101
|
Lee YJ, Bae JH, Kang SG, Cho SW, Chun DI, Nam SM, Kim CH, Nam HS, Lee SH, Lee SH, Cho MK. Pro-oxidant status and Nrf2 levels in psoriasis vulgaris skin tissues and dimethyl fumarate-treated HaCaT cells. Arch Pharm Res 2017; 40:1105-1116. [DOI: 10.1007/s12272-017-0955-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/06/2017] [Indexed: 12/30/2022]
|
102
|
Georgakopoulos ND, Frison M, Alvarez MS, Bertrand H, Wells G, Campanella M. Reversible Keap1 inhibitors are preferential pharmacological tools to modulate cellular mitophagy. Sci Rep 2017; 7:10303. [PMID: 28871145 PMCID: PMC5583253 DOI: 10.1038/s41598-017-07679-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 06/29/2017] [Indexed: 01/15/2023] Open
Abstract
Mitophagy orchestrates the autophagic degradation of dysfunctional mitochondria preventing their pathological accumulation and contributing to cellular homeostasis. We previously identified a novel chemical tool (hereafter referred to as PMI), which drives mitochondria into autophagy without collapsing their membrane potential (ΔΨm). PMI is an inhibitor of the protein-protein interaction (PPI) between the transcription factor Nrf2 and its negative regulator, Keap1 and is able to up-regulate the expression of autophagy-associated proteins, including p62/SQSTM1. Here we show that PMI promotes mitochondrial respiration, leading to a superoxide-dependent activation of mitophagy. Structurally distinct Keap1-Nrf2 PPI inhibitors promote mitochondrial turnover, while covalent Keap1 modifiers, including sulforaphane (SFN) and dimethyl fumarate (DMF), are unable to induce a similar response. Additionally, we demonstrate that SFN reverses the effects of PMI in co-treated cells by reducing the accumulation of p62 in mitochondria and subsequently limiting their autophagic degradation. This study highlights the unique features of Keap1-Nrf2 PPI inhibitors as inducers of mitophagy and their potential as pharmacological agents for the treatment of pathological conditions characterized by impaired mitochondrial quality control.
Collapse
Affiliation(s)
- Nikolaos D Georgakopoulos
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, NW1 0TU, London, United Kingdom.,UCL School of Pharmacy, 29/39 Brunswick Square, London, United Kingdom
| | - Michele Frison
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, NW1 0TU, London, United Kingdom
| | - Maria Soledad Alvarez
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, NW1 0TU, London, United Kingdom
| | - Hélène Bertrand
- UCL School of Pharmacy, 29/39 Brunswick Square, London, United Kingdom
| | - Geoff Wells
- UCL School of Pharmacy, 29/39 Brunswick Square, London, United Kingdom
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, NW1 0TU, London, United Kingdom. .,University College London Consortium for Mitochondrial Research, Gower Street, WC1 6BT, London, United Kingdom.
| |
Collapse
|
103
|
Liu Y, Wang X, Hu CAA. Therapeutic Potential of Amino Acids in Inflammatory Bowel Disease. Nutrients 2017; 9:nu9090920. [PMID: 28832517 PMCID: PMC5622680 DOI: 10.3390/nu9090920] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/06/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD), which includes both ulcerative colitis and Crohn’s disease, is a chronic relapsing inflammation of the gastrointestinal tract, and is difficult to treat. The pathophysiology of IBD is multifactorial and not completely understood, but genetic components, dysregulated immune responses, oxidative stress, and inflammatory mediators are known to be involved. Animal models of IBD can be chemically induced, and are used to study etiology and to evaluate potential treatments of IBD. Currently available IBD treatments can decrease the duration of active disease but because of their adverse effects, the search for novel therapeutic strategies that can restore intestinal homeostasis continues. This review summarizes and discusses what is currently known of the effects of amino acids on the reduction of inflammation, oxidative stress, and cell death in the gut when IBD is present. Recent studies in animal models have identified dietary amino acids that improve IBD, but amino acid supplementation may not be adequate to replace conventional therapy. The animal models used in dietary amino acid research in IBD are described.
Collapse
Affiliation(s)
- Yulan Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Xiuying Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Chien-An Andy Hu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
104
|
Distinct Nrf2 Signaling Mechanisms of Fumaric Acid Esters and Their Role in Neuroprotection against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Experimental Parkinson's-Like Disease. J Neurosci 2017; 36:6332-51. [PMID: 27277809 DOI: 10.1523/jneurosci.0426-16.2016] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/02/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED A promising approach to neurotherapeutics involves activating the nuclear-factor-E2-related factor 2 (Nrf2)/antioxidant response element signaling, which regulates expression of antioxidant, anti-inflammatory, and cytoprotective genes. Tecfidera, a putative Nrf2 activator, is an oral formulation of dimethylfumarate (DMF) used to treat multiple sclerosis. We compared the effects of DMF and its bioactive metabolite monomethylfumarate (MMF) on Nrf2 signaling and their ability to block 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental Parkinson's disease (PD). We show that in vitro DMF and MMF activate the Nrf2 pathway via S-alkylation of the Nrf2 inhibitor Keap1 and by causing nuclear exit of the Nrf2 repressor Bach1. Nrf2 activation by DMF but not MMF was associated with depletion of glutathione, decreased cell viability, and inhibition of mitochondrial oxygen consumption and glycolysis rates in a dose-dependent manner, whereas MMF increased these activities in vitro However, both DMF and MMF upregulated mitochondrial biogenesis in vitro in an Nrf2-dependent manner. Despite the in vitro differences, both DMF and MMF exerted similar neuroprotective effects and blocked MPTP neurotoxicity in wild-type but not in Nrf2 null mice. Our data suggest that DMF and MMF exhibit neuroprotective effects against MPTP neurotoxicity because of their distinct Nrf2-mediated antioxidant, anti-inflammatory, and mitochondrial functional/biogenetic effects, but MMF does so without depleting glutathione and inhibiting mitochondrial and glycolytic functions. Given that oxidative damage, neuroinflammation, and mitochondrial dysfunction are all implicated in PD pathogenesis, our results provide preclinical evidence for the development of MMF rather than DMF as a novel PD therapeutic. SIGNIFICANCE STATEMENT Almost two centuries since its first description by James Parkinson, Parkinson's disease (PD) remains an incurable disease with limited symptomatic treatment. The current study provides preclinical evidence that a Food and Drug Administration-approved drug, dimethylfumarate (DMF), and its metabolite monomethylfumarate (MMF) can block nigrostriatal dopaminergic neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of PD. We elucidated mechanisms by which DMF and its active metabolite MMF activates the redox-sensitive transcription factor nuclear-factor-E2-related factor 2 (Nrf2) to upregulate antioxidant, anti-inflammatory, mitochondrial biosynthetic and cytoprotective genes to render neuroprotection via distinct S-alkylating properties and depletion of glutathione. Our data suggest that targeting Nrf2-mediated gene transcription using MMF rather than DMF is a promising approach to block oxidative stress, neuroinflammation, and mitochondrial dysfunction for therapeutic intervention in PD while minimizing side effects.
Collapse
|
105
|
Wang E, Liu Y, Xu C, Liu J. Antiproliferative and proapoptotic activities of anthocyanin and anthocyanidin extracts from blueberry fruits on B16-F10 melanoma cells. Food Nutr Res 2017; 61:1325308. [PMID: 28680383 PMCID: PMC5492086 DOI: 10.1080/16546628.2017.1325308] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/26/2017] [Indexed: 01/18/2023] Open
Abstract
Background: Anthocyanins have been proven to affect multiple cancer-associated processes in different cancer cell lines. However, relatively few studies have investigated the effects of blueberry anthocyanins on metastatic melanoma. Thus, this study focuses on evaluating the chemopreventive potential of blueberry anthocyanins and their aglycones (anthocyanidins) in B16-F10 melanoma cells. Methods: Blueberry anthocyanin and anthocyanidin extracts were prepared mainly by combined chromatography techniques. Their antiproliferative and proapoptotic effects on B16-F10 cells were evaluated by MTT assay, calcein acetoxymethyl ester/propidium iodide (calcein-AM/PI) staining, and flow cytometry of the cell cycle and apoptosis. Results: The MTT and calcein-AM/PI staining results showed that both anthocyanin (purity of 62.5%) and anthocyanidin (75.1%) extracts could significantly inhibit the viability and proliferation of B16-F10 cells in a dose-dependent manner, while anthocyanidin extracts exhibited significantly higher (p < 0.05) cytotoxicity than anthocyanin extracts. Furthermore, anthocyanin and anthocyanidin extracts blocked cell cycle procession at the G0/G1 phase below 400 and 200 μg/mL, and induced early apoptosis below 400 and 300 μg/mL, respectively. Conclusions: These data suggest that both anthocyanin and anthocyanidin extracts inhibit the proliferation and trigger the apoptosis of B16-F10 cells, and anthocyanidin extracts may be a more promising candidate in preventing metastatic melanoma than anthocyanin extracts.
Collapse
Affiliation(s)
- Erlei Wang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, PR China
| | - Yanjun Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, PR China
| | - Caina Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, PR China
| | - Jingbo Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, PR China
| |
Collapse
|
106
|
Lőrincz T, Szarka A. The determination of hepatic glutathione at tissue and subcellular level. J Pharmacol Toxicol Methods 2017; 88:32-39. [PMID: 28552277 DOI: 10.1016/j.vascn.2017.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/12/2017] [Accepted: 05/23/2017] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Glutathione (GSH) through its important function in the antioxidant protection of cells and in the conjugation of drugs and xenobiotics has crucial importance in pharmacology and toxicology. Since GSH is most often measured in liver tissue and different cell organelles it is important to choose the method that best suits for the determination of GSH. METHODS The GSH content of cell organelles isolated from control and BSO-treated liver tissues was determined by the GSH-NEM-HPLC-UV, monochlorobimane-GSH-HPLC-fluorescence method and DTNB-GSH recycling assay to find the most suitable method for GSH determination from cell organelles. RESULTS The GSH level of organelles could easily be measured by the monochlorobimane-HPLC-fluorescent method. The addition of monochlorobimane to the homogenisation buffer prevented the oxidation of GSH during isolation. The formation of monochlorobimane-GSH adduct was accelerated by the intrinsic GST activity of samples, however the omission of GST from the GSH standards could cause the overestimation of GSH content of biological samples. NEM is an excellent thiol protective agent and the GSH-NEM conjugate can be directly analysed by HPLC-UV, but the relatively high limit of detection made the method unsuitable for the determination of GSH from cell organelles. Although the DTNB-GSH recycling assay is quite simple and rapid the stabilization of GSH and the efficiency of detection lag behind the monochlorobimane-HPLC-fluorescent method. DISCUSSION The monochlorobimane-HPLC-fluorescent method can be advised for the determination of GSH from pharmacologically and toxicological relevant cell organelles and liver tissue whilst addition of monochlorobimane to the homogenisation buffer prevented the autoxidation of GSH.
Collapse
Affiliation(s)
- Tamás Lőrincz
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, 1111 Szent Gellért tér 4, Budapest, Hungary
| | - András Szarka
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, 1111 Szent Gellért tér 4, Budapest, Hungary; Pathobiochemistry Research Group of Hungarian Academy of Sciences and Semmelweis University, 1444 Budapest, P.O. Box 260, Budapest, Hungary.
| |
Collapse
|
107
|
Shao L, Yu S, Ji W, Li H, Gao Y. The Contribution of Necroptosis in Neurodegenerative Diseases. Neurochem Res 2017; 42:2117-2126. [PMID: 28382594 DOI: 10.1007/s11064-017-2249-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/06/2017] [Accepted: 03/25/2017] [Indexed: 12/29/2022]
Abstract
Over the past decades, cell apoptosis has been significantly reputed as an accidental, redundant and alternative manner of cell demise which partakes in homeostasis in the development of extensive diseases. Nevertheless, necroptosis, another novel manner of cell death through a caspase-independent way, especially in neurodegenerative diseases remains ambiguous. The cognition of this form of cell demise is helpful to understand other forms of morphological resemblance of necrosis. Additionally, the concrete signal mechanism in the regulation of necroptosis is beneficial to the diagnosis and treatment of neurodegenerative diseases. Recent studies have demonstrated that necroptotic inhibitor, 24(S)-Hydroxycholesterol and partial specific histone deacetylase inhibitors could alleviate pathogenetic conditions of neurodegenerative diseases via necroptosis pathway. In this review, we summarize recent researches about mechanisms and modulation of necroptotic signaling pathways and probe into the role of programmed necroptotic cell demise in neurodegenerative diseases such as Parkinson's disease, Multiple sclerosis, Amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Lifei Shao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical College, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shuping Yu
- Department of Blood Transfusion, The Forth Affiliated Hospital of Nantong University, Yancheng, 224006, Jiangsu, China.,Center of Laboratory Medicine, Affiliate Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Wei Ji
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical College, Nantong University, Nantong, 226001, Jiangsu, China
| | - Haizhen Li
- Medical College, Nantong University, Nantong, 226001, Jiangsu, China.,Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yilu Gao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
108
|
Arora D, Sharma PK, Siddiqui MH, Shukla Y. Necroptosis: Modules and molecular switches with therapeutic implications. Biochimie 2017; 137:35-45. [PMID: 28263777 DOI: 10.1016/j.biochi.2017.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/07/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
Among the various programmed cell death (PCD) pathways, "Necroptosis" has gained much importance as a novel paradigm of cell death. This pathway has emerged as a backup mechanism when physiologically conserved PCD (apoptosis) is non-functional either genetically or pathogenically. The expanding spectrum of necroptosis from physiological development to diverse patho-physiological disorders, including xenobiotics-mediated toxicity has now grabbed the attention worldwide. The efficient role of necroptosis regulators in disease development and management are under constant examination. In fact, few regulators (e.g. MLKL) have already paved their way towards clinical trials and others are in queue. In this review, emphasis has been paid to the various contributing factors and molecular switches that can regulate necroptosis. Here we linked the overview of current knowledge of this enigmatic signaling with magnitude of therapeutics that may underpin the opportunities for novel therapeutic approaches to suppress the pathogenesis of necroptosis-driven disorders.
Collapse
Affiliation(s)
- Deepika Arora
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, VishvigyanBhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, VishvigyanBhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Yogeshwer Shukla
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, VishvigyanBhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
109
|
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med 2017; 104:144-164. [PMID: 28088622 DOI: 10.1016/j.freeradbiomed.2017.01.004] [Citation(s) in RCA: 651] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS), a group of highly reactive ions and molecules, are increasingly being appreciated as powerful signaling molecules involved in the regulation of a variety of biological processes. Indeed, their role is continuously being delineated in a variety of pathophysiological conditions. For instance, cancer cells are shown to have increased ROS levels in comparison to their normal counterparts. This is partly due to an enhanced metabolism and mitochondrial dysfunction in cancer cells. The escalated ROS generation in cancer cells contributes to the biochemical and molecular changes necessary for the tumor initiation, promotion and progression, as well as, tumor resistance to chemotherapy. Therefore, increased ROS in cancer cells may provide a unique opportunity to eliminate cancer cells via elevating ROS to highly toxic levels intracellularly, thereby, activating various ROS-induced cell death pathways, or inhibiting cancer cell resistance to chemotherapy. Such results can be achieved by using agents that either increase ROS generation, or inhibit antioxidant defense, or even a combination of both. In fact, a large variety of anticancer drugs, and some of those currently under clinical trials, effectively kill cancer cells and overcome drug resistance via enhancing ROS generation and/or impeding the antioxidant defense mechanism. This review focuses on our current understanding of the tumor promoting (tumorigenesis, angiogenesis, invasion and metastasis, and chemoresistance) and the tumor suppressive (apoptosis, autophagy, and necroptosis) functions of ROS, and highlights the potential mechanism(s) involved. It also sheds light on a very novel and an actively growing field of ROS-dependent cell death mechanism referred to as ferroptosis.
Collapse
Affiliation(s)
- Sehamuddin Galadari
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE; Al Jalila Foundation Research Centre, P.O. Box 300100, Dubai, UAE.
| | - Anees Rahman
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Siraj Pallichankandy
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Faisal Thayyullathil
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
110
|
Saidu NEB, Noé G, Cerles O, Cabel L, Kavian-Tessler N, Chouzenoux S, Bahuaud M, Chéreau C, Nicco C, Leroy K, Borghese B, Goldwasser F, Batteux F, Alexandre J. Dimethyl Fumarate Controls the NRF2/DJ-1 Axis in Cancer Cells: Therapeutic Applications. Mol Cancer Ther 2017; 16:529-539. [PMID: 28069874 DOI: 10.1158/1535-7163.mct-16-0405] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 11/16/2022]
Abstract
The transcription factor NRF2 (NFE2L2), regulates important antioxidant and cytoprotective genes. It enhances cancer cell proliferation and promotes chemoresistance in several cancers. Dimethyl fumarate (DMF) is known to promote NRF2 activity in noncancer models. We combined in vitro and in vivo methods to examine the effect of DMF on cancer cell death and the activation of the NRF2 antioxidant pathway. We demonstrated that at lower concentrations (<25 μmol/L), DMF has a cytoprotective role through activation of the NRF2 antioxidant pathway. At higher concentrations, however (>25 μmol/L), DMF caused oxidative stress and subsequently cytotoxicity in several cancer cell lines. High DMF concentration decreases nuclear translocation of NRF2 and production of its downstream targets. The pro-oxidative and cytotoxic effects of high concentration of DMF were abrogated by overexpression of NRF2 in OVCAR3 cells, suggesting that DMF cytotoxicity is dependent of NRF2 depletion. High concentrations of DMF decreased the expression of DJ-1, a NRF2 protein stabilizer. Using DJ-1 siRNA and expression vector, we observed that the expression level of DJ-1 controls NRF2 activation, antioxidant defenses, and cell death in OVCAR3 cells. Finally, antitumoral effect of daily DMF (20 mg/kg) was also observed in vivo in two mice models of colon cancer. Taken together, these findings implicate the effect of DJ-1 on NRF2 in cancer development and identify DMF as a dose-dependent modulator of both NRF2 and DJ-1, which may be useful in exploiting the therapeutic potential of these endogenous antioxidants. Mol Cancer Ther; 16(3); 529-39. ©2017 AACR.
Collapse
Affiliation(s)
| | - Gaëlle Noé
- UMR8638 CNRS, Faculté de Pharmacie, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Olivier Cerles
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France
| | - Luc Cabel
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France
| | - Niloufar Kavian-Tessler
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France
| | - Sandrine Chouzenoux
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France
| | - Mathilde Bahuaud
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France
| | - Christiane Chéreau
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France
| | - Carole Nicco
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France
| | - Karen Leroy
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France.,Department of Molecular Genetics, Cochin Hospital, AP-HP, Paris, France
| | - Bruno Borghese
- Department of Gynecologic Surgery, Cochin Hospital, AP-HP, Paris, France
| | - François Goldwasser
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France.,Department of Medical Oncology, Cochin Hospital, AP-HP, Paris, France
| | - Frédéric Batteux
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France.,Department of Immunology, Cochin Hospital, AP-HP, Paris, France
| | - Jérôme Alexandre
- Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France. .,Department of Medical Oncology, Cochin Hospital, AP-HP, Paris, France
| |
Collapse
|
111
|
Tert-butyl hydroperoxide (t-BHP) induced apoptosis and necroptosis in endothelial cells: Roles of NOX4 and mitochondrion. Redox Biol 2017; 11:524-534. [PMID: 28088644 PMCID: PMC5237803 DOI: 10.1016/j.redox.2016.12.036] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/25/2016] [Accepted: 12/22/2016] [Indexed: 10/25/2022] Open
Abstract
Oxidative stress causes endothelial death while underlying mechanisms remain elusive. Herein, the pro-death effect of tert-butyl hydroperoxide (t-BHP) was investigated with low concentration (50μM) of t-BHP (t-BHPL) and high concentration (500μM) of t-BHP (t-BHPH). Both t-BHPL and t-BHPH induced endothelial cell death was determined. T-BHPL induced caspase-dependent apoptosis and reactive oxygen species (ROS) generation, which was inhibited by N-acetyl-L-cysteine (NAC). Furthermore, NADPH oxidase inhibitor diphenyleneiodonium (DPI), NOX4 siRNA, and NOX4 inhibitor GKT137831 reduced t-BHPL-induced ROS generation while mitochondrial respiratory chain inhibitors rotenone (Rot), 2-thenoyltrifluoroacetone (TTFA), and antimycin A (AA) failed to do so. NOX4 overexpression resulted in increased ROS generation and Akt expression but decreased sensitivity to t-BHPL. In contrast, T-BHPH induced LDH release, PI uptake, and cell translucent cytoplasm. RIP1 inhibitor necrostatin-1 (Nec-1), MLKL inhibitor necrosulfonamide (NSA) and silencing RIP1, RIP3, and MLKL inhibited t-BHPH-induced cell death while pan-caspase inhibitor Z-VAD-FMK showed no effect. T-BHPH-induced ROS production was inhibited by TTFA, AA and Rot while DPI showed no effect. T-BHPH induced RIP1/RIP3 interaction, which was decreased by Rot, TTFA, and AA. Silence RIP1 and RIP3 but not MLKL inhibited t-BHPH-induced mitochondrial membrane potential (MMP) decrease and ROS production. Moreover, P38MAPK inhibitor SB203580 reversed both t-BHPL and t-BHPH-induced cell death while inhibitors for ERKs and JNKs showed no obvious effect. These data suggested that t-BHP induced both apoptosis and necroptosis in endothelial cells which was mediated by ROS and p38MAPK. ROS derived from NADPH oxidase and mitochondria contributed to t-BHPL and t-BHPH-induced apoptosis and necroptosis, respectively.
Collapse
|
112
|
Ma ZG, Ma R, Xiao XL, Zhang YH, Zhang XZ, Hu N, Gao JL, Zheng YF, Dong DL, Sun ZJ. Azo polymeric micelles designed for colon-targeted dimethyl fumarate delivery for colon cancer therapy. Acta Biomater 2016; 44:323-31. [PMID: 27544813 DOI: 10.1016/j.actbio.2016.08.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 02/01/2023]
Abstract
UNLABELLED Colon-targeted drug delivery and circumventing drug resistance are extremely important for colon cancer chemotherapy. Our previous work found that dimethyl fumarate (DMF), the approved drug by the FDA for the treatment of multiple sclerosis, exhibited anti-tumor activity on colon cancer cells. Based on the pharmacological properties of DMF and azo bond in olsalazine chemical structure, we designed azo polymeric micelles for colon-targeted dimethyl fumarate delivery for colon cancer therapy. We synthesized the star-shape amphiphilic polymer with azo bond and fabricated the DMF-loaded azo polymeric micelles. The four-arm polymer star-PCL-azo-mPEG (sPCEG-azo) (constituted by star-shape PCL (polycaprolactone) and mPEG (methoxypolyethylene glycols)-olsalazine) showed self-assembly ability. The average diameter and polydispersity index of the DMF-loaded sPCEG-azo polymeric micelles were 153.6nm and 0.195, respectively. In vitro drug release study showed that the cumulative release of DMF from the DMF-loaded sPCEG-azo polymeric micelles was no more than 20% in rat gastric fluid within 10h, whereas in the rat colonic fluids, the cumulative release of DMF reached 60% in the initial 2h and 100% within 10h, indicating that the DMF-loaded sPCEG-azo polymeric micelles had excellent colon-targeted property. The DMF-loaded sPCEG-azo polymeric micelles had no significant cytotoxicity on colon cancer cells in phosphate buffered solution (PBS) and rat gastric fluid. In rat colonic fluid, the micelles showed significant cytotoxic effect on colon cancer cells. The blank sPCEG-azo polymeric micelles (without DMF) showed no cytotoxic effect on colon cancer cells in rat colonic fluids. In conclusion, the DMF-loaded sPCEG-azo polymeric micelles show colon-targeted DMF release and anti-tumor activity, providing a novel approach potential for colon cancer therapy. STATEMENT OF SIGNIFICANCE Colon-targeted drug delivery and circumventing drug resistance are extremely important for colon cancer chemotherapy. Our previous work found that dimethyl fumarate (DMF), the approved drug by the FDA for the treatment of multiple sclerosis, exhibited anti-tumor activities on colon cancer cells (Br J Pharmacol. 2015 172(15):3929-43.). Based on the pharmacological properties of DMF and azo bond in olsalazine chemical structure, we designed azo polymeric micelles for colon-targeted dimethyl fumarate delivery for colon cancer therapy. We found that the DMF-loaded sPCEG-azo polymeric micelles showed colon-targeted DMF release and anti-tumor activities, providing a novel approach potential for colon cancer therapy.
Collapse
Affiliation(s)
- Zhen-Gang Ma
- Institute of Materials Processing and Intelligent Manufacturing & Center for Biomedical Materials and Engineering, Harbin Engineering University, PR China
| | - Rui Ma
- Institute of Materials Processing and Intelligent Manufacturing & Center for Biomedical Materials and Engineering, Harbin Engineering University, PR China
| | - Xiao-Lin Xiao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Yong-Hui Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Xin-Zi Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Nan Hu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Jin-Lai Gao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Yu-Feng Zheng
- Institute of Materials Processing and Intelligent Manufacturing & Center for Biomedical Materials and Engineering, Harbin Engineering University, PR China
| | - De-Li Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Zhi-Jie Sun
- Institute of Materials Processing and Intelligent Manufacturing & Center for Biomedical Materials and Engineering, Harbin Engineering University, PR China.
| |
Collapse
|
113
|
Zhang Z, Bu X, Chen H, Wang Q, Sha W. Bmi-1 promotes the invasion and migration of colon cancer stem cells through the downregulation of E-cadherin. Int J Mol Med 2016; 38:1199-207. [PMID: 27600678 PMCID: PMC5029956 DOI: 10.3892/ijmm.2016.2730] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/01/2016] [Indexed: 02/05/2023] Open
Abstract
Metastasis and recurrence are the challenges of cancer therapy. Recently, mounting evidence has suggested that cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) are critical factors in tumor metastasis and recurrence. The oncogene, Bmi-1, promotes the development of hematologic malignancies and many solid tumors. The aim of the present study was to elucidate the mechanisms through which Bmi-1 promotes the invasion and migration of colon CSCs (CCSCs) using the HCT116 colon cancer cell line. Sphere formation medium and magnetic‑activated cell sorting were used to enrich and screen the CCSCs. CD133 and CD44 were regarded as markers of CCSCs and they were found to be co-expressed in the HCT116 colon cancer cell line. Colony formation assay, cell proliferation assay and viability assay using the Cell Counting Kit-8, and transplantation assay using nude mice injected with CCSCs were used to examine the CCSCs. The CD133+CD44+ HCT116 cells exhibited greater cloning efficiency, an enhanced proliferative ability, increased cell viability and stronger tumorigenicity; these cells were used as the CCSCs for subsequent experiments. In addition, the invasive and migratory abilities of the CD133+CD44+ HCT116 cells were markedly decreased when Bmi-1 was silenced by small interfering RNA (siRNA). The results of RT-qPCR and western blot analysis suggested that Bmi-1 had a negative effect on E-cadherin expression. On the whole, our findings suggest that Bmi-1 promotes the invasion and migration of CCSCs through the downregulation of E-cadherin, possibly by inducing EMT. Our findings thus indicate that Bmi-1 may be a novel therapeutic target for the treatment of colon cancer.
Collapse
Affiliation(s)
- Zefeng Zhang
- Shantou University Medical College, Shantou, Guangdong 515041
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoling Bu
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Hao Chen
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Qiyi Wang
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
- Correspondence to: Dr Qiyi Wang or Dr Weihong Sha, Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, Guangdong 510080, P.R. China, E-mail: , E-mail:
| | - Weihong Sha
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
- Correspondence to: Dr Qiyi Wang or Dr Weihong Sha, Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, Guangdong 510080, P.R. China, E-mail: , E-mail:
| |
Collapse
|
114
|
Zhang YQ, Shen X, Xiao XL, Liu MY, Li SL, Yan J, Jin J, Gao JL, Zhen CL, Hu N, Zhang XZ, Tai Y, Zhang LS, Bai YL, Dong DL. Mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone induces vasorelaxation without involving K ATP channel activation in smooth muscle cells of arteries. Br J Pharmacol 2016; 173:3145-3158. [PMID: 27534899 DOI: 10.1111/bph.13578] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE The effects and mechanisms of chemical mitochondrial uncouplers on vascular function have never been identified. Here, we characterized the effects of the typical mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) on vascular function in rat mesenteric arteries and aorta and elucidated the potential mechanisms. EXPERIMENTAL APPROACH Isometric tension of mesenteric artery and thoracic aorta was recorded by using a multiwire myograph system. Protein levels were measured by western blot analyses. Cytosolic [Ca2+ ]i , mitochondrial ROS (mitoROS) and mitochondrial membrane potential of smooth muscle cells (A10) were measured by laser scanning confocal microscopy. KEY RESULTS Acute treatment with CCCP relaxed phenylephrine (PE)- and high K+ (KPSS)-induced constriction of rat mesenteric arteries with intact and denuded endothelium. Pretreatment with CCCP prevented PE- and KPSS-induced constriction of rat mesenteric arteries with intact and denuded endothelium. Similarly, CCCP prevented PE- and KPSS-induced constriction of rat thoracic aorta. CCCP increased the cellular ADP/ATP ratio in vascular smooth muscle cells (A10) and activated AMPK in A10 cells and rat thoracic aorta tissues. CCCP-induced aorta relaxation was attenuated in AMPK α1 knockout (-/-) mice. SERCA inhibitors thapsigargin and cyclopiazonic acid (CPA) but not the KATP channel blocker glibenclamide partially inhibited CCCP-induced vasorelaxation in endothelium-denuded rat mesenteric arteries. CCCP increased cytosolic [Ca2+ ]i , mitoROS production and depolarized mitochondrial membrane potential in A10 cells. FCCP, the analogue of CCCP, had similar vasoactivity as CCCP in rat mesenteric arteries. CONCLUSIONS AND IMPLICATIONS CCCP induces vasorelaxation by a mechanism that does not involve KATP channel activation in smooth muscle cells of arteries.
Collapse
Affiliation(s)
- Yan-Qiu Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Xin Shen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Xiao-Lin Xiao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Ming-Yu Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Shan-Liang Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Jie Yan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Jing Jin
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Jin-Lai Gao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Chang-Lin Zhen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Nan Hu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Xin-Zi Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Yu Tai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Liang-Shuan Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Yun-Long Bai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - De-Li Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
115
|
Won EJ, Kim RO, Kang HM, Kim HS, Hwang DS, Han J, Lee YH, Hwang UK, Zhou B, Lee SJ, Lee JS. Adverse Effects, Expression of the Bk-CYP3045C1 Gene, and Activation of the ERK Signaling Pathway in the Water Accommodated Fraction-Exposed Rotifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6025-6035. [PMID: 27135705 DOI: 10.1021/acs.est.6b01306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To examine the deleterious effects of the water accommodated fraction (WAF) of crude oil, the growth curve, fecundity, and lifespan of the monogonont rotifer (Brachionus koreanus) were measured for 24 h in response to three different doses (0.2×, 0.4×, and 0.8×) of WAFs. A higher dose of WAFs significantly reduced the fecundity and lifespan. A rotifer 32K microarray chip showed that the Bk-CYP3045C1 gene had the highest expression. Of the 25 entire CYP genes, the Bk-CYP3045C1 gene showed a significant expression for different doses and times in response to WAFs and chemical components of WAFs (naphthalene and phenanthrene); also, glutathione S-transferase genes, ABC transporter, and other genes showed dose responses upon exposure to 80% WAF over time. Different doses of WAFs increased the oxidative stress with an induction of reactive oxygen species (ROS) and a depletion of glutathione (GSH). Exposure to WAFs did not show toxic effects on survivability in B. koreanus; however, toxicity to WAFs was shown when piperonyl butoxide, a potent inhibitor of cytochrome P450 (CYP) enzymes, was added. This toxicity was dose-dependent. After WAFs exposure, p-ERK was activated over time in response to WAFs, which suggests that WAFs can be activated by the p-ERK signaling pathway.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU) , Suwon 16419, South Korea
- Marine Chemistry and Geochemistry Research Center, Korea Institute of Ocean Science and Technology , Ansan 15627, South Korea
| | - Ryeo-Ok Kim
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU) , Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU) , Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU) , Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU) , Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU) , Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU) , Suwon 16419, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Fisheries Research and Development Institute , Incheon 22383, South Korea
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan, 430072, China
| | - Su-Jae Lee
- Department of Life Science, College of Natural Sciences, Hanyang University , Seoul 04763, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU) , Suwon 16419, South Korea
| |
Collapse
|
116
|
Su Z, Yang Z, Xie L, DeWitt JP, Chen Y. Cancer therapy in the necroptosis era. Cell Death Differ 2016; 23:748-56. [PMID: 26915291 PMCID: PMC4832112 DOI: 10.1038/cdd.2016.8] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/21/2015] [Accepted: 01/03/2016] [Indexed: 12/14/2022] Open
Abstract
Necroptosis is a caspase-independent form of regulated cell death executed by the receptor-interacting protein kinase 1 (RIP1), RIP3, and mixed lineage kinase domain-like protein (MLKL). Recently, necroptosis-based cancer therapy has been proposed to be a novel strategy for antitumor treatment. However, a big controversy exists on whether this type of therapy is feasible or just a conceptual model. Proponents believe that because necroptosis and apoptosis use distinct molecular pathways, triggering necroptosis could be an alternative way to eradicate apoptosis-resistant cancer cells. This hypothesis has been preliminarily validated by recent studies. However, some skeptics doubt this strategy because of the intrinsic or acquired defects of necroptotic machinery observed in many cancer cells. Moreover, two other concerns are whether or not necroptosis inducers are selective in killing cancer cells without disturbing the normal cells and whether it will lead to inflammatory diseases. In this review, we summarize current studies surrounding this controversy on necroptosis-based antitumor research and discuss the advantages, potential issues, and countermeasures of this novel therapy.
Collapse
Affiliation(s)
- Z Su
- Department of Biochemistry and Molecular Biology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Z Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - L Xie
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - J P DeWitt
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Y Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
117
|
Wu X, Cao Y, Zhang J, Lei M, Deng X, Zahid KR, Liu Y, Liu K, Yang J, Xiong G, Yao H, Qi C. Determination of glutathione in apoptotic SMMC-7221 cells induced by xylitol selenite using capillary electrophoresis. Biotechnol Lett 2016; 38:761-6. [PMID: 26892224 DOI: 10.1007/s10529-016-2056-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To determine the glutathione (GSH) content in a human hepatoma cell line (SMMC-7221) treated with xylitol/selenite, providing a part of an investigation of its anti-cancer mechanisms. RESULTS The nuclei of SMMC-7221 cells were stained with Hoechst 33258 in an apoptosis assay, and their morphology subsequently changed from circular to crescent shape. The calibration curve (r(2) = 0.992) was established, and GSH content markedly decreased after treated with 0.5 and 1 mg xylitol/selenite l(-1) for 12, 36 and 60 h (12 h: from 95.57 ± 19.57 to 29.09 ± 7.74 and 24.27 ± 11.15; 36 h: from 70.73 ± 11.35 to 19.54 ± 6.39 and 9.35 ± 6.69; 60 h: from 72.63 ± 16.94 to 7.432 ± 3.84 and 0). The depletion rate of GSH was more related to the concentration of xylitol/selenite than the treatment time (from 69.95 ± 1.87 to 100 % vs. 0.22 ± 0.2 to 100 %). CONCLUSIONS Xylitol/selenite is a promising anti-cancer drug to induce apoptosis in SMMC-7221 cells. It may regulate the apoptosis through the co-action of multiple mechanisms related to GSH depletion.
Collapse
Affiliation(s)
- Xue Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Yu Cao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Jian Zhang
- Shijiazhuang Maternal and Child Health Ultrasonography Department, Shijiazhuang, 050011, People's Republic of China
| | - Ming Lei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Xiaojie Deng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Kashif Rafiq Zahid
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Jihong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Guomei Xiong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Hanchao Yao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Chao Qi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
118
|
Dimethylfumarate protects against TNF-α-induced secretion of inflammatory cytokines in human endothelial cells. JOURNAL OF INFLAMMATION-LONDON 2015; 12:49. [PMID: 26246800 PMCID: PMC4525722 DOI: 10.1186/s12950-015-0094-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/24/2015] [Indexed: 01/31/2023]
Abstract
Background Inflammation, angiogenesis and oxidative stress have been implicated in the pathogenesis of various vascular diseases. Recent evidence suggests that dimethylfumarate (DMF), an antiposriatic and anti-multiple sclerosis agent, possesses anti-inflammatory, anti-oxidative and anti-angiogenic properties. Here, we analyze the influence of DMF on TNF-α-induced expression of the important pro-inflammatory and pro-atherogenic chemokine MCP-1 and investigate the underlying mechanisms of this expression. Findings We analyzed constitutive and TNF-α-induced expression of MCP-1 in human umbilical vascular endothelial cells (HUVEC) +/− DMF treatment via enzyme-linkes immunosorbent assay (ELISA). DMF significantly inhibited the protein expression levels in a time- and concentration-dependent manner. Furthermore, MCP-1 mRNA expression was also reduced in response to DMF, as demonstrated by RT-PCR. Thus, the regulation occurs at the transcriptional level. Interestingly, DMF prolonged the TNF-α-induced p38 and JNK phosphorylation in HUVEC, as demonstrated by Western blot analysis; however, the p38 and JNK inhibitor SB203580 did not affect the DMF-conveyed suppression of TNF-α-induced MCP-1 expression. DMF suppressed the TNF-α-induced nuclear translocation and phosphorylation (Serine 536) of p65 in these cells. These results were additionally approved by p65 luciferase promoter assays. Furthermore, we found that DMF slightly inhibited the early degradation of IκBα. In addition, we verified our results using other important inflammatory cytokines such as CCL-5, PDGF-BB, GM-CSF and IL-6. Conclusion DMF suppresses various TNF-α-induced pro-inflammatory and pro-atherogenic cytokines/chemokines in human endothelial cells. This action is regulated by reduced p65 activity and nuclear translocation, which can be explained in part by the reduced early degradation of IκBα and more important the reduced phosphorylation of p65 at Serine 536. These effects were independent of the p38, PI3K and p42/44 signaling pathways. As a result, DMF might be suitable for treating patients with vascular diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12950-015-0094-z) contains supplementary material, which is available to authorized users.
Collapse
|