101
|
Robering JW, Weigand A, Pfuhlmann R, Horch RE, Beier JP, Boos AM. Mesenchymal stem cells promote lymphangiogenic properties of lymphatic endothelial cells. J Cell Mol Med 2018; 22:3740-3750. [PMID: 29752774 PMCID: PMC6050462 DOI: 10.1111/jcmm.13590] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 12/30/2017] [Indexed: 12/18/2022] Open
Abstract
Lymphatic metastasis is one of the main prognostic factors concerning long-term survival of cancer patients. In this regard, the molecular mechanisms of lymphangiogenesis are still rarely explored. Also, the interactions between stem cells and lymphatic endothelial cells (LEC) in humans have not been well examined. Therefore, the main objective of this study was to assess the interactions between mesenchymal stem cells (MSC) and LEC using in vitro angiogenesis assays. Juvenile LEC were stimulated with VEGF-C, bFGF, MSC-conditioned medium (MSC-CM) or by co-culture with MSC. LEC proliferation was assessed using a MTT assay. Migration of the cells was determined with a wound healing assay and a transmigration assay. To measure the formation of lymphatic sprouts, LEC spheroids were embedded in collagen or fibrin gels. The LEC's capacity to form capillary-like structures was assessed by a tube formation assay on Matrigel® . The proliferation, migration and tube formation of LEC could be significantly enhanced by MSC-CM and by co-culture with MSC. The effect of stimulation with MSC-CM was stronger compared to stimulation with the growth factors VEGF-C and bFGF in proliferation and transmigration assays. Sprouting was stimulated by VEGF-C, bFGF and by MSC-CM. With this study, we demonstrate the potent stimulating effect of the MSC secretome on proliferation, migration and tube formation of LEC. This indicates an important role of MSC in lymphangiogenesis in pathological as well as physiological processes.
Collapse
Affiliation(s)
- Jan W Robering
- Department of Plastic and Hand Surgery, Laboratory of Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Annika Weigand
- Department of Plastic and Hand Surgery, Laboratory of Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Romy Pfuhlmann
- Department of Plastic and Hand Surgery, Laboratory of Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Laboratory of Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Justus P Beier
- Department of Plastic and Hand Surgery, Laboratory of Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anja M Boos
- Department of Plastic and Hand Surgery, Laboratory of Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
102
|
Gao X, Shen Z, Guan M, Huang Q, Chen L, Qin W, Ge X, Chen H, Xiao Y, Lin Z. Immunomodulatory Role of Stem Cells from Human Exfoliated Deciduous Teeth on Periodontal Regeneration. Tissue Eng Part A 2018; 24:1341-1353. [PMID: 29652608 DOI: 10.1089/ten.tea.2018.0016] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Periodontitis is initiated by the infection of periodontal bacteria and subsequent tissue inflammation due to immunoreaction, eventually leading to periodontal apparatus loss. Stem cells from human exfoliated deciduous teeth (SHEDs) have exhibited beneficial characteristics in dental tissue regeneration. However, the immunomodulatory functions of SHEDs have not been elucidated in the context of periodontitis treatment. In this study, we investigated the potential immunomodulatory effects of SHEDs on experimental periodontitis and demonstrated that multidose delivery of SHEDs led to periodontal tissue regeneration. SHEDs and monocytes/macrophages were cocultured in transwell systems and SHEDs were found to be capable of promoting monocyte/macrophage conversion to CD206+ M2-like phenotype. Bioluminescence imaging (BLI) was employed to assess the survival and distribution of SHEDs after delivery in periodontal tissues in an induced periodontitis model, and BLI revealed that SHEDs survived for ∼7 days in periodontal tissues with little tissue diffusion. Then, multidose SHED delivery was applied to treat periodontitis at 7-day intervals. Results showed that mutidose SHEDs altered the cytokine expression profile in gingival crevicular fluid, reduced gum bleeding, increased new attachment of periodontal ligament, and decreased osteoclast differentiation. Micro-computed tomography analysis showed SHED administration significantly increased periodontal regeneration and alveolar bone volume, and decreased distance of cementoenamel junction to alveolar bone crest. Furthermore, an increase in the number of CD206+ M2 macrophages was observed in periodontal tissues following the delivery of SHEDs, which aligned well with the promoted conversion to CD206+ M2-like cells from monocytes/macrophages in vitro after stimulation by SHEDs. This study demonstrated in a rat periodontitis model that local delivery of SHEDs attributed to the induction of M2 macrophage polarization, reduction of periodontal tissue inflammation, and enhancement of periodontal regeneration.
Collapse
Affiliation(s)
- Xianling Gao
- 1 Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University , Guangzhou, China
| | - Zongshan Shen
- 1 Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University , Guangzhou, China
| | - Meiliang Guan
- 1 Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University , Guangzhou, China
| | - Qiting Huang
- 1 Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University , Guangzhou, China
| | - Lingling Chen
- 1 Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University , Guangzhou, China
| | - Wei Qin
- 1 Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University , Guangzhou, China
| | - Xiaohu Ge
- 2 Guangzhou Saliai Stem Cell Science and Technology Co. Ltd. , International Biotech Island, Guangzhou, China
| | - Haijia Chen
- 2 Guangzhou Saliai Stem Cell Science and Technology Co. Ltd. , International Biotech Island, Guangzhou, China
| | - Yin Xiao
- 3 Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane, Australia .,4 Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology , Brisbane, Australia
| | - Zhengmei Lin
- 1 Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University , Guangzhou, China .,4 Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology , Brisbane, Australia
| |
Collapse
|
103
|
Romagnoli C, Zonefrati R, Galli G, Aldinucci A, Nuti N, Martelli FS, Tonelli P, Tanini A, Brandi ML. The effect of strontium chloride on human periodontal ligament stem cells. ACTA ACUST UNITED AC 2018; 14:283-293. [PMID: 29354155 DOI: 10.11138/ccmbm/2017.14.3.283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The complete repair of periodontal structures remains an exciting challenge that prompts researchers to develop new treatments to restore the periodontium. Recent research has suggested strontium ion to be an attractive candidate to improve osteogenic activity. In this study, we have isolated a clonal finite cell line derived from human periodontal ligament (PDL) in order to assess whether and in which way different doses of SrCl2 (from 0.5 to 500 μg/ml) can influence both the proliferation and the mineralization process, for future application in oral diseases. PDL cells were cloned by dilution plating technique and characterized by FACS. Cell proliferation analysis and mineralization were performed by [3H]-thymidine incorporation and spectrofluorometric assay. Results have evidenced that the higher SrCl2 concentrations tested, from 25 to 500 μg/ml, have increased the proliferation activity after only 24 h of treatment. Interestingly, the same higher concentrations have decreased the mineralization, which was conversely increased by the lower ones, from 0.5 to 10 μg/ml. Our findings suggest the possible use of SrCl2 in appropriate delivery systems that release, at different time points, the specific dose, depending on the biological response that we want to induce on periodontal ligament stem cells, providing a more efficient periodontal regeneration.
Collapse
Affiliation(s)
- Cecilia Romagnoli
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Roberto Zonefrati
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Gianna Galli
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | | | - Niccolò Nuti
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | | | - Paolo Tonelli
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Annalisa Tanini
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| |
Collapse
|
104
|
Mesenchymal Stem Cells Derived from Healthy and Diseased Human Gingiva Support Osteogenesis on Electrospun Polycaprolactone Scaffolds. Bioengineering (Basel) 2018; 5:bioengineering5010008. [PMID: 29360752 PMCID: PMC5874874 DOI: 10.3390/bioengineering5010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/15/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease affecting almost half of the adult US population. Gingiva is an integral part of the periodontium and has recently been identified as a source of adult gingiva-derived mesenchymal stem cells (GMSCs). Given the prevalence of periodontitis, the purpose of this study is to evaluate differences between GMSCs derived from healthy and diseased gingival tissues and explore their potential in bone engineering. Primary clonal cell lines were established from harvested healthy and diseased gingival and characterized for expression of known stem-cell markers and multi-lineage differentiation potential. Finally, they were cultured on electrospun polycaprolactone (PCL) scaffolds and evaluated for attachment, proliferation, and differentiation. Flow cytometry demonstrated cells isolated from healthy and diseased gingiva met the criteria defining mesenchymal stem cells (MSCs). However, GMSCs from diseased tissue showed decreased colony-forming unit efficiency, decreased alkaline phosphatase activity, weaker osteoblast mineralization, and greater propensity to differentiate into adipocytes than their healthy counterparts. When cultured on electrospun PCL scaffolds, GMSCs from both sources showed robust attachment and proliferation over a 7-day period; they exhibited high mineralization as well as strong expression of alkaline phosphatase. Our results show preservation of ‘stemness’ and osteogenic potential of GMSC even in the presence of disease, opening up the possibility of using routinely discarded, diseased gingival tissue as an alternate source of adult MSCs.
Collapse
|
105
|
Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:91-112. [PMID: 30105601 DOI: 10.1007/5584_2018_249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In orthopedic medicine, a feasible reconstruction of bone structures remains one of the main challenges both for healthcare and for improvement of patients' quality of life. There is a growing interest in mesenchymal stem cells (MSCs) medical application, due to their multilineage differentiation potential, and tissue engineering integration to improve bone repair and regeneration. In this review we will describe the main characteristics of MSCs, such as osteogenesis, immunomodulation and antibacterial properties, key parameters to consider during bone repair strategies. Moreover, we describe the properties of calcium phosphate (CaP) bioceramics, which demonstrate to be useful tools in combination with MSCs, due to their biocompatibility, osseointegration and osteoconduction for bone repair and regeneration. Also, we overview the main characteristics of dental cavity MSCs, which are promising candidates, in combination with CaP bioceramics, for bone regeneration and tissue engineering. The understanding of MSCs biology and their interaction with CaP bioceramics and other biomaterials is critical for orthopedic surgical bone replacement, reconstruction and regeneration, which is an integrative and dynamic medical, scientific and bioengineering field of research and biotechnology.
Collapse
|
106
|
Hao Y, Ge Y, Li J, Hu Y, Wu B, Fang F. Identification of MicroRNAs by Microarray Analysis and Prediction of Target Genes Involved in Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. J Periodontol 2017; 88:1105-1113. [PMID: 28598283 DOI: 10.1902/jop.2017.170079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The roles of microRNAs (miRNAs) in osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) remain largely unexplored. In this study, the underlying molecular mechanism of osteogenic differentiation in hPDLSCs is investigated using miRNA profiling. METHODS The miRNA expression profile during osteogenic differentiation was analyzed using a microarray. Target genes of miRNAs with at least two-fold change in expression (P <0.05) were predicted by bioinformatics. Six miRNAs with osteogenesis-related target genes were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS Expression of 116 miRNAs was found to be altered after osteoinduction, with 30 upregulated and 86 downregulated. Thirty-one of these miRNAs (26.7%) had osteogenesis-related target genes. Changes in expression levels of six of the 31 miRNAs (miR-654-3p, miR-4288, miR-34c-5p, miR-218-5p, miR-663a, and miR-874-3p) were validated by qRT-PCR. CONCLUSIONS Significant alterations in miRNA expression profiles were observed during osteogenic differentiation of hPDLSCs. These results imply that miRNAs may have regulatory effects on this process by targeting osteogenesis-related genes.
Collapse
Affiliation(s)
- Yilin Hao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihong Ge
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjia Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanwei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
107
|
Feng G, Wu Y, Yu Y, Huang L, An S, Hu B, Luo J, Song J. Periodontal ligament-like tissue regeneration with drilled porous decalcified dentin matrix sheet composite. Oral Dis 2017; 24:429-441. [PMID: 28815884 DOI: 10.1111/odi.12734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/10/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- G Feng
- Department of Orthodontics; Stomatological Hospital of Chongqing Medical University; Chongqing China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences; Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education; Chongqing China
| | - Y Wu
- Department of Orthodontics; Stomatological Hospital of Chongqing Medical University; Chongqing China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences; Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education; Chongqing China
| | - Y Yu
- Department of Orthodontics; Stomatological Hospital of Chongqing Medical University; Chongqing China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences; Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education; Chongqing China
| | - L Huang
- Department of Orthodontics; Stomatological Hospital of Chongqing Medical University; Chongqing China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences; Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education; Chongqing China
| | - S An
- Department of Orthodontics; Stomatological Hospital of Chongqing Medical University; Chongqing China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences; Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education; Chongqing China
| | - B Hu
- Department of Orthodontics; Stomatological Hospital of Chongqing Medical University; Chongqing China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences; Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education; Chongqing China
| | - J Luo
- Department of Orthodontics; Stomatological Hospital of Chongqing Medical University; Chongqing China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences; Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education; Chongqing China
| | - J Song
- Department of Orthodontics; Stomatological Hospital of Chongqing Medical University; Chongqing China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences; Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education; Chongqing China
| |
Collapse
|
108
|
de Jong T, Bakker AD, Everts V, Smit TH. The intricate anatomy of the periodontal ligament and its development: Lessons for periodontal regeneration. J Periodontal Res 2017. [PMID: 28635007 DOI: 10.1111/jre.12477] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The periodontal ligament (PDL) connects the tooth root and alveolar bone. It is an aligned fibrous network that is interposed between, and anchored to, both mineralized surfaces. Periodontal disease is common and reduces the ability of the PDL to act as a shock absorber, a barrier for pathogens and a sensor of mastication. Although disease progression can be stopped, current therapies do not primarily focus on tissue regeneration. Functional regeneration of PDL may be achieved using innovative techniques, such as tissue engineering. However, the complex fibrillar architecture of the PDL, essential to withstand high forces, makes PDL tissue engineering very challenging. This challenge may be met by studying PDL anatomy and development. Understanding PDL anatomy, development and maintenance provides clues regarding the specific events that need to be mimicked for the formation of this intricate tissue. Owing to the specific composition of the PDL, which develops by self-organization, a different approach than the typical combination of biomaterials, growth factors and regenerative cells is necessary for functional PDL engineering. Most specifically, the architecture of the new PDL to be formed does not need to be dictated by textured biomaterials but can emerge from the local mechanical loading conditions. Elastic hydrogels are optimal to fill the space properly between tooth and bone, may house cells and growth factors to enhance regeneration and allow self-optimization by the alignment to local stresses. We suggest that cells and materials should be placed in a proper mechanical environment to initiate a process of self-organization resulting in a functional architecture of the PDL.
Collapse
Affiliation(s)
- T de Jong
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands
| | - A D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands
| | - V Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands
| | - T H Smit
- Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands.,Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
109
|
Jearanaiphaisarn T, Sanharati T, Pavasant P, Nakalekha Limjeerajarus C. The effect of iloprost on cell proliferation and angiogenesis-related gene expression in human periodontal ligament cells. Odontology 2017; 106:11-18. [DOI: 10.1007/s10266-017-0307-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 04/03/2017] [Indexed: 01/03/2023]
|
110
|
Kukolj T, Trivanović D, Djordjević IO, Mojsilović S, Krstić J, Obradović H, Janković S, Santibanez JF, Jauković A, Bugarski D. Lipopolysaccharide can modify differentiation and immunomodulatory potential of periodontal ligament stem cells via ERK1,2 signaling. J Cell Physiol 2017; 233:447-462. [PMID: 28295277 DOI: 10.1002/jcp.25904] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022]
Abstract
Lipopolysaccharide (LPS) is a pertinent deleterious factor in oral microenvironment for cells which are carriers of regenerative processes. The aim of this study was to investigate the emerging in vitro effects of LPS (Escherichia coli) on human periodontal ligament stem cell (PDLSC) functions and associated signaling pathways. We demonstrated that LPS did not affect immunophenotype, proliferation, viability, and cell cycle of PDLSCs. However, LPS modified lineage commitment of PDLSCs inhibiting osteogenesis by downregulating Runx2, ALP, and Ocn mRNA expression, while stimulating chondrogenesis and adipogenesis by upregulating Sox9 and PPARγ mRNA expression. LPS promoted myofibroblast-like phenotype of PDLSCs, since it significantly enhanced PDLSC contractility, as well as protein and/or gene expression of TGF-β, fibronectin (FN), α-SMA, and NG2. LPS also increased protein and gene expression levels of anti-inflammatory COX-2 and pro-inflammatory IL-6 molecules in PDLSCs. Inhibition of peripheral blood mononuclear cells (MNCs) transendothelial migration in presence of LPS-treated PDLSCs was accompanied by the reduction of CD29 expression within MNCs. However, LPS treatment did not change the inhibitory effect of PDLSCs on mitogen-stimulated proliferation of CD4+ and the ratio of CD4+ CD25high /CD4+ CD25low lymphocytes. LPS-treated PDLSCs did not change the frequency of CD34+ and CD45+ cells, but decreased the frequency of CD33+ and CD14+ myeloid cells within MNCs. Moreover, LPS treatment attenuated the stimulatory effect of PDLSCs on CFC activity of MNCs, predominantly the CFU-GM number. The results indicated that LPS-activated ERK1,2 was at least partly involved in the observed effects on PDLSC differentiation capacity, acquisition of myofibroblastic attributes, and changes of their immunomodulatory features.
Collapse
Affiliation(s)
- Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Drenka Trivanović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Ivana Okić Djordjević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Jelena Krstić
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | | | - Juan Francisco Santibanez
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
111
|
Yu M, Wang L, Ba P, Li L, Sun L, Duan X, Yang P, Yang C, Sun Q. Osteoblast Progenitors Enhance Osteogenic Differentiation of Periodontal Ligament Stem Cells. J Periodontol 2017; 88:e159-e168. [PMID: 28517970 DOI: 10.1902/jop.2017.170016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Osteoblasts and periodontal ligament stem cells (PDLSCs) play an important role in maintaining physiologic function of periodontal tissues and participating in periodontal regeneration. Elucidation of interactions between osteoblasts and PDLSCs will aid understanding of periodontal regeneration mechanisms. This study aims to determine whether preosteoblasts can promote osteoblastic/cementoblastic differentiation of PDLSCs. METHODS PDLSCs were cultured alone (control group), or cocultured indirectly with human gingival fibroblasts (HGFs) (HGFs group) or MC3T3-E1 cells (OB groups). Alkaline phosphatase (ALP) activity and gene/protein expressions levels of ALP, runt-related transcription factor-2, and osteopontin (OPN) were assessed. Cementum attachment protein and cementum protein 23 messenger RNA expressions were also evaluated. Bone morphogenetic protein (BMP)-2 secreted by HGFs/MC3T3-E1 cells was assessed by enzyme-linked immunosorbent assay. Extracellular matrix calcification was measured by staining to quantify calcium content. RESULTS ALP activity and gene/protein expression levels of osteogenic markers were significantly higher in the OB groups compared with the HGFs and control groups. Optimal enhancement of these parameters occurred at cell ratios of 2:1 to 1:1 (MC3T3-E1:PDLSCs). Mineralized nodule formation and calcium content were significantly increased in the OB groups compared with the HGF and control groups. The greatest improvement took place at the 2:1 (MC3T3-E1:PDLSCs) seeding ratio. BMP-2 from MC3T3-E1-conditioned medium was significantly and time-dependently increased compared with that from HGF-conditioned medium. CONCLUSION Preosteoblasts can indirectly enhance the osteoblastic/cementoblastic differentiation and mineralization of PDLSCs with an optimal preosteoblasts:PDLSCs ratio in the range of 2:1 to 1:1.
Collapse
Affiliation(s)
- Miao Yu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Stomatology, Weifang People's Hospital, Weifang, Shandong, China
| | - Limei Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Pengfei Ba
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, Weihai Stomatological Hospital, Weihai, Shandong, China
| | - Linxia Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Prosthodontology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Long Sun
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Xiaoqi Duan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Pishan Yang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University.,Institute of Stomatology, Shandong University
| | - Qinfeng Sun
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, School of Stomatology, Shandong University
| |
Collapse
|
112
|
Arabacı T, Kose O, Albayrak M, Cicek Y, Kizildag A. Advantages of Autologous Platelet-Rich Fibrin Membrane on Gingival Crevicular Fluid Growth Factor Levels and Periodontal Healing: A Randomized Split-Mouth Clinical Study. J Periodontol 2017; 88:771-777. [PMID: 28452623 DOI: 10.1902/jop.2017.160485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND This study evaluates contributions of platelet-rich fibrin (PRF) combined with conventional flap surgery on growth factor levels in gingival crevicular fluid (GCF) and periodontal healing. METHODS Twenty-six patients (52 sites) with chronic periodontitis were treated either with autologous PRF with open flap debridement (OFD+PRF) or OFD alone. Growth factor levels in GCF at baseline and 2, 4, and 6 weeks after surgery were analyzed, and clinical parameters such as probing depth (PD), relative clinical attachment level (rCAL), and gingival margin level (GML) at baseline and 9 months after surgery were measured. RESULTS Mean PD reduction and rCAL gain were significantly greater in OFD+PRF sites than in OFD sites. Mean GML change was -0.38 + 0.10 mm in OFD sites and 0.11 + 0.08 mm in the test group; difference between the two groups was statistically significant (P <0.05). Both groups demonstrated increased expression levels of fibroblast growth factor-2, transforming growth factor-β1, and platelet-derived growth factor-BB at 2 weeks compared with baseline, followed by reductions at 4 and 6 weeks. The OFD+PRF group showed significantly higher growth factor levels compared with the OFD group at 2 and 4 weeks. CONCLUSION PRF membrane combined with OFD provides significantly higher GCF concentrations of angiogenic biomarkers for ≈2 to 4 weeks and better periodontal healing in terms of conventional flap sites.
Collapse
Affiliation(s)
- Taner Arabacı
- Department of Periodontology, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| | - Oguz Kose
- Department of Periodontology, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Mevlut Albayrak
- Medical Laboratory Department, Health Services Vocational Training School, Atatürk University
| | - Yasin Cicek
- Department of Periodontology, Faculty of Dentistry, Adıyaman University, Adıyaman, Turkey
| | - Alper Kizildag
- Department of Periodontology, Faculty of Dentistry, Pamukkale University, Denizli, Turkey
| |
Collapse
|
113
|
Cho Y, Kim B, Bae H, Kim W, Baek J, Woo K, Lee G, Seol Y, Lee Y, Ku Y, Rhyu I, Ryoo H. Direct Gingival Fibroblast/Osteoblast Transdifferentiation via Epigenetics. J Dent Res 2017; 96:555-561. [PMID: 28081379 DOI: 10.1177/0022034516686745] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alveolar bone resorption caused by trauma or periodontal diseases has represented a challenge for both dental clinicians and researchers. In this study, we evaluate the osteogenic potential of human gingival fibroblasts (HGFs) through a direct transdifferentiation from HGFs to functional osteoblasts via epigenetic modification and osteogenic signaling with bone morphogenetic protein 2 (BMP2) in vitro and in vivo. HGF treatment with 5-aza-2'-deoxycytidine (5-aza-dC) induced demethylation in the hypermethylated CpG islands of the osteogenic lineage marker genes RUNX2 and ALP, and subsequent BMP2 treatment successfully drove the fibroblasts to the osteoblasts' lineage. Cell morphological changes viewed under microscopy and alkaline phosphatase (ALP) and alizarin red S (ARS) staining confirmed the osteoblastic change mediated by epigenetic modification as did real-time polymerase chain reaction (PCR), methylation-specific PCR (MSP), and chromatin immunoprecipitation (ChIP) assay, which demonstrated the altered methylation patterns in the RUNX2 and ALP promoter regions and their effect on gene expression. Furthermore, micro-computed tomography (CT) analysis of in vivo mouse cell transplantation experiments showed high-density signal in the epigenetically modified HGF group; in addition, a significant amount of bone formation was observed in the transplanted material using hematoxylin and eosin (H&E) staining as well. Collectively, our results indicate that epigenetic modification permits the direct programming of HGFs into functional osteoblasts, suggesting that this approach might open a novel therapeutic avenue in alveolar bone regeneration.
Collapse
Affiliation(s)
- Y Cho
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea.,2 Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - B Kim
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - H Bae
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - W Kim
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - J Baek
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - K Woo
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - G Lee
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - Y Seol
- 2 Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - Y Lee
- 2 Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - Y Ku
- 2 Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - I Rhyu
- 2 Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - H Ryoo
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| |
Collapse
|
114
|
Zhang F, Song J, Zhang H, Huang E, Song D, Tollemar V, Wang J, Wang J, Mohammed M, Wei Q, Fan J, Liao J, Zou Y, Liu F, Hu X, Qu X, Chen L, Yu X, Luu HH, Lee MJ, He TC, Ji P. Wnt and BMP Signaling Crosstalk in Regulating Dental Stem Cells: Implications in Dental Tissue Engineering. Genes Dis 2016; 3:263-276. [PMID: 28491933 PMCID: PMC5421560 DOI: 10.1016/j.gendis.2016.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tooth is a complex hard tissue organ and consists of multiple cell types that are regulated by important signaling pathways such as Wnt and BMP signaling. Serious injuries and/or loss of tooth or periodontal tissues may significantly impact aesthetic appearance, essential oral functions and the quality of life. Regenerative dentistry holds great promise in treating oral/dental disorders. The past decade has witnessed a rapid expansion of our understanding of the biological features of dental stem cells, along with the signaling mechanisms governing stem cell self-renewal and differentiation. In this review, we first summarize the biological characteristics of seven types of dental stem cells, including dental pulp stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, periodontal ligament stem cells, alveolar bone-derived mesenchymal stem cells (MSCs), and MSCs from gingiva. We then focus on how these stem cells are regulated by bone morphogenetic protein (BMP) and/or Wnt signaling by examining the interplays between these pathways. Lastly, we analyze the current status of dental tissue engineering strategies that utilize oral/dental stem cells by harnessing the interplays between BMP and Wnt pathways. We also highlight the challenges that must be addressed before the dental stem cells may reach any clinical applications. Thus, we can expect to witness significant progresses to be made in regenerative dentistry in the coming decade.
Collapse
Affiliation(s)
- Fugui Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jinglin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Enyi Huang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Dongzhe Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Conservative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Viktor Tollemar
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jing Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jinhua Wang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Maryam Mohammed
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Junyi Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yulong Zou
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Feng Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xue Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xiangyang Qu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Liqun Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Ping Ji
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China
| |
Collapse
|
115
|
Choi Y, Kim HJ, Min KS. Effects of proanthocyanidin, a crosslinking agent, on physical and biological properties of collagen hydrogel scaffold. Restor Dent Endod 2016; 41:296-303. [PMID: 27847751 PMCID: PMC5107431 DOI: 10.5395/rde.2016.41.4.296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/27/2016] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The purpose of the present study was to evaluate the effects of proanthocyanidin (PAC), a crosslinking agent, on the physical properties of a collagen hydrogel and the behavior of human periodontal ligament cells (hPDLCs) cultured in the scaffold. MATERIALS AND METHODS Viability of hPDLCs treated with PAC was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The physical properties of PAC treated collagen hydrogel scaffold were evaluated by the measurement of setting time, surface roughness, and differential scanning calorimetry (DSC). The behavior of the hPDLCs in the collagen scaffold was evaluated by cell morphology observation and cell numbers counting. RESULTS The setting time of the collagen scaffold was shortened in the presence of PAC (p < 0.05). The surface roughness of the PAC-treated collagen was higher compared to the untreated control group (p < 0.05). The thermogram of the crosslinked collagen exhibited a higher endothermic peak compared to the uncrosslinked one. Cells in the PAC-treated collagen were observed to attach in closer proximity to one another with more cytoplasmic extensions compared to cells in the untreated control group. The number of cells cultured in the PAC-treated collagen scaffolds was significantly increased compared to the untreated control (p < 0.05). CONCLUSIONS Our results showed that PAC enhanced the physical properties of the collagen scaffold. Furthermore, the proliferation of hPDLCs cultured in the collagen scaffold crosslinked with PAC was facilitated. Conclusively, the application of PAC to the collagen scaffold may be beneficial for engineering-based periodontal ligament regeneration in delayed replantation.
Collapse
Affiliation(s)
- Yoorina Choi
- Department of Conservative Dentistry, Wonkwang University Dental Hospital, Iksan, Korea
| | - Hee-Jin Kim
- Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Kyung-San Min
- Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju, Korea.; Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
116
|
Luo J, Xu J, Cai J, Wang L, Sun Q, Yang P. The In Vitro and In Vivo Osteogenic Capability of the Extraction Socket-Derived Early Healing Tissue. J Periodontol 2016; 87:1057-66. [DOI: 10.1902/jop.2016.160078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
117
|
Khojasteh A, Nazeman P, Rad MR. Dental Stem Cells in Oral, Maxillofacial and Craniofacial Regeneration. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-28947-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
118
|
Kim JH, Kang MS, Eltohamy M, Kim TH, Kim HW. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering. PLoS One 2016; 11:e0149967. [PMID: 26989897 PMCID: PMC4798756 DOI: 10.1371/journal.pone.0149967] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/08/2016] [Indexed: 11/18/2022] Open
Abstract
Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration—culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch.
Collapse
Affiliation(s)
- Joong-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Min Sil Kang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Mohamed Eltohamy
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Tae-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- * E-mail:
| |
Collapse
|
119
|
Martínez CE, González SA, Palma V, Smith PC. Platelet-Poor and Platelet-Rich Plasma Stimulate Bone Lineage Differentiation in Periodontal Ligament Stem Cells. J Periodontol 2016; 87:e18-26. [DOI: 10.1902/jop.2015.150360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
120
|
Maxim MA, Soritau O, Baciut M, Bran S, Baciut G. The role of dental stem cells in regeneration. ACTA ACUST UNITED AC 2015; 88:479-82. [PMID: 26733745 PMCID: PMC4689240 DOI: 10.15386/cjmed-475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/27/2015] [Accepted: 08/20/2015] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that have the capacity of rising multiple cell types. A rich source of mesenchymal stem cells is represented by the dental tissues: the periodontal ligament, the dental pulp, the apical papilla, the dental follicle and the deciduous teeth. The aim of this review is to characterize the main dental- derived mesenchymal stem cell population, and to show their important role in tissue regeneration based on their properties : the multi-potency, the high proliferation rate, the differentiation in multiple cell lineages, the high cell viability and the positive expression for mesenchymal cell markers. Tissue regeneration or de novo’ formation of craniofacial structures is the future of regenerative medicine, offering a solution for congenital malformations, traumas and other diseases.
Collapse
Affiliation(s)
| | - Olga Soritau
- Prof. Dr. Ion Chiricuta Institute of Oncology, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Cranio-Maxillofacial Surgery and Dental Emergencies, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simion Bran
- Department of Cranio-Maxillofacial Surgery and Dental Emergencies, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grigore Baciut
- Department of Cranio-Maxillofacial Surgery and Dental Emergencies, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
121
|
Mao L, Liu J, Zhao J, Chang J, Xia L, Jiang L, Wang X, Lin K, Fang B. Effect of micro-nano-hybrid structured hydroxyapatite bioceramics on osteogenic and cementogenic differentiation of human periodontal ligament stem cell via Wnt signaling pathway. Int J Nanomedicine 2015; 10:7031-44. [PMID: 26648716 PMCID: PMC4648603 DOI: 10.2147/ijn.s90343] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The surface structure of bioceramic scaffolds is crucial for its bioactivity and osteoinductive ability, and in recent years, human periodontal ligament stem cells have been certified to possess high osteogenic and cementogenic differential ability. In the present study, hydroxyapatite (HA) bioceramics with micro-nano-hybrid surface (mnHA [the hybrid of nanorods and microrods]) were fabricated via hydrothermal reaction of the α-tricalcium phosphate granules as precursors in aqueous solution, and the effects of mnHA on the attachment, proliferation, osteogenic and cementogenic differentiations of human periodontal ligament stem cells as well as the related mechanisms were systematically investigated. The results showed that mnHA bioceramics could promote cell adhesion, proliferation, alkaline phosphatase (ALP) activity, and expression of osteogenic/cementogenic-related markers including runt-related transcription factor 2 (Runx2), ALP, osteocalcin (OCN), cementum attachment protein (CAP), and cementum protein (CEMP) as compared to the HA bioceramics with flat and dense surface. Moreover, mnHA bioceramics stimulated gene expression of low-density lipoprotein receptor-related protein 5 (LRP5) and β-catenin, which are the key genes of canonical Wnt signaling. Moreover, the stimulatory effect on ALP activity and osteogenic and cementogenic gene expression, including that of ALP, OCN, CAP, CEMP, and Runx2 of mnHA bioceramics could be repressed by canonical Wnt signaling inhibitor dickkopf1 (Dkk1). The results suggested that the HA bioceramics with mnHA could act as promising grafts for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lixia Mao
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jiaqiang Liu
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jinglei Zhao
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Tongji University, Shanghai, People’s Republic of China
| | - Lunguo Xia
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xiuhui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Tongji University, Shanghai, People’s Republic of China
| | - Kaili Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Tongji University, Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, People’s Republic of China
| | - Bing Fang
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
122
|
Gómez-Florit M, Monjo M, Ramis JM. Quercitrin for periodontal regeneration: effects on human gingival fibroblasts and mesenchymal stem cells. Sci Rep 2015; 5:16593. [PMID: 26558438 PMCID: PMC4642307 DOI: 10.1038/srep16593] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/16/2015] [Indexed: 01/09/2023] Open
Abstract
Periodontal disease (PD) is the result of an infection and chronic inflammation of the gingiva that may lead to its destruction and, in severe cases, alveolar bone and tooth loss. The ultimate goal of periodontal treatment is to achieve periodontal soft and hard tissues regeneration. We previously selected quercitrin, a catechol-containing flavonoid, as a potential agent for periodontal applications. In this study, we tested the ability of quercitrin to alter biomarker production involved in periodontal regeneration on primary human gingival fibroblasts (hGF) and primary human mesenchymal stem cells (hMSC) cultured under basal and inflammatory conditions. To mimic PD inflammatory status, interleukin-1 beta (IL-1β) was used. The expression of different genes related to inflammation and extracellular matrix were evaluated and prostaglandin E2 (PGE2) production was quantified in hGFs; alkaline phosphatase (ALP) activity and calcium content were analysed in hMSCs. Quercitrin decreased the release of the inflammatory mediator PGE2 and partially re-established the impaired collagen metabolism induced by IL-1β treatment in hGFs. Quercitrin also increased ALP activity and mineralization in hMSCs, thus, it increased hMSCs differentiation towards the osteoblastic lineage. These findings suggest quercitrin as a novel bioactive molecule with application to enhance both soft and hard tissue regeneration of the periodontium.
Collapse
Affiliation(s)
- Manuel Gómez-Florit
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS). University of Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria de Palma, 07010 Palma, España
| | - Marta Monjo
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS). University of Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria de Palma, 07010 Palma, España
| | - Joana M Ramis
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS). University of Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria de Palma, 07010 Palma, España
| |
Collapse
|
123
|
Abstract
Periodontitis is a chronic inflammatory disease which leads to destruction of both the soft and hard tissues of the periodontium. Tissue engineering is a therapeutic approach in regenerative medicine that aims to induce new functional tissue regeneration via the synergistic combination of cells, biomaterials, and/or growth factors. Advances in our understanding of the biology of stem cells, including embryonic stem cells and mesenchymal stem cells, have provided opportunities for periodontal tissue engineering. However, there remain a number of limitations affecting their therapeutic efficiency. Due to the considerable proliferation and differentiation capacities, recently described induced pluripotent stem cells (iPSCs) provide a new way for cell-based therapies for periodontal regeneration. This review outlines the latest status of periodontal tissue engineering and highlights the potential use of iPSCs in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Mi Du
- Shandong provincial key laboratory of oral tissue regeneration, Department of Periodontology, School of Stomatology, Shandong University, No.44-1 West Wenhua Rd., Jinan, 250012 People's Republic of China
| | - Xuejing Duan
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, No.324 Jingwu Rd., Jinan, 250000 People's Republic of China
| | - Pishan Yang
- Shandong provincial key laboratory of oral tissue regeneration, Department of Periodontology, School of Stomatology, Shandong University, No.44-1 West Wenhua Rd., Jinan, 250012 People's Republic of China
| |
Collapse
|
124
|
|
125
|
Park JC, Oh SY, Lee JS, Park SY, Choi EY, Cho KS, Kim CS. In vivo bone formation by human alveolar-bone-derived mesenchymal stem cells obtained during implant osteotomy using biphasic calcium phosphate ceramics or Bio-Oss as carriers. J Biomed Mater Res B Appl Biomater 2015; 104:515-24. [PMID: 25939881 DOI: 10.1002/jbm.b.33416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/05/2015] [Accepted: 03/04/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate HA coated with different ratios of TCP as a carrier for hABMSCs obtained during implant osteotomy in comparison to slowly-resorbing biomaterial, Bio-Oss, as a negative control, using in vitro and in vivo experiments. MATERIALS AND METHODS Human ABMSCs (hABMSCs) harvested during implant osteotomy were transplanted using HA/TCP or Bio-Oss as carriers in a murine ectopic transplantation model (n = 12). Pore size and cell affinity were evaluated in vitro. The area of newly formed bone was analyzed histometrically, the number of osteocytes was counted, and immunohistochemical staining was conducted against several markers of osteogenesis, including alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX-2), osteocalcin (OCN), and osteopontin (OPN). Osteoclast formation was evaluated by tartrate-resistant acid phosphatase staining. RESULTS The carrier materials had comparable pore sizes. The cell affinity assay resulted in a high proportion of cell adhesion (>90%) in all experimental groups. Substantial new bone and osteocyte formation was observed on both HA/TCP carriers, whereas it was minimal with Bio-Oss. Positive immunostaining for ALP, RUNX-2, OCN, and OPN was observed with HA/TCP, but only limited expression of osteogenic markers with Bio-Oss. Conversely, there was a minimal osteoclast presence with Bio-Oss, but a significant presence of osteoclasts with both HA/TCP carriers. CONCLUSIONS Both types of scaffolds, BCP and Bio-Oss, showed high stem cell-carrying potential, but the in vivo healing patterns of their complexes with hABMSC could be affected by the microenvironment on the surfaces of the scaffolds.
Collapse
Affiliation(s)
- Jung-Chul Park
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Sang-Yeob Oh
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Jung-Seok Lee
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - So-Yon Park
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Eun-Young Choi
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Kyoo-Sung Cho
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Chang-Sung Kim
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, Republic of Korea.,Department of Applied Life Science, BK 21 PLUS Project, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
126
|
Bartold PM, Gronthos S, Ivanovski S, Fisher A, Hutmacher DW. Tissue engineered periodontal products. J Periodontal Res 2015; 51:1-15. [PMID: 25900048 DOI: 10.1111/jre.12275] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 01/25/2023]
Abstract
Attainment of periodontal regeneration is a significant clinical goal in the management of advanced periodontal defects arising from periodontitis. Over the past 30 years numerous techniques and materials have been introduced and evaluated clinically and have included guided tissue regeneration, bone grafting materials, growth and other biological factors and gene therapy. With the exception of gene therapy, all have undergone evaluation in humans. All of the products have shown efficacy in promoting periodontal regeneration in animal models but the results in humans remain variable and equivocal concerning attaining complete biological regeneration of damaged periodontal structures. In the early 2000s, the concept of tissue engineering was proposed as a new paradigm for periodontal regeneration based on molecular and cell biology. At this time, tissue engineering was a new and emerging field. Now, 14 years later we revisit the concept of tissue engineering for the periodontium and assess how far we have come, where we are currently situated and what needs to be done in the future to make this concept a reality. In this review, we cover some of the precursor products, which led to our current position in periodontal tissue engineering. The basic concepts of tissue engineering with special emphasis on periodontal tissue engineering products is discussed including the use of mesenchymal stem cells in bioscaffolds and the emerging field of cell sheet technology. Finally, we look into the future to consider what CAD/CAM technology and nanotechnology will have to offer.
Collapse
Affiliation(s)
- P M Bartold
- Colgate Australian Clinical Dental Research Centre, Dental School, University of Adelaide, Adelaide, SA, Australia
| | - S Gronthos
- School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - S Ivanovski
- Griffith Health Institute, School of Dentistry and Oral Health, Griffith University, Gold Coast, Qld, Australia
| | - A Fisher
- Griffith Health Institute, School of Dentistry and Oral Health, Griffith University, Gold Coast, Qld, Australia
| | - D W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| |
Collapse
|
127
|
Saito MT, Silvério KG, Casati MZ, Sallum EA, Jr FHN. Tooth-derived stem cells: Update and perspectives. World J Stem Cells 2015; 7:399-407. [PMID: 25815123 PMCID: PMC4369495 DOI: 10.4252/wjsc.v7.i2.399] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/22/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering is an emerging field of science that focuses on creating suitable conditions for the regeneration of tissues. The basic components for tissue engineering involve an interactive triad of scaffolds, signaling molecules, and cells. In this context, stem cells (SCs) present the characteristics of self-renewal and differentiation capacity, which make them promising candidates for tissue engineering. Although they present some common markers, such as cluster of differentiation (CD)105, CD146 and STRO-1, SCs derived from various tissues have different patterns in relation to proliferation, clonogenicity, and differentiation abilities in vitro and in vivo. Tooth-derived tissues have been proposed as an accessible source to obtain SCs with limited morbidity, and various tooth-derived SCs (TDSCs) have been isolated and characterized, such as dental pulp SCs, SCs from human exfoliated deciduous teeth, periodontal ligament SCs, dental follicle progenitor cells, SCs from apical papilla, and periodontal ligament of deciduous teeth SCs. However, heterogeneity among these populations has been observed, and the best method to select the most appropriate TDSCs for regeneration approaches has not yet been established. The objective of this review is to outline the current knowledge concerning the various types of TDSCs, and discuss the perspectives for their use in regenerative approaches.
Collapse
|
128
|
Vecchiatini R, Penolazzi L, Lambertini E, Angelozzi M, Morganti C, Mazzitelli S, Trombelli L, Nastruzzi C, Piva R. Effect of dynamic three-dimensional culture on osteogenic potential of human periodontal ligament-derived mesenchymal stem cells entrapped in alginate microbeads. J Periodontal Res 2014; 50:544-53. [DOI: 10.1111/jre.12225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 01/28/2023]
Affiliation(s)
- R. Vecchiatini
- Department of Biomedical and Specialty Surgical Sciences; Ferrara University; Ferrara Italy
| | - L. Penolazzi
- Department of Biomedical and Specialty Surgical Sciences; Ferrara University; Ferrara Italy
| | - E. Lambertini
- Department of Biomedical and Specialty Surgical Sciences; Ferrara University; Ferrara Italy
| | - M. Angelozzi
- Department of Biomedical and Specialty Surgical Sciences; Ferrara University; Ferrara Italy
| | - C. Morganti
- Department of Biomedical and Specialty Surgical Sciences; Ferrara University; Ferrara Italy
| | - S. Mazzitelli
- Department of Life Sciences and Biotechnology; Ferrara University; Ferrara Italy
| | - L. Trombelli
- Department of Biomedical and Specialty Surgical Sciences; Ferrara University; Ferrara Italy
- Research Centre for the Study of Periodontal and Peri-implant Diseases; Ferrara University; Ferrara Italy
| | - C. Nastruzzi
- Department of Life Sciences and Biotechnology; Ferrara University; Ferrara Italy
| | - R. Piva
- Department of Biomedical and Specialty Surgical Sciences; Ferrara University; Ferrara Italy
| |
Collapse
|
129
|
Biomimetic self-assembly of apatite hybrid materials: From a single molecular template to bi-/multi-molecular templates. Biotechnol Adv 2014; 32:744-60. [DOI: 10.1016/j.biotechadv.2013.10.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 10/17/2013] [Accepted: 10/29/2013] [Indexed: 12/25/2022]
|
130
|
Yong R, Ranjitkar S, Townsend GC, Smith RN, Evans AR, Hughes TE, Lekkas D, Brook AH. Dental phenomics: advancing genotype to phenotype correlations in craniofacial research. Aust Dent J 2014; 59 Suppl 1:34-47. [DOI: 10.1111/adj.12156] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- R Yong
- School of Dentistry; The University of Adelaide; South Australia Australia
| | - S Ranjitkar
- School of Dentistry; The University of Adelaide; South Australia Australia
| | - GC Townsend
- School of Dentistry; The University of Adelaide; South Australia Australia
| | - RN Smith
- School of Dentistry; The University of Liverpool; United Kingdom
| | - AR Evans
- School of Biological Sciences; Monash University; Melbourne Victoria Australia
| | - TE Hughes
- School of Dentistry; The University of Adelaide; South Australia Australia
| | - D Lekkas
- School of Dentistry; The University of Adelaide; South Australia Australia
| | - AH Brook
- School of Dentistry; The University of Adelaide; South Australia Australia
- School of Dentistry; Queen Mary University of London; United Kingdom
| |
Collapse
|
131
|
Slavkin HC. The future of research in craniofacial biology and what this will mean for oral health professional education and clinical practice. Aust Dent J 2014; 59 Suppl 1:186-90. [DOI: 10.1111/adj.12105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- HC Slavkin
- Center for Craniofacial Molecular Biology; Ostrow School of Dentistry; The University of Southern California; California USA
| |
Collapse
|