101
|
Flament F, Bazin R, Laquieze S, Rubert V, Simonpietri E, Piot B. Effect of the sun on visible clinical signs of aging in Caucasian skin. Clin Cosmet Investig Dermatol 2013; 6:221-32. [PMID: 24101874 PMCID: PMC3790843 DOI: 10.2147/ccid.s44686] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objectives Aging signs can be classified into four main categories: wrinkles/texture, lack of firmness of cutaneous tissues (ptosis), vascular disorders, and pigmentation heterogeneities. During a lifetime, skin will change in appearance and structure not only because of chronological and intrinsic processes but also due to several external factors such as gravity, sun and ultraviolet exposure, and high levels of pollution; or lifestyle factors that have important and obvious effects on skin aging, such as diet, tobacco, illness, or stress. The effect of these external factors leads to progressive degradations of tegument that appear with different kinetics. The aim of this study was to clinically quantify the effect of sun exposure on facial aging in terms of the appearance of new specific signs or in terms of increasing the classical signs of aging. Materials and methods This study was carried out on 298 Caucasian women from 30 years to 78 years old. The participants were divided into two groups according to their sun exposure history: 157 women were characterized as sun-seeking, and the other 141 were classified as sun-phobic. This division was made possible by dermatologist grading of heliodermal status on the basis of several observations of classic criteria: wrinkles, sagging, pigmentation heterogeneities, vascular disorders, elastosis, and so on. This work was an opportunity to complete clinical photographic tools by adding in our portfolio new scales for signs observed in the two groups. Thus, 22 clinical parameters were investigated by a panel of twelve trained experts to characterize each woman’s face regarding standardized photographic scales, and thus describe the aging process. Results By calculating statistical correlations between the four clinical clusters (wrinkles/texture, ptosis, vascular disorders, and pigmentation disorders), and real age and apparent age on the one hand and heliodermal status on the other hand, we identified a link between each clinical cluster and aging and the photoaging process. By comparing evaluations of clinical signs between the two groups for each 10-year cluster, we demonstrated that whatever the age, a prevalence of pigmentation disorders for the sun-seeking group (ie, pigmentation) is strongly linked to ultraviolet (UV) exposure. Meanwhile, clinical signs of ptosis are linked more to chronological aging and do not present differences between the two groups, nor, therefore, photoaging. Wrinkles and texture are affected by the two aging processes. Finally, clinical signs of vascular disorders present no evolution with age. Conclusion Clinical signs of aging are essentially influenced by extrinsic factors, especially sun exposure. Indeed UV exposure seems to be responsible for 80% of visible facial aging signs.
Collapse
Affiliation(s)
- Frederic Flament
- Department of Applied Research and Development, L'Oreal Research and Innovation, Paris, France
| | | | | | | | | | | |
Collapse
|
102
|
Tran C, Michelet JF, Simonetti L, Fiat F, Garrigues A, Potter A, Segot E, Watson REB, Griffiths CEM, de Lacharrière O. In vitro and in vivo studies with tetra-hydro-jasmonic acid (LR2412) reveal its potential to correct signs of skin ageing. J Eur Acad Dermatol Venereol 2013; 28:415-23. [PMID: 23701744 DOI: 10.1111/jdv.12113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/16/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND LR2412, a synthetic derivative of jasmonic acid, improved the reconstruction and homeostasis of our organotypic skin models. OBJECTIVES The need for efficient 'anti-ageing' treatments, in particular for the management of photoaged skin, prompted us to investigate this new ingredient for its potential to correct signs of skin ageing in vitro and in vivo and to identify its mode of action. RESULTS In vitro, penetration of LR2412 was evaluated using a Franz diffusion cell on excised human skin. Its exfoliating properties and interactions with the stratum corneum were studied using electron microscopy and X-ray diffraction. Experiments were performed on a human reconstructed skin model. In vivo, the effects of LR2412 on steroid-induced skin atrophy, a clinical skin ageing model, were assessed vs. vehicle. A patch test study evaluated its effect on deposition of fibrillin-rich microfibrils in the papillary dermis in clinically photoaged volunteers. A clinical study on the appearance of crow's feet wrinkles was conducted over 3 months of daily application. Penetration studies revealed that LR2412 reaches viable epidermis and superficial dermis, which are skin targets of anti-ageing actives. Within the upper layers of the stratum corneum LR2412 accelerates desquamation and improves the mechanical properties. At the dermal-epidermal junction of reconstructed skin, collagen IV, laminin-5 and fibrillin were stimulated. In vivo, LR2412 reversed steroid-induced atrophy. The patch test model confirms the deposition of fibrillin-rich microfibrils, then an in use clinical study revealed that it reduced facial wrinkles. CONCLUSIONS The in vitro and in vivo data demonstrate that based on its multiple interactions within human skin, LR2412 has potential to partially correct the signs of ageing in intrinsically and photoaged skin.
Collapse
Affiliation(s)
- C Tran
- L'Oréal Research and Innovation, Clichy, Aulnay sous Bois, Chevilly-Larue, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities. Int J Biol Macromol 2013; 58:47-56. [PMID: 23541552 DOI: 10.1016/j.ijbiomac.2013.03.054] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 11/22/2022]
Abstract
Some biological properties of Bombyx mori sericins from twenty strains were investigated, fourteen fed with artificial diet, two with fresh mulberry leaves and four with both diets. Sericin exhibited ROS-scavenging, anti-tyrosinase and anti-elastase properties, the strain significantly influenced these properties, while diet only influenced the anti-tyrosinase activity. Sericins were clustered into 5 groups and one sericin from each group was further studied: sericins showed anti-proliferative activity on in vitro stimulated peripheral blood mononuclear cells; some strains decreased in vitro secretion of IFNγ, while no effects were observed on TNFα and IL10 release. Therefore, a mixture of sericins extracted from the most promising strains may be useful for dermatological and cosmetic use.
Collapse
|
104
|
Liao CK, Tsai FC, Fong TH, Hu CM, Wei PL, Su CH. Damage from periorbital ageing to the multilayered structures and resilience of the skin in Chinese population. Int J Exp Pathol 2013; 94:188-94. [PMID: 23441675 DOI: 10.1111/iep.12019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 01/09/2013] [Indexed: 11/29/2022] Open
Abstract
Ageing dynamically disrupts the multilayered supporting components of the skin that are held together by cell adhesion molecules (CAMs). Skin specimens from 33 female Chinese patients undergoing lower blepharoplasty were divided into three age groups and examined by haematoxylin and eosin (H&E) staining, immunohistochemistry (IHC) and Elastica-van Gieson (EVG) stains, western blotting, surface electron microscopy (SEM) and biomechanical tension analysis. The SEM density (skin surface topology) showed a negative linear relationship with age. The triangular pattern of the skin surface in the younger group gradually broke down into quadrangular and irregular patterns in the older group. Collagens and elastic fibres in the dermis showed anisotropy and decreased density in the older groups compared with the younger group, especially in the papillary dermis. Anisotropy means that physical properties differ according to the direction of measurement. E-cadherin and integrin αv (whose functions are to bind epidermal and dermal elements respectively) increased and decreased, respectively, in the oldest group. Skin resilience decreased significantly in this group under repetitive stress. In conclusion, a loss of skin surface textures, integrin αv expressions, epidermal-dermal connections and dermal compactness led to the multilayered structure of the skin becoming separated. This in turn decreased resilience during ageing. These findings may therefore explain why aged skins cannot tolerate repetitive facial expressions, and why this action produces further dynamic wrinkles.
Collapse
Affiliation(s)
- Chuh-Kai Liao
- Graduate Institute of Medical Sciences, Department of Family Medicine, Taipei Municipal Wan Fang Hospital, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
105
|
Hwang IS, Kim JE, Choi SI, Lee HR, Lee YJ, Jang MJ, Son HJ, Lee HS, Oh CH, Kim BH, Lee SH, Hwang DY. UV radiation-induced skin aging in hairless mice is effectively prevented by oral intake of sea buckthorn (Hippophae rhamnoides L.) fruit blend for 6 weeks through MMP suppression and increase of SOD activity. Int J Mol Med 2012; 30:392-400. [PMID: 22641502 DOI: 10.3892/ijmm.2012.1011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/27/2012] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress and oxidative photodamage induced by UV radiation can cause serious skin damage that is characterized by wrinkling, roughness, laxity and pigmentation. The effects of a sea buckthorn (Hippophae rhamnoides L.) fruit blend (SFB) containing sea buckthorn fruit extract, blueberry extract and collagen on UV-induced skin aging were examined by treating hairless mice for 6 weeks with UV irradiation and SFB administered orally. The effects of SFB were measured in the skin of these mice by phenotypical and histological analysis and western blotting. According to wrinkle formation analysis, the oral intake of SFB induced a decrease in wrinkle formation in the damaged skin of UV-irradiated mice. The thickness of the epidermis and dermis in the vitamin extracts (Vit)- and SFB-treated group was lower than that in the vehicle-treated group, but the group treated with SFB50 was the most effective group. The mice treated with the Vit- or SFB solution maintained a normal moisture content through the inhibition of transdermal water loss (TEWL) and an increase in skin moisture content. Furthermore, the levels of matrix metalloproteinase (MMP) and collagen protein expression were assessed in five groups to examine the mechanisms underlying the effects of SFB oral intake. The application of SFB induced a decrease in MMP-1 and -9 expression to the levels observed in the vehicle-treated group, but MMP-9 expression showed a much larger decrease than MMP-1. Furthermore, the expression of collagen-1 in the skin corresponded to MMP expression except for the SFB30-treated group, whereas the superoxide dismutase (SOD) activity was increased dramatically in the SFB50-treated group. These results suggest that SFB has potential as a protective and therapeutic drug candidate against skin aging that functions by regulating the moisture content, MMP expression levels and SOD activity.
Collapse
Affiliation(s)
- In Sik Hwang
- College of Natural Resources and Life Science, Pusan National University, Miryang 627-706, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Everett JS, Sommers MS. Skin viscoelasticity: physiologic mechanisms, measurement issues, and application to nursing science. Biol Res Nurs 2012; 15:338-46. [PMID: 22544517 DOI: 10.1177/1099800411434151] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Skin is the primary interface between health care providers and patients and is assessed clinically to predict physiological stability or instability. The biomechanical properties of human skin, most notably elasticity and viscoelasticity, are critical to its protective function. In this article, the authors describe the physiological basis for skin elasticity and viscoelasticity. The authors discuss the role of viscoelasticity in nursing science and consider avenues for scientific exploration of the skin's biomechanical properties, including applications in pressure ulcer research, injury, and healing. They also discuss the Cutometer® as one option for measurement of viscoelasticity in clinical and bench research protocols.
Collapse
Affiliation(s)
- Janine S Everett
- University of Pennsylvania School of Nursing, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
107
|
Thurstan SA, Gibbs NK, Langton AK, Griffiths CE, Watson RE, Sherratt MJ. Chemical consequences of cutaneous photoageing. Chem Cent J 2012; 6:34. [PMID: 22534143 PMCID: PMC3410765 DOI: 10.1186/1752-153x-6-34] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/25/2012] [Indexed: 12/28/2022] Open
Abstract
Human skin, in common with other organs, ages as a consequence of the passage of time, but in areas exposed to solar ultraviolet radiation, the effects of this intrinsic ageing process are exacerbated. In particular, both the severity and speed of onset of age-related changes, such as wrinkle formation and loss of elasticity, are enhanced in photoaged (also termed extrinsically aged) as compared with aged, photoprotected, skin. The anatomy of skin is characterised by two major layers: an outer, avascular, yet highly cellular and dynamic epidermis and an underlying vascularised, comparatively static and cell-poor, dermis. The structural consequences of photoageing are mainly evident in the extracellular matrix-rich but cell-poor dermis where key extracellular matrix proteins are particularly susceptible to photodamage. Most investigations to date have concentrated on the cell as both a target for and mediator of, ultraviolet radiation-induced photoageing. As the main effectors of dermal remodelling produced by cells (extracellular proteases) generally have low substrate specificity, we recently suggested that the differential susceptibility of key extracellular matrix proteins to the processes of photoageing may be due to direct, as opposed to cell-mediated, photodamage. In this review, we discuss the experimental evidence for ultraviolet radiation (and related reactive oxygen species)-mediated differential degradation of normally long lived dermal proteins including the fibrillar collagens, elastic fibre components, glycoproteins and proteoglycans. Whilst these components exhibit highly diverse primary and hence macro- and supra-molecular structures, we present evidence that amino acid composition alone may be a useful predictor of age-related protein degradation in both photoexposed and, as a consequence of differential oxidation sensitivity, photoprotected, tissues.
Collapse
Affiliation(s)
- Sarah A Thurstan
- Developmental Biomedicine Research Groups, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | | | | | | | | | | |
Collapse
|
108
|
Peirano RI, Achterberg V, Düsing HJ, Akhiani M, Koop U, Jaspers S, Krüger A, Schwengler H, Hamann T, Wenck H, Stäb F, Gallinat S, Blatt T. Dermal penetration of creatine from a face-care formulation containing creatine, guarana and glycerol is linked to effective antiwrinkle and antisagging efficacy in male subjects. J Cosmet Dermatol 2012; 10:273-81. [PMID: 22151935 DOI: 10.1111/j.1473-2165.2011.00579.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The dermal extracellular matrix provides stability and structure to the skin. With increasing age, however, its major component collagen is subject to degeneration, resulting in a gradual decline in skin elasticity and progression of wrinkle formation. Previous studies suggest that the reduction in cellular energy contributes to the diminished synthesis of cutaneous collagen during aging. AIMS To investigate the potential of topically applied creatine to improve the clinical signs of skin aging by stimulating dermal collagen synthesis in vitro and in vivo. PATIENTS/METHODS Penetration experiments were performed with a pig skin ex vivo model. Effects of creatine on dermal collagen gene expression and procollagen synthesis were studied in vitro using cultured fibroblast-populated collagen gels. In a single-center, controlled study, 43 male Caucasians applied a face-care formulation containing creatine, guarana extract, and glycerol to determine its influence on facial topometric features. RESULTS Cultured human dermal fibroblasts supplemented with creatine displayed a stimulation of collagen synthesis relative to untreated control cells both on the gene expression and at the protein level. In skin penetration experiments, topically applied creatine rapidly reached the dermis. In addition, topical in vivo application of a creatine-containing formulation for 6 weeks significantly reduced the sagging cheek intensity in the jowl area as compared to baseline. This result was confirmed by clinical live scoring, which also demonstrated a significant reduction in crow's feet wrinkles and wrinkles under the eyes. CONCLUSIONS In summary, creatine represents a beneficial active ingredient for topical use in the prevention and treatment of human skin aging.
Collapse
Affiliation(s)
- Reto I Peirano
- Department of Skin Biology and Skin Structure, Beiersdorf AG Research and Development, Unnastrasse 48, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Vedrenne N, Coulomb B, Danigo A, Bonté F, Desmoulière A. The complex dialogue between (myo)fibroblasts and the extracellular matrix during skin repair processes and ageing. ACTA ACUST UNITED AC 2012; 60:20-7. [DOI: 10.1016/j.patbio.2011.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 09/16/2011] [Indexed: 01/31/2023]
|
110
|
Timilshina S, Bhuvan KC, Khanal M, Marshani B, Paudyal BR, Skalko-Basnet N. The influence of ethnic origin on the skin photoageing: Nepalese study. Int J Cosmet Sci 2011; 33:553-9. [DOI: 10.1111/j.1468-2494.2011.00670.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
111
|
Naylor EC, Watson REB, Sherratt MJ. Molecular aspects of skin ageing. Maturitas 2011; 69:249-56. [PMID: 21612880 DOI: 10.1016/j.maturitas.2011.04.011] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 04/20/2011] [Indexed: 11/16/2022]
Abstract
Ageing of human skin may result from both the passage of time (intrinsic ageing) and from cumulative exposure to external influences (extrinsic ageing) such as ultraviolet radiation (UVR) which promote wrinkle formation and loss of tissue elasticity. Whilst both ageing processes are associated with phenotypic changes in cutaneous cells, the major functional manifestations of ageing occur as a consequence of structural and compositional remodeling of normally long-lived dermal extracellular matrix proteins. This review briefly considers the effects of ageing on dermal collagens and proteoglycans before focusing on the mechanisms, functional consequences and treatment of elastic fibre remodeling in ageing skin. The early stages of photoageing are characterised by the differential degradation of elastic fibre proteins and whilst the activity of extracellular matrix proteases is increased in photoexposed skin, the substrate specificity of these enzymes is low. We have recently shown however, that isolated fibrillin microfibrils are susceptible to direct degradation by physiologically attainable doses of UV-B radiation and that elastic fibre proteins as a group are highly enriched in UV-absorbing amino acid residues. Functionally, elastic fibre remodeling events may adversely impact on: the mechanical properties of tissues, the recruitment and activation of immune cells, the expression of matrix metalloproteinases and cytokine signaling (by perturbing fibrillin microfibril sequestration of TGFβ). Finally, newly developed topical interventions appear to be capable of regenerating elements of the elastic fibre system in ageing skin, whilst systemic treatments may potentially prevent the pathological tissue remodeling events which occur in response to elastic fibre degradation.
Collapse
Affiliation(s)
- Elizabeth C Naylor
- Manchester Academic Health Sciences Centre, The University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|
112
|
Langton AK, Sherratt MJ, Griffiths CEM, Watson REB. Differential expression of elastic fibre components in intrinsically aged skin. Biogerontology 2011; 13:37-48. [DOI: 10.1007/s10522-011-9332-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/21/2011] [Indexed: 11/28/2022]
|