such as the use of animal manure can however increase the risk of contamination by enteric pathogenic microorganisms and may consequently pose health risks. A number of scientific studies conducted in different countries have compared the microbiological quality of produce samples from organic and conventional production and results are contradictory. While some have reported greater microbial counts in fresh produce from organic production, other studies do not. This manuscript provides a brief review of the current knowledge and summarizes data on the occurrence of pathogenic microorganisms in vegetables from organic production.
Collapse
|
116
|
Mottola A, Bonerba E, Bozzo G, Marchetti P, Celano GV, Colao V, Terio V, Tantillo G, Figueras MJ, Di Pinto A. Occurrence of emerging food-borne pathogenic Arcobacter spp. isolated from pre-cut (ready-to-eat) vegetables. Int J Food Microbiol 2016; 236:33-7. [PMID: 27442848 DOI: 10.1016/j.ijfoodmicro.2016.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/10/2016] [Accepted: 07/10/2016] [Indexed: 12/13/2022]
Abstract
Given that changes in consumer food behaviours have led to an increase in the demand for pre-cut ready-to-eat (RTE) vegetables, and that few data are currently available on the occurrence of Arcobacter spp. in such foods, the aim of the present study was to assess the occurrence of Arcobacter spp. that carry virulence-associated genes on pre-cut RTE vegetables, using cultural and molecular methods. Arcobacter was detected using biomolecular identification methods in 44/160 (27.5%) of the samples, of which 40/44 (90.9%) isolates corresponded to A. butzleri and 4/44 (9.1%) to A. cryaerophilus. Studying the incidence of 9 virulence-associated genes revealed the widespread distribution of these genes among the Arcobacter isolates tested. The results obtained in our research provided plenty of information on the health risks associated with the direct consumption of raw vegetables, and highlight the need to implement further studies at each level of the production chain, in order to obtain further information to help protect human health.
Collapse
Affiliation(s)
- Anna Mottola
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, 70010 Valenzano, Bari, Italy.
| | - Elisabetta Bonerba
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - Giancarlo Bozzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - Patrizia Marchetti
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - Gaetano Vitale Celano
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - Valeriana Colao
- A.B.A.P. (Apulian Society of Biologists), Via Giulio Petroni 15/F, 70124 Bari, Italy
| | - Valentina Terio
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - Giuseppina Tantillo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - Maria José Figueras
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain
| | - Angela Di Pinto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, 70010 Valenzano, Bari, Italy
| |
Collapse
|
117
|
Maffei DF, Alvarenga VO, Sant’Ana AS, Franco BD. Assessing the effect of washing practices employed in Brazilian processing plants on the quality of ready-to-eat vegetables. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
118
|
Wu Y, Chang S, Nannapaneni R, Coker R, Haque Z, Mahmoud BS. The efficacy of X-ray doses on murine norovirus-1 (MNV-1) in pure culture, half-shell oyster, salmon sushi, and tuna salad. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
119
|
Tiyo R, de Souza CZ, Arruda Piovesani AF, Tiyo BT, Colli CM, Marchioro AA, Gomes ML, Falavigna-Guilherme AL. Predominance of Giardia duodenalis Assemblage AII in Fresh Leafy Vegetables from a Market in Southern Brazil. J Food Prot 2016; 79:1036-9. [PMID: 27296610 DOI: 10.4315/0362-028x.jfp-15-306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the presence of Giardia duodenalis cysts and its genotypes in raw leafy vegetables sold in a Brazilian market. These products are different from those sold in most street markets because the producers themselves display and sell their products and rely on specialized technical and sanitary assistance. Vegetable and water samples were collected from 14 (80%) producers who cultivated vegetables that are typically consumed raw for sale at the market, obtained at the market and farms, respectively. A total of 128 samples of leafy greens (chives, parsley, cabbage, arugula, watercress, and chicory) and 14 water samples were analyzed by direct immunofluorescence and PCR techniques. The positive samples were genotyped (GHD gene) using PCR and restriction fragment length polymorphism. The analyses indicated that 16 (12.5%) of 128 samples were positive by PCR, while 1 (0.8%) of 128 samples were positive by immunofluorescence. Giardia cysts were not detected in the water samples obtained at the farms. The molecular technique revealed a genotype with zoonotic potential, which underscores the challenge in the control of giardiasis dissemination via the consumption of raw vegetables.
Collapse
Affiliation(s)
- Rogerio Tiyo
- Faculdade Ingá, Maringá, Rodovia PR-317, 6114 CEP 87035-510 Maringá, Paraná, Brazil
| | - Carla Zangari de Souza
- State University of Maringá, Environmental Parasitology Laboratory, Avenue Colombo, 5790 CEP 87020-9000 Maringá, Paraná, Brazil.
| | - Ana Flávia Arruda Piovesani
- State University of Maringá, Environmental Parasitology Laboratory, Avenue Colombo, 5790 CEP 87020-9000 Maringá, Paraná, Brazil
| | - Bruna Tiaki Tiyo
- State University of Maringá, Environmental Parasitology Laboratory, Avenue Colombo, 5790 CEP 87020-9000 Maringá, Paraná, Brazil
| | - Cristiane Maria Colli
- State University of Maringá, Environmental Parasitology Laboratory, Avenue Colombo, 5790 CEP 87020-9000 Maringá, Paraná, Brazil
| | - Ariella Andrade Marchioro
- State University of Maringá, Environmental Parasitology Laboratory, Avenue Colombo, 5790 CEP 87020-9000 Maringá, Paraná, Brazil
| | - Monica Lucia Gomes
- State University of Maringá, Environmental Parasitology Laboratory, Avenue Colombo, 5790 CEP 87020-9000 Maringá, Paraná, Brazil
| | - Ana Lucia Falavigna-Guilherme
- State University of Maringá, Environmental Parasitology Laboratory, Avenue Colombo, 5790 CEP 87020-9000 Maringá, Paraná, Brazil
| |
Collapse
|
120
|
|
121
|
Esseili MA, Gao X, Tegtmeier S, Saif LJ, Wang Q. Abiotic Stress and Phyllosphere Bacteria Influence the Survival of Human Norovirus and Its Surrogates on Preharvest Leafy Greens. Appl Environ Microbiol 2016; 82:352-63. [PMID: 26497461 PMCID: PMC4702653 DOI: 10.1128/aem.02763-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/21/2015] [Indexed: 12/27/2022] Open
Abstract
Foodborne outbreaks of human noroviruses (HuNoVs) are frequently associated with leafy greens. Because there is no effective method to eliminate HuNoV from postharvest leafy greens, understanding virus survival under preharvest conditions is crucial. The objective of this study was to evaluate the survival of HuNoV and its surrogate viruses, murine norovirus (MNV), porcine sapovirus (SaV), and Tulane virus (TV), on preharvest lettuce and spinach that were subjected to abiotic stress (physical damage, heat, or flood). We also examined the bacteria culturable from the phyllosphere in response to abiotic stress and in relation to viral persistence. Mature plants were subjected to stressors 2 days prior to inoculation of the viruses on leaves. We quantified the viral RNA, determined the infectivity of the surrogates, and performed bacterial counts on postinoculation days (PIDs) 0, 1, 7, and 14. For both plant types, time exerted significant effects on HuNoV, MNV, SaV, and TV RNA titers, with greater effects being seen for the surrogates. Infectious surrogate viruses were undetectable on PID 14. Only physical damage on PID 14 significantly enhanced HuNoV RNA persistence on lettuce, while the three stressors differentially enhanced the persistence of MNV and TV RNA. Bacterial counts were significantly affected by time and plant type but not by the stressors. However, bacterial counts correlated significantly with HuNoV RNA titers on spinach and with the presence of surrogate viruses on both plant types under various conditions. In conclusion, abiotic stressors and phyllosphere bacterial density may differentially influence the survival of HuNoV and its surrogates on lettuce and spinach, emphasizing the need for the use of preventive measures at the preharvest stage.
Collapse
Affiliation(s)
- Malak A Esseili
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Xiang Gao
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Sarah Tegtmeier
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, USA
| |
Collapse
|