101
|
Tabata R, Yasumizu R, Tabata C, Kojima M. Double-hit lymphoma demonstrating t(6;14;18)(p25;q32;q21), suggesting two independent dual-hit translocations, MYC/BCL-2 and IRF4/BCL-2. J Clin Exp Hematop 2014; 53:141-50. [PMID: 23995111 DOI: 10.3960/jslrt.53.141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Here, we report a rare case of double-hit lymphoma, demonstrating t(6;14;18)(p25;q32;q21), suggesting two independent dual-translocations, c-MYC/BCL-2 and IRF4/BCL-2. The present case had a rare abnormal chromosome, t(6;14;18)(p25;q32;q21), independently, in addition to known dual-hit chromosomal abnormalities, t(14;18)(q32;q21) and t(8;22)(q24;q11.2). Lymph node was characterized by a follicular and diffuse growth pattern with variously sized neoplastic follicles. The intrafollicular area was composed of centrocytes with a few centroblasts and the interfollicular area was occupied by uniformly spread medium- to large-sized lymphocytes. CD23 immunostaining demonstrated a disrupted follicular dendritic cell meshwork. The intrafollicular tumor cells had a germinal center phenotype with the expression of surface IgM, CD10, Bcl-2, Bcl-6, and MUM1/IRF4. However, the interfollicular larger cells showed plasmacytic differentiation with diminished CD20, Bcl-2, Bcl-6, and positive intracytoplasmic IgM, and co-expression of MUM1/IRF4 and CD138 with increased Ki-67-positive cells (> 90%). MUM1/IRF4 has been found to induce c-MYC expression, and in turn, MYC transactivates MUM1/IRF4, creating a positive autoregulatory feedback loop. On the other hand, MUM1/IRF4 functions as a tumor suppressor in c-MYC-induced B-cell leukemia. The present rare case arouses interest in view of the possible "dual" activation of both c-MYC and MUM1/IRF4 through two independent dual-translocations, c-MYC/BCL-2 and IRF4/BCL-2.
Collapse
Affiliation(s)
- Rie Tabata
- Department of Internal Medicine, Hyogo Prefectural Tsukaguchi Hospital, Hyogo, Japan.
| | | | | | | |
Collapse
|
102
|
Synergistic antitumor activity of lenalidomide with the BET bromodomain inhibitor CPI203 in bortezomib-resistant mantle cell lymphoma. Leukemia 2014; 28:2049-59. [PMID: 24721791 DOI: 10.1038/leu.2014.106] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 11/08/2022]
Abstract
Bortezomib therapy has shown promising clinical activity in mantle cell lymphoma (MCL), but the development of resistance to proteasome inhibition may limit its efficacy. To unravel the factors involved in the acquisition of bortezomib resistance in vivo, immunodeficient mice were engrafted with a set of MCL cell lines with different levels of sensitivity to the drug, followed by gene expression profiling of the tumors and functional validation of the identified gene signatures. We observed an increased tumorigenicity of bortezomib-resistant MCL cells in vivo, which was associated with plasmacytic differentiation features, like interferon regulatory factor 4 (IRF4) and Blimp-1 upregulation. Lenalidomide was particularly active in this subgroup of tumors, targeting IRF4 expression and plasmacytic differentiation program, thus overcoming bortezomib resistance. Moreover, repression of the IRF4 target gene MYC in bortezomib-resistant cells by gene knockdown or treatment with CPI203, a BET (bromodomain and extra terminal) bromodomain inhibitor, synergistically induced cell death when combined with lenalidomide. In mice, addition of CPI203 to lenalidomide therapy further decreased tumor burden, involving simultaneous MYC and IRF4 downregulation and apoptosis induction. Together, these results suggest that exacerbated IRF4/MYC signaling is associated to bortezomib resistance in MCL in vivo and warrant clinical evaluation of lenalidomide plus BET inhibitor combination in MCL cases refractory to proteasome inhibition.
Collapse
|
103
|
Targeting RNA polymerase I to treat MYC-driven cancer. Oncogene 2014; 34:403-12. [PMID: 24608428 DOI: 10.1038/onc.2014.13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 02/06/2023]
Abstract
The MYC oncoprotein and transcription factor is dysregulated in a majority of human cancers and is considered a major driver of the malignant phenotype. As such, developing drugs for effective inhibition of MYC in a manner selective to malignancies is a 'holy grail' of transcription factor-based cancer therapy. Recent advances in elucidating MYC biology in both normal cells and pathological settings were anticipated to bring inhibition of tumorigenic MYC function closer to the clinic. However, while the extensive array of cellular pathways that MYC impacts present numerous fulcrum points on which to leverage MYC's therapeutic potential, identifying the critical target(s) for MYC-specific cancer therapy has been difficult to achieve. Somewhat unexpectedly, MYC's fundamental role in regulating the 'housekeeping' process of ribosome biogenesis, one of the most ubiquitously required and conserved cell functions, may provide the Achilles' heel for therapeutically targeting MYC-driven tumors.
Collapse
|
104
|
Abstract
The plasmacytoid dendritic cell (pDC) is vital to the coordinated action of innate and adaptive immunity. pDC development has not been unequivocally traced, nor has its transcriptional regulatory network been fully clarified. Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and demonstrate this lineage-specific requirement in the adult organism. Furthermore, we identify BCL11A gene targets and provide a molecular mechanism for its action in pDC commitment. Embryonic germ-line deletion of Bcl11a revealed an absolute cellular, molecular, and functional absence of pDCs in fetal mice. In adults, deletion of Bcl11a in hematopoietic stem cells resulted in perturbed yet continued generation of progenitors, loss of downstream pDC and B-cell lineages, and persisting myeloid, conventional dendritic, and T-cell lineages. Challenge with virus resulted in a marked reduction of antiviral response in conditionally deleted adults. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators, including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development, supporting a model wherein differentiation into pDCs represents a primed "default" pathway for common dendritic cell progenitors.
Collapse
|
105
|
Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor 4 (vIRF4) targets expression of cellular IRF4 and the Myc gene to facilitate lytic replication. J Virol 2013; 88:2183-94. [PMID: 24335298 DOI: 10.1128/jvi.02106-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Besides an essential transcriptional factor for B cell development and function, cellular interferon regulatory factor 4 (c-IRF4) directly regulates expression of the c-Myc gene, which is not only associated with various B cell lymphomas but also required for herpesvirus latency and pathogenesis. Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma and primary effusion lymphoma, has developed a unique mechanism to deregulate host antiviral innate immunity and growth control by incorporating four viral homologs (vIRF1 to -4) of cellular IRFs into its genome. Previous studies have shown that several KSHV latent proteins, including vIRF3, vFLIP, and LANA, target the expression, function, and stability of c-Myc to establish and maintain viral latency. Here we report that the KSHV vIRF4 lytic protein robustly suppresses expression of c-IRF4 and c-Myc, reshaping host gene expression profiles to facilitate viral lytic replication. Genomewide gene expression analysis revealed that KSHV vIRF4 grossly affects host gene expression by upregulating and downregulating 118 genes and 166 genes, respectively, by at least 2-fold. Remarkably, vIRF4 suppressed c-Myc expression by 11-fold, which was directed primarily by the deregulation of c-IRF4 expression. Real-time quantitative PCR (RT-qPCR), single-molecule in situ hybridization, and chromatin immunoprecipitation assays showed that vIRF4 not only reduces c-IRF4 expression but also competes with c-IRF4 for binding to the specific promoter region of the c-Myc gene, resulting in drastic suppression of c-Myc expression. Consequently, the loss of vIRF4 function in the suppression of c-IRF4 and c-Myc expression ultimately led to a reduction of KSHV lytic replication capacity. These results indicate that the KSHV vIRF4 lytic protein comprehensively targets the expression and function of c-IRF4 to downregulate c-Myc expression, generating a favorable environment for viral lytic replication. Finally, this study further reinforces the important role of the c-Myc gene in KSHV lytic replication and latency.
Collapse
|
106
|
Cooperative transcriptional repression by BCL6 and BACH2 in germinal center B-cell differentiation. Blood 2013; 123:1012-20. [PMID: 24277074 DOI: 10.1182/blood-2013-07-518605] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transcriptional repressors BCL6 and BACH2 are crucial regulators of germinal center (GC) B-cell fate, and are known to interact and repress transcription of PRDM1, a key driver of plasma cell differentiation. How these factors cooperate is not fully understood. Herein, we show that GC formation is only minimally impaired in Bcl6(+/-) or Bach2(+/-) mice, although double heterozygous Bcl6(+/-)Bach2(+/-) mice exhibit profound reduction in GC formation. Splenic B cells from Bcl6(+/-) Bach2(+/-) mice display accelerated plasmacytic differentiation and high expression of key plasma cell genes such as Prdm1, Xbp1, and CD138. Chromatin immunoprecipitation sequencing revealed that in B cells, BACH2 is mostly bound to genes together with its heterodimer partner MAFK. The BACH2-MAFK complex binds to sets of genes known to be involved in the GC response, 60% of which are also targets of BCL6. Approximately 30% of BACH2 peaks overlap with BCL6, including cis-regulatory sequences of the PRDM1 gene. BCL6 also modulates BACH2 protein stability and their protein levels are positively correlated in GC B cells. Therefore, BCL6 and BACH2 cooperate to orchestrate gene expression patterning in GC B cells through both transcriptional and biochemical mechanisms, which collectively determine the proper initiation and timing of terminal differentiation.
Collapse
|
107
|
Levens D. Cellular MYCro economics: Balancing MYC function with MYC expression. Cold Spring Harb Perspect Med 2013; 3:3/11/a014233. [PMID: 24186489 DOI: 10.1101/cshperspect.a014233] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The expression levels of the MYC oncoprotein have long been recognized to be associated with the outputs of major cellular processes including proliferation, cell growth, apoptosis, differentiation, and metabolism. Therefore, to understand how MYC operates, it is important to define quantitatively the relationship between MYC input and expression output for its targets as well as the higher-order relationships between the expression levels of subnetwork components and the flow of information and materials through those networks. Two different views of MYC are considered, first as a molecular microeconomic manager orchestrating specific positive and negative responses at individual promoters in collaboration with other transcription and chromatin components, and second, as a macroeconomic czar imposing an overarching rule onto all active genes. In either case, c-myc promoter output requires multiple inputs and exploits diverse mechanisms to tune expression to the appropriate levels relative to the thresholds of expression that separate health and disease.
Collapse
Affiliation(s)
- David Levens
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-1500
| |
Collapse
|
108
|
Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci U S A 2013; 110:18250-5. [PMID: 24145436 DOI: 10.1073/pnas.1314608110] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive tumor, but a subset of patients may follow an indolent clinical course. To understand the mechanisms underlying this biological heterogeneity, we performed whole-genome and/or whole-exome sequencing on 29 MCL cases and their respective matched normal DNA, as well as 6 MCL cell lines. Recurrently mutated genes were investigated by targeted sequencing in an independent cohort of 172 MCL patients. We identified 25 significantly mutated genes, including known drivers such as ataxia-telangectasia mutated (ATM), cyclin D1 (CCND1), and the tumor suppressor TP53; mutated genes encoding the anti-apoptotic protein BIRC3 and Toll-like receptor 2 (TLR2); and the chromatin modifiers WHSC1, MLL2, and MEF2B. We also found NOTCH2 mutations as an alternative phenomenon to NOTCH1 mutations in aggressive tumors with a dismal prognosis. Analysis of two simultaneous or subsequent MCL samples by whole-genome/whole-exome (n = 8) or targeted (n = 19) sequencing revealed subclonal heterogeneity at diagnosis in samples from different topographic sites and modulation of the initial mutational profile at the progression of the disease. Some mutations were predominantly clonal or subclonal, indicating an early or late event in tumor evolution, respectively. Our study identifies molecular mechanisms contributing to MCL pathogenesis and offers potential targets for therapeutic intervention.
Collapse
|
109
|
Mabbott NA, Baillie JK, Brown H, Freeman TC, Hume DA. An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics 2013; 14:632. [PMID: 24053356 PMCID: PMC3849585 DOI: 10.1186/1471-2164-14-632] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/25/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The specialisation of mammalian cells in time and space requires genes associated with specific pathways and functions to be co-ordinately expressed. Here we have combined a large number of publically available microarray datasets derived from human primary cells and analysed large correlation graphs of these data. RESULTS Using the network analysis tool BioLayout Express3D we identify robust co-associations of genes expressed in a wide variety of cell lineages. We discuss the biological significance of a number of these associations, in particular the coexpression of key transcription factors with the genes that they are likely to control. CONCLUSIONS We consider the regulation of genes in human primary cells and specifically in the human mononuclear phagocyte system. Of particular note is the fact that these data do not support the identity of putative markers of antigen-presenting dendritic cells, nor classification of M1 and M2 activation states, a current subject of debate within immunological field. We have provided this data resource on the BioGPS web site (http://biogps.org/dataset/2429/primary-cell-atlas/) and on macrophages.com (http://www.macrophages.com/hu-cell-atlas).
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, UK
| | - J Kenneth Baillie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, UK
| | - Helen Brown
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, UK
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, UK
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, UK
| |
Collapse
|
110
|
Leung-Hagesteijn C, Erdmann N, Cheung G, Keats JJ, Stewart AK, Reece D, Chung KC, Tiedemann RE. Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell 2013; 24:289-304. [PMID: 24029229 PMCID: PMC4118579 DOI: 10.1016/j.ccr.2013.08.009] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/13/2013] [Accepted: 08/13/2013] [Indexed: 12/11/2022]
Abstract
Proteasome inhibitor (PI) resistance mechanisms in multiple myeloma (MM) remain controversial. We report the existence of a progenitor organization in primary MM that recapitulates maturation stages between B cells and plasma cells and that contributes to clinical PI resistance. Xbp1s(-) tumor B cells and pre-plasmablasts survive therapeutic PI, preventing cure, while maturation arrest of MM before the plasmablast stage enables progressive disease on PI treatment. Mechanistically, suppression of Xbp1s in MM is shown to induce bortezomib resistance via de-commitment to plasma cell maturation and immunoglobulin production, diminishing endoplasmic reticulum (ER) front-loading and cytotoxic susceptibility to PI-induced inhibition of ER-associated degradation. These results reveal the tumor progenitor structure in MM and highlight its role in therapeutic failure.
Collapse
Affiliation(s)
| | | | - Grace Cheung
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | | - A Keith Stewart
- Division of Hematology-Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Donna Reece
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | | | - Rodger E Tiedemann
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
- Contact Information: Dr. Rodger E. Tiedemann, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2M9, Canada, Tel: 416-581-8451, Fax: 416-946-6546,
| |
Collapse
|
111
|
Cowling VH, Turner SA, Cole MD. Burkitt's lymphoma-associated c-Myc mutations converge on a dramatically altered target gene response and implicate Nol5a/Nop56 in oncogenesis. Oncogene 2013; 33:3519-27. [PMID: 24013231 PMCID: PMC5003617 DOI: 10.1038/onc.2013.338] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 06/03/2013] [Accepted: 06/28/2013] [Indexed: 12/13/2022]
Abstract
Burkitt’s Lymphomas (BLs) acquire consistent point mutations in a conserved domain of Myc, Myc Box I. We report that the enhanced transforming activity of BL-associated Myc mutants can be uncoupled from loss of phosphorylation and increased protein stability. Furthermore, two different BL-associated Myc mutations induced similar gene expression profiles independently of T58 phosphorylation, and these profiles are dramatically different from MycWT. Nol5a/Nop56, which is required for rRNA methylation, was identified as a gene hyperactivated by the BL-associated Myc mutants. We show that Nol5a is necessary for Myc-induced cell transformation, enhances MycWT-induced cell transformation, and increases the size of MycWT induced tumors. Thus, Nol5a expands the link between Myc-induced regulation of nucleolar target genes which are rate-limiting for cell transformation and tumor growth.
Collapse
Affiliation(s)
- V H Cowling
- Department of Pharmacology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, USA
| | - S A Turner
- Department of Genetics, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, USA
| | - M D Cole
- 1] Department of Pharmacology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, USA [2] Department of Genetics, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, USA
| |
Collapse
|
112
|
Abstract
Constitutive activation of the nuclear factor-κ B (NF-κB) pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Recurrent mutations of NF-κB regulators that cause constitutive activity of this oncogenic pathway have been identified. However, it remains unclear how specific target genes are regulated. We identified the atypical nuclear IκB protein IκB-ζ to be upregulated in ABC compared with germinal center B-cell-like (GCB) DLBCL primary patient samples. Knockdown of IκB-ζ by RNA interference was toxic to ABC but not to GCB DLBCL cell lines. Gene expression profiling after IκB-ζ knockdown demonstrated a significant downregulation of a large number of known NF-κB target genes, indicating an essential role of IκB-ζ in regulating a specific set of NF-κB target genes. To further investigate how IκB-ζ mediates NF-κB activity, we performed immunoprecipitations and detected a physical interaction of IκB-ζ with both p50 and p52 NF-κB subunits, indicating that IκB-ζ interacts with components of both the canonical and the noncanonical NF-κB pathway in ABC DLBCL. Collectively, our data demonstrate that IκB-ζ is essential for nuclear NF-κB activity in ABC DLBCL, and thus might represent a promising molecular target for future therapies.
Collapse
|
113
|
Doig TN, Hume DA, Theocharidis T, Goodlad JR, Gregory CD, Freeman TC. Coexpression analysis of large cancer datasets provides insight into the cellular phenotypes of the tumour microenvironment. BMC Genomics 2013; 14:469. [PMID: 23845084 PMCID: PMC3721986 DOI: 10.1186/1471-2164-14-469] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 06/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biopsies taken from individual tumours exhibit extensive differences in their cellular composition due to the inherent heterogeneity of cancers and vagaries of sample collection. As a result genes expressed in specific cell types, or associated with certain biological processes are detected at widely variable levels across samples in transcriptomic analyses. This heterogeneity also means that the level of expression of genes expressed specifically in a given cell type or process, will vary in line with the number of those cells within samples or activity of the pathway, and will therefore be correlated in their expression. RESULTS Using a novel 3D network-based approach we have analysed six large human cancer microarray datasets derived from more than 1,000 individuals. Based upon this analysis, and without needing to isolate the individual cells, we have defined a broad spectrum of cell-type and pathway-specific gene signatures present in cancer expression data which were also found to be largely conserved in a number of independent datasets. CONCLUSIONS The conserved signature of the tumour-associated macrophage is shown to be largely-independent of tumour cell type. All stromal cell signatures have some degree of correlation with each other, since they must all be inversely correlated with the tumour component. However, viewed in the context of established tumours, the interactions between stromal components appear to be multifactorial given the level of one component e.g. vasculature, does not correlate tightly with another, such as the macrophage.
Collapse
Affiliation(s)
- Tamasin N Doig
- Centre for Inflammation Research, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
114
|
PTEN loss defines a PI3K/AKT pathway-dependent germinal center subtype of diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A 2013; 110:12420-5. [PMID: 23840064 DOI: 10.1073/pnas.1305656110] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) represents a heterogeneous diagnostic category with distinct molecular subtypes that can be defined by gene expression profiling. However, even within these defined subtypes, heterogeneity prevails. To further elucidate the pathogenesis of these entities, we determined the expression of the tumor suppressor phosphatase and tensin homolog (PTEN) in 248 primary DLBCL patient samples. These analyses revealed that loss of PTEN was detectable in 55% of germinal center B-cell-like (GCB) DLBCLs, whereas this abnormality was found in only 14% of non-GCB DLBCL patient samples. In GCB DLBCL, the PTEN status was inversely correlated with activation of the oncogenic PI3K/protein kinase B (AKT) pathway in both DLBCL cell lines and primary patient samples. Reexpression of PTEN induced cytotoxicity in PTEN-deficient GCB DLBCL cell line models by inhibiting PI3K/AKT signaling, indicating an addiction to this pathway in this subset of GCB DLBCLs. PI3K/AKT inhibition induced down-regulation of the transcription factor MYC. Reexpression of MYC rescued GCB DLBCL cells from PTEN-induced toxicity, identifying a regulatory mechanism of MYC expression in DLBCL. Finally, pharmacologic PI3K inhibition resulted in toxicity selectively in PTEN-deficient GCB DLBCL lines. Collectively, our results indicate that PTEN loss defines a PI3K/AKT-dependent GCB DLBCL subtype that is addicted to PI3K and MYC signaling and suggest that pharmacologic inhibition of PI3K might represent a promising therapeutic approach in these lymphomas.
Collapse
|
115
|
SOX11 regulates PAX5 expression and blocks terminal B-cell differentiation in aggressive mantle cell lymphoma. Blood 2013; 121:2175-85. [DOI: 10.1182/blood-2012-06-438937] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Key Points
SOX11 silencing promotes the shift from a mature B cell into the initial plasmacytic differentiation phenotype in MCL. SOX11 promotes tumor growth of MCL cells in vivo, highlighting its implication in the aggressive behavior of conventional MCL.
Collapse
|
116
|
Zhou J, Tiemann K, Chomchan P, Alluin J, Swiderski P, Burnett J, Zhang X, Forman S, Chen R, Rossi J. Dual functional BAFF receptor aptamers inhibit ligand-induced proliferation and deliver siRNAs to NHL cells. Nucleic Acids Res 2013; 41:4266-83. [PMID: 23470998 PMCID: PMC3627597 DOI: 10.1093/nar/gkt125] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The B-cell–activating factor (BAFF)-receptor (BAFF-R) is restrictedly expressed on B-cells and is often overexpressed in B-cell malignancies, such as non-Hodgkin’s lymphoma. On binding to its ligand BAFF, proliferation and cell survival are increased, enabling cancer cells to proliferate faster than normal B-cells. Nucleic acid aptamers can bind to target ligands with high specificity and affinity and may offer therapeutic advantages over antibody-based approaches. In this study, we isolated several 2′-F–modified RNA aptamers targeting the B-cell–specific BAFF-R with nanomolar affinity using in vitro SELEX technology. The aptamers efficiently bound to BAFF-R on the surface of B-cells, blocked BAFF-mediated B-cell proliferation and were internalized into B-cells. Furthermore, chimeric molecules between the BAFF-R aptamer and small interfering RNAs (siRNAs) were specifically delivered to BAFF-R expressing cells with a similar efficiency as the aptamer alone. We demonstrate that a signal transducer and activator of transcription 3 (STAT3) siRNA delivered by the BAFF-R aptamer was processed by Dicer and efficiently reduced levels of target mRNA and protein in Jeko-1 and Z138 human B-cell lines. Collectively, our results demonstrate that the dual-functional BAFF-R aptamer–siRNA conjugates are able to deliver siRNAs and block ligand mediated processes, suggesting it might be a promising combinatorial therapeutic agent for B-cell malignancies.
Collapse
Affiliation(s)
- Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Care MA, Barrans S, Worrillow L, Jack A, Westhead DR, Tooze RM. A microarray platform-independent classification tool for cell of origin class allows comparative analysis of gene expression in diffuse large B-cell lymphoma. PLoS One 2013; 8:e55895. [PMID: 23424639 PMCID: PMC3570548 DOI: 10.1371/journal.pone.0055895] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 01/07/2013] [Indexed: 12/22/2022] Open
Abstract
Cell of origin classification of diffuse large B-cell lymphoma (DLBCL) identifies subsets with biological and clinical significance. Despite the established nature of the classification existing studies display variability in classifier implementation, and a comparative analysis across multiple data sets is lacking. Here we describe the validation of a cell of origin classifier for DLBCL, based on balanced voting between 4 machine-learning tools: the DLBCL automatic classifier (DAC). This shows superior survival separation for assigned Activated B-cell (ABC) and Germinal Center B-cell (GCB) DLBCL classes relative to a range of other classifiers. DAC is effective on data derived from multiple microarray platforms and formalin fixed paraffin embedded samples and is parsimonious, using 20 classifier genes. We use DAC to perform a comparative analysis of gene expression in 10 data sets (2030 cases). We generate ranked meta-profiles of genes showing consistent class-association using ≥6 data sets as a cut-off: ABC (414 genes) and GCB (415 genes). The transcription factor ZBTB32 emerges as the most consistent and differentially expressed gene in ABC-DLBCL while other transcription factors such as ARID3A, BATF, and TCF4 are also amongst the 24 genes associated with this class in all datasets. Analysis of enrichment of 12323 gene signatures against meta-profiles and all data sets individually confirms consistent associations with signatures of molecular pathways, chromosomal cytobands, and transcription factor binding sites. We provide DAC as an open access Windows application, and the accompanying meta-analyses as a resource.
Collapse
Affiliation(s)
- Matthew A. Care
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
- Bioinformatics Group, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Sharon Barrans
- Haematological Malignancy Diagnostic Service (HMDS), St. James’s Institute of Oncology, Leeds, United Kingdom
| | - Lisa Worrillow
- Haematological Malignancy Diagnostic Service (HMDS), St. James’s Institute of Oncology, Leeds, United Kingdom
| | - Andrew Jack
- Haematological Malignancy Diagnostic Service (HMDS), St. James’s Institute of Oncology, Leeds, United Kingdom
| | - David R. Westhead
- Bioinformatics Group, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail: (RT); (DW)
| | - Reuben M. Tooze
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
- Haematological Malignancy Diagnostic Service (HMDS), St. James’s Institute of Oncology, Leeds, United Kingdom
- * E-mail: (RT); (DW)
| |
Collapse
|
118
|
ZFP36L1 negatively regulates plasmacytoid differentiation of BCL1 cells by targeting BLIMP1 mRNA. PLoS One 2012; 7:e52187. [PMID: 23284928 PMCID: PMC3527407 DOI: 10.1371/journal.pone.0052187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/09/2012] [Indexed: 12/03/2022] Open
Abstract
The ZFP36/Tis11 family of zinc-finger proteins regulate cellular processes by binding to adenine uridine rich elements in the 3′ untranslated regions of various mRNAs and promoting their degradation. We show here that ZFP36L1 expression is largely extinguished during the transition from B cells to plasma cells, in a reciprocal pattern to that of ZFP36 and the plasma cell transcription factor, BLIMP1. Enforced expression of ZFP36L1 in the mouse BCL1 cell line blocked cytokine-induced differentiation while shRNA-mediated knock-down enhanced differentiation. Reconstruction of regulatory networks from microarray gene expression data using the ARACNe algorithm identified candidate mRNA targets for ZFP36L1 including BLIMP1. Genes that displayed down-regulation in plasma cells were significantly over-represented (P = <0.0001) in a set of previously validated ZFP36 targets suggesting that ZFP36L1 and ZFP36 target distinct sets of mRNAs during plasmacytoid differentiation. ShRNA-mediated knock-down of ZFP36L1 in BCL1 cells led to an increase in levels of BLIMP1 mRNA and protein, but not for mRNAs of other transcription factors that regulate plasmacytoid differentiation (xbp1, irf4, bcl6). Finally, ZFP36L1 significantly reduced the activity of a BLIMP1 3′ untranslated region-driven luciferase reporter. Taken together, these findings suggest that ZFP36L1 negatively regulates plasmacytoid differentiation, at least in part, by targeting the expression of BLIMP1.
Collapse
|
119
|
Schrader A, Meyer K, von Bonin F, Vockerodt M, Walther N, Hand E, Ulrich A, Matulewicz K, Lenze D, Hummel M, Kieser A, Engelke M, Trümper L, Kube D. Global gene expression changes of in vitro stimulated human transformed germinal centre B cells as surrogate for oncogenic pathway activation in individual aggressive B cell lymphomas. Cell Commun Signal 2012; 10:43. [PMID: 23253402 PMCID: PMC3566944 DOI: 10.1186/1478-811x-10-43] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/25/2012] [Indexed: 12/25/2022] Open
Abstract
Background Aggressive Non-Hodgkin lymphomas (NHL) are a group of lymphomas derived from germinal centre B cells which display a heterogeneous pattern of oncogenic pathway activation. We postulate that specific immune response associated signalling, affecting gene transcription networks, may be associated with the activation of different oncogenic pathways in aggressive Non-Hodgkin lymphomas (NHL). Methodology The B cell receptor (BCR), CD40, B-cell activating factor (BAFF)-receptors and Interleukin (IL) 21 receptor and Toll like receptor 4 (TLR4) were stimulated in human transformed germinal centre B cells by treatment with anti IgM F(ab)2-fragments, CD40L, BAFF, IL21 and LPS respectively. The changes in gene expression following the activation of Jak/STAT, NF-кB, MAPK, Ca2+ and PI3K signalling triggered by these stimuli was assessed using microarray analysis. The expression of top 100 genes which had a change in gene expression following stimulation was investigated in gene expression profiles of patients with Aggressive non-Hodgkin Lymphoma (NHL). Results αIgM stimulation led to the largest number of changes in gene expression, affecting overall 6596 genes. While CD40L stimulation changed the expression of 1194 genes and IL21 stimulation affected 902 genes, only 283 and 129 genes were modulated by lipopolysaccharide or BAFF receptor stimulation, respectively. Interestingly, genes associated with a Burkitt-like phenotype, such as MYC, BCL6 or LEF1, were affected by αIgM. Unique and shared gene expression was delineated. NHL-patients were sorted according to their similarity in the expression of TOP100 affected genes to stimulated transformed germinal centre B cells The αIgM gene module discriminated individual DLBCL in a similar manner to CD40L or IL21 gene modules. DLBCLs with low module activation often carry chromosomal MYC aberrations. DLBCLs with high module activation show strong expression of genes involved in cell-cell communication, immune responses or negative feedback loops. Using chemical inhibitors for selected kinases we show that mitogen activated protein kinase- and phosphoinositide 3 kinase-signalling are dominantly involved in regulating genes included in the αIgM gene module. Conclusion We provide an in vitro model system to investigate pathway activation in lymphomas. We defined the extent to which different immune response associated pathways are responsible for differences in gene expression which distinguish individual DLBCL cases. Our results support the view that tonic or constitutively active MAPK/ERK pathways are an important part of oncogenic signalling in NHL. The experimental model can now be applied to study the therapeutic potential of deregulated oncogenic pathways and to develop individual treatment strategies for lymphoma patients.
Collapse
Affiliation(s)
- Alexandra Schrader
- Department of Haematology and Oncology, University Medical Centre Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci U S A 2012; 109:21360-5. [PMID: 23236167 DOI: 10.1073/pnas.1210371110] [Citation(s) in RCA: 439] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ezh2 (Enhancer of zeste homolog 2) protein is the enzymatic component of the Polycomb repressive complex 2 (PRC2), which represses gene expression by methylating lysine 27 of histone H3 (H3K27) and regulates cell proliferation and differentiation during embryonic development. Recently, hot-spot mutations of Ezh2 were identified in diffused large B-cell lymphomas and follicular lymphomas. To investigate if tumor growth is dependent on the enzymatic activity of Ezh2, we developed a potent and selective small molecule inhibitor, EI1, which inhibits the enzymatic activity of Ezh2 through direct binding to the enzyme and competing with the methyl group donor S-Adenosyl methionine. EI1-treated cells exhibit genome-wide loss of H3K27 methylation and activation of PRC2 target genes. Furthermore, inhibition of Ezh2 by EI1 in diffused large B-cell lymphomas cells carrying the Y641 mutations results in decreased proliferation, cell cycle arrest, and apoptosis. These results provide strong validation of Ezh2 as a potential therapeutic target for the treatment of cancer.
Collapse
|
121
|
Geng H, Brennan S, Milne TA, Chen WY, Li Y, Hurtz C, Kweon SM, Zickl L, Shojaee S, Neuberg D, Huang C, Biswas D, Xin Y, Racevskis J, Ketterling RP, Luger SM, Lazarus H, Tallman MS, Rowe JM, Litzow MR, Guzman ML, Allis CD, Roeder RG, Müschen M, Paietta E, Elemento O, Melnick AM. Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia. Cancer Discov 2012; 2:1004-23. [PMID: 23107779 DOI: 10.1158/2159-8290.cd-12-0208] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Genetic lesions such as BCR-ABL1, E2A-PBX1, and MLL rearrangements (MLLr) are associated with unfavorable outcomes in adult B-cell precursor acute lymphoblastic leukemia (B-ALL). Leukemia oncoproteins may directly or indirectly disrupt cytosine methylation patterning to mediate the malignant phenotype. We postulated that DNA methylation signatures in these aggressive B-ALLs would point toward disease mechanisms and useful biomarkers and therapeutic targets. We therefore conducted DNA methylation and gene expression profiling on a cohort of 215 adult patients with B-ALL enrolled in a single phase III clinical trial (ECOG E2993) and normal control B cells. In BCR-ABL1-positive B-ALLs, aberrant cytosine methylation patterning centered around a cytokine network defined by hypomethylation and overexpression of IL2RA(CD25). The E2993 trial clinical data showed that CD25 expression was strongly associated with a poor outcome in patients with ALL regardless of BCR-ABL1 status, suggesting CD25 as a novel prognostic biomarker for risk stratification in B-ALLs. In E2A-PBX1-positive B-ALLs, aberrant DNA methylation patterning was strongly associated with direct fusion protein binding as shown by the E2A-PBX1 chromatin immunoprecipitation (ChIP) sequencing (ChIP-seq), suggesting that E2A-PBX1 fusion protein directly remodels the epigenome to impose an aggressive B-ALL phenotype. MLLr B-ALL featured prominent cytosine hypomethylation, which was linked with MLL fusion protein binding, H3K79 dimethylation, and transcriptional upregulation, affecting a set of known and newly identified MLL fusion direct targets with oncogenic activity such as FLT3 and BCL6. Notably, BCL6 blockade or loss of function suppressed proliferation and survival of MLLr leukemia cells, suggesting BCL6-targeted therapy as a new therapeutic strategy for MLLr B-ALLs. SIGNIFICANCE We conducted the first integrative epigenomic study in adult B-ALLs, as a correlative study to the ECOG E2993 phase III clinical trial. This study links for the first time the direct actions of oncogenic fusion proteins with disruption of epigenetic regulation mediated by cytosine methylation. We identify a novel clinically actionable biomarker in B-ALLs: IL2RA (CD25), which is linked with BCR-ABL1 and an inflammatory signaling network associated with chemotherapy resistance. We show that BCL6 is a novel MLL fusion protein target that is required to maintain the proliferation and survival of primary human adult MLLr cells and provide the basis for a clinical trial with BCL6 inhibitors for patients with MLLr.
Collapse
Affiliation(s)
- Huimin Geng
- Department of Medicine/Hematology-Oncology Division, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, Wang R, Green DR, Tessarollo L, Casellas R, Zhao K, Levens D. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 2012; 151:68-79. [PMID: 23021216 PMCID: PMC3471363 DOI: 10.1016/j.cell.2012.08.033] [Citation(s) in RCA: 832] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 06/17/2012] [Accepted: 08/08/2012] [Indexed: 01/19/2023]
Abstract
The c-Myc HLH-bZIP protein has been implicated in physiological or pathological growth, proliferation, apoptosis, metabolism, and differentiation at the cellular, tissue, or organismal levels via regulation of numerous target genes. No principle yet unifies Myc action due partly to an incomplete inventory and functional accounting of Myc's targets. To observe Myc target expression and function in a system where Myc is temporally and physiologically regulated, the transcriptomes and the genome-wide distributions of Myc, RNA polymerase II, and chromatin modifications were compared during lymphocyte activation and in ES cells as well. A remarkably simple rule emerged from this quantitative analysis: Myc is not an on-off specifier of gene activity, but is a nonlinear amplifier of expression, acting universally at active genes, except for immediate early genes that are strongly induced before Myc. This rule of Myc action explains the vast majority of Myc biology observed in literature.
Collapse
Affiliation(s)
- Zuqin Nie
- Laboratory of Pathology, NCI, Bethesda, MD, 20892
| | - Gangqing Hu
- Systems Biology Center, NHLBI, Bethesda, MD, 20892
| | - Gang Wei
- Systems Biology Center, NHLBI, Bethesda, MD, 20892
| | - Kairong Cui
- Systems Biology Center, NHLBI, Bethesda, MD, 20892
| | - Arito Yamane
- Genomics and Immunity Section, NIAMS, Bethesda, MD, 20892
| | - Wolfgang Resch
- Genomics and Immunity Section, NIAMS, Bethesda, MD, 20892
| | - Ruoning Wang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | - Keji Zhao
- Systems Biology Center, NHLBI, Bethesda, MD, 20892
| | - David Levens
- Laboratory of Pathology, NCI, Bethesda, MD, 20892
| |
Collapse
|
123
|
Jiang Y, Soong TD, Wang L, Melnick AM, Elemento O. Genome-wide detection of genes targeted by non-Ig somatic hypermutation in lymphoma. PLoS One 2012; 7:e40332. [PMID: 22808135 PMCID: PMC3395700 DOI: 10.1371/journal.pone.0040332] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/07/2012] [Indexed: 12/29/2022] Open
Abstract
The processes of somatic hypermutation (SHM) and class switch recombination introduced by activation-induced cytosine deaminase (AICDA) at the Immunoglobulin (Ig) loci are key steps for creating a pool of diversified antibodies in germinal center B cells (GCBs). Unfortunately, AICDA can also accidentally introduce mutations at bystander loci, particularly within the 5′ regulatory regions of proto-oncogenes relevant to diffuse large B cell lymphomas (DLBCL). Since current methods for genomewide sequencing such as Exon Capture and RNAseq only target mutations in coding regions, to date non-Ig promoter SHMs have been studied only in a handful genes. We designed a novel approach integrating bioinformatics tools with next generation sequencing technology to identify regulatory loci targeted by SHM genome-wide. We observed increased numbers of SHM associated sequence variant hotspots in lymphoma cells as compared to primary normal germinal center B cells. Many of these SHM hotspots map to genes that have not been reported before as mutated, including BACH2, BTG2, CXCR4, CIITA, EBF1, PIM2, and TCL1A, etc., all of which have potential roles in B cell survival, differentiation, and malignant transformation. In addition, using BCL6 and BACH2 as examples, we demonstrated that SHM sites identified in these 5′ regulatory regions greatly altered their transcription activities in a reporter assay. Our approach provides a first cost-efficient, genome-wide method to identify regulatory mutations and non-Ig SHM hotspots.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Differentiation/genetics
- Cell Line, Tumor
- Chromatin Immunoprecipitation
- Gene Expression Regulation, Neoplastic
- Genes, Neoplasm/genetics
- Genes, Regulator/genetics
- Genome, Human/genetics
- Histones/metabolism
- Humans
- Lymphoma/genetics
- Lymphoma/immunology
- Lymphoma/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Methylation
- Polymorphism, Single Nucleotide/genetics
- Promoter Regions, Genetic/genetics
- Sequence Analysis, DNA
- Somatic Hypermutation, Immunoglobulin/genetics
Collapse
Affiliation(s)
- Yanwen Jiang
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - T. David Soong
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
| | - Ling Wang
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ari M. Melnick
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (AM); (OE)
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (AM); (OE)
| |
Collapse
|
124
|
Gibson TM, Wang SS, Cerhan JR, Maurer MJ, Hartge P, Habermann TM, Davis S, Cozen W, Lynch CF, Severson RK, Rothman N, Chanock SJ, Morton LM. Inherited genetic variation and overall survival following follicular lymphoma. Am J Hematol 2012; 87:724-6. [PMID: 22473939 PMCID: PMC3392094 DOI: 10.1002/ajh.23184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 02/23/2012] [Accepted: 02/27/2012] [Indexed: 02/04/2023]
Abstract
Follicular lymphoma (FL) has variable progression and survival, and improved identification of patients at high risk for progression would aid in identifying patients most likely to benefit from alternative therapy.In a sample of 244 FL cases identified during a population-based case-control study of non-Hodgkin lymphoma (NHL), we examined 6,679 tag SNPs in 488 gene regions for associations with overall FL survival. Over a median follow-up of 89 months with 65 deaths in this preliminary study, we identified 5 gene regions (BMP7, GALNT12,DUSP2, GADD45B, and ADAM17) that were associated with overall survival from FL. Results did not meet the criteria for statistical significance after adjustment for multiple hypothesis testing. These results,which support a role for host factors in determining the variable progression of FL, serve as an initial examination that can inform future studies of genetic variation and FL survival. However, they require replication in independent populations, as well as assessment in rituximab-treated patients.
Collapse
Affiliation(s)
- Todd M Gibson
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Yang Y, Shaffer AL, Emre NT, Ceribelli M, Zhang M, Wright G, Xiao W, Powell J, Platig J, Kohlhammer H, Young RM, Zhao H, Yang Y, Xu W, Buggy JJ, Balasubramanian S, Mathews LA, Shinn P, Guha R, Ferrer M, Thomas C, Waldmann TA, Staudt LM. Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. Cancer Cell 2012; 21:723-37. [PMID: 22698399 PMCID: PMC4059833 DOI: 10.1016/j.ccr.2012.05.024] [Citation(s) in RCA: 414] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/13/2012] [Accepted: 05/22/2012] [Indexed: 12/30/2022]
Abstract
Knowledge of oncogenic mutations can inspire therapeutic strategies that are synthetically lethal, affecting cancer cells while sparing normal cells. Lenalidomide is an active agent in the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), but its mechanism of action is unknown. Lenalidomide kills ABC DLBCL cells by augmenting interferon β (IFNβ) production, owing to the oncogenic MYD88 mutations in these lymphomas. In a cereblon-dependent fashion, lenalidomide downregulates IRF4 and SPIB, transcription factors that together prevent IFNβ production by repressing IRF7 and amplify prosurvival NF-κB signaling by transactivating CARD11. Blockade of B cell receptor signaling using the BTK inhibitor ibrutinib also downregulates IRF4 and consequently synergizes with lenalidomide in killing ABC DLBCLs, suggesting attractive therapeutic strategies.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adenine/analogs & derivatives
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Blotting, Western
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Regulatory Networks/drug effects
- Humans
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/metabolism
- Interferon-beta/genetics
- Interferon-beta/metabolism
- Interferon-beta/pharmacology
- Lenalidomide
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Peptide Hydrolases/genetics
- Peptide Hydrolases/metabolism
- Piperidines
- Pyrazoles/administration & dosage
- Pyrimidines/administration & dosage
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Thalidomide/administration & dosage
- Thalidomide/analogs & derivatives
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Burden/drug effects
- Tumor Burden/genetics
- Ubiquitin-Protein Ligases
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yibin Yang
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arthur L. Shaffer
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - N.C. Tolga Emre
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michele Ceribelli
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meili Zhang
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George Wright
- Biometric Research Branch, National Cancer Institute, Rockville, MD, USA
| | - Wenming Xiao
- Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - John Powell
- Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - John Platig
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- University of Maryland, Institute for Research in Electronics and Applied Physics. College Park, MD, USA
| | - Holger Kohlhammer
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryan M. Young
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hong Zhao
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yandan Yang
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weihong Xu
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Lesley A. Mathews
- National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Paul Shinn
- National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Rajarshi Guha
- National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Craig Thomas
- National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Thomas A. Waldmann
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Louis M. Staudt
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Corresponding author: Louis M. Staudt, MD, PhD, 9000 Rockville Pike, Building 10, Room 4N114, Bethesda, MD 20892, 301-402-1892, Fax: 301-496-9956,
| |
Collapse
|
126
|
Bosentan, an endothelin receptor antagonist, ameliorates collagen-induced arthritis: the role of TNF-α in the induction of endothelin system genes. Inflamm Res 2012; 61:337-48. [PMID: 22249931 DOI: 10.1007/s00011-011-0415-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/23/2011] [Accepted: 12/05/2011] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Endothelins (ETs) are involved in several inflammatory events. The present study investigated the efficacy of bosentan, a dual ETA/ETB receptor antagonist, in collagen-induced arthritis (CIA) in mice. TREATMENT CIA was induced in DBA/1J mice. Arthritic mice were treated with bosentan (100 mg/kg) once a day, starting from the day when arthritis was clinically detectable. METHODS CIA progression was assessed by measurements of visual clinical score, paw swelling and hypernociception. Histological changes, neutrophil infiltration and pro-inflammatory cytokines were evaluated in the joints. Gene expression in the lymph nodes of arthritic mice was evaluated by microarray technology. PreproET-1 mRNA expression in the lymph nodes of mice and in peripheral blood mononuclear cells (PBMCs) was evaluated by real-time PCR. The differences were evaluated by one-way ANOVA or Student's t test. RESULTS Oral treatment with bosentan markedly ameliorated the clinical aspects of CIA (visual clinical score, paw swelling and hyperalgesia). Bosentan treatment also reduced joint damage, leukocyte infiltration and pro-inflammatory cytokine levels (IL-1β, TNFα and IL-17) in the joint tissues. Changes in gene expression in the lymph nodes of arthritic mice returned to the levels of the control mice after bosentan treatment. PreproET mRNA expression increased in PBMCs from rheumatoid arthritis (RA) patients but returned to basal level in PBMCs from patients under anti-TNF therapy. In-vitro treatment of PBMCs with TNFα upregulated ET system genes. CONCLUSION These findings indicate that ET receptor antagonists, such as bosentan, might be useful in controlling RA. Moreover, it seems that ET mediation of arthritis is triggered by TNFα.
Collapse
|
127
|
Abstract
The mechanisms that drive normal B cell differentiation and activation are frequently subverted by B cell lymphomas for their unlimited growth and survival. B cells are particularly prone to malignant transformation because the machinery used for antibody diversification can cause chromosomal translocations and oncogenic mutations. The advent of functional and structural genomics has greatly accelerated our understanding of oncogenic mechanisms in lymphomagenesis. The signaling pathways that normal B cells utilize to sense antigens are frequently derailed in B cell malignancies, leading to constitutive activation of prosurvival pathways. These malignancies co-opt transcriptional regulatory systems that characterize their normal B cell counterparts and frequently alter epigenetic regulators of chromatin structure and gene expression. These mechanistic insights are ushering in an era of targeted therapies for these cancers based on the principles of pathogenesis.
Collapse
Affiliation(s)
- Arthur L Shaffer
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
128
|
Zwolinska AK, Heagle Whiting A, Beekman C, Sedivy JM, Marine JC. Suppression of Myc oncogenic activity by nucleostemin haploinsufficiency. Oncogene 2011; 31:3311-21. [PMID: 22081066 DOI: 10.1038/onc.2011.507] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nucleostemin (NS), a nucleolar GTPase, is highly expressed in stem/progenitor cells and in most cancer cells. However, little is known about the regulation of its expression. Here, we identify the NS gene as a novel direct transcriptional target of the c-Myc oncoprotein. We show that Myc overexpression enhances NS transcription in cultured cells and in pre-neoplastic B cells from Eμ-myc transgenic mice. Consistent with NS being downstream of Myc, NS expression parallels that of Myc in a large panel of human cancer cell lines. Using chromatin immunoprecipitation we show that c-Myc binds to a well-conserved E-box in the NS promoter. Critically, we show NS haploinsufficiency profoundly delays Myc-induced cancer formation in vivo. NS+/-Eμ-myc transgenic mice have much slower rates of B-cell lymphoma development, with life spans twice that of their wild-type littermates. Moreover, we demonstrate that NS is essential for the proliferation of Myc-overexpressing cells in cultured cells and in vivo: impaired lymphoma development was associated with a drastic decrease of c-Myc-induced proliferation of pre-tumoural B cells. Finally, we provide evidence that in cell culture NS controls cell proliferation independently of p53 and that NS haploinsufficiency significantly delays lymphomagenesis in p53-deficient mice. Together these data indicate that NS functions downstream of Myc as a rate-limiting regulator of cell proliferation and transformation, independently from its putative role within the p53 pathway. Targeting NS is therefore expected to compromise early tumour development irrespectively of the p53 status.
Collapse
Affiliation(s)
- A K Zwolinska
- Laboratory for Molecular Cancer Biology, Department of Biomedical Molecular Biology, VIB-UGent, Technologiepark, Ghent, Belgium
| | | | | | | | | |
Collapse
|
129
|
Opposing roles of NF-κB in anti-cancer treatment outcome unveiled by cross-species investigations. Genes Dev 2011; 25:2137-46. [PMID: 21979374 DOI: 10.1101/gad.17620611] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In malignancies, enhanced nuclear factor-κB (NF-κB) activity is largely viewed as an oncogenic property that also confers resistance to chemotherapy. Recently, NF-κB has been postulated to participate in a senescence-associated and possibly senescence-reinforcing cytokine response, thereby suggesting a tumor-restraining role for NF-κB. Using a mouse lymphoma model and analyzing transcriptome and clinical data from lymphoma patients, we show here that therapy-induced senescence presents with and depends on active NF-κB signaling, whereas NF-κB simultaneously promotes resistance to apoptosis. Further characterization and genetic engineering of primary mouse lymphomas according to distinct NF-κB-related oncogenic networks reminiscent of diffuse large B-cell lymphoma (DLBCL) subtypes guided us to identify Bcl2-overexpressing germinal center B-cell-like (GCB) DLBCL as a clinically relevant subgroup with significantly superior outcome when NF-κB is hyperactive. Our data illustrate the power of cross-species investigations to functionally test genetic mechanisms in transgenic mouse tumors that recapitulate distinct features of the corresponding human entity, and to ultimately use the mouse model-derived genetic information to redefine novel, clinically relevant patient subcohorts.
Collapse
|
130
|
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011; 27:1739-40. [PMID: 21546393 DOI: 10.1093/bioinformatics/btr260] [Citation(s) in RCA: 4435] [Impact Index Per Article: 316.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Well-annotated gene sets representing the universe of the biological processes are critical for meaningful and insightful interpretation of large-scale genomic data. The Molecular Signatures Database (MSigDB) is one of the most widely used repositories of such sets. RESULTS We report the availability of a new version of the database, MSigDB 3.0, with over 6700 gene sets, a complete revision of the collection of canonical pathways and experimental signatures from publications, enhanced annotations and upgrades to the web site. AVAILABILITY AND IMPLEMENTATION MSigDB is freely available for non-commercial use at http://www.broadinstitute.org/msigdb.
Collapse
Affiliation(s)
- Arthur Liberzon
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | | | | | | |
Collapse
|
131
|
Franke A, Niederfellner GJ, Klein C, Burtscher H. Antibodies against CD20 or B-cell receptor induce similar transcription patterns in human lymphoma cell lines. PLoS One 2011; 6:e16596. [PMID: 21364752 PMCID: PMC3041769 DOI: 10.1371/journal.pone.0016596] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 01/05/2011] [Indexed: 11/19/2022] Open
Abstract
Background CD20 is a cell surface protein exclusively expressed on B cells. It is a clinically validated target for Non-Hodgkin's lymphomas (NHL) and autoimmune diseases. The B cell receptor (BCR) plays an important role for development and proliferation of pre-B and B cells. Physical interaction of CD20 with BCR and components of the BCR signaling cascade has been reported but the consequences are not fully understood. Methodology In this study we employed antibodies against CD20 and against the BCR to trigger the respective signaling. These antibodies induced very similar expression patterns of up- and down-regulated genes in NHL cell lines indicating that CD20 may play a role in BCR signaling and vice versa. Two of the genes that were rapidly and transiently induced by both stimuli are CCL3 and CCL4. 4 hours after stimulation the concentration of these chemokines in culture medium reaches a maximum. Spleen tyrosine kinase Syk is a cytoplasmic tyrosine kinase and a key component of BCR signaling. Both siRNA mediated silencing of Syk and inhibition by selective small molecule inhibitors impaired CCL3/CCL4 protein induction after treatment with either anti-CD20 or anti-BCR antibodies. Conclusion Our results suggest that treatment with anti-CD20 antibodies triggers at least partially a BCR activation-like response in NHL cell lines.
Collapse
MESH Headings
- Antibodies/pharmacology
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- Antigens, CD20/immunology
- Cell Line, Tumor
- Cluster Analysis
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Regulatory Networks/drug effects
- Humans
- Immunoglobulin G/pharmacology
- Immunoglobulin M/pharmacology
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/metabolism
- Lymphoma, Non-Hodgkin/pathology
- Microarray Analysis
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/immunology
- Rituximab
- Transcription, Genetic/drug effects
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Andreas Franke
- Pharma Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | | | | | | |
Collapse
|
132
|
Gene Expression Profiling for In Silico Microdissection of Hodgkin's Lymphoma Microenvironment and Identification of Prognostic Features. Adv Hematol 2011; 2011:485310. [PMID: 21197104 PMCID: PMC3004394 DOI: 10.1155/2011/485310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/11/2010] [Indexed: 11/30/2022] Open
Abstract
Gene expression profiling studies based on DNA microarrays have demonstrated their ability to define the interaction pathways between neoplastic and nonmalignant stromal cells in cancer tissues. During the past ten years, a number of approaches including microdissection have tried to resolve the variability in DNA microarray measurements stemming from cancer tissue sample heterogeneity. Another approach, designated as virtual or in silico microdissection, avoids the laborious and time-consuming step of anatomic microdissection. It consists of confronting the gene expression profiles of complex tissue samples to those of cell lines representative of different cell lineages, different differentiation stages, or different signaling pathways. This strategy has been used in recent studies aiming to analyze microenvironment alterations using gene expression profiling of nonmicrodissected classical Hodgkin lymphoma tissues in order to generate new prognostic factors. These recent contributions are detailed and discussed in the present paper.
Collapse
|
133
|
Oncogenically active MYD88 mutations in human lymphoma. Nature 2010; 470:115-9. [PMID: 21179087 DOI: 10.1038/nature09671] [Citation(s) in RCA: 1166] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/17/2010] [Indexed: 02/06/2023]
Abstract
The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) remains the least curable form of this malignancy despite recent advances in therapy. Constitutive nuclear factor (NF)-κB and JAK kinase signalling promotes malignant cell survival in these lymphomas, but the genetic basis for this signalling is incompletely understood. Here we describe the dependence of ABC DLBCLs on MYD88, an adaptor protein that mediates toll and interleukin (IL)-1 receptor signalling, and the discovery of highly recurrent oncogenic mutations affecting MYD88 in ABC DLBCL tumours. RNA interference screening revealed that MYD88 and the associated kinases IRAK1 and IRAK4 are essential for ABC DLBCL survival. High-throughput RNA resequencing uncovered MYD88 mutations in ABC DLBCL lines. Notably, 29% of ABC DLBCL tumours harboured the same amino acid substitution, L265P, in the MYD88 Toll/IL-1 receptor (TIR) domain at an evolutionarily invariant residue in its hydrophobic core. This mutation was rare or absent in other DLBCL subtypes and Burkitt's lymphoma, but was observed in 9% of mucosa-associated lymphoid tissue lymphomas. At a lower frequency, additional mutations were observed in the MYD88 TIR domain, occurring in both the ABC and germinal centre B-cell-like (GCB) DLBCL subtypes. Survival of ABC DLBCL cells bearing the L265P mutation was sustained by the mutant but not the wild-type MYD88 isoform, demonstrating that L265P is a gain-of-function driver mutation. The L265P mutant promoted cell survival by spontaneously assembling a protein complex containing IRAK1 and IRAK4, leading to IRAK4 kinase activity, IRAK1 phosphorylation, NF-κB signalling, JAK kinase activation of STAT3, and secretion of IL-6, IL-10 and interferon-β. Hence, the MYD88 signalling pathway is integral to the pathogenesis of ABC DLBCL, supporting the development of inhibitors of IRAK4 kinase and other components of this pathway for the treatment of tumours bearing oncogenic MYD88 mutations.
Collapse
|
134
|
Rui L, Tolga Emre NC, Kruhlak MJ, Chung HJ, Steidl C, Slack G, Wright GW, Lenz G, Ngo VN, Shaffer AL, Xu W, Zhao H, Yang Y, Lamy L, Davis RE, Xiao W, Powell J, Maloney D, Thomas CJ, Möller P, Rosenwald A, Ott G, Muller-Hermelink HK, Savage K, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Weisenburger DD, Chan WC, Gascoyne RD, Levens D, Staudt LM. Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell 2010; 18:590-605. [PMID: 21156283 PMCID: PMC3049192 DOI: 10.1016/j.ccr.2010.11.013] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 09/08/2010] [Accepted: 11/09/2010] [Indexed: 02/07/2023]
Abstract
Chromosome band 9p24 is frequently amplified in primary mediastinal B cell lymphoma (PMBL) and Hodgkin lymphoma (HL). To identify oncogenes in this amplicon, we screened an RNA interference library targeting amplicon genes and thereby identified JAK2 and the histone demethylase JMJD2C as essential genes in these lymphomas. Inhibition of JAK2 and JMJD2C cooperated in killing these lymphomas by decreasing tyrosine 41 phosphorylation and increasing lysine 9 trimethylation of histone H3, promoting heterochromatin formation. MYC, a major target of JAK2-mediated histone phosphorylation, was silenced after JAK2 and JMJD2C inhibition, with a corresponding increase in repressive chromatin. Hence, JAK2 and JMJD2C cooperatively remodel the PMBL and HL epigenome, offering a mechanistic rationale for the development of JAK2 and JMJD2C inhibitors in these diseases.
Collapse
Affiliation(s)
- Lixin Rui
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - N. C. Tolga Emre
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Michael J. Kruhlak
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Hye-Jung Chung
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Christian Steidl
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4E6
| | - Graham Slack
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4E6
| | - George W. Wright
- Biometric Research Branch, DCTD, National Cancer Institute, NIH, Bethesda, MD, USA 20892
| | - Georg Lenz
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Vu N. Ngo
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Arthur L. Shaffer
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Weihong Xu
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Hong Zhao
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Yandan Yang
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Laurence Lamy
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - R. Eric Davis
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Wenming Xiao
- Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA 20892
| | - John Powell
- Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA 20892
| | - David Maloney
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850
| | - Craig J. Thomas
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850
| | - Peter Möller
- Department of Pathology, University of Ulm, Albert-Einstein-Allee 11, Ulm, Germany
| | - Andreas Rosenwald
- Department of Pathology, University of Würzburg, 97080 Würzburg, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, 70376 Stuttgart, Germany
| | | | - Kerry Savage
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4E6
| | - Joseph M. Connors
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4E6
| | - Lisa M. Rimsza
- Department of Pathology, University of Arizona, Tucson, AZ 85724
- Southwest Oncology Group, 24 Frank Lloyd Wright Drive, Ann Arbor, MI 48106
| | - Elias Campo
- Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Elaine S. Jaffe
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Jan Delabie
- Pathology Clinic, Oslo University Hospital, Oslo, Norway
| | - Erlend B. Smeland
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | | | - Wing C. Chan
- Departments of Pathology and Microbiology, University of Nebraska, Omaha, NE 68198
| | - Randy D. Gascoyne
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4E6
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Louis M. Staudt
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
135
|
Abstract
MUM1/IRF4 protein is a member of the interferon regulatory factor (IRF) family of transcriptional factors initially described as downstream regulators of interferon signaling. The quantity of this factor varies within the hematopoietic system in a lineage and stage-specific way. It is considered to be a key regulator of several steps in lymphoid, myeloid, and dendritic cell differentiation and maturation. MUM1/IRF4 expression is observed in many lymphoid and myeloid malignancies, and may be a promising target for the treatment of some of these neoplasms. We reviewed the literature on MUM1/IRF4, with emphasis on the pathologic aspects of this marker in reactive and malignant hematologic and nonhematologic conditions.
Collapse
|
136
|
Bortezomib resistance in mantle cell lymphoma is associated with plasmacytic differentiation. Blood 2010; 117:542-52. [PMID: 20956803 DOI: 10.1182/blood-2010-02-269514] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bortezomib induces remissions in 30%-50% of patients with relapsed mantle cell lymphoma (MCL). Conversely, more than half of patients' tumors are intrinsically resistant to bortezomib. The molecular mechanism of resistance has not been defined. We generated a model of bortezomib-adapted subclones of the MCL cell lines JEKO and HBL2 that were 40- to 80-fold less sensitive to bortezomib than the parental cells. Acquisition of bortezomib resistance was gradual and reversible. Bortezomib-adapted subclones showed increased proteasome activity and tolerated lower proteasome capacity than the parental lines. Using gene expression profiling, we discovered that bortezomib resistance was associated with plasmacytic differentiation, including up-regulation of IRF4 and CD38 and expression of CD138. In contrast to plasma cells, plasmacytic MCL cells did not increase immunoglobulin secretion. Intrinsically bortezomib-resistant MCL cell lines and primary tumor cells from MCL patients with inferior clinical response to bortezomib also expressed plasmacytic features. Knockdown of IRF4 was toxic for the subset of MCL cells with plasmacytic differentiation, but only slightly sensitized cells to bortezomib. We conclude that plasmacytic differentiation in the absence of an increased secretory load can enable cells to withstand the stress of proteasome inhibition. Expression of CD38 and IRF4 could serve as markers of bortezomib resistance in MCL. This study has been registered at http://clinicaltrials.gov as NCT00131976.
Collapse
|
137
|
The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 2010; 117:563-74. [PMID: 20940416 DOI: 10.1182/blood-2010-05-284984] [Citation(s) in RCA: 685] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL), an incurable malignancy of mature B lymphocytes, involves blood, bone marrow, and secondary lymphoid organs such as the lymph nodes (LN). A role of the tissue microenvironment in the pathogenesis of CLL is hypothesized based on in vitro observations, but its contribution in vivo remains ill-defined. To elucidate the effects of tumor-host interactions in vivo, we purified tumor cells from 24 treatment-naive patients. Samples were obtained concurrently from blood, bone marrow, and/or LN and analyzed by gene expression profiling. We identified the LN as a key site in CLL pathogenesis. CLL cells in the LN showed up-regulation of gene signatures, indicating B-cell receptor (BCR) and nuclear factor-κB activation. Consistent with antigen-dependent BCR signaling and canonical nuclear factor-κB activation, we detected phosphorylation of SYK and IκBα, respectively. Expression of BCR target genes was stronger in clinically more aggressive CLL, indicating more effective BCR signaling in this subtype in vivo. Tumor proliferation, quantified by the expression of the E2F and c-MYC target genes and verified with Ki67 staining by flow cytometry, was highest in the LN and was correlated with clinical disease progression. These data identify the disruption of tumor microenvironment interactions and the inhibition of BCR signaling as promising therapeutic strategies in CLL. This study is registered at http://clinicaltrials.gov as NCT00019370.
Collapse
|
138
|
Alizadeh AA, Bohen SP, Lossos C, Martinez-Climent JA, Ramos JC, Cubedo-Gil E, Harrington WJ, Lossos IS. Expression profiles of adult T-cell leukemia-lymphoma and associations with clinical responses to zidovudine and interferon alpha. Leuk Lymphoma 2010; 51:1200-16. [PMID: 20370541 DOI: 10.3109/10428191003728628] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adult T-cell leukemia-lymphoma (ATLL) is an HTLV-1-associated lymphoproliferative malignancy that is frequently fatal. We compared gene expression profiles (GEPs) of leukemic specimens from nine patients with ATLL at the time of diagnosis and immediately after combination therapy with zidovudine (AZT) and interferon alpha (IFNalpha). GEPs were also related to genetic aberrations determined by comparative genomic hybridization. We identified several genes anomalously over-expressed in the ATLL leukemic cells at the mRNA level, including LYN, CSPG2, and LMO2, and confirmed LMO2 expression in ATLL cells at the protein level. In vivo AZT-IFNalpha therapy evoked a marked induction of interferon-induced genes accompanied by repression of cell-cycle regulated genes, including those encoding ribosomal proteins. Remarkably, patients not responding to AZT-IFNalpha differed most from responding patients in lower expression of these same IFN-responsive genes, as well as components of the antigen processing and presentation apparatus. Demonstration of specific gene expression signatures associated with response to AZT-IFNalpha therapy may provide novel insights into the mechanisms of action in ATLL.
Collapse
Affiliation(s)
- Ash A Alizadeh
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Cai YD, Huang T, Feng KY, Hu L, Xie L. A unified 35-gene signature for both subtype classification and survival prediction in diffuse large B-cell lymphomas. PLoS One 2010; 5:e12726. [PMID: 20856936 PMCID: PMC2938343 DOI: 10.1371/journal.pone.0012726] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 08/21/2010] [Indexed: 12/20/2022] Open
Abstract
Cancer subtype classification and survival prediction both relate directly to patients' specific treatment plans, making them fundamental medical issues. Although the two factors are interrelated learning problems, most studies tackle each separately. In this paper, expression levels of genes are used for both cancer subtype classification and survival prediction. We considered 350 diffuse large B-cell lymphoma (DLBCL) subjects, taken from four groups of patients (activated B-cell-like subtype dead, activated B-cell-like subtype alive, germinal center B-cell-like subtype dead, and germinal center B-cell-like subtype alive). As classification features, we used 11,271 gene expression levels of each subject. The features were first ranked by mRMR (Maximum Relevance Minimum Redundancy) principle and further selected by IFS (Incremental Feature Selection) procedure. Thirty-five gene signatures were selected after the IFS procedure, and the patients were divided into the above mentioned four groups. These four groups were combined in different ways for subtype prediction and survival prediction, specifically, the activated versus the germinal center and the alive versus the dead. Subtype prediction accuracy of the 35-gene signature was 98.6%. We calculated cumulative survival time of high-risk group and low-risk groups by the Kaplan-Meier method. The log-rank test p-value was 5.98e-08. Our methodology provides a way to study subtype classification and survival prediction simultaneously. Our results suggest that for some diseases, especially cancer, subtype classification may be used to predict survival, and, conversely, survival prediction features may shed light on subtype features.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Predictive Value of Tests
- Prognosis
Collapse
Affiliation(s)
- Yu-Dong Cai
- Institute of Systems Biology, Shanghai University, Shanghai, People's Republic of China
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
- * E-mail: (YDC); (LX)
| | - Tao Huang
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Shanghai Center for Bioinformation Technology, Shanghai, People's Republic of China
| | - Kai-Yan Feng
- Shanghai Center for Bioinformation Technology, Shanghai, People's Republic of China
| | - Lele Hu
- Institute of Systems Biology, Shanghai University, Shanghai, People's Republic of China
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai, People's Republic of China
- * E-mail: (YDC); (LX)
| |
Collapse
|
140
|
Abstract
Expression profiling has shown 2 main and clinically distinct subtypes of diffuse large B-cell lymphomas (DLBCLs): germinal-center B cell-like (GCB) and activated B cell-like (ABC) DLBCLs. Further work has shown that these subtypes are partially characterized by distinct genetic alterations and different survival. Here, we show with the use of an assay that measures DNA methylation levels of 50,000 CpG motifs distributed among more than 14,000 promoters that these 2 DLBCL subtypes are also characterized by distinct epigenetic profiles. DNA methylation and gene expression profiling were performed on a cohort of 69 patients with DLBCL. After assigning ABC or GCB labels with a Bayesian expression classifier trained on an independent dataset, a supervised analysis identified 311 differentially methylated probe sets (263 unique genes) between ABC and GCB DLBCLs. Integrated analysis of methylation and gene expression showed a core tumor necrosis factor-α signaling pathway as the principal differentially perturbed gene network. Sixteen genes overlapped between the core ABC/GCB methylation and expression signatures and encoded important proteins such as IKZF1. This reduced gene set was an accurate predictor of ABC and GCB subtypes. Collectively, the data suggest that epigenetic patterning contributes to the ABC and GCB DLBCL phenotypes and could serve as useful biomarker.
Collapse
|
141
|
|
142
|
Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, Delaney A, Jones SJ, Iqbal J, Weisenburger DD, Bast MA, Rosenwald A, Muller-Hermelink HK, Rimsza LM, Campo E, Delabie J, Braziel RM, Cook JR, Tubbs RR, Jaffe ES, Lenz G, Connors JM, Staudt LM, Chan WC, Gascoyne RD. Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N Engl J Med 2010; 362:875-85. [PMID: 20220182 PMCID: PMC2897174 DOI: 10.1056/nejmoa0905680] [Citation(s) in RCA: 991] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Despite advances in treatments for Hodgkin's lymphoma, about 20% of patients still die from progressive disease. Current prognostic models predict the outcome of treatment with imperfect accuracy, and clinically relevant biomarkers have not been established to improve on the International Prognostic Score. METHODS Using gene-expression profiling, we analyzed 130 frozen samples obtained from patients with classic Hodgkin's lymphoma during diagnostic lymph-node biopsy to determine which cellular signatures were correlated with treatment outcome. We confirmed our findings in an independent cohort of 166 patients, using immunohistochemical analysis. RESULTS Gene-expression profiling identified a gene signature of tumor-associated macrophages that was significantly associated with primary treatment failure (P=0.02). In an independent cohort of patients, we found that an increased number of CD68+ macrophages was correlated with a shortened progression-free survival (P=0.03) and with an increased likelihood of relapse after autologous hematopoietic stem-cell transplantation (P=0.008), resulting in shortened disease-specific survival (P=0.003). In multivariate analysis, this adverse prognostic factor outperformed the International Prognostic Score for disease-specific survival (P=0.003 vs. P=0.03). The absence of an elevated number of CD68+ cells in patients with limited-stage disease defined a subgroup of patients with a long-term disease-specific survival of 100% with the use of current treatment strategies. CONCLUSIONS An increased number of tumor-associated macrophages was strongly associated with shortened survival in patients with classic Hodgkin's lymphoma and provides a new biomarker for risk stratification.
Collapse
Affiliation(s)
- Christian Steidl
- Department of Pathology and Laboratory Medicine, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Evens AM, Sehn LH, Farinha P, Nelson BP, Raji A, Lu Y, Brakman A, Parimi V, Winter JN, Schumacker PT, Gascoyne RD, Gordon LI. Hypoxia-inducible factor-1 {alpha} expression predicts superior survival in patients with diffuse large B-cell lymphoma treated with R-CHOP. J Clin Oncol 2010; 28:1017-24. [PMID: 20048181 DOI: 10.1200/jco.2009.24.1893] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Hypoxia-inducible factor (HIF) controls the expression of genes in response to hypoxia, as well as a wide range of other cellular processes. We previously showed constitutive stabilization of HIF-1alpha in the majority of patients with diffuse large B-cell lymphoma (DLBCL). To our knowledge, the prognostic significance of HIF in lymphoma has never been investigated. PATIENTS AND METHODS We studied the immunohistochemical protein expression of HIF-1alpha on tissue microarrays from 153 patients with DLBCL treated in sequential cohorts with cyclophosphamide, doxorubicin, oncovin, and prednisone (CHOP) or rituximab-CHOP (R-CHOP) from 1999 to 2002. Results were correlated with patient outcome. Results Median follow-up for all patients was 80 months. Among all patients, HIF-1alpha was expressed in 62% of germinal center and 59% of non-germinal center patients. With HIF-1alpha analyzed as a dependent variable, there were no survival differences in CHOP-treated patients. In the R-CHOP group, however, HIF-1alpha protein expression correlated with significantly improved progression-free survival (PFS) and overall survival (OS). Five-year PFS for HIF-1alpha-positive patients was 71% v 43% for HIF-1alpha-negative patients (P = .0187), whereas 5-year OS was 75% and 54%, respectively (P = .025). In multivariate analysis with International Prognostic Index criteria, HIF-1alpha remained a significant predictor for PFS (P = .026) and OS (P = .043). Compared with other biomarkers, HIF-1alpha correlated only with BCL6 (P = .004). In terms of gene expression, we found several common gene associations of HIF-1alpha and the stromal-1 signature with genes predominantly involved in regulation of the extracellular matrix (eg, BGN, COL1A2, COL5A1, and PLOD2). CONCLUSION The expression of HIF-1alpha protein is an important independent favorable prognostic factor for survival in patients with DLBCL treated with R-CHOP.
Collapse
Affiliation(s)
- Andrew M Evens
- DO, Division of Hematology/Oncology, 676 N St Clair St, Suite 850, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Culhane AC, Schwarzl T, Sultana R, Picard KC, Picard SC, Lu TH, Franklin KR, French SJ, Papenhausen G, Correll M, Quackenbush J. GeneSigDB--a curated database of gene expression signatures. Nucleic Acids Res 2009; 38:D716-25. [PMID: 19934259 PMCID: PMC2808880 DOI: 10.1093/nar/gkp1015] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The primary objective of most gene expression studies is the identification of one or more gene signatures; lists of genes whose transcriptional levels are uniquely associated with a specific biological phenotype. Whilst thousands of experimentally derived gene signatures are published, their potential value to the community is limited by their computational inaccessibility. Gene signatures are embedded in published article figures, tables or in supplementary materials, and are frequently presented using non-standard gene or probeset nomenclature. We present GeneSigDB (http://compbio.dfci.harvard.edu/genesigdb) a manually curated database of gene expression signatures. GeneSigDB release 1.0 focuses on cancer and stem cells gene signatures and was constructed from more than 850 publications from which we manually transcribed 575 gene signatures. Most gene signatures (n = 560) were successfully mapped to the genome to extract standardized lists of EnsEMBL gene identifiers. GeneSigDB provides the original gene signature, the standardized gene list and a fully traceable gene mapping history for each gene from the original transcribed data table through to the standardized list of genes. The GeneSigDB web portal is easy to search, allows users to compare their own gene list to those in the database, and download gene signatures in most common gene identifier formats.
Collapse
Affiliation(s)
- Aedín C Culhane
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Essential role of MALT1 protease activity in activated B cell-like diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A 2009; 106:19946-51. [PMID: 19897720 DOI: 10.1073/pnas.0907511106] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A key element for the development of suitable anti-cancer drugs is the identification of cancer-specific enzymatic activities that can be therapeutically targeted. Mucosa-associated lymphoid tissue transformation protein 1 (MALT1) is a proto-oncogene that contributes to tumorigenesis in diffuse large B-cell lymphoma (DLBCL) of the activated B-cell (ABC) subtype, the least curable subtype of DLBCL. Recent data suggest that MALT1 has proteolytic activity, but it is unknown whether this activity is relevant for tumor growth. Here we report that MALT1 is constitutively active in DLBCL lines of the ABC but not the GCB subtype. Inhibition of the MALT1 proteolytic activity led to reduced expression of growth factors and apoptosis inhibitors, and specifically affected the growth and survival of ABC DLBCL lines. These results demonstrate a key role for the proteolytic activity of MALT1 in DLBCL of the ABC subtype, and provide a rationale for the development of pharmacological inhibitors of MALT1 in DLBCL therapy.
Collapse
|
146
|
Silva GL, Junta CM, Sakamoto-Hojo ET, Donadi EA, Louzada-Junior P, Passos GAS. Genetic susceptibility loci in rheumatoid arthritis establish transcriptional regulatory networks with other genes. Ann N Y Acad Sci 2009; 1173:521-37. [PMID: 19758195 DOI: 10.1111/j.1749-6632.2009.04629.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Linkage studies have identified the human leukocyte antigen (HLA)-DRB1 as a putative rheumatoid arthritis (RA) susceptibility locus (SL). Nevertheless, it was estimated that its contribution was partial, suggesting that other non-HLA genes may play a role in RA susceptibility. To test this hypothesis, we conducted microarray transcription profiling of peripheral blood mononuclear cells in 15 RA patients and analyzed the data, using bioinformatics programs (significance analysis of microarrays method and GeneNetwork), which allowed us to determine the differentially expressed genes and to reconstruct transcriptional networks. The patients were grouped according to disease features or treatment with tumor necrosis factor blocker. Transcriptional networks that were reconstructed allowed us to identify the interactions occurring between RA SL and other genes, for example, HLA-DRB1 interacting with FNDC3A (fibronectin type III domain containing 3A). Given that fibronectin fragments can stimulate mediators of matrix and cartilage destruction in RA, this interaction is of special interest and may contribute to a clearer understanding of the functional role of HLA-DRB1 in RA pathogenesis.
Collapse
Affiliation(s)
- Guilherme Liberato Silva
- Molecular Immunogenetics Group, Department of Genetics, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | |
Collapse
|
147
|
Aggarwal M, Sánchez-Beato M, Aggarwal M, Sánchez-Beato M, Gómez-López G, Al-Shahrour F, Martínez N, Rodríguez A, Ruiz-Ballesteros E, Camacho FI, Pérez-Rosado A, de la Cueva P, Artiga MJ, Pisano DG, Kimby E, Dopazo J, Villuendas R, Piris MA. Functional signatures identified in B-cell non-Hodgkin lymphoma profiles. Leuk Lymphoma 2009; 50:1699-708. [DOI: 10.1080/10428190903189035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
148
|
Deaglio S, Malavasi F. Chronic lymphocytic leukemia microenvironment: shifting the balance from apoptosis to proliferation. Haematologica 2009; 94:752-6. [PMID: 19483151 DOI: 10.3324/haematol.2009.006676] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
149
|
Teixeira VH, Olaso R, Martin-Magniette ML, Lasbleiz S, Jacq L, Oliveira CR, Hilliquin P, Gut I, Cornelis F, Petit-Teixeira E. Transcriptome analysis describing new immunity and defense genes in peripheral blood mononuclear cells of rheumatoid arthritis patients. PLoS One 2009; 4:e6803. [PMID: 19710928 PMCID: PMC2729373 DOI: 10.1371/journal.pone.0006803] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 08/03/2009] [Indexed: 12/13/2022] Open
Abstract
Background Large-scale gene expression profiling of peripheral blood mononuclear cells from Rheumatoid Arthritis (RA) patients could provide a molecular description that reflects the contribution of diverse cellular responses associated with this disease. The aim of our study was to identify peripheral blood gene expression profiles for RA patients, using Illumina technology, to gain insights into RA molecular mechanisms. Methodology/Principal Findings The Illumina Human-6v2 Expression BeadChips were used for a complete genome-wide transcript profiling of peripheral blood mononuclear cells (PBMCs) from 18 RA patients and 15 controls. Differential analysis per gene was performed with one-way analysis of variance (ANOVA) and P values were adjusted to control the False Discovery Rate (FDR<5%). Genes differentially expressed at significant level between patients and controls were analyzed using Gene Ontology (GO) in the PANTHER database to identify biological processes. A differentially expression of 339 Reference Sequence genes (238 down-regulated and 101 up-regulated) between the two groups was observed. We identified a remarkably elevated expression of a spectrum of genes involved in Immunity and Defense in PBMCs of RA patients compared to controls. This result is confirmed by GO analysis, suggesting that these genes could be activated systemically in RA. No significant down-regulated ontology groups were found. Microarray data were validated by real time PCR in a set of nine genes showing a high degree of correlation. Conclusions/Significance Our study highlighted several new genes that could contribute in the identification of innovative clinical biomarkers for diagnostic procedures and therapeutic interventions.
Collapse
Affiliation(s)
- Vitor Hugo Teixeira
- GenHotel-EA3886, Evry University, Paris 7 University Medical School, AutoCure European Consortium member, Evry, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
A pluripotency signature predicts histologic transformation and influences survival in follicular lymphoma patients. Blood 2009; 114:3158-66. [PMID: 19636063 DOI: 10.1182/blood-2009-02-202465] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Histologic transformation (HT) of follicular lymphoma to diffuse large B-cell lymphoma (DLBCL-t) is associated with accelerated disease course and drastically worse outcome, yet the underlying mechanisms are poorly understood. We show that a network of gene transcriptional modules underlies HT. Central to the network hierarchy is a signature strikingly enriched for pluripotency-related genes. These genes are typically expressed in embryonic stem cells (ESCs), including MYC and its direct targets. This core ESC-like program was independent of proliferation/cell-cycle and overlapped but was distinct from normal B-cell transcriptional programs. Furthermore, we show that the ESC program is correlated with transcriptional programs maintaining tumor phenotype in transgenic MYC-driven mouse models of lymphoma. Although our approach was to identify HT mechanisms rather than to derive an optimal survival predictor, a model based on ESC/differentiation programs stratified patient outcomes in 2 independent patient cohorts and was predictive of propensity of follicular lymphoma tumors to transform. Transformation was associated with an expression signature combining high expression of ESC transcriptional programs with reduced expression of stromal programs. Together, these findings suggest a central role for an ESC-like signature in the mechanism of HT and provide new clues for potential therapeutic targets.
Collapse
|