101
|
Masyuk TV, Radtke BN, Stroope AJ, Banales JM, Gradilone SA, Huang B, Masyuk AI, Hogan MC, Torres VE, LaRusso NF. Pasireotide is more effective than octreotide in reducing hepatorenal cystogenesis in rodents with polycystic kidney and liver diseases. Hepatology 2013; 58:409-21. [PMID: 23172758 PMCID: PMC3616157 DOI: 10.1002/hep.26140] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 11/06/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED In polycystic liver (PLD) and kidney (PKD) diseases, increased cyclic adenosine monophosphate (cAMP) levels trigger hepatorenal cystogenesis. A reduction of the elevated cAMP by targeting somatostatin receptors (SSTRs) with octreotide (OCT; a somatostatin analog that preferentially binds to SSTR2) inhibits cyst growth. Here we compare the effects of OCT to pasireotide (PAS; a more potent somatostatin analog with broader receptor specificity) on: (1) cAMP levels, cell cycle, proliferation, and cyst expansion in vitro using cholangiocytes derived from control and PCK rats (a model of autosomal recessive PKD [ARPKD]), healthy human beings, and patients with autosomal dominant PKD (ADPKD); and (2) hepatorenal cystogenesis in vivo in PCK rats and Pkd2(WS25/-) mice (a model of ADPKD). Expression of SSTRs was assessed in control and cystic cholangiocytes of rodents and human beings. Concentrations of insulin-like growth factor 1 (IGF1) and vascular endothelial growth factor (VEGF) (both involved in indirect action of somatostatin analogs), and expression and localization of SSTRs after treatment were evaluated. We found that PAS was more potent (by 30%-45%) than OCT in reducing cAMP and cell proliferation, affecting cell cycle distribution, decreasing growth of cultured cysts in vitro, and inhibiting hepatorenal cystogenesis in vivo in PCK rats and Pkd2(WS25/-) mice. The levels of IGF1 (but not VEGF) were reduced only in response to PAS. Expression of SSTR1 and SSTR2 (but not SSTR3 and SSTR5) was decreased in cystic cholangiocytes compared to control. Although both OCT and PAS increased the immunoreactivity of SSTR2, only PAS up-regulated SSTR1; neither drug affected cellular localization of SSTRs. CONCLUSION PAS is more effective than OCT in reducing hepatorenal cystogenesis in rodent models; therefore, it might be more beneficial for the treatment of PKD and PLD.
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Brynn N Radtke
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Angela J Stroope
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Jesús M Banales
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA,IKERBASQUE, Basque Foundation of Science, Division of Hepatology, Biodonostia Institute, Donostia Hospital, CIBERehd, University of Basque Country, San Sebastián, Spain
| | - Sergio A Gradilone
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Bing Huang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Marie C Hogan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN USA
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
102
|
Irazabal MV, Torres VE. Experimental therapies and ongoing clinical trials to slow down progression of ADPKD. Curr Hypertens Rev 2013; 9:44-59. [PMID: 23971644 PMCID: PMC4067974 DOI: 10.2174/1573402111309010008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/19/2012] [Accepted: 11/30/2012] [Indexed: 12/19/2022]
Abstract
The improvement of imaging techniques over the years has contributed to the understanding of the natural history of autosomal dominant polycystic kidney disease, and facilitated the observation of its structural progression. Advances in molecular biology and genetics have made possible a greater understanding of the genetics, molecular, and cellular pathophysiologic mechanisms responsible for its development and have laid the foundation for the development of potential new therapies. Therapies targeting genetic mechanisms in ADPKD have inherent limitations. As a result, most experimental therapies at the present time are aimed at delaying the growth of the cysts and associated interstitial inflammation and fibrosis by targeting tubular epithelial cell proliferation and fluid secretion by the cystic epithelium. Several interventions affecting many of the signaling pathways disrupted in ADPKD have been effective in animal models and some are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Maria V. Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester MN, USA
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester MN, USA
| |
Collapse
|
103
|
Arts HH, Knoers NVAM. Current insights into renal ciliopathies: what can genetics teach us? Pediatr Nephrol 2013; 28:863-74. [PMID: 22829176 PMCID: PMC3631122 DOI: 10.1007/s00467-012-2259-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 01/08/2023]
Abstract
Ciliopathies are a group of clinically and genetically overlapping disorders whose etiologies lie in defective cilia. These are antenna-like organelles on the apical surface of numerous cell types in a variety of tissues and organs, the kidney included. Cilia play essential roles during development and tissue homeostasis, and their dysfunction in the kidney has been associated with renal cyst formation and renal failure. Recently, the term "renal ciliopathies" was coined for those human genetic disorders that are characterized by nephronophthisis, cystic kidneys or renal cystic dysplasia. This review focuses on renal ciliopathies from a human genetics perspective. We survey the newest insights with respect to gene identification and genotype-phenotype correlations, and we reflect on candidate ciliopathies. The opportunities and challenges of next-generation sequencing (NGS) for genetic renal research and clinical DNA diagnostics are also reviewed, and we discuss the contribution of NGS to the development of personalized therapy for patients with renal ciliopathies.
Collapse
Affiliation(s)
- Heleen H. Arts
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, and Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Nine V. A. M. Knoers
- Department of Medical Genetics, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
104
|
|
105
|
Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, Perrone RD, Krasa HB, Ouyang J, Czerwiec FS. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 2012; 367:2407-18. [PMID: 23121377 PMCID: PMC3760207 DOI: 10.1056/nejmoa1205511] [Citation(s) in RCA: 1130] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The course of autosomal dominant polycystic kidney disease (ADPKD) is often associated with pain, hypertension, and kidney failure. Preclinical studies indicated that vasopressin V(2)-receptor antagonists inhibit cyst growth and slow the decline of kidney function. METHODS In this phase 3, multicenter, double-blind, placebo-controlled, 3-year trial, we randomly assigned 1445 patients, 18 to 50 years of age, who had ADPKD with a total kidney volume of 750 ml or more and an estimated creatinine clearance of 60 ml per minute or more, in a 2:1 ratio to receive tolvaptan, a V(2)-receptor antagonist, at the highest of three twice-daily dose regimens that the patient found tolerable, or placebo. The primary outcome was the annual rate of change in the total kidney volume. Sequential secondary end points included a composite of time to clinical progression (defined as worsening kidney function, kidney pain, hypertension, and albuminuria) and rate of kidney-function decline. RESULTS Over a 3-year period, the increase in total kidney volume in the tolvaptan group was 2.8% per year (95% confidence interval [CI], 2.5 to 3.1), versus 5.5% per year in the placebo group (95% CI, 5.1 to 6.0; P<0.001). The composite end point favored tolvaptan over placebo (44 vs. 50 events per 100 follow-up-years, P=0.01), with lower rates of worsening kidney function (2 vs. 5 events per 100 person-years of follow-up, P<0.001) and kidney pain (5 vs. 7 events per 100 person-years of follow-up, P=0.007). Tolvaptan was associated with a slower decline in kidney function (reciprocal of the serum creatinine level, -2.61 [mg per milliliter](-1) per year vs. -3.81 [mg per milliliter](-1) per year; P<0.001). There were fewer ADPKD-related adverse events in the tolvaptan group but more events related to aquaresis (excretion of electrolyte-free water) and hepatic adverse events unrelated to ADPKD, contributing to a higher discontinuation rate (23%, vs. 14% in the placebo group). CONCLUSIONS Tolvaptan, as compared with placebo, slowed the increase in total kidney volume and the decline in kidney function over a 3-year period in patients with ADPKD but was associated with a higher discontinuation rate, owing to adverse events. (Funded by Otsuka Pharmaceuticals and Otsuka Pharmaceutical Development and Commercialization; TEMPO 3:4 ClinicalTrials.gov number, NCT00428948.).
Collapse
Affiliation(s)
- Vicente E Torres
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Autosomal dominant polycystic kidney disease: recent advances in pathogenesis and potential therapies. Clin Exp Nephrol 2012. [PMID: 23192769 DOI: 10.1007/s10157-012-0741-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common progressive hereditary kidney disease. In 85-90% of cases, ADPKD results from a mutation in the PKD1 gene, and the other 10-15% of the cases are accounted for by mutations in PKD2. PKD1 and PKD2 encode polycystin-1 and polycystin-2. Polycystin-1 may be a receptor that controls the channel activity of polycystin-2 as part of the polycystin signaling complex. ADPKD is characterized by the progressive development of fluid-filled cysts derived from renal tubular epithelial cells that gradually compress the parenchyma and compromise renal function. In recent years, considerable interest has developed in the primary cilia as a site of the proteins that are involved in renal cystogenesis. The pathological processes that facilitate cyst enlargement are hypothesized to result from two specific cellular abnormalities: (1) increased fluid secretion into the cyst lumen and (2) inappropriately increased cell division by the epithelium lining the cyst. Since there is no clinically approved specific or targeted therapy, current practice focuses on blood pressure control and statin therapy to reduce the cardiac mortality associated with chronic kidney disease. However, recent advances in our understanding of the pathways that govern renal cystogenesis have led to a number of intriguing possibilities in regard to therapeutic interventions. The purpose of this article is to review the pathogenesis of renal cyst formation and to review novel targets for the treatment of ADPKD.
Collapse
|
107
|
Boertien WE, Meijer E, Li J, Bost JE, Struck J, Flessner MF, Gansevoort RT, Torres VE. Relationship of copeptin, a surrogate marker for arginine vasopressin, with change in total kidney volume and GFR decline in autosomal dominant polycystic kidney disease: results from the CRISP cohort. Am J Kidney Dis 2012; 61:420-9. [PMID: 23089511 DOI: 10.1053/j.ajkd.2012.08.038] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 08/18/2012] [Indexed: 01/20/2023]
Abstract
BACKGROUND Experimental studies indicate that arginine vasopressin (AVP) may have deleterious effects in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD). However, the significance of AVP in human ADPKD is unclear. STUDY DESIGN Longitudinal observational study with 8.5 (IQR, 7.7-9.0) years' follow-up (CRISP [Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease]). SETTING & PARTICIPANTS 241 patients with ADPKD with creatinine clearance >70 mL/min. PREDICTOR Plasma copeptin concentration, a surrogate marker for AVP. OUTCOMES Change in measured glomerular filtration rate (mGFR, assessed by iothalamate clearance) and total kidney volume (measured by magnetic resonance imaging). MEASUREMENTS Baseline copeptin level, plasma and urinary osmolality, and measurements of total kidney volume and mGFR during follow-up. RESULTS In these patients (median age, 34 [IQR, 25-40] years; 38% men; median mGFR, 94 [IQR, 79-145] mL/min/1.73 m(2); median total kidney volume, 859 [IQR, 577-1,299] mL), median copeptin level was 2.9 (IQR, 1.8-5.1) pmol/L. Copeptin was not associated with plasma osmolality (P = 0.3), the physiologic stimulus for AVP release, but was associated significantly with change in total kidney volume during follow-up (P < 0.001). This association remained significant after adjusting for sex, age, cardiovascular risk factors, and diuretic use (P = 0.03). Copeptin level was associated borderline significantly with change in mGFR after adjusting for these variables (P = 0.09). LIMITATIONS No standardization of hydration status at time of copeptin measurement. CONCLUSIONS These data show that in ADPKD, copeptin level, as a marker for AVP, is not correlated with plasma osmolality. Most importantly, high copeptin levels are associated independently with disease progression in early ADPKD. This is in line with experimental studies that indicate a disease-promoting role for AVP.
Collapse
Affiliation(s)
- Wendy E Boertien
- Department of Nephrology, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Syro LV, Sundsbak JL, Scheithauer BW, Toledo RA, Camargo M, Heyer CM, Sekiya T, Uribe H, Escobar JI, Vasquez M, Rotondo F, Toledo SPA, Kovacs K, Horvath E, Babovic-Vuksanovic D, Harris PC. Somatotroph pituitary adenoma with acromegaly and autosomal dominant polycystic kidney disease: SSTR5 polymorphism and PKD1 mutation. Pituitary 2012; 15:342-9. [PMID: 21744088 PMCID: PMC3905832 DOI: 10.1007/s11102-011-0325-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A 39-year-old woman with autosomal dominant polycystic kidney disease (ADPKD) presented with acromegaly and a pituitary macroadenoma. There was a family history of this renal disorder. She had undergone surgery for pituitary adenoma 6 years prior. Physical examination disclosed bitemporal hemianopsia and elevation of both basal growth hormone (GH) 106 ng/mL (normal 0-5) and insulin-like growth factor (IGF-1) 811 ng/mL (normal 48-255) blood levels. A magnetic resonance imaging scan disclosed a 3.0 cm sellar and suprasellar mass with both optic chiasm compression and left cavernous sinus invasion. Pathologic, cytogenetic, molecular and in silico analysis was undertaken. Histologic, immunohistochemical and ultrastructural studies of the lesion disclosed a sparsely granulated somatotroph adenoma. Standard chromosome analysis on the blood sample showed no abnormality. Sequence analysis of the coding regions of PKD1 and PKD2 employing DNA from both peripheral leukocytes and the tumor revealed the most common PKD1 mutation, 5014_5015delAG. Analysis of the entire SSTR5 gene disclosed the variant c.142C>A (p.L48M, rs4988483) in the heterozygous state in both blood and tumor, while no pathogenic mutations were noted in the MEN1, AIP, p27Kip1 and SSTR2 genes. To our knowledge, this is the fourth reported case of a GH-producing pituitary adenoma associated with ADPKD, but the first subjected to extensive morphological, ultrastructural, cytogenetic and molecular studies. The physical proximity of the PKD1 and SSTR5 genes on chromosome 16 suggests a causal relationship between ADPKD and somatotroph adenoma.
Collapse
Affiliation(s)
- Luis V. Syro
- Department of Neurosurgery, Hospital Pablo Tobon Uribe and Clinica Medellin, Medellin, Colombia
| | - Jamie L. Sundsbak
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Bernd W. Scheithauer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rodrigo A. Toledo
- Unidade de Endocrinologia Genética, (LIM25), Endocrinology, Hospital das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Mauricio Camargo
- Grupo Genetica de Poblaciones, Universidad de Antioquia, Medellin, Colombia
| | - Christina M. Heyer
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Tomoko Sekiya
- Unidade de Endocrinologia Genética, (LIM25), Endocrinology, Hospital das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Humberto Uribe
- Department of Neurosurgery, Clinica SOMA, Medellin, Colombia
| | - Jorge I. Escobar
- Department of Neurosurgery, Clinica las Americas, Medellin, Colombia
| | - Martin Vasquez
- Department of Endocrinology, Hospital Pablo Tobon Uribe and Clinica Medellin, Medellin, Colombia
| | - Fabio Rotondo
- Department of Laboratory Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Sergio P. A. Toledo
- Unidade de Endocrinologia Genética, (LIM25), Endocrinology, Hospital das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Kalman Kovacs
- Department of Laboratory Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Eva Horvath
- Department of Laboratory Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
| | | | - Peter C. Harris
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
109
|
Hogan MC, Masyuk TV, Page L, Holmes DR, Li X, Bergstralh EJ, Irazabal MV, Kim B, King BF, Glockner JF, Larusso NF, Torres VE. Somatostatin analog therapy for severe polycystic liver disease: results after 2 years. Nephrol Dial Transplant 2012; 27:3532-9. [PMID: 22773240 PMCID: PMC3433774 DOI: 10.1093/ndt/gfs152] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/26/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We showed in a randomized double-blinded placebo-controlled clinical trial that octreotide long-acting repeatable depot.® (OctLAR(®)) for 12 months reduces kidney and liver growth in autosomal dominant polycystic kidney patients with severe polycystic liver disease (PLD) and liver growth in patients with severe isolated PLD. We have now completed an open-label extension for one additional year to assess safety and clinical benefits of continued use of OctLAR for 2 years (O → O) and examined drug effect in the placebo group who crossed over to OctLAR in Year 2 (P → O). METHODS The primary end point was change in total liver volume (TLV) measured by magnetic resonance imaging (MRI); secondary end points were changes in total kidney volume (TKV) measured by MRI, glomerular filtration rate (GFR), quality of life (QOL), safety, vital signs and laboratory parameters. RESULTS Forty-one of 42 patients received OctLAR (n = 28) or placebo (n = 14) in Year 1 and received OctLAR in Year 2 (maximum dose 40 mg). Patients originally randomized to placebo (P → O) showed substantial reduction in TLV after treatment with OctLAR in Year 2 (Δ% -7.66 ± 9.69%, P = 0.011). The initial reduction of TLV in the OctLAR group (O → O) was maintained for 2 years (Δ% -5.96 ± 8.90%), although did not change significantly during Year 2 (Δ% -0.77 ± 6.82%). OctLAR inhibited renal enlargement during Year 1 (Δ% +0.42 ± 7.61%) in the (O → O) group and during Year 2 (Δ% -0.41 ± 9.45%) in the (P → O) group, but not throughout Year 2 (Δ% +6.49 ± 7.08%) in the (O → O) group. Using pooled analyses of all individuals who received OctLAR for 12 months, i.e. in Year 1 for O → O patients and Year 2 for P → O patients, average reduction in TLV was -6.08 ± 7.58% (P = 0.001) compared to net growth of 0.9 ± 8.35% in the original placebo group. OctLAR-treated individuals continued to experience improvements in QOL in Year 2, although overall physical and mental improvements were not significant during Year 2 compared to Year 1. Changes in GFR were similar in both groups. CONCLUSION Over 2 years, OctLAR significantly reduced the rate of increase in TLV and possibly the rate of increase in TKV.
Collapse
Affiliation(s)
- Marie C Hogan
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Helal I, Reed B, Schrier RW. Emergent early markers of renal progression in autosomal-dominant polycystic kidney disease patients: implications for prevention and treatment. Am J Nephrol 2012; 36:162-7. [PMID: 22846584 DOI: 10.1159/000341263] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/22/2012] [Indexed: 01/16/2023]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is the most common single cause of end-stage renal disease after diabetes, hypertension and glomerulonephritis. The clinical course of ADPKD is highly variable. Even with optimal care and therapy monitoring, currently the progression of ADPKD is slowed but not stopped. Newer treatments will no doubt become available in the future, but their side effect profiles will always need to be considered. Therefore, markers to distinguish ADPKD patients with a poor versus a good prognosis will be helpful. Several risk factors influencing kidney disease progression in ADPKD have been identified in the current era. The present review will discuss the spectrum of early markers of ADPKD renal disease progression. Specifically, the volume of total kidney, hypertension, glomerular hyperfiltration, renal blood flow, microalbuminuria, uric acid, and urinary molecular markers will be discussed. On this background, implications for the prevention and treatment of kidney disease progression in ADPKD are also discussed.
Collapse
Affiliation(s)
- Imed Helal
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | |
Collapse
|
111
|
Wang X, Ye H, Ward CJ, Chu JYS, Masyuk TV, Larusso NF, Harris PC, Chow BKC, Torres VE. Insignificant effect of secretin in rodent models of polycystic kidney and liver disease. Am J Physiol Renal Physiol 2012; 303:F1089-98. [PMID: 22811488 DOI: 10.1152/ajprenal.00242.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Polycystic kidney (PKD) and liver (PLD) diseases cause significant morbidity and mortality. A large body of evidence indicates that cyclic AMP plays an important role in their pathogenesis. Clinical trials of drugs that reduce cyclic AMP levels in target tissues are now in progress. Secretin may contribute to adenylyl cyclase-dependent urinary concentration and is a major agonist of adenylyl cyclase in cholangiocytes. To investigate the role of secretin in PKD and PLD, we have studied the expression of secretin and the secretin receptor in rodent models orthologous to autosomal recessive (PCK rat) and dominant (Pkd2(-/WS25) mouse) PKD; the effects of exogenous secretin administration to PCK rats, PCK rats lacking circulating vasopressin (PCK(di/di)), and Pkd2(-/WS25) mice; and the impact of a nonfunctional secretin receptor on disease development in Pkd2(-/WS25):SCTR(-/-) double mutants. Renal and hepatic secretin and secretin receptor mRNA and plasma secretin were increased in both models, and secretin receptor protein was increased in the kidneys and liver of Pkd2(-/WS25) mice. However, exogenous secretin administered subcutaneously via osmotic pumps had minimal or negligible effects and the absence of a functional secretin receptor had no influence on the severity of PKD or PLD. Therefore, it is unlikely that by itself secretin plays a significant role in the pathogenesis of PKD and/or PLD.
Collapse
Affiliation(s)
- Xiaofang Wang
- Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Stallone G, Infante B, Grandaliano G, Bristogiannis C, Macarini L, Mezzopane D, Bruno F, Montemurno E, Schirinzi A, Sabbatini M, Pisani A, Tataranni T, Schena FP, Gesualdo L. Rapamycin for treatment of type I autosomal dominant polycystic kidney disease (RAPYD-study): a randomized, controlled study. Nephrol Dial Transplant 2012; 27:3560-7. [PMID: 22785114 DOI: 10.1093/ndt/gfs264] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common form of cystic kidney disease. An inappropriate stimulation of mammalian target of rapamycin may represent the converging point in the molecular pathways leading to renal cyst growth. METHODS The primary objectives of this prospective, open-label, randomized clinical trial were to assess whether rapamycin may reduce the progressive increase in single cyst and total kidney volume in type I ADPKD and the decline in renal function and to identify the optimal rapamycin dose. Fifty-five patients with type I ADPKD were enrolled and randomized to receive ramipril (Group A), ramipril + high-dose rapamycin (Group B, trough level 6-8 ng/mL) and ramipril + low-dose rapamycin (Group C, trough levels 2-4 ng/mL). Rapamycin efficacy was monitored measuring p70 phosphorylation in peripheral blood mononuclear cells. RESULTS Both rapamycin doses significantly reduced p70 phosphorylation. Nevertheless, total kidney volume increased in all groups after 24 months, although only in Groups A and B, was the final volume significantly higher compared with the baseline. Single cyst final volume was not significantly different in the three groups, although it was increased in Group A compared with the baseline, whereas in Groups B and C, it was significantly reduced. We did not observe any difference in renal function at 24 months among the three study groups. Group A presented a significant worsening of renal function that remained stable in both Groups B and C. CONCLUSIONS Our study would suggest that rapamycin does not influence the progression of type I ADPKD, although the higher drug dose tested prevented both the increase in kidney volume and the worsening of renal function (RAPYD-study, EUDRACT No. 2007-006557-25).
Collapse
Affiliation(s)
- Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Biomedical Sciences, University of Foggia, Foggia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
PURPOSE OF REVIEW The review will examine clinically relevant advances in the area of polycystic kidney disease (PKD), mainly focusing on autosomal dominant polycystic kidney disease (ADPKD). Discussion will focus on predicting the course of ADPKD, clinical trials and new research endeavors. RECENT FINDINGS During the past several years PKD research has been one of the most prolific areas in investigative nephrology. Research endeavors have focused on decreasing cyst proliferation and cyst fluid formation based on an understanding of the pathophysiology of these processes. If cysts can be prevented from growing, kidney function can be better preserved. SUMMARY Progression of this most common inherited kidney disorder can be altered by understanding that cysts are the disease in ADPKD. Assessing total kidney volume and noting its relationship to glomerular filtration rate is key in predicting the course of the disease and will aid in the evaluation of the new research initiatives that are designed to stop cyst proliferation and fluid secretion into the kidney cysts. The role of biomarkers is an advancement in predicting PKD progression and can potentially be used in evaluation of treatments for this disease. Complications of PKD alter the course and prognosis; hence management approaches will be addressed.
Collapse
|
114
|
Higashihara E, Horie S, Muto S, Mochizuki T, Nishio S, Nutahara K. Renal disease progression in autosomal dominant polycystic kidney disease. Clin Exp Nephrol 2012; 16:622-8. [PMID: 22526483 PMCID: PMC3416980 DOI: 10.1007/s10157-012-0611-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/30/2012] [Indexed: 01/17/2023]
Abstract
Background Autosomal dominant polycystic kidney disease is a lifelong progressive disorder. However, how age, blood pressure, and stage of chronic kidney disease (CKD) affect the rate of kidney function deterioration is not clearly understood. Methods In this long-term observational case study up to 13.9 years (median observation period for slope was 3.3 years), serum creatinine was serially measured in 255 mostly adult patients. The glomerular filtration rate was estimated (eGFR) using a modified Modification of Diet in Renal Disease Study method. The total kidney volume (TKV) has been measured in 86 patients at one center since 2006. Results As age increased, eGFR declined significantly (P < 0.0001), but the annual rate of decline of eGFR did not correlate with age or initially measured eGFR. In patients with CKD stage 1, eGFR declined at a rate which was not significantly different from other advanced CKD stages. Hypertensive patients had lower eGFR and larger TKV than normotensive patients at a young adult age. The slopes of regression lines of eGFR and TKV in relation to age were not different between high and normal blood pressure groups. Conclusion The declining rate of eGFR was relatively constant and did not correlate with age or eGFR after adolescence. eGFR was already low in young adult patients with hypertension. As age increased after adolescence, eGFR declined and TKV increased similarly between normal and high blood pressure groups. eGFR starts to decline in patients with normal eGFR, suggesting that the decline starts earlier than previously thought. Electronic supplementary material The online version of this article (doi:10.1007/s10157-012-0611-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eiji Higashihara
- Department of Urology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan.
| | | | | | | | | | | |
Collapse
|
115
|
Gevers TJG, Chrispijn M, Wetzels JFM, Drenth JPH. Rationale and design of the RESOLVE trial: lanreotide as a volume reducing treatment for polycystic livers in patients with autosomal dominant polycystic kidney disease. BMC Nephrol 2012; 13:17. [PMID: 22475206 PMCID: PMC3368739 DOI: 10.1186/1471-2369-13-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 04/04/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND A large proportion of patients with autosomal dominant polycystic kidney disease (ADPKD) suffers from polycystic liver disease. Symptoms arise when liver volume increases. The somatostatin analogue lanreotide has proven to reduce liver volume in patients with polycystic liver disease. However, this study also included patients with isolated polycystic liver disease (PCLD). The RESOLVE trial aims to assess the efficacy of lanreotide treatment in ADPKD patients with symptomatic polycystic livers. In this study we present the design of the RESOLVE trial. METHODS/DESIGN This open-label clinical trial evaluates the effect of 6 months of lanreotide in ADPKD patients with symptomatic polycystic livers. Primary outcome is change in liver volume determined by computerised tomography-volumetry. Secondary outcomes are changes in total kidney volume, kidney intermediate volume and renal function. Furthermore, urinary (NGAL, α1-microglobulin, KIM-1, H-FABP, MCP-1) and serum (fibroblast growth factor 23) biomarkers associated with ADPKD disease severity are assessed to investigate whether these biomarkers predict treatment responses to lanreotide. Moreover, safety and tolerability of the drug in ADPKD patients will be assessed. DISCUSSION We anticipate that lanreotide is an effective therapeutic option for ADPKD patients with symptomatic polycystic livers and that this trial aids in the identification of patient related factors that predict treatment response. TRIAL REGISTRATION NUMBER Clinical trials.gov NCT01354405.
Collapse
Affiliation(s)
- Tom JG Gevers
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Melissa Chrispijn
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Jack FM Wetzels
- Department of Nephrology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Joost PH Drenth
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
116
|
Masyuk TV, Radtke BN, Stroope AJ, Banales JM, Masyuk AI, Gradilone SA, Gajdos GB, Chandok N, Bakeberg JL, Ward CJ, Ritman EL, Kiyokawa H, LaRusso NF. Inhibition of Cdc25A suppresses hepato-renal cystogenesis in rodent models of polycystic kidney and liver disease. Gastroenterology 2012; 142:622-633.e4. [PMID: 22155366 PMCID: PMC3506023 DOI: 10.1053/j.gastro.2011.11.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 11/22/2011] [Accepted: 11/25/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS In polycystic kidney disease and polycystic liver disease (PLD), the normally nonproliferative hepato-renal epithelia acquire a proliferative, cystic phenotype that is linked to overexpression of cell division cycle 25 (Cdc25)A phosphatase and cell-cycle deregulation. We investigated the effects of Cdc25A inhibition in mice and rats via genetic and pharmacologic approaches. METHODS Cdc25A(+/-) mice (which have reduced levels of Cdc25A) were cross-bred with polycystic kidney and hepatic disease 1 (Pkhd1(del2/del2)) mice (which have increased levels of Cdc25A and develop hepatic cysts). Cdc25A expression was analyzed in livers of control and polycystic kidney (PCK) rats, control and polycystic kidney 2 (Pkd2(ws25/-)) mice, healthy individuals, and patients with PLD. We examined effects of pharmacologic inhibition of Cdc25A with vitamin K3 (VK3) on the cell cycle, proliferation, and cyst expansion in vitro; hepato-renal cystogenesis in PCK rats and Pkd2(ws25/-)mice; and expression of Cdc25A and the cell-cycle proteins regulated by Cdc25A. We also examined the effects of the Cdc25A inhibitor PM-20 on hepato-renal cystogenesis in Pkd2(ws25/-) mice. RESULTS Liver weights and hepatic and fibrotic areas were decreased by 32%-52% in Cdc25A(+/-):Pkhd1(del2/del2) mice, compared with Pkhd1(del2/del2) mice. VK3 altered the cell cycle and reduced proliferation of cultured cholangiocytes by 32%-83% and decreased growth of cultured cysts by 23%-67%. In PCK rats and Pkd2(ws25/-) mice, VK3 reduced liver and kidney weights and hepato-renal cystic and fibrotic areas by 18%-34%. PM-20 decreased hepato-renal cystogenesis in Pkd2(ws25/-) mice by 15%. CONCLUSIONS Cdc25A inhibitors block cell-cycle progression and proliferation, reduce liver and kidney weights and cyst growth in animal models of polycystic kidney disease and PLD, and might be developed as therapeutics for these diseases.
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Brynn N Radtke
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Angela J Stroope
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Jesús M Banales
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
,Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and CIMA, Ciberehd, Pamplona, Spain
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Sergio A Gradilone
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | | | - Natasha Chandok
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Jason L Bakeberg
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN USA
| | | | - Erik L Ritman
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN USA
| | - Hiroaki Kiyokawa
- Molecular Pharmacology & Biological Chemistry, Northwestern University, Chicago, IL USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
117
|
Ruggenenti P, Gaspari F, Cannata A, Carrara F, Cella C, Ferrari S, Stucchi N, Prandini S, Ene-Iordache B, Diadei O, Perico N, Ondei P, Pisani A, Buongiorno E, Messa P, Dugo M, Remuzzi G. Measuring and estimating GFR and treatment effect in ADPKD patients: results and implications of a longitudinal cohort study. PLoS One 2012; 7:e32533. [PMID: 22393413 PMCID: PMC3291245 DOI: 10.1371/journal.pone.0032533] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 01/31/2012] [Indexed: 02/08/2023] Open
Abstract
Trials failed to demonstrate protective effects of investigational treatments on glomerular filtration rate (GFR) reduction in Autosomal Dominant Polycystic Kidney Disease (ADPKD). To assess whether above findings were explained by unreliable GFR estimates, in this academic study we compared GFR values centrally measured by iohexol plasma clearance with corresponding values estimated by Chronic Kidney Disease Epidemiology Collaboration (CKD-Epi) and abbreviated Modification of Diet in Renal Disease (aMDRD) formulas in ADPKD patients retrieved from four clinical trials run by a Clinical Research Center and five Nephrology Units in Italy. Measured baseline GFRs and one-year GFR changes averaged 78.6±26.7 and 8.4±10.3 mL/min/1.73 m2 in 111 and 71 ADPKD patients, respectively. CKD-Epi significantly overestimated and aMDRD underestimated baseline GFRs. Less than half estimates deviated by <10% from measured values. One-year estimated GFR changes did not detect measured changes. Both formulas underestimated GFR changes by 50%. Less than 9% of estimates deviated <10% from measured changes. Extent of deviations even exceeded that of measured one-year GFR changes. In ADPKD, prediction formulas unreliably estimate actual GFR values and fail to detect their changes over time. Direct kidney function measurements by appropriate techniques are needed to adequately evaluate treatment effects in clinics and research.
Collapse
Affiliation(s)
- Piero Ruggenenti
- Clinical Research Center for Rare Diseases Aldo & Cele Daccò, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
- Unit of Nephrology, Azienda Ospedaliera Ospedali Riuniti di Bergamo, Bergamo, Italy
| | - Flavio Gaspari
- Clinical Research Center for Rare Diseases Aldo & Cele Daccò, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | - Antonio Cannata
- Clinical Research Center for Rare Diseases Aldo & Cele Daccò, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | - Fabiola Carrara
- Clinical Research Center for Rare Diseases Aldo & Cele Daccò, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | - Claudia Cella
- Clinical Research Center for Rare Diseases Aldo & Cele Daccò, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | - Silvia Ferrari
- Clinical Research Center for Rare Diseases Aldo & Cele Daccò, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | - Nadia Stucchi
- Clinical Research Center for Rare Diseases Aldo & Cele Daccò, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | - Silvia Prandini
- Clinical Research Center for Rare Diseases Aldo & Cele Daccò, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | - Bogdan Ene-Iordache
- Clinical Research Center for Rare Diseases Aldo & Cele Daccò, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | - Olimpia Diadei
- Clinical Research Center for Rare Diseases Aldo & Cele Daccò, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | - Norberto Perico
- Clinical Research Center for Rare Diseases Aldo & Cele Daccò, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | - Patrizia Ondei
- Unit of Nephrology, Azienda Ospedaliera Ospedali Riuniti di Bergamo, Bergamo, Italy
| | - Antonio Pisani
- Azienda Ospedaliera Universitaria Federico II, Napoli, Italy
| | | | - Piergiorgio Messa
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Mauro Dugo
- Azienda ULSS 9 – Ospedale S. Maria di Ca' Foncello, Treviso, Italy
| | - Giuseppe Remuzzi
- Clinical Research Center for Rare Diseases Aldo & Cele Daccò, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
- Unit of Nephrology, Azienda Ospedaliera Ospedali Riuniti di Bergamo, Bergamo, Italy
- * E-mail:
| | | |
Collapse
|
118
|
Zhou H, Gao J, Zhou L, Li X, Li W, Li X, Xia Y, Yang B. Ginkgolide B inhibits renal cyst development in in vitro and in vivo cyst models. Am J Physiol Renal Physiol 2012; 302:F1234-42. [PMID: 22338085 DOI: 10.1152/ajprenal.00356.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disease characterized by massive enlargement of fluid-filled cysts in the kidney. However, there is no effective therapy yet for this disease. To examine whether ginkgolide B, a natural compound, inhibits cyst development, a Madin-Darby canine kidney (MDCK) cyst model, an embryonic kidney cyst model, and a PKD mouse model were used. Interestingly, ginkgolide B significantly inhibited MDCK cyst formation dose dependently, with up to 69% reduction by 2 μM ginkgolide B. Ginkgolide B also significantly inhibited cyst enlargement in the MDCK cyst model, embryonic kidney cyst model, and PKD mouse model. To determine the underlying mechanisms, the effect of ginkgolide B on MDCK cell viability, proliferation, apoptosis, chloride transporter CFTR activity, and intracellular signaling pathways were also studied. Ginkgolide B did not affect cell viability, proliferation, and expression and activity of the chloride transporter CFTR that mediates cyst fluid secretion. Ginkgolide B induced cyst cell differentiation and altered the Ras/MAPK signaling pathway. Taken together, our results demonstrate that ginkgolide B inhibits renal cyst formation and enlargement, suggesting that ginkgolide B might be developed into a novel candidate drug for ADPKD.
Collapse
Affiliation(s)
- Hong Zhou
- Dept. of Pharmacology. School of Basic Medical Sciences, Peking Univ., 38 Xueyuan Lu, Haidian District, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
Cilia are antenna-like organelles found on the surface of most cells. They transduce molecular signals and facilitate interactions between cells and their environment. Ciliary dysfunction has been shown to underlie a broad range of overlapping, clinically and genetically heterogeneous phenotypes, collectively termed ciliopathies. Literally, all organs can be affected. Frequent cilia-related manifestations are (poly)cystic kidney disease, retinal degeneration, situs inversus, cardiac defects, polydactyly, other skeletal abnormalities, and defects of the central and peripheral nervous system, occurring either isolated or as part of syndromes. Characterization of ciliopathies and the decisive role of primary cilia in signal transduction and cell division provides novel insights into tumorigenesis, mental retardation, and other common causes of morbidity and mortality, including diabetes mellitus and obesity. New technologies ("Next generation sequencing/NGS") have considerably improved genetic research and diagnostics by allowing simultaneous investigation of all disease genes at reduced costs and lower turn-around times. This is undoubtedly a result of the dynamic development in the field of human genetics and deserves increased attention in genetic counselling and the management of affected families.
Collapse
Affiliation(s)
- Carsten Bergmann
- Center for Human Genetics Bioscientia, Konrad-Adenauer-Str. 17, 55218 Ingelheim, Germany.
| |
Collapse
|
120
|
Abstract
Imaging is an important approach to diagnosis, monitoring, and predicting outcomes for patients with autosomal-dominant polycystic kidney disease. This article reviews three common clinical imaging techniques, ultrasonography, computed tomography, magnetic resonance imaging, and their role in the management of autosomal-dominant polycystic kidney disease. Ultrasonographic criteria for diagnosis in children and adults are reviewed. Total kidney volume, as measured by magnetic resonance imaging, is suggested as an important potential marker to determine disease progression and overall prognosis. Renal blood flow and a novel approach to interpreting noncystic renal parenchyma by computed tomography images are other innovative imaging approaches described.
Collapse
Affiliation(s)
- Arlene B Chapman
- Department of Medicine, Renal Division, Emory University School of Medicine, Atlanta, GA, USA.
| | | |
Collapse
|
121
|
Burtey S. [Slow the pace of renal failure in autosomal dominant polycystic kidney disease: hopes and disappointments]. Presse Med 2011; 40:1059-64. [PMID: 21964037 DOI: 10.1016/j.lpm.2011.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 08/24/2011] [Indexed: 11/30/2022] Open
Abstract
Autosomal dominant polycystic kidney disease is the most frequent renal genetic disease. Its main complication is renal failure. Despite a better understanding of the mechanisms leading to cyst development and growth, no specific treatment is available. Inhibition of mTOR pathway was a great hope, unfortunately, two clinical trials failed to show a clinical benefit. Numerous new drugs are in clinical trials or in the pipe-line. We could hope, in the 5 years to the emergence of an efficient treatment to slow the pace of renal failure in ADPKD.
Collapse
Affiliation(s)
- Stéphane Burtey
- Hôpital de la conception, centre de néphrologie et transplantation rénale, 13005 Marseille, France.
| |
Collapse
|
122
|
Ibraghimov-Beskrovnaya O, Natoli TA. mTOR signaling in polycystic kidney disease. Trends Mol Med 2011; 17:625-33. [PMID: 21775207 DOI: 10.1016/j.molmed.2011.06.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/16/2011] [Accepted: 06/07/2011] [Indexed: 12/15/2022]
Abstract
Polycystic kidney diseases (PKDs) comprise a large group of genetic disorders characterized by formation of cysts in the kidneys and other organs, ultimately leading to end-stage renal disease. Although PKDs can be caused by mutations in different genes, they converge on a set of common molecular mechanisms involved in cystogenesis and ciliary dysfunction, and can be qualified as ciliopathies. Recent advances in understanding the mechanisms regulating disease progression have led to the development of new therapies that are being tested in both preclinical and clinical trials. In this article, we briefly review a network of molecular pathways of cystogenesis that are regulated by ciliary functions. We discuss the mTOR pathway in depth, highlighting recent progress in understanding its role in PKD and the current results of clinical trials.
Collapse
|
123
|
Intermediate volume on computed tomography imaging defines a fibrotic compartment that predicts glomerular filtration rate decline in autosomal dominant polycystic kidney disease patients. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:619-27. [PMID: 21683674 DOI: 10.1016/j.ajpath.2011.04.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 03/10/2011] [Accepted: 04/11/2011] [Indexed: 01/07/2023]
Abstract
Total kidney and cyst volumes have been used to quantify disease progression in autosomal dominant polycystic kidney disease (ADPKD), but a causal relationship with progression to renal failure has not been demonstrated. Advanced image processing recently allowed to quantify extracystic tissue, and to identify an additional tissue component named "intermediate," appearing hypoenhanced on contrast-enhanced computed tomography (CT). The aim of this study is to provide a histological characterization of intermediate volume, investigate its relation with renal function, and provide preliminary evidence of its role in long-term prediction of functional loss. Three ADPKD patients underwent contrast-enhanced CT scans before nephrectomy. Histological samples of intermediate volume were drawn from the excised kidneys, and stained with hematoxylin and eosin and with saturated picrosirius solution for histological analysis. Intermediate volume showed major structural changes, characterized by tubular dilation and atrophy, microcysts, inflammatory cell infiltrate, vascular sclerosis, and extended peritubular interstitial fibrosis. A significant correlation (r = -0.69, P < 0.001) between relative intermediate volume and baseline renal function was found in 21 ADPKD patients. Long-term prediction of renal functional loss was investigated in an independent cohort of 13 ADPKD patients, followed for 3 to 8 years. Intermediate volume, but not total kidney or cyst volume, significantly correlated with glomerular filtration rate decline (r = -0.79, P < 0.005). These findings suggest that intermediate volume may represent a suitable surrogate marker of ADPKD progression and a novel therapeutic target.
Collapse
|
124
|
Sun Y, Zhou H, Yang BX. Drug discovery for polycystic kidney disease. Acta Pharmacol Sin 2011; 32:805-16. [PMID: 21642949 PMCID: PMC4009953 DOI: 10.1038/aps.2011.29] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 03/17/2011] [Indexed: 12/19/2022]
Abstract
In polycystic kidney disease (PKD), a most common human genetic diseases, fluid-filled cysts displace normal renal tubules and cause end-stage renal failure. PKD is a serious and costly disorder. There is no available therapy that prevents or slows down the cystogenesis and cyst expansion in PKD. Numerous efforts have been made to find drug targets and the candidate drugs to treat PKD. Recent studies have defined the mechanisms underlying PKD and new therapies directed toward them. In this review article, we summarize the pathogenesis of PKD, possible drug targets, available PKD models for screening and evaluating new drugs as well as candidate drugs that are being developed.
Collapse
Affiliation(s)
- Ying Sun
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Hong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Bao-xue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| |
Collapse
|
125
|
Abstract
PURPOSE OF REVIEW The present review summarizes the existing knowledge on polycystic liver disease (PCLD) and highlights the progress made in medical treatment for this condition in the past year. RECENT FINDINGS PCLD is associated with autosomal dominant polycystic kidney disease (ADPKD) and autosomal dominant PCLD. Signaling pathways of adenosine 3',5'-cyclic monophosphate (cAMP) and mammalian target of rapamycin (mTOR) are aberrantly regulated in polycystic livers and promote hepatic cystogenesis. Somatostatin analogues reduce intracellular cAMP, and this might prevent fluid accumulation in hepatic cysts. Several clinical trials published over the last year now show that somatostatin analogues when given for 6-12 months in patients with ADPKD and PCLD decrease total liver volume, attenuate polycystic kidney volume, and improve perception of health. In two recent studies mTOR inhibitors failed to halt the progression of ADPKD. It is still too early to recommend to start somatostatin analogues in PCLD and definitive answers should come from future clinical trials. SUMMARY Somatostatin analogues are promising new medical drug options in the treatment of PCLD. However, more needs to be elucidated with regard to molecular mechanisms in hepatic cystogenesis, the uncertainty who will respond to therapy and long-term outcomes.
Collapse
Affiliation(s)
- Tom J G Gevers
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
126
|
Meijer E, Gansevoort RT, de Jong PE, van der Wal AM, Leonhard WN, de Krey SR, van den Born J, Mulder GM, van Goor H, Struck J, de Heer E, Peters DJM. Therapeutic potential of vasopressin V2 receptor antagonist in a mouse model for autosomal dominant polycystic kidney disease: optimal timing and dosing of the drug. Nephrol Dial Transplant 2011; 26:2445-53. [PMID: 21393612 DOI: 10.1093/ndt/gfr069] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The renoprotective effect of vasopressin V2 receptor antagonist (V2RA) is currently being tested in a clinical trial in early autosomal dominant polycystic kidney disease (ADPKD). If efficacious, this warrants life-long treatment with V2RA, however, with associated side effects as polydipsia and polyuria. We questioned whether we could reduce the side effects without influencing the renoprotective effect by starting the treatment later in the disease or by lowering drug dosage. METHODS To investigate this, we administered V2RA OPC-31260 at a high (0.1%) and low (0.05%) dose to a tamoxifen-inducible kidney epithelium-specific Pkd1-deletion mouse model starting treatment at Day 21 (early) or 42 (advanced). After 3 and 6 weeks of treatment, we monitored physiologic and potential renoprotective effects. RESULTS Initiation of V2RA treatment at advanced stage of the disease lacked renoprotective effects and had less pronounced physiologic effects than early initiation. After 3 weeks on a high dose, cyst ratio and kidney weight were reduced versus untreated controls (18 versus 25%, P = 0.05, and 0.33 versus 0.45 g, P = 0.03, respectively). After 6 weeks of treatment, however, this did not reach significance anymore, even at a high dose (cyst ratio 24 versus 27%, P = 0.12, and kidney weight 0.55 versus 0.66 g, P = 0.38). CONCLUSIONS Our results suggest that intervention with V2RA should be instituted early in ADPKD and that it might be necessary to further increase the dosage of this drug later in the disease to decrease cyst growth.
Collapse
Affiliation(s)
- E Meijer
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Fluid transport and cystogenesis in autosomal dominant polycystic kidney disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1314-21. [PMID: 21255645 DOI: 10.1016/j.bbadis.2011.01.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/09/2011] [Accepted: 01/11/2011] [Indexed: 12/18/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent inherited nephropathy. The development and enlargement of cysts in ADPKD requires tubular cell proliferation, abnormalities in the extracellular matrix and transepithelial fluid secretion. Multiple studies have suggested that fluid secretion across ADPKD cyst-lining cells is driven by the transepithelial secretion of chloride, mediated by the apical CFTR channel and specific basolateral transporters. The whole secretory process is stimulated by increased levels of cAMP in the cells, probably reflecting modifications in the intracellular calcium homeostasis and abnormal stimulation of the vasopressin V2 receptor. This review will focus on the pathophysiology of fluid secretion in ADPKD cysts, starting with classic, morphological and physiological studies that were followed by investigations of the molecular mechanisms involved and therapeutic trials targeting these pathways in cellular and animal models and ADPKD patients. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
|
128
|
Hoefele J, Mayer K, Scholz M, Klein HG. Novel PKD1 and PKD2 mutations in autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transplant 2010; 26:2181-8. [PMID: 21115670 DOI: 10.1093/ndt/gfq720] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic renal disorder with an incidence of 1:1000. Mutations in two genes (PKD1 and PKD2) have been identified as causative. Eighty-five percent of patients with ADPKD carry their mutation in the PKD1 gene. So far, > 500 mutations for PKD1 and > 120 mutations for PKD2, respectively, are known. METHODS In this study, we performed mutation analysis of PKD1 and PKD2 by exon sequencing in patients during routine molecular diagnostics for ADPKD. RESULTS In total, 60 mutations were identified in 93 patients representing a mutation detection efficiency of 64.5%. Fifty-two mutations were identified in PKD1 (86.7%) and 8 in PKD2 (13.3%). These include 41 novel mutations detected in PKD1 and 5 novel mutations in PKD2. Accordingly, our data expand the spectrum of known PKD mutations by 8% for PKD1 (41/513) and 4.2% for PKD2 (5/120). These results are in agreement with the detection ranges of 42%, 63% and 64% for definitive disease-causing mutations, and 78%, 86% and 89% for all identified variants reported in several comprehensive mutation screening reports. CONCLUSIONS The increased number of known mutations will facilitate future studies into genotype-phenotype correlations.
Collapse
Affiliation(s)
- Julia Hoefele
- Center for Human Genetics and Laboratory Medicine Dr Klein and Dr Rost, Martinsried, Germany.
| | | | | | | |
Collapse
|
129
|
Wallace DP. Cyclic AMP-mediated cyst expansion. Biochim Biophys Acta Mol Basis Dis 2010; 1812:1291-300. [PMID: 21118718 DOI: 10.1016/j.bbadis.2010.11.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 11/12/2010] [Accepted: 11/16/2010] [Indexed: 12/29/2022]
Abstract
In polycystic kidney disease (PKD), intracellular cAMP promotes cyst enlargement by stimulating mural epithelial cell proliferation and transepithelial fluid secretion. The proliferative effect of cAMP in PKD is unique in that cAMP is anti-mitogenic in normal renal epithelial cells. This phenotypic difference in the proliferative response to cAMP appears to involve cross-talk between cAMP and Ca(2+) signaling to B-Raf, a kinase upstream of the MEK/ERK pathway. In normal cells, B-Raf is repressed by Akt (protein kinase B), a Ca(2+)-dependent kinase, preventing cAMP activation of ERK and cell proliferation. In PKD cells, disruption of intracellular Ca(2+) homeostasis due to mutations in the PKD genes relieves Akt inhibition of B-Raf, allowing cAMP stimulation of B-Raf, ERK and cell proliferation. Fluid secretion by cystic cells is driven by cAMP-dependent transepithelial Cl(-) secretion involving apical cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels. This review summarizes the current knowledge of cAMP-dependent cyst expansion, focusing on cell proliferation and Cl(-)-dependent fluid secretion, and discusses potential therapeutic approaches to inhibit renal cAMP production and its downstream effects on cyst enlargement. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Darren P Wallace
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
130
|
Yamaguchi T, Reif GA, Calvet JP, Wallace DP. Sorafenib inhibits cAMP-dependent ERK activation, cell proliferation, and in vitro cyst growth of human ADPKD cyst epithelial cells. Am J Physiol Renal Physiol 2010; 299:F944-51. [PMID: 20810616 DOI: 10.1152/ajprenal.00387.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In autosomal dominant polycystic kidney disease (ADPKD), aberrant proliferation of the renal epithelial cells is responsible for the formation of numerable fluid-filled cysts, massively enlarged kidneys, and progressive loss of renal function. cAMP agonists, including arginine vasopressin, accelerate cyst epithelial cell proliferation through protein kinase A activation of the B-Raf/MEK/extracellular signal-regulated kinase (ERK) signaling pathway. The mitogenic effect of cAMP is equally potent and additive to growth factor stimulation. Here, we determined whether Sorafenib (BAY 43-9006), a small molecule Raf inhibitor, inhibits proliferation of cells derived from the cysts of human ADPKD kidneys. We found that nanomolar concentrations of Sorafenib reduced the basal activity of ERK, inhibited cAMP-dependent activation of B-Raf and MEK/ERK signaling, and caused a concentration-dependent inhibition of cell proliferation induced by cAMP, epidermal growth factor, or the combination of the two agonists. Sorafenib completely blocked in vitro cyst growth of human ADPKD cystic cells cultured within a three-dimensional collagen gel. These data demonstrate that cAMP-dependent proliferation of human ADPKD cyst epithelial cells is blocked by Sorafenib and suggest that small molecule B-Raf inhibitors may be a therapeutic option to reduce the mitogenic effects of cAMP on cyst expansion.
Collapse
|
131
|
Halvorson CR, Bremmer MS, Jacobs SC. Polycystic kidney disease: inheritance, pathophysiology, prognosis, and treatment. Int J Nephrol Renovasc Dis 2010; 3:69-83. [PMID: 21694932 PMCID: PMC3108786 DOI: 10.2147/ijnrd.s6939] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Indexed: 01/09/2023] Open
Abstract
Both autosomal dominant and recessive polycystic kidney disease are conditions with severe associated morbidity and mortality. Recent advances in the understanding of the genetic and molecular pathogenesis of both ADPKD and ARPKD have resulted in new, targeted therapies designed to disrupt cell signaling pathways responsible for the abnormal cell proliferation, dedifferentiation, apoptosis, and fluid secretion characteristic of the disease. Herein we review the current understanding of the pathophysiology of these conditions, as well as the current treatments derived from our understanding of the mechanisms of these diseases.
Collapse
Affiliation(s)
- Christian R Halvorson
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
132
|
Natoli TA, Smith LA, Rogers KA, Wang B, Komarnitsky S, Budman Y, Belenky A, Bukanov NO, Dackowski WR, Husson H, Russo RJ, Shayman JA, Ledbetter SR, Leonard JP, Ibraghimov-Beskrovnaya O. Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models. Nat Med 2010; 16:788-92. [PMID: 20562878 DOI: 10.1038/nm.2171] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 05/26/2010] [Indexed: 01/08/2023]
Abstract
Polycystic kidney disease (PKD) represents a family of genetic disorders characterized by renal cystic growth and progression to kidney failure. No treatment is currently available for people with PKD, although possible therapeutic interventions are emerging. Despite genetic and clinical heterogeneity, PKDs have in common defects of cystic epithelia, including increased proliferation, apoptosis and activation of growth regulatory pathways. Sphingolipids and glycosphingolipids are emerging as major regulators of these cellular processes. We sought to evaluate the therapeutic potential for glycosphingolipid modulation as a new approach to treat PKD. Here we demonstrate that kidney glucosylceramide (GlcCer) and ganglioside GM3 levels are higher in human and mouse PKD tissue as compared to normal tissue, regardless of the causative mutation. Blockade of GlcCer accumulation with the GlcCer synthase inhibitor Genz-123346 effectively inhibits cystogenesis in mouse models orthologous to human autosomal dominant PKD (Pkd1 conditional knockout mice) and nephronophthisis (jck and pcy mice). Molecular analysis in vitro and in vivo indicates that Genz-123346 acts through inhibition of the two key pathways dysregulated in PKD: Akt protein kinase-mammalian target of rapamycin signaling and cell cycle machinery. Taken together, our data suggest that inhibition of GlcCer synthesis represents a new and effective treatment option for PKD.
Collapse
Affiliation(s)
- Thomas A Natoli
- Department of Cell Biology, Genzyme Corporation, Framingham, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Perico N, Antiga L, Caroli A, Ruggenenti P, Fasolini G, Cafaro M, Ondei P, Rubis N, Diadei O, Gherardi G, Prandini S, Panozo A, Bravo RF, Carminati S, De Leon FR, Gaspari F, Cortinovis M, Motterlini N, Ene-Iordache B, Remuzzi A, Remuzzi G. Sirolimus therapy to halt the progression of ADPKD. J Am Soc Nephrol 2010; 21:1031-40. [PMID: 20466742 DOI: 10.1681/asn.2009121302] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activation of mammalian target of rapamycin (mTOR) pathways may contribute to uncontrolled cell proliferation and secondary cyst growth in patients with autosomal dominant polycystic kidney disease (ADPKD). To assess the effects of mTOR inhibition on disease progression, we performed a randomized, crossover study (The SIRENA Study) comparing a 6-month treatment with sirolimus or conventional therapy alone on the growth of kidney volume and its compartments in 21 patients with ADPKD and GFR>or=40 ml/min per 1.73 m2. In 10 of the 15 patients who completed the study, aphthous stomatitis complicated sirolimus treatment but was effectively controlled by topical therapy. Compared with pretreatment, posttreatment mean total kidney volume increased less on sirolimus (46+/-81 ml; P=0.047) than on conventional therapy (70+/-72 ml; P=0.002), but we did not detect a difference between the two treatments (P=0.45). Cyst volume was stable on sirolimus and increased by 55+/-75 ml (P=0.013) on conventional therapy, whereas parenchymal volume increased by 26+/-30 ml (P=0.005) on sirolimus and was stable on conventional therapy. Percentage changes in cyst and parenchyma volumes were significantly different between the two treatment periods. Sirolimus had no appreciable effects on intermediate volume and GFR. Albuminuria and proteinuria marginally but significantly increased during sirolimus treatment. In summary, sirolimus halted cyst growth and increased parenchymal volume in patients with ADPKD. Whether these effects translate into improved long-term outcomes requires further investigation.
Collapse
Affiliation(s)
- Norberto Perico
- Clinical Research Center for Rare Diseases, Aldo e Cele Daccò, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Peces R, Cuesta-López E, Peces C, Pérez-Dueñas V, Vega-Cabrera C, Selgas R. Octreotide reduces hepatic, renal and breast cystic volume in autosomal-dominant polycystic kidney disease. Int Urol Nephrol 2010; 43:565-9. [PMID: 20449653 DOI: 10.1007/s11255-010-9748-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 04/18/2010] [Indexed: 11/28/2022]
Abstract
A 43-year-old woman with autosomal-dominant polycystic kidney disease (ADPKD) received octreotide for 12 months, and this was associated with a 6.3% reduction in liver volume, an 8% reduction in total kidney volume and stabilization of renal function. There was also a reduction of cyst size in fibrocystic disease of breast. These data suggest that the cyst fluid accumulation in different organs from patients with ADPKD is a dynamic process which can be reversed by octreotide. This is the first report of a case of simultaneous reduction in hepatic, renal and breast cystic volume with preservation of renal function in a patient with ADPKD receiving octreotide.
Collapse
Affiliation(s)
- Ramón Peces
- Servicio de Nefrología, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
135
|
Melander C, Joly D, Knebelmann B. [Autosomal dominant polycystic kidney disease: light at the end of the tunnel?]. Nephrol Ther 2010; 6:226-31. [PMID: 20430712 DOI: 10.1016/j.nephro.2010.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/12/2010] [Accepted: 02/13/2010] [Indexed: 11/20/2022]
Abstract
Autosomal dominant polycystic kidney disease, characterized by numerous cysts in both kidneys, is the most frequent, potentially lethal monogenic disorder. Its prevalence is evaluated between 1/400 and 1/1000 live births and it accounts for 7 to 8 % of end-stage renal disease in developed countries. As yet, the pathogenesis of this disease is not fully understood and there is no specific treatment available. Nevertheless, in the last few years, fundamental and clinical research has been highly efficient in these fields. The purpose of this review is to update the practical implications of this research in terms of clinical manifestations, diagnosis and treatment.
Collapse
Affiliation(s)
- Catherine Melander
- Service de néphrologie adultes, hôpital Necker-Enfants-Malades, 149, rue de Sèvres, 75743 Paris cedex 15, France
| | | | | |
Collapse
|
136
|
Schrier RW. Randomized Intervention Studies in Human Polycystic Kidney and Liver Disease. J Am Soc Nephrol 2010; 21:891-3. [DOI: 10.1681/asn.2010030262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
137
|
Hogan MC, Masyuk TV, Page LJ, Kubly VJ, Bergstralh EJ, Li X, Kim B, King BF, Glockner J, Holmes DR, Rossetti S, Harris PC, LaRusso NF, Torres VE. Randomized clinical trial of long-acting somatostatin for autosomal dominant polycystic kidney and liver disease. J Am Soc Nephrol 2010; 21:1052-61. [PMID: 20431041 DOI: 10.1681/asn.2009121291] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are no proven, effective therapies for polycystic kidney disease (PKD) or polycystic liver disease (PLD). We enrolled 42 patients with severe PLD resulting from autosomal dominant PKD (ADPKD) or autosomal dominant PLD (ADPLD) in a randomized, double-blind, placebo-controlled trial of octreotide, a long-acting somatostatin analogue. We randomly assigned 42 patients in a 2:1 ratio to octreotide LAR depot (up to 40 mg every 28+/-5 days) or placebo for 1 year. The primary end point was percent change in liver volume from baseline to 1 year, measured by MRI. Secondary end points were changes in total kidney volume, GFR, quality of life, safety, vital signs, and clinical laboratory tests. Thirty-four patients had ADPKD, and eight had ADPLD. Liver volume decreased by 4.95%+/-6.77% in the octreotide group but remained practically unchanged (+0.92%+/-8.33%) in the placebo group (P=0.048). Among patients with ADPKD, total kidney volume remained practically unchanged (+0.25%+/-7.53%) in the octreotide group but increased by 8.61%+/-10.07% in the placebo group (P=0.045). Changes in GFR were similar in both groups. Octreotide was well tolerated; treated individuals reported an improved perception of bodily pain and physical activity. In summary, octreotide slowed the progressive increase in liver volume and total kidney volume, improved health perception among patients with PLD, and had an acceptable side effect profile.
Collapse
Affiliation(s)
- Marie C Hogan
- Division of Nephrology and Hypertension, Department of Biomedical STatistics and Informatics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Belibi FA, Edelstein CL. Novel targets for the treatment of autosomal dominant polycystic kidney disease. Expert Opin Investig Drugs 2010; 19:315-28. [PMID: 20141351 DOI: 10.1517/13543781003588491] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Autosomal dominant (AD) polycystic kidney disease (PKD) is the most common life-threatening hereditary disorder. There is currently no therapy that slows or prevents cyst formation and kidney enlargement in humans. An increasing number of animal studies have advanced our understanding of molecular and cellular targets of PKD. AREAS COVERED IN THE REVIEW The purpose of this review is to summarize the molecular and cellular targets involved in cystogenesis and to update on the promising therapies that are being developed and tested based on knowledge of these molecular and cellular targets. WHAT THE READER WILL GAIN Insight into the pathogenesis of PKD and how a better understanding of the pathogenesis of PKD has led to the development of potential therapies to inhibit cyst formation and/or growth and improve kidney function. TAKE HOME MESSAGE The results of animal studies in PKD have led to the development of clinical trials testing potential new therapies to reduce cyst formation and/or growth. A vasopressin V2 receptor antagonist, mTOR inhibitors, blockade of the renin-angiotensin system and statins that reduce cyst formation and improve renal function in animal models of PKD are being tested in interventional studies in humans.
Collapse
Affiliation(s)
- Franck A Belibi
- University of Colorado Denver, Division of Renal Diseases and Hypertension, Box C281, 12700 East 19th Ave, Aurora, CO 80045, USA
| | | |
Collapse
|
139
|
Van Keimpema L, Nevens F, Vanslembrouck R, Van Oijen GH, Hoffmann AL, Dekker HM, De Man RA, Drenth JPH. More on Clinical Renal Genetics. Clin J Am Soc Nephrol 2010. [DOI: 10.2215/01.cjn.0000927100.71587.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
140
|
Grünfeld JP, Hwu WL, Van Keimpema L, Alamovitch S, Zivna M, Brown EJ, Chien YH, Lee NC, Chiang SC, Dobrovolny R, Huang AC, Yeh HY, Chao MC, Lin SJ, Kitagawa T, Desnick RJ, Hsu LW, Nevens F, Vanslembrouck R, Van Oijen GH, Hoffmann AL, Dekker HM, De Man RA, Drenth JPH, Plaisier E, Favrole P, Prost C, Chen Z, Van Agrmael T, Marro B, Ronco P, Hulkova H, Matignon M, Hodanova K, Vylet'al P, Kalbacova M, Baresova V, Sikora J, Blazkova H, Zivny J, Ivanek R, Stranecky V, Sovova J, Claes K, Lerut E, Fryns JP, Hart PS, Hart TC, Adams JN, Pawtowski A, Clemessy M, Gasc JM, Gubler MC, Antignac C, Elleder M, Kapp K, Grimbert P, Bleyer AJ, Kmoch S, Schlöndorff JS, Becker DJ, Tsukaguchi H, Uschinski AL, Higgs HN, Henderson JM, Pollak MR. More on Clinical Renal GeneticsNewborn screening for Fabry disease in Taiwan reveals a high incidence of the later-onset mutation c.936+919G>A (IVS4+919G>A). Hum Mutat 30: 1397–1405, 2009Lanreotide reduces the volume of polycystic liver: A randomized, double-blind, placebo-controlled trial. Gastroenterology 137: 1661–1668, 2009Cerebrovascular disease related to COL4A1 mutations in HANAC syndrome. Neurology 73: 1873–1882, 2009Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic renal failure. Am J Hum Genet 85: 204–213, 2009Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat Genet 42: 72–76, 2009. Clin J Am Soc Nephrol 2010; 5:563-7. [DOI: 10.2215/cjn.01720210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
141
|
Onori P, Franchitto A, Mancinelli R, Carpino G, Alvaro D, Francis H, Alpini G, Gaudio E. Polycystic liver diseases. Dig Liver Dis 2010; 42:261-71. [PMID: 20138815 PMCID: PMC2894157 DOI: 10.1016/j.dld.2010.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/07/2010] [Accepted: 01/07/2010] [Indexed: 12/11/2022]
Abstract
Polycystic liver diseases (PCLDs) are genetic disorders with heterogeneous etiologies and a range of phenotypic presentations. PCLD exhibits both autosomal or recessive dominant pattern of inheritance and is characterized by the progressive development of multiple cysts, isolated or associated with polycystic kidney disease, that appear more extensive in women. Cholangiocytes have primary cilia, functionally important organelles (act as mechanosensors) that are involved in both normal developmental and pathological processes. The absence of polycystin-1, 2, and fibrocystin/polyductin, normally localized to primary cilia, represent a potential mechanism leading to cyst formation, associated with increased cell proliferation and apoptosis, enhanced fluid secretion, abnormal cell-matrix interactions, and alterations in cell polarity. Proliferative and secretive activities of cystic epithelium can be regulated by estrogens either directly or by synergizing growth factors including nerve growth factor, IGF1, FSH and VEGF. The abnormalities of primary cilia and the sensitivity to proliferative effects of estrogens and different growth factors in PCLD cystic epithelium provide the morpho-functional basis for future treatment targets, based on the possible modulation of the formation and progression of hepatic cysts.
Collapse
Affiliation(s)
- P. Onori
- Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | - A. Franchitto
- Dept Human Anatomy, University of Rome “La Sapienza”, Rome, Italy
| | - R. Mancinelli
- Dept Human Anatomy, University of Rome “La Sapienza”, Rome, Italy
| | - G. Carpino
- Dept Health Science, University of Rome “Foro Italico”, Italy
| | - D. Alvaro
- Gastroenterology, Polo Pontino, University of Rome “La Sapienza”, Rome, Italy
| | - H. Francis
- Research, Central Texas Veterans Health Care System, USA
| | - G. Alpini
- Research, Central Texas Veterans Health Care System, USA, Scott & White Digestive Disease Research Center, Texas A&M Health Science Center, College of Medicine, USA
| | - E. Gaudio
- Dept Human Anatomy, University of Rome “La Sapienza”, Rome, Italy, Corresponding author. Tel.: +39 0649918060; fax: +39 0649918062. (E. Gaudio)
| |
Collapse
|
142
|
Torres VE. Treatment strategies and clinical trial design in ADPKD. Adv Chronic Kidney Dis 2010; 17:190-204. [PMID: 20219622 DOI: 10.1053/j.ackd.2010.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/06/2010] [Accepted: 01/06/2010] [Indexed: 12/22/2022]
Abstract
More frequent utilization and continuous improvement of imaging techniques has enhanced appreciation of the high phenotypic variability of autosomal dominant polycystic kidney disease, improved understanding of its natural history, and facilitated the observation of its structural progression. At the same time, identification of the PKD1 and PKD2 genes has provided clues to how the disease develops when they (genetic mechanisms) and their encoded proteins (molecular mechanisms) are disrupted. Interventions designed to rectify downstream effects of these disruptions have been examined in animal models, and some are currently tested in clinical trials. Efforts are underway to determine whether interventions capable to slow down, stop, or reverse structural progression of the disease will also prevent decline of renal function and improve clinically significant outcomes.
Collapse
|
143
|
Caroli A, Antiga L, Cafaro M, Fasolini G, Remuzzi A, Remuzzi G, Ruggenenti P. Reducing polycystic liver volume in ADPKD: effects of somatostatin analogue octreotide. Clin J Am Soc Nephrol 2010; 5:783-9. [PMID: 20185596 DOI: 10.2215/cjn.05380709] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES No medical treatment is available for polycystic liver disease, a frequent manifestation of autosomal-dominant polycystic kidney disease (ADPKD). In a prospective, randomized, double-blind, crossover study, 6 months of octreotide (40 mg every 28 days) therapy limited kidney volume growth more effectively than placebo in 12 patients with ADPKD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS In this secondary, post hoc analysis of the above study, octreotide-induced changes in liver volumes compared with placebo and the relationship between concomitant changes in liver and kidney volumes were evaluated. Those analyzing liver and kidney volumes were blinded to treatment. RESULTS Liver volumes significantly decreased from 1595 +/- 478 ml to 1524 +/- 453 ml with octreotide whereas they did not appreciably change with placebo. Changes in liver volumes were significantly different between the two treatment periods (-71 +/- 57 ml versus +14 +/- 85 ml). Octreotide-induced liver volume reduction was fully explained by a reduction in parenchyma volume from 1506 +/- 431 ml to 1432 +/- 403 ml. Changes in liver volumes were significantly correlated with concomitant changes in kidney volumes (r = 0.67) during octreotide but not during placebo treatment. Liver and kidney volume changes significantly differed with both treatments (octreotide: -71 +/- 57 ml versus +71 +/- 107; placebo: +14 +/- 85 ml versus +162 +/- 114), but net reductions in liver (-85 +/- 103 ml) and kidney (-91 +/- 125 ml) volume growth on octreotide versus placebo were similar. CONCLUSIONS Octreotide therapy reduces liver volumes in patients with ADPKD and is safe.
Collapse
Affiliation(s)
- Anna Caroli
- Biomedical Engineering, Mario Negri Institute for Pharmacological Research, Via Gavazzeni, 11, 24125 Bergamo, Italy
| | | | | | | | | | | | | |
Collapse
|
144
|
|
145
|
van Keimpema L, Nevens F, Vanslembrouck R, van Oijen MGH, Hoffmann AL, Dekker HM, de Man RA, Drenth JPH. Lanreotide reduces the volume of polycystic liver: a randomized, double-blind, placebo-controlled trial. Gastroenterology 2009; 137:1661-8.e1-2. [PMID: 19646443 DOI: 10.1053/j.gastro.2009.07.052] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 06/22/2009] [Accepted: 07/10/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Therapy for polycystic liver is invasive, expensive, and has disappointing long-term results. Treatment with somatostatin analogues slowed kidney growth in patients with polycystic kidney disease (PKD) and reduced liver and kidney volume in a PKD rodent model. We evaluated the effects of lanreotide, a somatostatin analogue, in patients with polycystic liver because of autosomal-dominant (AD) PKD or autosomal-dominant polycystic liver disease (PCLD). METHODS We performed a randomized, double-blind, placebo-controlled trial in 2 tertiary referral centers. Patients with polycystic liver (n = 54) were randomly assigned to groups given lanreotide (120 mg) or placebo, administered every 28 days for 24 weeks. The primary end point was the difference in total liver volume, measured by computerized tomography at weeks 0 and 24. Analyses were performed on an intention-to-treat basis. RESULTS Baseline characteristics were comparable for both groups, except that more patients with ADPKD were assigned to the placebo group (P = .03). The mean liver volume decreased 2.9%, from 4606 mL (95% confidence interval (CI): 547-8665) to 4471 mL (95% CI: 542-8401 mL), in patients given lanreotide. In the placebo group, the mean liver volume increased 1.6%, from 4689 mL (95% CI: 613-8765 mL) to 4895 mL (95% CI: 739-9053 mL) (P < .01). Post hoc stratification for patients with ADPKD or PCLD revealed similar changes in liver volume, with statistically significant differences in patients given lanreotide (P < .01 for both diseases). CONCLUSIONS In patients with polycystic liver, 6 months of treatment with lanreotide reduces liver volume.
Collapse
Affiliation(s)
- Loes van Keimpema
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
PURPOSE OF REVIEW Polycystic kidney disease (PKD) is the most common genetic cause of chronic renal failure. Mouse models of PKD, especially those with mutations in genes that are orthologous to human disease genes, have provided insights into the pathogenesis of cyst formation and advanced the preclinical testing of new drugs. RECENT FINDINGS PKD is a ciliopathy that arises from abnormalities in the primary cilium, a sensory organelle present on the surface of most cells. The primary cilium is required for the maintenance of planar cell polarity, which regulates tubular diameter. Acute kidney injury stimulates cell proliferation and promotes cyst formation in a mouse model of PKD. Studies of signaling pathways that are perturbed in PKD have identified new potential therapeutic targets. Drugs that have shown beneficial effects in orthologous animal models of PKD include tolvaptan, octreotide, src inhibitors, CFTR inhibitors, pioglitazone, etanercept, and triptolide. SUMMARY Abnormalities in the primary cilium perturb signaling pathways that regulate renal epithelial cell growth and differentiation and lead to the formation of kidney cysts. Acute kidney injury promotes cyst formation and may underlie the variability in disease progression that is observed in affected individuals. Several promising new therapeutic agents that have been validated in orthologous animal models have entered clinical trials in humans.
Collapse
|
147
|
Vilayur E, Harris DCH. Emerging therapies for chronic kidney disease: what is their role? Nat Rev Nephrol 2009; 5:375-83. [PMID: 19455178 DOI: 10.1038/nrneph.2009.76] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The prevalence of chronic kidney disease (CKD) is increasing worldwide. The best therapies currently available focus on the control of blood pressure and optimization of renin-angiotensin-aldosterone system blockade. Currently available agents are only partially effective against hard end points such as the development of end-stage renal disease and are not discussed in this Review. Many other agents have been shown to reduce proteinuria and delay progression in animal models of CKD. Some of these agents, including tranilast, sulodexide, thiazolidinediones, pentoxifylline, and inhibitors of advanced glycation end-products and protein kinase C, have been tested to a limited extent in humans. A small number of randomized controlled human trials of these agents have used surrogate markers such as proteinuria as end points rather than hard end points such as end-stage renal disease or doubling of serum creatinine level. Emerging therapies that specifically target and reverse pathological hallmarks of CKD such as inflammation, fibrosis and atrophy are needed to reduce the burden of this chronic disease and its associated morbidity. This Review examines the evidence for emerging pharmacological strategies for slowing the progression of CKD.
Collapse
Affiliation(s)
- Eswari Vilayur
- Department of Renal Medicine, Westmead Hospital, Westmead, NSW, Australia.
| | | |
Collapse
|
148
|
Harris PC. 2008 Homer W. Smith Award: Insights into the Pathogenesis of Polycystic Kidney Disease from Gene Discovery. J Am Soc Nephrol 2009; 20:1188-98. [DOI: 10.1681/asn.2009010014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
149
|
Aguiari G, Varani K, Bogo M, Mangolini A, Vincenzi F, Durante C, Gessi S, Sacchetto V, Catizone L, Harris P, Rizzuto R, Borea PA, Del Senno L. Deficiency of polycystic kidney disease-1 gene (PKD1) expression increases A(3) adenosine receptors in human renal cells: implications for cAMP-dependent signalling and proliferation of PKD1-mutated cystic cells. Biochim Biophys Acta Mol Basis Dis 2009; 1792:531-40. [PMID: 19285554 DOI: 10.1016/j.bbadis.2009.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 02/27/2009] [Accepted: 03/03/2009] [Indexed: 11/28/2022]
Abstract
Cyst growth and expansion in autosomal dominant polycystic kidney disease (ADPKD) has been attributed to numerous factors, including ATP, cAMP and adenosine signalling. Although the role of ATP and cAMP has been widely investigated in PKD1-deficient cells, no information is currently available on adenosine-mediated signalling. Here we investigate for the first time the impact of abnormalities of polycystin-1 (PC1) on the expression and functional activity of adenosine receptors, members of the G-protein-coupled receptor superfamily. Pharmacological, molecular and biochemical findings show that a siRNA-dependent PC1-depletion in HEK293 cells and a PKD1-nonsense mutation in cyst-derived cell lines result in increased expression of the A(3) adenosine receptor via an NFkB-dependent mechanism. Interestingly, A(3) adenosine receptor levels result higher in ADPKD than in normal renal tissues. Furthermore, the stimulation of this receptor subtype with the selective agonist Cl-IB-MECA causes a reduction in both cytosolic cAMP and cell proliferation in both PC1-deficient HEK293 cells and cystic cells. This reduction is associated with increased expression of p21(waf) and reduced activation not only of ERK1/2, but also of S6 kinase, the main target of mTOR signalling. In the light of these findings, the ability of Cl-IB-MECA to reduce disease progression in ADPKD should be further investigated. Moreover, our results suggest that NFkB, which is markedly activated in PC1-deficient and cystic cells, plays an important role in modulating A(3)AR expression in cystic cells.
Collapse
Affiliation(s)
- Gianluca Aguiari
- Department of Biochemistry and Molecular Biology, Section of Molecular Biology, University of Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Affiliation(s)
- Jing Zhou
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|