101
|
Synaptic vesicle-bound pyruvate kinase can support vesicular glutamate uptake. Neurochem Res 2008; 34:807-18. [PMID: 18751889 DOI: 10.1007/s11064-008-9833-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
Glucose metabolism is essential for normal brain function and plays a vital role in synaptic transmission. Recent evidence suggests that ATP synthesized locally by glycolysis, particularly via glyceraldehyde 3-phosphate dehydrogenase/3-phosphoglycerate kinase, is critical for synaptic transmission. We present evidence that ATP generated by synaptic vesicle-associated pyruvate kinase is harnessed to transport glutamate into synaptic vesicles. Isolated synaptic vesicles incorporated [(3)H]glutamate in the presence of phosphoenolpyruvate (PEP) and ADP. Pyruvate kinase activators and inhibitors stimulated and reduced PEP/ADP-dependent glutamate uptake, respectively. Membrane potential was also formed in the presence of pyruvate kinase activators. "ATP-trapping" experiments using hexokinase and glucose suggest that ATP produced by vesicle-associated pyruvate kinase is more readily used than exogenously added ATP. Other neurotransmitters such as GABA, dopamine, and serotonin were also taken up into crude synaptic vesicles in a PEP/ADP-dependent manner. The possibility that ATP locally generated by glycolysis supports vesicular accumulation of neurotransmitters is discussed.
Collapse
|
102
|
Yao J, Bajjalieh SM. Synaptic vesicle protein 2 binds adenine nucleotides. J Biol Chem 2008; 283:20628-34. [PMID: 18524768 PMCID: PMC2475693 DOI: 10.1074/jbc.m800738200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/09/2008] [Indexed: 11/06/2022] Open
Abstract
Synaptic vesicle protein 2 (SV2) is required for normal calcium-regulated secretion of hormones and neurotransmitters. Neurons lacking the two most widely expressed isoforms, SV2A and SV2B, have a reduced readily releasable pool of synaptic vesicles, indicating that SV2 contributes to vesicle priming. The presence of putative ATP-binding sites in SV2 suggested that SV2 might be an ATP-binding protein. To explore this, we examined the binding of the photoaffinity reagent 8-azido-ATP[gamma] biotin to purified, recombinant SV2 in the presence and absence of other nucleotides. Our results indicate that SV2A and SV2B bind nucleotides, with the highest affinity for adenine-containing nucleotides. SV2A contains two binding sites located in the cytoplasmic domains preceding the first and seventh transmembrane domains. These results suggest that SV2-mediated vesicle priming could be regulated by adenine nucleotides, which might provide a link between cellular energy levels and regulated secretion.
Collapse
Affiliation(s)
| | - Sandra M. Bajjalieh
- Department of Pharmacology, University of Washington, Seattle, Washington
98195
| |
Collapse
|
103
|
Cao Z, Li C, Higginbotham JN, Franklin JL, Tabb DL, Graves-Deal R, Hill S, Cheek K, Jerome WG, Lapierre LA, Goldenring JR, Ham AJL, Coffey RJ. Use of fluorescence-activated vesicle sorting for isolation of Naked2-associated, basolaterally targeted exocytic vesicles for proteomics analysis. Mol Cell Proteomics 2008; 7:1651-67. [PMID: 18504258 DOI: 10.1074/mcp.m700155-mcp200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By interacting with the cytoplasmic tail of a Golgi-processed form of transforming growth factor-alpha (TGFalpha), Naked2 coats TGFalpha-containing exocytic vesicles and directs them to the basolateral corner of polarized epithelial cells where the vesicles dock and fuse in a Naked2 myristoylation-dependent manner. These TGFalpha-containing Naked2-associated vesicles are not directed to the subapical Sec6/8 exocyst complex as has been reported for other basolateral cargo, and thus they appear to represent a distinct set of basolaterally targeted vesicles. To identify constituents of these vesicles, we exploited our finding that myristoylation-deficient Naked2 G2A vesicles are unable to fuse at the plasma membrane. Isolation of a population of myristoylation-deficient, green fluorescent protein-tagged G2A Naked2-associated vesicles was achieved by biochemical enrichment followed by flow cytometric fluorescence-activated vesicle sorting. The protein content of these plasma membrane de-enriched, flow-sorted fluorescent G2A Naked2 vesicles was determined by LC/LC-MS/MS analysis. Three independent isolations were performed, and 389 proteins were found in all three sets of G2A Naked2 vesicles. Rab10 and myosin IIA were identified as core machinery, and Na(+)/K(+)-ATPase alpha1 was identified as an additional cargo within these vesicles. As an initial validation step, we confirmed their presence and that of three additional proteins tested (annexin A1, annexin A2, and IQGAP1) in wild-type Naked2 vesicles. To our knowledge, this is the first large scale protein characterization of a population of basolaterally targeted exocytic vesicles and supports the use of fluorescence-activated vesicle sorting as a useful tool for isolation of cellular organelles for comprehensive proteomics analysis.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Wenge B, Bönisch H, Grabitzki J, Lochnit G, Schmitz B, Ahrend MHJ. Separation of membrane proteins by two-dimensional electrophoresis using cationic rehydrated strips. Electrophoresis 2008; 29:1511-7. [DOI: 10.1002/elps.200700546] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
105
|
Marks N, Berg MJ. Neurosecretases provide strategies to treat sporadic and familial Alzheimer disorders. Neurochem Int 2008; 52:184-215. [PMID: 17719698 DOI: 10.1016/j.neuint.2007.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 06/05/2007] [Indexed: 12/30/2022]
Abstract
Recent discoveries on neurosecretases and their trafficking to release fibril-forming neuropeptides or other products, are of interest to pathology, cell signaling and drug discovery. Nomenclature arose from the use of amyloid precursor protein (APP) as a prototypic type-1 substrate leading to the isolation of beta-secretase (BACE), multimeric complexes (gamma-secretase, gamma-SC) for intramembranal cleavage, and attributing a new function to well-characterized metalloproteases of the ADAM family (alpha-secretase) for normal APP turnover. While purified alpha/beta-secretases facilitate drug discovery, gamma-SC presents greater challenges for characterization and mechanisms of catalysis. The review comments on links between mutation or polymorphisms in relation to enzyme mechanisms and disease. The association between lipoprotein receptor LRP11 variants and sporadic Alzheimer's disease (SAD) offers scope to integrate components of pre- and post-Golgi membranes, or brain clathrin-coated vesicles within pathways for trafficking as targets for intervention. The presence of APP and metabolites in brain clathrin-coated vesicles as significant cargo with lipoproteins and adaptors focuses attention as targets for therapeutic intervention. This overview emphasizes the importance to develop new therapies targeting neurosecretases to treat a major neurological disorder that has vast economic and social implications.
Collapse
Affiliation(s)
- Neville Marks
- Center for Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States.
| | | |
Collapse
|
106
|
Yamaguchi Y, Miyagi Y, Baba H. Two-dimensional electrophoresis with cationic detergents, a powerful tool for the proteomic analysis of myelin proteins. Part 1: Technical aspects of electrophoresis. J Neurosci Res 2008; 86:755-65. [DOI: 10.1002/jnr.21547] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
107
|
Abstract
Plasma membrane proteins serve essential functions for cells, interacting with both cellular and extracellular components, structures and signaling molecules. Additionally, plasma membrane proteins comprise more than two-thirds of the known protein targets for existing drugs. Consequently, defining membrane proteomes is crucial to understanding the role of plasma membranes in fundamental biological processes and for finding new targets for action in drug development. MS-based identification methods combined with chromatographic and traditional cell-biology techniques are powerful tools for proteomic mapping of proteins from organelles. However, the separation and identification of plasma membrane proteins remains a challenge for proteomic technology because of their hydrophobicity and microheterogeneity. Creative approaches to solve these problems and potential pitfalls will be discussed. Finally, a representative overview of the impressive achievements in this field will also be given.
Collapse
Affiliation(s)
- Djuro Josic
- Department of Medicine, Brown Medical School, Providence, RI, USA.
| | | |
Collapse
|
108
|
Miller LC, Sossin WS. The significance of organellar proteomics for the nervous system. Proteomics Clin Appl 2007; 1:1436-45. [PMID: 21136641 DOI: 10.1002/prca.200700366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Indexed: 12/16/2022]
Abstract
Organellar proteomics is a useful tool for gaining biological insights about structures in the cell. Here, we discuss the tools used in organellar proteomics and the impact of this technique in understanding nervous system function. We will review insights gained from the proteomes of nervous system-specific organelles such as synaptic vesicles and the postsynaptic density. Moreover, we will show how comparison of proteomes between organelles isolated from the nervous system and from other tissues highlight nervous system-specific functions using the examples of clathrin-coated vesicles and RNA granules.
Collapse
Affiliation(s)
- Linda C Miller
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
109
|
Wolf C, Quinn PJ. Lipidomics: practical aspects and applications. Prog Lipid Res 2007; 47:15-36. [PMID: 17980916 DOI: 10.1016/j.plipres.2007.09.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/07/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
Lipidomics is the characterization of the molecular species of lipids in biological samples. The polar lipids that comprise the bilayer matrix of the constituent cell membranes of living tissues are highly complex and number many hundreds of distinct lipid species. These differ in the nature of the polar group representing the different classes of lipid. Each class consists of a range of molecular species depending on the length, position of attachment and number of unsaturated double bonds in the associated fatty acids. The origin of this complexity is described and the biochemical processes responsible for homeostasis of the lipid composition of each morphologically-distinct membrane is considered. The practical steps that have been developed for the isolation of membranes and the lipids there from, their storage, separation, detection and identification by liquid chromatography coupled to mass spectrometry are described. Application of lipidomic analyses and examples where clinical screening for lipidoses in collaboration with mass spectrometry facilities are considered from the user point of view.
Collapse
Affiliation(s)
- Claude Wolf
- UMRS 538, UMPC Faculté de Medecine Pierre et Marie Curie, 27 Rue Chaligny, 75012 Paris, France.
| | | |
Collapse
|
110
|
Abstract
Our knowledge of the complex synaptic proteome and its relationship to physiological or pathological conditions is rapidly expanding. This has been greatly accelerated by the application of various evolving proteomic techniques, enabling more efficient protein resolution, more accurate protein identification, and more comprehensive characterization of proteins undergoing quantitative and qualitative changes. More recently, the combination of the classical subcellular fractionation techniques for the isolation of synaptosomes from the brain with the various proteomic analyses has facilitated this effort. This has resulted from the enrichment of many low abundant proteins comprising the fundamental structure and molecular machinery of brain neurotransmission and neuroplasticity. The analysis of various subproteomes obtained from the synapse, such as synaptic vesicles, synaptic membranes, presynaptic particles, synaptodendrosomes, and postsynaptic densities (PSD) holds great promise for improving our understanding of the temporal and spatial processes that coordinate synaptic proteins in closely related complexes under both normal and diseased states. This chapter will summarize a selection of recent studies that have drawn upon established and emerging proteomic technologies, along with fractionation techniques that are essential to the isolation and analysis of specific synaptic components, in an effort to understand the complexity and plasticity of the synapse proteome.
Collapse
|
111
|
Braun RJ, Kinkl N, Beer M, Ueffing M. Two-dimensional electrophoresis of membrane proteins. Anal Bioanal Chem 2007; 389:1033-45. [PMID: 17680235 DOI: 10.1007/s00216-007-1514-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 07/10/2007] [Accepted: 07/13/2007] [Indexed: 01/26/2023]
Abstract
One third of all genes of various organisms encode membrane proteins, emphasizing their crucial cellular role. However, due to their high hydrophobicity, membrane proteins demonstrate low solubility and a high tendency for aggregation. Indeed, conventional two-dimensional gel electrophoresis (2-DE), a powerful electrophoretic method for the separation of complex protein samples that applies isoelectric focusing (IEF) in the first dimension and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension, has a strong bias against membrane proteins. This review describes two-dimensional electrophoretic techniques that can be used to separate membrane proteins. Alternative methods for performing conventional 2-DE are highlighted; these involve replacing the IEF with electrophoresis using cationic detergents, namely 16-benzyldimethyl-n-hexadecylammonium chloride (16-BAC) and cetyl trimethyl ammonium bromide (CTAB), or the anionic detergent SDS. Finally, the separation of native membrane protein complexes through the application of blue and clear native gel electrophoresis (BN/CN-PAGE) is reviewed, as well as the free-flow electrophoresis (FFE) of membranes.
Collapse
Affiliation(s)
- Ralf J Braun
- GSF-National Research Center for Environment and Health, Institute of Human Genetics, Ingolstaedter Landstrasse 1, 85764, Munich-Neuherberg, Germany
| | | | | | | |
Collapse
|
112
|
Affiliation(s)
- Anna E Speers
- Department of Pharmacology, University of Colorado School of Medicine, P.O. Box 6511, MS 8303, Aurora, Colorado 80045, USA
| | | |
Collapse
|
113
|
Humeau Y, Doussau F, Popoff MR, Benfenati F, Poulain B. Fast changes in the functional status of release sites during short-term plasticity: involvement of a frequency-dependent bypass of Rac at Aplysia synapses. J Physiol 2007; 583:983-1004. [PMID: 17656428 PMCID: PMC2156201 DOI: 10.1113/jphysiol.2007.139899] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Synaptic transmission can be described as a stochastic quantal process defined by three main parameters: N, the number of functional release sites; P, the release probability; and Q, the quantum of response. Many changes in synaptic strength that are observed during expression of short term plasticity rely on modifications in P. Regulation of N has been also suggested. We have investigated at identified cholinergic inhibitory Aplysia synapses the cellular mechanism of post-tetanic potentiation (PTP) expressed under control conditions or after N has been depressed by applying lethal toxin (LT) from Clostridium sordellii or tetanus toxin (TeNT). The analysis of the Ca(2+) dependency, paired-pulse ratio and variance to mean amplitude relationship of the postsynaptic responses elicited at distinct extracellular [Ca(2+)]/[Mg(2+)] elicited during control post-tetanic potentiation (PTP(cont)) indicated that PTP(cont) is mainly driven by an increase in release probability, P. The PTP expressed at TeNT-treated synapses (PTP(TeNT)) was found to be similar to PTP(cont), but scaled to the extent of reduction in N produced by TeNT. Despite LT inducing a decrease in N as TeNT does, the PTP expressed at LT-treated synapses (PTP(LT)) was characterized by exceptionally large amplitude and bi-exponential time course, as compared to PTP(cont) or the PTP(TeNT). Analysis of the Ca(2+) dependency of PTP(LT), paired-pulse ratio and fluctuations in amplitude of the postsynaptic responses elicited during PTP(LT) or the variance to mean amplitude relationship of time-locked postsynaptic responses in a series of subsequent PTP(LT) indicated that an N-driven change is involved in the early phase (1 s time scale) of PTP(LT), while at a later stage PTP(LT) is composed of both N and P increases. Our results suggest that fast switching on of the functional status of the release sites occurs also during the early events of PTP(cont). The early N-driven phase of PTP(LT) is likely to be a functional recovery of the release sites silenced by Rac inactivation. This effect did not appear to result from reversion of LT inhibitory action but from bypassing the step regulated by Rac. Altogether the data suggest that Rac and the intracellular pathway which allows the bypassing of Rac are key players in new forms of short-term plasticity that rely on fast, activity-dependent changes in the functional status of the release sites.
Collapse
Affiliation(s)
- Yann Humeau
- Institut des Neurosciences Cellulaires et Intégratives, UMR-7168 du CNRS and Université Louis-Pasteur de Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg cedex, France.
| | | | | | | | | |
Collapse
|
114
|
Zhang L, Wang X, Peng X, Wei Y, Cao R, Liu Z, Xiong J, Ying X, Chen P, Liang S. Immunoaffinity purification of plasma membrane with secondary antibody superparamagnetic beads for proteomic analysis. J Proteome Res 2007; 6:34-43. [PMID: 17203946 DOI: 10.1021/pr060069r] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasma membrane (PM) has very important roles in cell-cell interaction and signal transduction, and it has been extensively targeted for drug design. A major prerequisite for the analysis of PM proteome is the preparation of PM with high purity. Density gradient centrifugation has been commonly employed to isolate PM, but it often occurred with contamination of internal membrane. Here we describe a method for plasma membrane purification using second antibody superparamagnetic beads that combines subcellular fractionation and immunoisolation strategies. Four methods of immunoaffinity were compared, and the variation of crude plasma membrane (CPM), superparamagnetic beads, and antibodies was studied. The optimized method and the number of CPM, beads, and antibodies suitable for proteome analysis were obtained. The PM of mouse liver was enriched 3-fold in comparison with the density gradient centrifugation method, and contamination from mitochondria was reduced 2-fold. The PM protein bands were extracted and trypsin-digested, and the resulting peptides were resolved and characterized by MALDI-TOF-TOF and ESI-Q-TOF, respectively. Mascot software was used to analyze the data against IPI-mouse protein database. Nonredundant proteins (248) were identified, of which 67% are PM or PM-related proteins. No endoplasmic reticulum (ER) or nuclear proteins were identified according to the GO annotation in the optimized method. Our protocol represents a simple, economic, and reproducible tool for the proteomic characterization of liver plasma membrane.
Collapse
Affiliation(s)
- Lijun Zhang
- Key Laboratory of Protein Chemistry and Developmental Biology of National Education Committee, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Burré J, Zimmermann H, Volknandt W. Identification and characterization of SV31, a novel synaptic vesicle membrane protein and potential transporter. J Neurochem 2007; 103:276-87. [PMID: 17623043 DOI: 10.1111/j.1471-4159.2007.04758.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synaptic vesicle proteins govern all relevant functions of the synaptic vesicle life cycle, including vesicle biogenesis, vesicle transport, uptake and storage of neurotransmitters, and regulated endocytosis and exocytosis. In spite of impressive progress made in the past years, not all known vesicular functions can be assigned to defined protein components, suggesting that the repertoire of synaptic vesicle proteins is still incomplete. We have identified and characterized a novel synaptic vesicle membrane protein of 31 kDa with six putative transmembrane helices that, according to its membrane topology and phylogenetic relation, may function as a vesicular transporter. The vesicular allocation is demonstrated by subcellular fractionation, heterologous expression, immunocytochemical analysis of brain sections and immunoelectron microscopy. The protein is expressed in select brain regions and contained in subpopulations of nerve terminals that immunostain for the vesicular glutamate transporter 1 and the vesicular GABA transporter VGaT (vesicular amino acid transporter) and may attribute specific and as yet undiscovered functions to subsets of glutamatergic and GABAergic synapses.
Collapse
Affiliation(s)
- Jacqueline Burré
- Department of Neurochemistry, Institute of Cell Biology and Neuroscience, Biocenter of JW Goethe University, Frankfurt/Main, Germany.
| | | | | |
Collapse
|
116
|
Dosemeci A, Makusky AJ, Jankowska-Stephens E, Yang X, Slotta DJ, Markey SP. Composition of the synaptic PSD-95 complex. Mol Cell Proteomics 2007; 6:1749-60. [PMID: 17623647 PMCID: PMC2096750 DOI: 10.1074/mcp.m700040-mcp200] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Postsynaptic density protein 95 (PSD-95), a specialized scaffold protein with multiple protein interaction domains, forms the backbone of an extensive postsynaptic protein complex that organizes receptors and signal transduction molecules at the synaptic contact zone. Large, detergent-insoluble PSD-95-based postsynaptic complexes can be affinity-purified from conventional PSD fractions using magnetic beads coated with a PSD-95 antibody. In the present study purified PSD-95 complexes were analyzed by LC/MS/MS. A semiquantitative measure of the relative abundances of proteins in the purified PSD-95 complexes and the parent PSD fraction was estimated based on the cumulative ion current intensities of corresponding peptides. The affinity-purified preparation was largely depleted of presynaptic proteins, spectrin, intermediate filaments, and other contaminants prominent in the parent PSD fraction. We identified 525 of the proteins previously reported in parent PSD fractions, but only 288 of these were detected after affinity purification. We discuss 26 proteins that are major components in the PSD-95 complex based upon abundance ranking and affinity co-purification with PSD-95. This subset represents a minimal list of constituent proteins of the PSD-95 complex and includes, in addition to the specialized scaffolds and N-methyl-d-aspartate (NMDA) receptors, an abundance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, small G-protein regulators, cell adhesion molecules, and hypothetical proteins. The identification of two Arf regulators, BRAG1 and BRAG2b, as co-purifying components of the complex implies pivotal functions in spine plasticity such as the reorganization of the actin cytoskeleton and insertion and retrieval of proteins to and from the plasma membrane. Another co-purifying protein (Q8BZM2) with two sterile alpha motif domains may represent a novel structural core element of the PSD.
Collapse
Affiliation(s)
- Ayse Dosemeci
- From the Laboratory of Neurobiology, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Anthony J. Makusky
- Laboratory of Neurotoxicology, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Ewa Jankowska-Stephens
- Laboratory of Neurotoxicology, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Xiaoyu Yang
- Laboratory of Neurotoxicology, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Douglas J. Slotta
- Laboratory of Neurotoxicology, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Sanford P. Markey
- Laboratory of Neurotoxicology, National Institute of Mental Health, Bethesda, Maryland 20892
- To whom correspondence should be addressed. Tel.: 301−496−4022; Fax: 301−451−5780; E-mail: .
| |
Collapse
|
117
|
Osborne SL, Wallis TP, Jimenez JL, Gorman JJ, Meunier FA. Identification of Secretory Granule Phosphatidylinositol 4,5-Bisphosphate-interacting Proteins Using an Affinity Pulldown Strategy. Mol Cell Proteomics 2007; 6:1158-69. [PMID: 17449848 DOI: 10.1074/mcp.m600430-mcp200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) synthesis is required for calcium-dependent exocytosis in neurosecretory cells. We developed a PtdIns(4,5)P2 bead pulldown strategy combined with subcellular fractionation to identify endogenous chromaffin granule proteins that interact with PtdIns(4,5)P2. We identified two synaptotagmin isoforms, synaptotagmins 1 and 7; spectrin; alpha-adaptin; and synaptotagmin-like protein 4 (granuphilin) by mass spectrometry and Western blotting. The interaction between synaptotagmin 7 and PtdIns(4,5)P2 and its functional relevance was investigated. The 45-kDa isoform of synaptotagmin 7 was found to be highly expressed in adrenal chromaffin cells compared with PC12 cells and to mainly localize to secretory granules by subcellular fractionation, immunoisolation, and immunocytochemistry. We demonstrated that synaptotagmin 7 binds PtdIns(4,5)P2 via the C2B domain in the absence of calcium and via both the C2A and C2B domains in the presence of calcium. We mutated the polylysine stretch in synaptotagmin 7 C2B and demonstrated that this mutant domain lacks the calcium-independent PtdIns(4,5)P2 binding. Synaptotagmin 7 C2B domain inhibited catecholamine release from digitonin-permeabilized chromaffin cells, and this inhibition was abrogated with the C2B polylysine mutant. These data indicate that synaptotagmin 7 C2B-effector interactions, which occur via the polylysine stretch, including calcium-independent PtdIns(4,5)P2 binding, are important for chromaffin granule exocytosis.
Collapse
Affiliation(s)
- Shona L Osborne
- Molecular Dynamics of Synaptic Function Laboratory, School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
118
|
Riddle EL, Hanson GR, Fleckenstein AE. Therapeutic doses of amphetamine and methylphenidate selectively redistribute the vesicular monoamine transporter-2. Eur J Pharmacol 2007; 571:25-8. [PMID: 17618619 PMCID: PMC2581712 DOI: 10.1016/j.ejphar.2007.05.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 05/17/2007] [Accepted: 05/22/2007] [Indexed: 11/22/2022]
Abstract
High-dose administration of psychostimulants traffics the vesicular monoamine transporter-2 (VMAT-2), as assessed by subcellular fractionation of rat striatal tissue. This study demonstrates that administration of low doses of amphetamine or methylphenidate differentially traffic VMAT-2 within nerve terminals, with effects similar to those observed after high-dose administration. Trafficking of vesicular glutamate, acetylcholine, or GABA transporters was not altered by high-or low-dose amphetamine or methylphenidate treatment. These data represent the first report that amphetamine redistributes VMAT-2 protein. In addition, these data demonstrate that the trafficking of VMAT-2 after amphetamine or methylphenidate is selective for monoaminergic neurons.
Collapse
Affiliation(s)
- Evan L Riddle
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | |
Collapse
|
119
|
Abstract
Synaptic vesicles are key organelles in neurotransmission. Vesicle integral or membrane-associated proteins mediate the various functions the organelle fulfills during its life cycle. These include organelle transport, interaction with the nerve terminal cytoskeleton, uptake and storage of low molecular weight constituents, and the regulated interaction with the pre-synaptic plasma membrane during exo- and endocytosis. Within the past two decades, converging work from several laboratories resulted in the molecular and functional characterization of the proteinaceous inventory of the synaptic vesicle compartment. However, up until recently and due to technical difficulties, it was impossible to screen the entire organelle thoroughly. Recent advances in membrane protein identification and mass spectrometry (MS) have dramatically promoted this field. A comparison of different techniques for elucidating the proteinaceous composition of synaptic vesicles revealed numerous overlaps but also remarkable differences in the protein constituents of the synaptic vesicle compartment, indicating that several protein separation techniques in combination with differing MS approaches are required to identify and characterize the synaptic vesicle proteome. This review highlights the power of various gel separation techniques and MS analyses for the characterization of the proteome of highly purified synaptic vesicles. Furthermore, the newly detected protein assignments to synaptic vesicles, especially those proteins which are new to the inventory of the synaptic vesicle proteome, are critically discussed.
Collapse
Affiliation(s)
- Jacqueline Burré
- Institute of Cell Biology and Neuroscience, Neurochemistry, JW Goethe University, Frankfurt, Germany.
| | | |
Collapse
|
120
|
Burré J, Zimmermann H, Volknandt W. Immunoisolation and subfractionation of synaptic vesicle proteins. Anal Biochem 2007; 362:172-81. [PMID: 17266918 DOI: 10.1016/j.ab.2006.12.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 12/22/2006] [Accepted: 12/28/2006] [Indexed: 11/28/2022]
Abstract
Within recent years, the advances in proteomics techniques have resulted in considerable novel insights into the protein expression patterns of specific tissues, cells, and organelles. The information acquired from large-scale proteomics approaches indicated, however, that the proteomic analysis of whole cells or tissues is often not suited to fully unravel the proteomes of individual organellar constituents or to identify proteins that are present at low copy numbers. In addition, the identification of hydrophobic proteins is still a challenge. Therefore, the development of techniques applicable for the enrichment of low-abundance membrane proteins is essential for a comprehensive proteomic analysis. In addition to the enrichment of particular subcellular structures by subcellular fractionation, the spectrum of techniques applicable for proteomics research can be extended toward the separation of integral and peripheral membrane proteins using organic solvents, detergents, and detergent-based aqueous two-phase systems with water-soluble polymers. Here, we discuss the efficacy of a number of experimental protocols. We demonstrate that the appropriate selection of physicochemical conditions results in the isolation of synaptic vesicles of high purity whose proteome can be subfractionated into integral membrane proteins and soluble proteins by several phase separation techniques.
Collapse
Affiliation(s)
- Jacqueline Burré
- Department of Cell Biology and Neuroscience, Neurochemistry, JW Goethe-University, Max-von-Laue-Str 9, 60438 Frankfurt, Germany.
| | | | | |
Collapse
|
121
|
Hu ZZ, Valencia JC, Huang H, Chi A, Shabanowitz J, Hearing VJ, Appella E, Wu C. Comparative Bioinformatics Analyses and Profiling of Lysosome-Related Organelle Proteomes. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2007; 259:147-160. [PMID: 17375895 PMCID: PMC1828028 DOI: 10.1016/j.ijms.2006.09.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Complete and accurate profiling of cellular organelle proteomes, while challenging, is important for the understanding of detailed cellular processes at the organelle level. Mass spectrometry technologies coupled with bioinformatics analysis provide an effective approach for protein identification and functional interpretation of organelle proteomes. In this study, we have compiled human organelle reference datasets from large-scale proteomic studies and protein databases for 7 lysosome-related organelles (LROs), as well as the endoplasmic reticulum and mitochondria, for comparative organelle proteome analysis. Heterogeneous sources of human organelle proteins and rodent homologs are mapped to human UniProtKB protein entries based on ID and/or peptide mappings, followed by functional annotation and categorization using the iProXpress proteomic expression analysis system. Cataloging organelle proteomes allows close examination of both shared and unique proteins among various LROs and reveals their functional relevance. The proteomic comparisons show that LROs are a closely related family of organelles. The shared proteins indicate the dynamic and hybrid nature of LROs, while the unique transmembrane proteins may represent additional candidate marker proteins for LROs. This comparative analysis, therefore, provides a basis for hypothesis formulation and experimental validation of organelle proteins and their functional roles.
Collapse
Affiliation(s)
- Zhang-Zhi Hu
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Julio C. Valencia
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hongzhan Huang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - An Chi
- Department of Chemistry, University of Virginia, Charlottesville, VA
| | | | - Vincent J. Hearing
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ettore Appella
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Address Correspondence to: Dr. Ettore Appella, Laboratory of Cell Biology, Building 37, Room 2140, National Institutes of Health, Bethesda, MD 20892, , Dr. Cathy H. Wu, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven Street, NW, Suite 1200, Washington, DC 20007,
| | - Cathy Wu
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
122
|
Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R. Molecular anatomy of a trafficking organelle. Cell 2006; 127:831-46. [PMID: 17110340 DOI: 10.1016/j.cell.2006.10.030] [Citation(s) in RCA: 1774] [Impact Index Per Article: 93.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 07/27/2006] [Accepted: 10/12/2006] [Indexed: 02/08/2023]
Abstract
Membrane traffic in eukaryotic cells involves transport of vesicles that bud from a donor compartment and fuse with an acceptor compartment. Common principles of budding and fusion have emerged, and many of the proteins involved in these events are now known. However, a detailed picture of an entire trafficking organelle is not yet available. Using synaptic vesicles as a model, we have now determined the protein and lipid composition; measured vesicle size, density, and mass; calculated the average protein and lipid mass per vesicle; and determined the copy number of more than a dozen major constituents. A model has been constructed that integrates all quantitative data and includes structural models of abundant proteins. Synaptic vesicles are dominated by proteins, possess a surprising diversity of trafficking proteins, and, with the exception of the V-ATPase that is present in only one to two copies, contain numerous copies of proteins essential for membrane traffic and neurotransmitter uptake.
Collapse
Affiliation(s)
- Shigeo Takamori
- Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Burré J, Beckhaus T, Schägger H, Corvey C, Hofmann S, Karas M, Zimmermann H, Volknandt W. Analysis of the synaptic vesicle proteome using three gel-based protein separation techniques. Proteomics 2006; 6:6250-62. [PMID: 17080482 DOI: 10.1002/pmic.200600357] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Synaptic vesicles are key organelles in neurotransmission. Their functions are governed by a unique set of integral and peripherally associated proteins. To obtain a complete protein inventory, we immunoisolated synaptic vesicles from rat brain to high purity and performed a gel-based analysis of the synaptic vesicle proteome. Since the high hydrophobicity of integral membrane proteins hampers their resolution by gel electrophoretic techniques, we applied in parallel three different gel electrophoretic methods for protein separation prior to MS. Synaptic vesicle proteins were subjected to either 1-D SDS-PAGE along with nano-LC ESI-MS/MS or to the 2-D gel electrophoretic techniques benzyldimethyl-n-hexadecylammonium chloride (BAC)/SDS-PAGE, and double SDS (dSDS)-PAGE in combination with MALDI-TOF-MS. We demonstrate that the combination of all three methods provides a comprehensive survey of the proteinaceous inventory of the synaptic vesicle membrane compartment. The identified synaptic vesicle proteins include transporters, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), synapsins, rab and rab-interacting proteins, additional guanine nucleotide triphosphate (GTP) binding proteins, cytoskeletal proteins, and proteins modulating synaptic vesicle exo- and endocytosis. In addition, we identified novel proteins of unknown function. Our results demonstrate that the parallel application of three different gel-based approaches in combination with mass spectrometry permits a comprehensive analysis of the synaptic vesicle proteome that is considerably more complex than previously anticipated.
Collapse
Affiliation(s)
- Jacqueline Burré
- Department of Neurochemistry, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
Proteomic analyses of brain tissues are becoming an integral component of neuroscientific research. In particular, the essential role of the synapse in neurotransmission and plasticity has brought about extensive efforts to identify its protein constituents. Recent studies have used a combination of subcellular fractionation and proteomic techniques to identify proteins associated with different components of the synapse. Thus, a coherent map of the synapse proteome is rapidly emerging, and a timely review of these data is warranted. In the first part of this review, neuroproteomic techniques that have been used to analyze the synapse proteome are described. We then summarize the results from several recent proteomic analyses of mammalian synapses and discuss the similarities and differences in their profiling of synaptic proteins. Important advances in this field of research include the use of proteomics to analyze synaptic function and drug effects on synaptic proteins. This article presents an overview of proteomic analyses of the phosphorylation states of synaptic proteins and recent applications of neuroproteomic techniques to the study of drug addiction. Finally, we discuss the challenges in comparing proteomic studies of drug addiction and the future directions of this field in furthering our understanding of the molecular mechanisms underlying synaptic function and drug addiction.
Collapse
Affiliation(s)
- Noura S Abul-Husn
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
125
|
Affiliation(s)
- Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|