101
|
Martinez MN, Soback S. An introduction to the JVPT special issue on antimicrobial drugs. J Vet Pharmacol Ther 2020; 44:133-136. [PMID: 32997371 DOI: 10.1111/jvp.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Marilyn N Martinez
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, US Food and Drug Administration, Rockville, MD, USA
| | - Stefan Soback
- National Residue Control Laboratory, Kimron Veterinary Institute, Ministry of Agriculture, Beit Dagan, Israel
| |
Collapse
|
102
|
Pantanella F, Lekunberri I, Gagliardi A, Venuto G, Sànchez-Melsió A, Fabiani M, Balcázar JL, Schippa S, De Giusti M, Borrego C, Solimini A. Effect of Urban Wastewater Discharge on the Abundance of Antibiotic Resistance Genes and Antibiotic-Resistant Escherichia coli in Two Italian Rivers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186813. [PMID: 32962009 PMCID: PMC7557954 DOI: 10.3390/ijerph17186813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
Background: Wastewater treatment plants (WWTPs) are microbial factories aimed to reduce the amount of nutrients and pathogenic microorganisms in the treated wastewater before its discharge into the environment. We studied the impact of urban WWTP effluents on the abundance of antibiotic resistance genes (ARGs) and antibiotic-resistant Escherichia coli (AR-E. coli) in the last stretch of two rivers (Arrone and Tiber) in Central Italy that differ in size and flow volume. Methods: Water samples were collected in three seasons upstream and downstream of the WWTP, at the WWTP outlet, and at sea sites near the river mouth, and analyzed for the abundance of ARGs by qPCR and AR-E. coli using cultivation followed by disk diffusion assays. Results: For all studied genes (16S rRNA, intI1, sul1, ermB, blaTEM, tetW and qnrS), absolute concentrations were significantly higher in the Tiber than in the Arrone at all sampling sites, despite their collection date, but the prevalence of target ARGs within bacterial communities in both rivers was similar. The absolute concentrations of most ARGs were also generally higher in the WWTP effluent with median levels between log 4 and log 6 copies per ml but did not show differences along the studied stretches of rivers. Statistically significant site effect was found for E. coli phenotypic resistance to tetracycline and ciprofloxacin in the Arrone but not in the Tiber. Conclusions: In both rivers, diffuse or point pollution sources other than the studied WWTP effluents may account for the observed resistance pattern, although the Arrone appears as more sensitive to the wastewater impact considering its lower flow volume.
Collapse
Affiliation(s)
- Fabrizio Pantanella
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, Piazza A. Moro 5, 00185 Rome, Italy; (F.P.); (A.G.); (G.V.); (M.F.); (S.S.); (M.D.G.)
| | - Itziar Lekunberri
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, 17003 Girona, Spain; (I.L.); (A.S.-M.); (J.L.B.); (C.B.)
| | - Antonella Gagliardi
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, Piazza A. Moro 5, 00185 Rome, Italy; (F.P.); (A.G.); (G.V.); (M.F.); (S.S.); (M.D.G.)
| | - Giuseppe Venuto
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, Piazza A. Moro 5, 00185 Rome, Italy; (F.P.); (A.G.); (G.V.); (M.F.); (S.S.); (M.D.G.)
| | - Alexandre Sànchez-Melsió
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, 17003 Girona, Spain; (I.L.); (A.S.-M.); (J.L.B.); (C.B.)
| | - Massimo Fabiani
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, Piazza A. Moro 5, 00185 Rome, Italy; (F.P.); (A.G.); (G.V.); (M.F.); (S.S.); (M.D.G.)
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, 17003 Girona, Spain; (I.L.); (A.S.-M.); (J.L.B.); (C.B.)
| | - Serena Schippa
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, Piazza A. Moro 5, 00185 Rome, Italy; (F.P.); (A.G.); (G.V.); (M.F.); (S.S.); (M.D.G.)
| | - Maria De Giusti
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, Piazza A. Moro 5, 00185 Rome, Italy; (F.P.); (A.G.); (G.V.); (M.F.); (S.S.); (M.D.G.)
| | - Carles Borrego
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, 17003 Girona, Spain; (I.L.); (A.S.-M.); (J.L.B.); (C.B.)
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, 17001 Girona, Spain
| | - Angelo Solimini
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, Piazza A. Moro 5, 00185 Rome, Italy; (F.P.); (A.G.); (G.V.); (M.F.); (S.S.); (M.D.G.)
- Correspondence: ; Tel.: +39-06-4991-463
| |
Collapse
|
103
|
Saima S, Fiaz M, Manzoor M, Zafar R, Ahmed I, Nawaz U, Arshad M. Molecular investigation of antibiotic resistant bacterial strains isolated from wastewater streams in Pakistan. 3 Biotech 2020; 10:378. [PMID: 32802720 PMCID: PMC7410903 DOI: 10.1007/s13205-020-02366-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/25/2020] [Indexed: 12/19/2022] Open
Abstract
Antibiotic resistance is a global public health issue and it is even more daunting in developing countries. The main objective of present study was to investigate molecular responses of antibiotic-resistant bacteria. The 48 bacterial strains, which were previously isolated and identified were subjected to disc diffusion and MIC (minimum inhibitory concentration) determination, followed by investigating the production of the three beta-lactamases (ESBLs (Extended-spectrum Beta-lactamases), MBLs (Metallo Beta-lactamases), AmpCs) and exploring prevalence of the two antibiotic-resistant genes (ARGs); blaTEM and qnrS. Higher MIC values were observed for penicillin(s) than that for fluoroquinolones (ampicillin > amoxicillin > ofloxacin > ciprofloxacin > levofloxacin). Resistance rates were high (58-89%) for all of the tested beta-lactams. Among the tested strains, 5 were ESBL producers (4 Aeromonas spp. and 1 Escherichia sp.), 2 were MBL producers (1 Stenotrophomonas sp. and 1 Citrobacter sp.) and 3 were AmpC producers (2 Pseudomonas spp. and 1 Morganella sp.). The ARGs qnrS2 and blaTEM were detected in Aeromonas spp. and Escherichia sp. The results highlighted the role of Aeromonas as a vector. The study reports bacteria of multidrug resistance nature in the wastewater environment of Pakistan, which harbor ARGs of clinical relevance and could present a public health concern.
Collapse
Affiliation(s)
- Saima Saima
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Marium Fiaz
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Maria Manzoor
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Rabeea Zafar
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University Sciences and Technology (NUST), Islamabad, 44000 Pakistan
- Department of Environmental Design, Health and Nutritional Sciences, Faculty of Sciences, Allama Iqbal Open University, Islamabad, 44000 Pakistan
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Bioresource Conservation Institute (BCI), National Agricultural Research Centre (NARC), Islamabad, 45500 Pakistan
| | - Uzma Nawaz
- Department of Statistics, The Women University Multan, Multan, Pakistan
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| |
Collapse
|
104
|
Formation of the Resistance of Campylobacter jejuni to Macrolide Antibiotics. Bull Exp Biol Med 2020; 169:351-356. [PMID: 32748135 DOI: 10.1007/s10517-020-04885-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 10/23/2022]
Abstract
The tendency to the formation of macrolide resistance in campylobacteriosis pathogens is considered as a serious threat to public health due to ubiquity of campylobacter strains resistant to a wide range of antibiotics, primarily fluoroquinolones and tetracyclines. To assess the prevalence of resistant Campylobacter spp., we performed screening for macrolide sensitivity among 40 Campylobacter jejuni strains isolated from raw milk, poultry product, and washings from the equipment of the poultry processing plants. Phenotypic resistance to erythromycin, the most popular antibiotic for the treatment of campylobacteriosis, was revealed in 27.5% C. jejuni strains; 10% strains were resistant to azithromycin. The search and selection for gene markers of Campylobacter resistance to macrolides was performed. It was found that the resistance of C. jejuni to erythromycin is realized mainly via synthesis of proteins that protect ribosomes (the presence of coding sequences was detected in 45% of the studied strains) and the transmembrane pump mechanism (efflux pump CmeABC genes were found in 36% isolates); both mechanisms are transmissible. Chromosomal mutations in the 23S rRNA sequence detected in 18% strains seem to play a less significant role.
Collapse
|
105
|
Pan X, Lin L, Zhang W, Dong L, Yang Y. Metagenome sequencing to unveil the resistome in a deep subtropical lake on the Yunnan-Guizhou Plateau, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114470. [PMID: 32247114 DOI: 10.1016/j.envpol.2020.114470] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Erhai Lake in the Yunnan-Guizhou Plateau, a typical subtropical deep lake, experienced long-time input of nutrients and pollutants, which provides beneficial conditions for evolution and spread of resistance genes. In this study, the profile of bacterial community, antibiotic and metal resistance genes in sediments of Erhai Lake were analyzed via high-thought sequencing of 16S rRNA and metagenomic DNA. Proteobacteria, Firmicutes, Nitrospirae, and Bacteroidetes were found to be the main composition of the bacterial community. Multidrug-, bacitracin-, macrolide-lincosamide-streptogramin (MLS)- and tetracycline resistance genes were the primary antibiotic resistance gene (ARG) types with high relative abundance, whereas Multi-metal-, and arsenic- resistance genes were the primary metal resistance gene (MRG) types. The effects of nitrogen and phosphorus on the abundance of ARGs and MRGs depended on the different types. Some specific ARG (fosmidomycin resistance genes) and MRG types (multi-metal resistance genes) also showed significant geographic distribution. Bacterial community was the main driver shaping the resistome. Nutrients also played an essential role in structuring the bacterial community and resistome in the sediments of Erhai Lake. This study sheds light on the distribution and fate of resistome under a high load of nitrogen and phosphorus in a deep lake.
Collapse
Affiliation(s)
- Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430014, China
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430014, China
| | - Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Lei Dong
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430014, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
106
|
Zhang X, Chen G, Zhong S, Wang T, Ji M, Wu X, Zhang X. Antibiotic-induced role interchange between rare and predominant bacteria retained the function of a bacterial community for denitrifying quinoline degradation. J Appl Microbiol 2020; 129:1598-1608. [PMID: 32592325 DOI: 10.1111/jam.14755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
Abstract
AIM Quinoline is a recalcitrant pollutant in coking wastewater which has been broadly investigated with many isolates possessing aerobic quinoline-degrading ability. However, studies on anaerobic degradation and the corresponding bacteria are very scarce. This study attempted to investigate the role of diverse functional members and the redundancy of quinoline degradation in a lab-scale quinoline denitrifying bioreactor. METHODS AND RESULTS Antibiotics were added to the batch culture under denitrifying conditions to disturb the microbial community of the quinoline-degrading bioreactor. According to the results, the nitrate removal rate remained stable, and the quinoline removal rate increased by 9·7% after treatment with streptomycin. However, PCoA analysis of 16S rRNA gene sequencing data of these samples indicated a significant shift in microbial community structures. Specifically, 12 operational taxonomic units (OTUs), including OTU1 (Pseudomonas) and OTU2 (Achromobacter), were significantly enriched. OTU1 replaced OTU8 (Thauera) as the most predominant denitrifying quinoline-degrading member. However, OTU8 and other predominant OTUs (Comamonas and Pseudoxanthomonas), which were hypothesized to contribute essentially to quinoline degradation in the origin bioreactor, became almost undetectable. CONCLUSION Functional redundancy due to high biological diversity allowed the role reversal of predominant quinoline-degrading bacteria and other rare bacteria when disturbed by antibiotic stress. Although the abundance of OTU1 was much lower initially, it replaced the essential role of the predominant member OTU8 in the bioreactor community for quinoline degradation once the environmental condition changed. SIGNIFICANCE AND IMPACT OF THE STUDY This study indicated that the high biological diversity in a wastewater treatment bacterial community is crucial for maintaining the degrading function of organic pollutants, especially in a changing environment due to external disturbance or stress.
Collapse
Affiliation(s)
- X Zhang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - G Chen
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - S Zhong
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - T Wang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - M Ji
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - X Wu
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - X Zhang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
107
|
Manikandan M, Chun S, Kazibwe Z, Gopal J, Singh UB, Oh JW. Phenomenal Bombardment of Antibiotic in Poultry: Contemplating the Environmental Repercussions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5053. [PMID: 32674337 PMCID: PMC7400182 DOI: 10.3390/ijerph17145053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/23/2022]
Abstract
Antibiotics have constantly been added at an unprecedented rate in order to enhance poultry meat production. Such antibiotics impose a negative impact on human health directly through meat and egg consumption. On the other hand, they also affect humans indirectly by affecting the normal key microbial processes in the agricultural environments, when used as poultry compost. For many years, farmers have been turning poultry litter into compost for agricultural use. Very few studies have addressed the fate of the unmetabolized antibiotic residues in poultry litter that could potentially affect microbial communities when used as poultry compost. We have also questioned the fate of residual antibiotic in poultry waste which may create possible negative environmental pressure on microbial communities that are involved in microbial mediated poultry litter composting processes. The incorporation of antibiotic degrading environmental isolates in poultry litter at the initial stage of composting in order to accelerate the process is addressed in this review as a future perspective.
Collapse
Affiliation(s)
- Muthu Manikandan
- Department of Environmental Health Sciences, Konkuk University, Seoul 143-701, Korea; (M.M.); (S.C.); (Z.K.); (J.G.)
| | - Sechul Chun
- Department of Environmental Health Sciences, Konkuk University, Seoul 143-701, Korea; (M.M.); (S.C.); (Z.K.); (J.G.)
| | - Zakayo Kazibwe
- Department of Environmental Health Sciences, Konkuk University, Seoul 143-701, Korea; (M.M.); (S.C.); (Z.K.); (J.G.)
| | - Judy Gopal
- Department of Environmental Health Sciences, Konkuk University, Seoul 143-701, Korea; (M.M.); (S.C.); (Z.K.); (J.G.)
| | - Udai Bhan Singh
- Plant-Microbe Interaction & Rhizosphere Biology LabICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau Nath Bhanjan 275103, Uttar Pradesh, India;
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
108
|
Iskandar K, Molinier L, Hallit S, Sartelli M, Catena F, Coccolini F, Craig Hardcastle T, Roques C, Salameh P. Drivers of Antibiotic Resistance Transmissionin Low- and Middle-Income Countriesfrom a "One Health" Perspective-A Review. Antibiotics (Basel) 2020; 9:E372. [PMID: 32630353 PMCID: PMC7400606 DOI: 10.3390/antibiotics9070372] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance is an ecosystem problem threatening the interrelated human-animalenvironmenthealth under the "One Health" framework. Resistant bacteria arising in onegeographical area can spread via cross-reservoir transmission to other areas worldwide either bydirect exposure or through the food chain and the environment. Drivers of antibiotic resistance arecomplex and multi-sectoral particularly in Lower- and Middle-income countries. These includeinappropriate socio-ecological behaviors; poverty; overcrowding; lack of surveillance systems; foodsupply chain safety issues; highly contaminated waste effluents; and loose rules and regulations. Inorder to examine the drivers of antibiotic resistance from a "one health" perspective, a literaturereview was conducted on three databases including PubMed, Medline and Google Scholar. A totalof 485 studies of potential relevance were selected, out of which 182 were included in this review.Results have shown that the aforementioned market failures are the leading cause for the negativeexternality of antibiotic resistance that extends in scope from the individual to the global ecosystem.Incremental and sustainable global actions can make the change, however, the problem willcontinue to prevail if governments do not prioritize the "One health" approach and if individual'saccountability is still denied in a world struggling with profound socio-economic problems.
Collapse
Affiliation(s)
- Katia Iskandar
- Department of Mathématiques Informatique et Télécommunications, Université Toulouse III, Paul Sabatier, INSERM, UMR 1027, F-31000 Toulouse, France
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573-14, Lebanon; (S.H.); (P.S.)
- Faculty of Pharmacy, Lebanese University, Beirut 1106, Lebanon
| | - Laurent Molinier
- Department of Medical Information, Centre Hospitalier Universitaire, INSERM, UMR 1027, Université Paul Sabatier Toulouse III, F-31000 Toulouse, France;
| | - Souheil Hallit
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573-14, Lebanon; (S.H.); (P.S.)
- Faculty of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Jounieh P.O. Box 446, Lebanon
| | - Massimo Sartelli
- Department of surgery, University of Macerata, 62100 Macerata, Italy;
| | - Fausto Catena
- Department of Emergency Surgery, Parma Maggiore Hospital, 43126 Parma, Italy;
| | - Federico Coccolini
- Department of General, Emergency and Trauma Surgery, Cisanello University Hospital, 56100 Pisa, Italy;
| | - Timothy Craig Hardcastle
- Department of Trauma service, Inkosi Albert Luthuli Central Hospital, Durban 4091, South Africa;
- Department of Surgery, Nelson Mandela School of Clinical Medicine, University of KwaZulu-Natal, Congela, Durban 4041, South Africa
| | - Christine Roques
- Departement of Bioprocédés et Systèmes Microbiens, Laboratoire de Génie Chimique, Université Paul Sabatier Toulouse III, UMR 5503, 31330 Toulouse, France;
- Department of Bactériologie-Hygiène, Centre Hospitalier Universitaire, Hôpital Purpan, 31330 Toulouse, France
| | - Pascale Salameh
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573-14, Lebanon; (S.H.); (P.S.)
- Faculty of Pharmacy, Lebanese University, Beirut 1106, Lebanon
- Faculty of Public Health, Lebanese University, Beirut 1103, Lebanon
| |
Collapse
|
109
|
Xu XL, Kang XQ, Qi J, Jin FY, Liu D, Du YZ. Novel Antibacterial Strategies for Combating Bacterial Multidrug Resistance. Curr Pharm Des 2020; 25:4717-4724. [PMID: 31642769 DOI: 10.2174/1381612825666191022163237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antibacterial multidrug resistance has emerged as one of the foremost global problems affecting human health. The emergence of resistant infections with the increasing number of multidrug-resistant pathogens has posed a serious problem, which required innovative collaborations across multiple disciplines to address this issue. METHODS In this review, we will explain the mechanisms of bacterial multidrug resistance and discuss different strategies for combating it, including combination therapy, the use of novel natural antibiotics, and the use of nanotechnology in the development of efflux pump inhibitors. RESULTS While combination therapy will remain the mainstay of bacterial multi-drug resistance treatment, nanotechnology will play critical roles in the development of novel treatments in the coming years. CONCLUSION Nanotechnology provides an encouraging platform for the development of clinically relevant and practical strategies to overcome drug resistance in the future.
Collapse
Affiliation(s)
- Xiao-Ling Xu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xu-Qi Kang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jing Qi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fei-Yang Jin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Di Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yong-Zhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
110
|
Manenzhe RI, Dube FS, Wright M, Lennard K, Zar HJ, Mounaud S, Nierman WC, Nicol MP, Moodley C. Longitudinal changes in the nasopharyngeal resistome of South African infants using shotgun metagenomic sequencing. PLoS One 2020; 15:e0231887. [PMID: 32320455 PMCID: PMC7176138 DOI: 10.1371/journal.pone.0231887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 04/02/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction Nasopharyngeal (NP) colonization with antimicrobial-resistant bacteria is a global public health concern. Antimicrobial-resistance (AMR) genes carried by the resident NP microbiota may serve as a reservoir for transfer of resistance elements to opportunistic pathogens. Little is known about the NP antibiotic resistome. This study longitudinally investigated the composition of the NP antibiotic resistome in Streptococcus-enriched samples in a South African birth cohort. Methods As a proof of concept study, 196 longitudinal NP samples were retrieved from a subset of 23 infants enrolled as part of broader birth cohort study. These were selected on the basis of changes in serotype and antibiogram over time. NP samples underwent short-term enrichment for streptococci prior to total nucleic acid extraction and whole metagenome shotgun sequencing (WMGS). Reads were assembled and aligned to pneumococcal reference genomes for the extraction of streptococcal and non-streptococcal bacterial reads. Contigs were aligned to the Antibiotic Resistance Gene-ANNOTation database of acquired AMR genes. Results AMR genes were detected in 64% (125/196) of the samples. A total of 329 AMR genes were detected, including 36 non-redundant genes, ranging from 1 to 14 genes per sample. The predominant AMR genes detected encoded resistance mechanisms to beta-lactam (52%, 172/329), macrolide-lincosamide-streptogramin (17%, 56/329), and tetracycline antibiotics (12%, 38/329). MsrD, ermB, and mefA genes were only detected from streptococcal reads. The predominant genes detected from non- streptococcal reads included blaOXA-60, blaOXA-22, and blaBRO-1. Different patterns of carriage of AMR genes were observed, with only one infant having a stable carriage of mefA, msrD and tetM over a long period. Conclusion This study demonstrates that WMGS can provide a broad snapshot of the NP resistome and has the potential to provide a comprehensive assessment of resistance elements present in this niche.
Collapse
Affiliation(s)
- Rendani I. Manenzhe
- Division of Medical Microbiology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Felix S. Dube
- Division of Medical Microbiology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Meredith Wright
- J. Craig Venter Institute, Rockville, MD, United States of America
| | - Katie Lennard
- Division of Computational Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital and MRC unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | | | | | - Mark P. Nicol
- Division of Medical Microbiology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Division of Infection and Immunity, University of Western Australia, Perth, Australia
| | - Clinton Moodley
- Division of Medical Microbiology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
111
|
Zhan Z, Xu X, Shen H, Gao Y, Zeng F, Qu X, Zhang H, Liao M, Zhang J. Rapid Emergence of Florfenicol-Resistant Invasive Non-Typhoidal Salmonella in China: A Potential Threat to Public Health. Am J Trop Med Hyg 2020; 101:1282-1285. [PMID: 31642424 DOI: 10.4269/ajtmh.19-0403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Infection caused by invasive Salmonella occurs when Salmonella bacteria, which normally cause diarrhea, enter the bloodstream and spread through the body. We report the dramatic increase in florfenicol-resistant invasive non-typhoidal Salmonella (iNTS) in China between 2007 and 2016. Of the 186 iNTS strains isolated during the study period, 34 were florfenicol resistant, most of which harbored known resistance genes. Florfenicol is exclusively used in veterinary medicine in China, but now florfenicol-resistant iNTS is found in clinical patients. This finding indicates that antimicrobial resistance produced in veterinary medicine can be transmitted to humans, which poses a severe threat to public health.
Collapse
Affiliation(s)
- Zeqiang Zhan
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Haiyan Shen
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuan Gao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fanliang Zeng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyun Qu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongxia Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
112
|
Das B, Verma J, Kumar P, Ghosh A, Ramamurthy T. Antibiotic resistance in Vibrio cholerae: Understanding the ecology of resistance genes and mechanisms. Vaccine 2020; 38 Suppl 1:A83-A92. [DOI: 10.1016/j.vaccine.2019.06.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/11/2019] [Accepted: 06/04/2019] [Indexed: 11/29/2022]
|
113
|
Korzeniewska E, Harnisz M. Sources, Occurrence, and Environmental Risk Assessment of Antibiotics and Antimicrobial-Resistant Bacteria in Aquatic Environments of Poland. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/978-3-030-12139-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
114
|
Survey on antimicrobial usage in local dairy cows in North-central Nigeria: Drivers for misuse and public health threats. PLoS One 2019; 14:e0224949. [PMID: 31877140 PMCID: PMC6932773 DOI: 10.1371/journal.pone.0224949] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Background Antimicrobials are used as a measure to maintain good health and productivity of lactating cows. This study assessed pastoralists’ knowledge and practices regarding AMU in lactating cows; and risk pathways for AMR dissemination from cow milk to humans. Methods Interview questionnaire-based cross-sectional study was conducted in Fulani pastoral communities. Frequencies and proportions were used for descriptive statistics. Chi-square test and multivariable logistic regressions were used for analytic statistics at 95% confidence level. Results All recruited 384 pastoral households participated. About 11% of participants indicated antimicrobials misuse as when given at under-dose, while 58.9% had no knowledge of what antimicrobial misuse entailed. Most participants (51.6%) were unaware about effects of improper AMU. Most respondents (61.7%) reported self-prescription of antimicrobials used on cows. Also, 67.4% of respondents reported arbitrary applications of antimicrobials used in cows, while 15% used antimicrobials to increase milk yield. Frequently used antimicrobials were: tetracycline (98.7%), penicillin (96.6%), streptomycin (95.8%) and sulfonamides (95.3%). Consumption of raw milk and milk products (p = 0.010); contacts with contaminated udder (p = 0.002); and aerosols of discarded contaminated milk P = 0.001) were perceived risk pathways for spread of antimicrobial resistance from cow milk. Improper AMU (p<0.001), non-enforcement of regulating laws (p<0.001), weak financial status (p<0.001), and low education and expertise (p<0.001) influenced antimicrobials misuse in lactating cows. Conclusions This study highlighted low levels of knowledge, risk perceptions and practices regarding AMU and AMR among survey pastoralists. This calls for education of the vulnerable populations on promotion of prudent AMU in lactating cows through ‘One Health’ approach, to assure food safety, food security, and public and environmental health.
Collapse
|
115
|
Holmer I, Salomonsen CM, Jorsal SE, Astrup LB, Jensen VF, Høg BB, Pedersen K. Antibiotic resistance in porcine pathogenic bacteria and relation to antibiotic usage. BMC Vet Res 2019; 15:449. [PMID: 31829171 PMCID: PMC6907208 DOI: 10.1186/s12917-019-2162-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Optimal treatment and prudent use of antimicrobials for pigs is imperative to secure animal health and prevent development of critical resistance. An important step in this one-health context is to monitor resistance patterns of important animal pathogens. The aim of this study was to investigate the antimicrobial resistance patterns of five major pathogens in Danish pigs during a period from 2004 to 2017 and elucidate any developments or associations between resistance and usage of antibiotics. RESULTS The minimum inhibitory concentration (MIC) for Escherichia coli, Actinobacillus pleuropneumoniae, Streptococcus suis, Bordetella bronchiseptica, and Staphylococcus hyicus was determined to representatives of antibiotic classes relevant for treatment or surveillance. Escherichia coli isolates were mostly sensitive to fluoroquinolones and colistin, whereas high levels of resistance were observed to ampicillin, spectinomycin, streptomycin, sulfonamides and tetracycline. While resistance levels to most compounds remained relatively stable during the period, resistance to florfenicol increased from 2.1% in 2004 to 18.1% in 2017, likely in response to a concurrent increase in usage. A temporal association between resistance and usage was also observed for neomycin. E. coli serovars O138 and O149 were generally more resistant than O139. For A. pleuropneumoniae, the resistance pattern was homogenous and predictable throughout the study period, displaying high MIC values only to erythromycin whereas almost all isolates were susceptible to all other compounds. Most S. suis isolates were sensitive to penicillin whereas high resistance levels to erythromycin and tetracycline were recorded, and resistance to erythromycin and trimethoprim increasing over time. For S. hyicus, sensitivity to the majority of the antimicrobials tested was observed. However, penicillin resistance was recorded in 69.4-88.9% of the isolates. All B. bronchiseptica isolates were resistant to ampicillin, whereas all but two isolates were sensitive to florfenicol. The data obtained have served as background for a recent formulation of evidence-based treatment guidelines for pigs. CONCLUSIONS Antibiotic resistance varied for some pathogens over time and in response to usage. Resistance to critically important compounds was low. The results emphasize the need for continuous surveillance of resistance patterns also in pig pathogenic bacteria.
Collapse
Affiliation(s)
- I Holmer
- Technical University of Denmark, Kemitorvet Building 202, Anker Engelunds Vej 1, DK-2800, Kgs. Lyngby, Denmark
| | | | - S E Jorsal
- Technical University of Denmark, Kemitorvet Building 202, Anker Engelunds Vej 1, DK-2800, Kgs. Lyngby, Denmark
| | - L B Astrup
- Technical University of Denmark, Kemitorvet Building 202, Anker Engelunds Vej 1, DK-2800, Kgs. Lyngby, Denmark
| | - V F Jensen
- Technical University of Denmark, Kemitorvet Building 202, Anker Engelunds Vej 1, DK-2800, Kgs. Lyngby, Denmark
| | - B Borck Høg
- Technical University of Denmark, Kemitorvet Building 202, Anker Engelunds Vej 1, DK-2800, Kgs. Lyngby, Denmark
| | - K Pedersen
- National Veterinary Institute, Ulls väg 2B, 751 89, Uppsala, Sweden.
| |
Collapse
|
116
|
Wang H, Wang J, Li S, Li J, Jing C. Prevalence of antibiotic resistance genes in cell culture liquid waste and the virulence assess for isolated resistant strains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32040-32049. [PMID: 31493078 DOI: 10.1007/s11356-019-06299-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Cell culture liquid waste containing antibiotic resistance genes (ARGs) and microbial community were still not received enough recognition, which pose potential risks to human health. Sixty-eight resistance genes and intl1 were detected in eight samples by Quantitative real-time PCR, while intl1 was only detected in hospital group. Meanwhile, the bacterial community was complex and diverse in each sample by 16S rRNA gene high-throughput sequencing, in addition, Morganella and Enterococcus presented a significant difference between two groups. Whole genome shotgun sequencing revealed that Morganella morganii had more resistance genes and virulence factors in hospital group, and three extended-spectrum beta-lactamase (ESBL) genotypes were found to be blaDHA-5, blaOXA-1, and blaTEM-1. This study provided a preliminary report on ARGs and resistant strains, which reminded people attention to the health risks of potential pathogens in this waste.
Collapse
Affiliation(s)
- Haichao Wang
- School of Civil Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, China
| | - Jin Wang
- School of Civil Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, China.
| | - Shuming Li
- School of Civil Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, China
| | - Jinzhao Li
- China Shenhua Overseas Development & Investment Co., Limited, Beijing, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
117
|
Sadyrbaeva-Dolgova S, Aznarte-Padial P, Jimenez-Morales A, Expósito-Ruiz M, Calleja-Hernández MÁ, Hidalgo-Tenorio C. Pharmacist recommendations for carbapenem de-escalation in urinary tract infection within an antimicrobial stewardship program. J Infect Public Health 2019; 13:558-563. [PMID: 31685404 DOI: 10.1016/j.jiph.2019.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/31/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Carbapenem antibiotics are considered the treatment of choice for serious extended-spectrum beta-lactamase-producing Gram-negative bacteria infections. Our objectives were to analyze the results of carbapenem de-escalation therapy in complicated urinary tract infections (UTIs) attended in a third-level Spanish hospital and to evaluate the impact of pharmacist recommendation in this practice, the outcomes obtained, and associated factors. METHODS This prospective observational study of carbapenem prescriptions and de-escalation performance was conducted in a third-level hospital between August 1 2013 and July 31, 2014. Data were gathered on carbapenem treatment duration, de-escalation, length of hospital stay, mortality rate, and associated re-admissions. RESULTS De-escalation, which was only ordered for patients with positive cultures, was conducted in 49.7% of the 163 patients with complicated UTI. More than half (69.1%) of pharmacist interventions were accepted. De-escalation reduced the median hospital stay by five days (p=0.030). Crude hospital mortality was lower in the de-escalation group (7.4% vs. 29.3%, p<0.001), although their exposure to carbapenems was lower (4 vs 6 days, p<0.001). Factors associated with de-escalation were ICU stay for at least 48h, pharmacist recommendation and ESBL or AmpC producing Enterobacteriaceae. Factors associated with in-hospital mortality were age, previous admission and duration of hospital stay, but not pharmacist recommendation. Otherwise, carbapenem de-escalation was associated as a protective factor against in-hospital mortality. CONCLUSIONS Carbapenem de-escalation in accordance with pharmacist recommendation proved to be a safe approach in complicated UTI, reducing the hospital stay of patients without affecting the re-admission rate.
Collapse
Affiliation(s)
| | - Pilar Aznarte-Padial
- Department of Pharmacy, University Hospital Virgen de las Nieves, Granada, Spain
| | | | | | | | | |
Collapse
|
118
|
Lye YL, Bong CW, Lee CW, Zhang RJ, Zhang G, Suzuki S, Chai LC. Anthropogenic impacts on sulfonamide residues and sulfonamide resistant bacteria and genes in Larut and Sangga Besar River, Perak. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1335-1347. [PMID: 31726563 DOI: 10.1016/j.scitotenv.2019.06.304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/31/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMXr) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L-1 with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMXr-bacteria (107 CFU mL-1) and SRGs (10-1/16S copies mL-1). Pearson correlation showed only positive correlation between the PO4 and SMXr-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMXr-bacteria and SRGs in the river.
Collapse
Affiliation(s)
- Ying Ling Lye
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chui Wei Bong
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Choon Weng Lee
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rui Jie Zhang
- School of Marine Sciences, Guang Xi University, Nanning 530004, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, The Chinese Academy of Sciences, Guangzhou 510640, China
| | - Satoru Suzuki
- Leading Academia in Marine and Environment Pollution Research (LaMer), Center for Marine Environmental Studies (CMES), Ehime University, Japan
| | - Lay Ching Chai
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
119
|
Yaacoub SG, Koyess V, Lahoud N, Rahme D, Francis N, Saleh N, Maison P. Antibiotic prescribing for acute uncomplicated cystitis in Lebanese community pharmacies using a simulated patient. Pharm Pract (Granada) 2019; 17:1604. [PMID: 31897255 PMCID: PMC6935547 DOI: 10.18549/pharmpract.2019.4.1604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/03/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Urinary tract infections are considered as one of the most frequent bacterial infections in the community and hospital settings. In this era of increasing antimicrobial resistance, antimicrobial stewardship has become highly important in the struggle to preserve the effectiveness of available drugs. One the main causes of antibiotic resistance is the inappropriate prescribing of antibiotics; which evidence show that community pharmacists contribute to. OBJECTIVE This study aims to evaluate antibiotic prescribing rate and responses of the contact persons in community pharmacies and to assess the conformity of the prescribed antibiotics with international guidelines. It also aims to evaluate the responses with sociodemographic characteristics. METHODS A cross-sectional, nationwide study conducted between February and May 2017 using a simulated patient case of acute uncomplicated cystitis. Two hundred fifty pharmacies were included. Descriptive data was reported for the medications prescribed, conformity, questions asked and counseling. Bivariate analysis using the Pearson chi-squared, Fisher's exact and Student's t-tests were used to identify possible factors affecting the prescribing rates and responses in community pharmacies. RESULTS The prescribing rate of antibiotics was 83.6% (n=209) with ciprofloxacin being the most prescribed (50.2%, n=105). The global conformity to international guidelines was 3.8% (n=8) with the highest conformity rate for the antibiotic choice (91.4%, n=191). Counseling about what to do in case symptoms persist was 12.8% (n=32) and that of non-pharmacological management was 53.6% (n=134). Male participants (88.1%) had a higher prescribing rate than female participants (77.6%) (p<0.05). The number of questions asked was higher in pharmacists and in female participants (p<0.05). Other results showed non-significant differences in diagnosis, antibiotic prescribing, conformity rates, referral rates and counseling points between the pharmacists and assistants. CONCLUSIONS The high antibiotic prescribing rate in Lebanese community pharmacies is alarming and calls for action. This should be tackled by legislative bodies, which should enforce laws that restrict such practices.
Collapse
Affiliation(s)
- Sally G Yaacoub
- Faculty of Public Health, Lebanese University. Fanar (Lebanon).
| | - Valerie Koyess
- Faculty of Public Health, Lebanese University. Fanar (Lebanon).
| | - Nathalie Lahoud
- Clinical Epidemiology and Toxicology, National Institute of Public Health (INSPECT-LB); & Faculty of Pharmacy, Lebanese University. Hadat (Lebanon).
| | - Deema Rahme
- Department of Pharmacy Practice, Faculty of Pharmacy, Beirut Arab University. Beirut (Lebanon).
| | - Nicole Francis
- Faculty of Public Health, Lebanese University. Fanar (Lebanon).
| | - Nadine Saleh
- Clinical Epidemiology and Toxicology, National Institute of Public Health (INSPECT-LB); & Faculty of Pharmacy, Lebanese University. Hadat (Lebanon).
| | - Patrick Maison
- Paris-Est Health-Work Institute (IST-PE), Créteil Intercommunal Hospital Center (CHIC). Créteil (France).
| |
Collapse
|
120
|
Benomar S, Evans KC, Unckless RL, Chandler JR. Efflux Pumps in Chromobacterium Species Increase Antibiotic Resistance and Promote Survival in a Coculture Competition Model. Appl Environ Microbiol 2019; 85:e00908-19. [PMID: 31324628 PMCID: PMC6752006 DOI: 10.1128/aem.00908-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Members of the Chromobacterium genus include opportunistic but often-fatal pathogens and soil saprophytes with highly versatile metabolic capabilities. In previous studies of Chromobacterium subtsugae (formerly C. violaceum) strain CV017, we identified a resistance nodulation division (RND)-family efflux pump (CdeAB-OprM) that confers resistance to several antibiotics, including the bactobolin antibiotic produced by the soil saprophyte Burkholderia thailandensis Here, we show the cdeAB-oprM genes increase C. subtsugae survival in a laboratory competition model with B. thailandensis We also demonstrate that adding sublethal bactobolin concentrations to the coculture increases C. subtsugae survival, but this effect is not through CdeAB-OprM. Instead, the increased survival requires a second, previously unreported pump we call CseAB-OprN. We show that in cells exposed to sublethal bactobolin concentrations, the cseAB-oprN genes are transcriptionally induced, and this corresponds to an increase in bactobolin resistance. Induction of this pump is highly specific and sensitive to bactobolin, while CdeAB-OprM appears to have a broader range of antibiotic recognition. We examine the distribution of cseAB-oprN and cdeAB-oprM gene clusters in members of the Chromobacterium genus and find the cseAB-oprN genes are limited to the nonpathogenic C. subtsugae strains, whereas the cdeAB-oprM genes are more widely distributed among members of the Chromobacterium genus. Our results provide new information on the antibiotic resistance mechanisms of Chromobacterium species and highlight the importance of efflux pumps for saprophytic bacteria existing in multispecies communities.IMPORTANCE Antibiotic efflux pumps are best known for increasing antibiotic resistance of pathogens; however, the role of these pumps in saprophytes is much less well defined. This study describes two predicted efflux pump gene clusters in the Chromobacterium genus, which is comprised of both nonpathogenic saprophytes and species that cause highly fatal human infections. One of the predicted efflux pump clusters is present in every member of the Chromobacterium genus and increases resistance to a broad range of antibiotics. The other gene cluster has more narrow antibiotic specificity and is found only in Chromobacterium subtsugae, a subset of entirely nonpathogenic species. We demonstrate the role of both pumps in increasing antibiotic resistance and demonstrate the importance of efflux-dependent resistance induction for C. subtsugae survival in a dual-species competition model. These results have implications for managing antibiotic-resistant Chromobacterium infections and for understanding the evolution of efflux pumps outside the host.
Collapse
Affiliation(s)
- Saida Benomar
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Kara C Evans
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Josephine R Chandler
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
121
|
Das DJ, Shankar A, Johnson JB, Thomas S. Critical insights into antibiotic resistance transferability in probiotic Lactobacillus. Nutrition 2019; 69:110567. [PMID: 31733594 DOI: 10.1016/j.nut.2019.110567] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/20/2019] [Accepted: 08/06/2019] [Indexed: 11/26/2022]
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, with respect to metabolism, immune function, and nutrition. Any perturbation of these beneficial microbes leads to gut dysbiosis, which triggers the development of various disorders in the gastrointestinal system. Probiotics play a key role in resolving the dysbiosis posed by external factors such as antibiotics, other substances, or interventions. Supplementing probiotics with antibiotics is favorable in reducing the harmful effects of antibiotics on gut flora. These microbes also possess specific intrinsic drug resistance mechanisms that aid their survival in the internal environment. According to US Food and Drug Administration reports, species belonging to Lactobacillus and Bifidobacterium genera are the most common probiotics consumed by humans through commercial products. However, various studies have reported the tendency of microbes to acquire specific drug resistance, in recent years, through various mechanisms. The reports on transferable resistance among probiotics are of major concern, of which minimal information is available to date. The aim of this review was to describe the pros and cons of drug resistance among these beneficial microorganisms with emphasis on the recommended selection criteria for specific probiotics, devoid of transferable drug resistance genes, suitable for human consumption.
Collapse
Affiliation(s)
- Devika J Das
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India; University of Kerala, Thiruvananthapuram, Kerala, India
| | - Aparna Shankar
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - John B Johnson
- Viral Disease Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Sabu Thomas
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India.
| |
Collapse
|
122
|
Zhang H, He H, Chen S, Huang T, Lu K, Zhang Z, Wang R, Zhang X, Li H. Abundance of antibiotic resistance genes and their association with bacterial communities in activated sludge of wastewater treatment plants: Geographical distribution and network analysis. J Environ Sci (China) 2019; 82:24-38. [PMID: 31133267 DOI: 10.1016/j.jes.2019.02.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 05/21/2023]
Abstract
Wastewater treatment plants (WWTPs) are deemed reservoirs of antibiotic resistance genes (ARGs). Bacterial phylogeny can shape the resistome in activated sludge. However, the co-occurrence and interaction of ARGs abundance and bacterial communities in different WWTPs located at continental scales are still not comprehensively understood. Here, we applied quantitative PCR and Miseq sequence approaches to unveil the changing profiles of ARGs (sul1, sul2, tetW, tetQ, tetX), intI1 gene, and bacterial communities in 18 geographically distributed WWTPs. The results showed that the average relative abundance of sul1and sul2 genes were 2.08 × 10-1 and 1.32 × 10-1 copies/16S rRNA copies, respectively. The abundance of tetW gene was positively correlated with the Shannon diversity index (H'), while both studied sul genes had significant positive relationship with the intI1gene. The highest average relative abundances of sul1, sul2, tetX, and intI1 genes were found in south region and oxidation ditch system. Network analysis found that 16 bacterial genera co-occurred with tetW gene. Co-occurrence patterns were revealed distinct community interactions between aerobic/anoxic/aerobic and oxidation ditch systems. The redundancy analysis model plot of the bacterial community composition clearly demonstrated that the sludge samples were significant differences among those from the different geographical areas, and the shifts in bacterial community composition were correlated with ARGs. Together, these findings from the present study will highlight the potential risks of ARGs and bacterial populations carrying these ARGs, and enable the development of suitable technique to control the dissemination of ARGs from WWTPs into aquatic environments.
Collapse
Affiliation(s)
- Haihan Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Huiyan He
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kuanyu Lu
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhonghui Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rong Wang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xueyao Zhang
- Xi'an Environmental Monitoring Center, Xi'an 710119, China
| | - Hailong Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
123
|
Shen JP, Li ZM, Hu HW, Zeng J, Zhang LM, Du S, He JZ. Distribution and Succession Feature of Antibiotic Resistance Genes Along a Soil Development Chronosequence in Urumqi No.1 Glacier of China. Front Microbiol 2019; 10:1569. [PMID: 31354668 PMCID: PMC6629927 DOI: 10.3389/fmicb.2019.01569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/24/2019] [Indexed: 01/03/2023] Open
Abstract
Primary succession of plant and microbial communities in the glacier retreating foreland has been extensively studied, but shifts of antibiotic resistance genes (ARGs) with the glacier retreating due to global warming remain elusive. Unraveling the diversity and succession features of ARGs in pristine soil during glacier retreating could contribute to a mechanistic understanding of the evolution and development of soil resistome. In this study, we quantified the abundance and diversity of ARGs along a 50-year soil development chronosequence by using a high-throughput quantitative PCR (HT-qPCR) technique. A total of 24 ARGs and two mobile genetic elements (MGEs) were detected from all the glacier samples, and the numbers of detected ARGs showed a unimodal pattern with an increasing trend at the early stage (0∼8 years) but no significant change at later stages (17∼50 years). The oprJ and mexF genes encoding multidrug resistance were the only two ARGs that were detected across all the succession ages, and the mexF gene showed an increasing trend along the succession time. Structural equation models indicated the predominant role of the intI1 gene encoding the Class 1 integron-integrase in shaping the variation of ARG profiles. These findings suggested the presence of ARGs in pristine soils devoid of anthropogenic impacts, and horizontal gene transfer mediated by MGEs may contribute to the succession patterns of ARGs during the initial soil formation stage along the chronosequence.
Collapse
Affiliation(s)
- Ju-Pei Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zong-Ming Li
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
- School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jun Zeng
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
124
|
Kraemer SA, Ramachandran A, Perron GG. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019; 7:E180. [PMID: 31234491 PMCID: PMC6616856 DOI: 10.3390/microorganisms7060180] [Citation(s) in RCA: 404] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 01/06/2023] Open
Abstract
The ability to fight bacterial infections with antibiotics has been a longstanding cornerstone of modern medicine. However, wide-spread overuse and misuse of antibiotics has led to unintended consequences, which in turn require large-scale changes of policy for mitigation. In this review, we address two broad classes of corollaries of antibiotics overuse and misuse. Firstly, we discuss the spread of antibiotic resistance from hotspots of resistance evolution to the environment, with special concerns given to potential vectors of resistance transmission. Secondly, we outline the effects of antibiotic pollution independent of resistance evolution on natural microbial populations, as well as invertebrates and vertebrates. We close with an overview of current regional policies tasked with curbing the effects of antibiotics pollution and outline areas in which such policies are still under development.
Collapse
Affiliation(s)
- Susanne A Kraemer
- Department of Biology, Concordia University, 7141 Sherbrooke Street W, Montreal, QC H4B1R6, Canada.
| | - Arthi Ramachandran
- Department of Biology, Concordia University, 7141 Sherbrooke Street W, Montreal, QC H4B1R6, Canada.
| | - Gabriel G Perron
- Department of Biology, Reem-Kayden Center for Sciences and Computation, Bard College, 31 Campus Road, Annandale-On-Hudson, NY 12504, USA.
- Center for the Study of Land, Water, and Air, Bard College, Annandale-On-Hudson, NY 12504, USA.
| |
Collapse
|
125
|
|
126
|
Riedel S, Boire N, Carson KA, Vadlamudi A, Khuvis J, Vadlamudi V, Atukorale V, Riedel VAA, Parrish NM. A survey of antimicrobial resistance in Enterobacteriaceae isolated from the Chesapeake Bay and adjacent upper tributaries. Microbiologyopen 2019; 8:e00839. [PMID: 30950215 PMCID: PMC6741119 DOI: 10.1002/mbo3.839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, the rise in antimicrobial resistance (AR) in the healthcare setting as well as the environment has been recognized as a growing public health problem. The Chesapeake Bay (CB) and its upper tributaries (UT) is a large and biologically diverse estuary. This pilot study evaluated the presence of AR of gram‐negative bacteria isolated from water samples collected at various sites of the Chesapeake Bay. Bacterial organisms were identified and antimicrobial susceptibility testing was performed by phenotypic and genotypic methods. Ninety‐two distinctly different gram‐negative bacteria were identified; Klebsiella pneumoniae, Enterobacter cloacae, Enterobacter aerogenes, Serratia marcescens, and Escherichia coli were most often isolated. Serratia marcescens was more frequently isolated in samples from the UT compared to the CB. Antimicrobial resistance was more frequently detected in organisms from the CB by phenotypic and genotypic methods. Antimicrobial resistance to ampicillin, imipenem, tetracycline, and chloramphenicol were the most frequently observed resistance patterns. ACT‐1, CMY, and SHV genes were the most frequently detected resistance genes, with predominance in organism isolated from the CB. The results from this study emphasize the importance for further developing comprehensive surveillance programs of AR in bacterial isolates in the various environments, such as recreational and other water systems.
Collapse
Affiliation(s)
- Stefan Riedel
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Division of Microbiology, Department of Pathology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Nicholas Boire
- Division of Microbiology, Department of Pathology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Kathryn A Carson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Aravinda Vadlamudi
- Division of Microbiology, Department of Pathology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Joshua Khuvis
- Division of Microbiology, Department of Pathology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Vivek Vadlamudi
- Division of Microbiology, Department of Pathology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Vajini Atukorale
- Division of Microbiology, Department of Pathology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Victoria A A Riedel
- Division of Microbiology, Department of Pathology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Nicole M Parrish
- Division of Microbiology, Department of Pathology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
127
|
Burcham ZM, Schmidt CJ, Pechal JL, Brooks CP, Rosch JW, Benbow ME, Jordan HR. Detection of critical antibiotic resistance genes through routine microbiome surveillance. PLoS One 2019; 14:e0213280. [PMID: 30870464 PMCID: PMC6417727 DOI: 10.1371/journal.pone.0213280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/18/2019] [Indexed: 12/29/2022] Open
Abstract
Population-based public health data on antibiotic resistance gene carriage is poorly surveyed. Research of the human microbiome as an antibiotic resistance reservoir has primarily focused on gut associated microbial communities, but data have shown more widespread microbial colonization across organs than originally believed, with organs previously considered as sterile being colonized. Our study demonstrates the utility of postmortem microbiome sampling during routine autopsy as a method to survey antibiotic resistance carriage in a general population. Postmortem microbial sampling detected pathogens of public health concern including genes for multidrug efflux pumps, carbapenem, methicillin, vancomycin, and polymixin resistances. Results suggest that postmortem assessments of host-associated microbial communities are useful in acquiring community specific data while reducing selective-participant biases.
Collapse
Affiliation(s)
- Zachary M. Burcham
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States of America
| | - Carl J. Schmidt
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jennifer L. Pechal
- Department of Entomology, Michigan State University, East Lansing, MI, United States of America
| | - Christopher P. Brooks
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States of America
| | - Jason W. Rosch
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - M. Eric Benbow
- Department of Entomology, Michigan State University, East Lansing, MI, United States of America
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, United States of America
| | - Heather R. Jordan
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States of America
- * E-mail:
| |
Collapse
|
128
|
Wu J, Su Y, Deng Y, Guo Z, Cheng C, Ma H, Liu G, Xu L, Feng J. Spatial and temporal variation of antibiotic resistance in marine fish cage-culture area of Guangdong, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:463-471. [PMID: 30583154 DOI: 10.1016/j.envpol.2018.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/20/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
The rapid emergence and dissemination of antibiotic resistance poses a threat to human health and to the marine environment. We have investigated the abundance and diversity of antibiotic resistance genes (ARGs) and of antibiotic-resistant bacteria (ARB), during the seedling period, rearing period, and harvesting period in seven marine fish cage-culture areas in Guangdong. Spatial and temporal variations of AGRs and ARB were also analyzed. Culture-based methods and quantitative PCR were used to detect ARB and ARGs. Bacterial resistance rates were no significantly different within farming periods. The proportion of antibiotic-resistant bacteria was extremely low (average on 1.15%), except for oxytetracycline-resistant bacteria (average on 34.15%). Vibrio was the most common ARB. Sul1, tetB, and ermB, had the highest relative abundance. The abundance of ARGs in the harvesting period was significant highest. The total abundance of ARGs was highest at Raoping and lowest at Dayawan and Liusha. Most ARGs were associated with opportunistic pathogens. The environmental factors effecting ARB and ARGs are complex, and no key factors were identified. This study provides a theoretical basis for assessing the harmfulness of ARGs and ARB to food safety and human health.
Collapse
Affiliation(s)
- Jinjun Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Changhong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Hongling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Guangfeng Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Liwen Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| |
Collapse
|
129
|
Piotrowska M, Kowalska S, Popowska M. Diversity of β-lactam resistance genes in gram-negative rods isolated from a municipal wastewater treatment plant. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01450-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
130
|
Sánchez-Osuna M, Cortés P, Barbé J, Erill I. Origin of the Mobile Di-Hydro-Pteroate Synthase Gene Determining Sulfonamide Resistance in Clinical Isolates. Front Microbiol 2019; 9:3332. [PMID: 30687297 PMCID: PMC6335563 DOI: 10.3389/fmicb.2018.03332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022] Open
Abstract
Sulfonamides are synthetic chemotherapeutic agents that work as competitive inhibitors of the di-hydro-pteroate synthase (DHPS) enzyme, encoded by the folP gene. Resistance to sulfonamides is widespread in the clinical setting and predominantly mediated by plasmid- and integron-borne sul1-3 genes encoding mutant DHPS enzymes that do not bind sulfonamides. In spite of their clinical importance, the genetic origin of sul1-3 genes remains unknown. Here we analyze sul genes and their genetic neighborhoods to uncover sul signature elements that enable the elucidation of their genetic origin. We identify a protein sequence Sul motif associated with sul-encoded proteins, as well as consistent association of a phosphoglucosamine mutase gene (glmM) with the sul2 gene. We identify chromosomal folP genes bearing these genetic markers in two bacterial families: the Rhodobiaceae and the Leptospiraceae. Bayesian phylogenetic inference of FolP/Sul and GlmM protein sequences clearly establishes that sul1-2 and sul3 genes originated as a mobilization of folP genes present in, respectively, the Rhodobiaceae and the Leptospiraceae, and indicate that the Rhodobiaceae folP gene was transferred from the Leptospiraceae. Analysis of %GC content in folP/sul gene sequences supports the phylogenetic inference results and indicates that the emergence of the Sul motif in chromosomally encoded FolP proteins is ancient and considerably predates the clinical introduction of sulfonamides. In vitro assays reveal that both the Rhodobiaceae and the Leptospiraceae, but not other related chromosomally encoded FolP proteins confer resistance in a sulfonamide-sensitive Escherichia coli background, indicating that the Sul motif is associated with sulfonamide resistance. Given the absence of any known natural sulfonamides targeting DHPS, these results provide a novel perspective on the emergence of resistance to synthetic chemotherapeutic agents, whereby preexisting resistant variants in the vast bacterial pangenome may be rapidly selected for and disseminated upon the clinical introduction of novel chemotherapeuticals.
Collapse
Affiliation(s)
- Miquel Sánchez-Osuna
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pilar Cortés
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, United States
| |
Collapse
|
131
|
Mwangi S, Timmons J, Fitz-coy S, Parveen S. Characterization of Clostridium perfringens recovered from broiler chicken affected by necrotic enteritis. Poult Sci 2019; 98:128-135. [DOI: 10.3382/ps/pey332] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/06/2018] [Indexed: 11/20/2022] Open
|
132
|
Jones PJ, Niemi J, Christensen JP, Tranter RB, Bennett RM. A review of the financial impact of production diseases in poultry production systems. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an18281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
While the academic literature widely asserts that production diseases have a significant financial impact on poultry production, these claims are rarely supported by empirical evidence. There is a risk, therefore, that the information needs of poultry producers regarding the costs associated with particular diseases are not being adequately met. A systematic literature review of poultry production diseases was undertaken, first, to scope the availability of studies that estimate the financial impacts of production diseases on poultry systems and, second, on the basis of these studies, estimates were generated of the magnitude of these impacts. Nine production diseases, selected by a panel of stakeholders as being economically important in the EU, were examined. The review found that the poultry disease literature has primarily an epidemiological focus, with very few publications providing estimates of the financial impacts of diseases. However, some publications have quantified the physical impacts of production diseases and control interventions, for example, using measures such as output volumes, mortality rates and bacterial counts. Using these data in standard financial models, partial financial analyses were possible for some poultry production diseases. Coccidiosis and clostridiosis were found to be the most common production diseases in broiler flocks, with salpingoperitonitis being the most common in layers. While the financial impact of untreated diseases varied, most uncontrolled diseases were estimated to make flocks loss-making. However, in all cases, interventions were available that signficantly reduced these losses. The review reinforces the concern that the available academic literature is not providing sufficient information for poultry producers to decide on financially optimal disease-prevention and treatment measures.
Collapse
|
133
|
Waman VP, Vedithi SC, Thomas SE, Bannerman BP, Munir A, Skwark MJ, Malhotra S, Blundell TL. Mycobacterial genomics and structural bioinformatics: opportunities and challenges in drug discovery. Emerg Microbes Infect 2019; 8:109-118. [PMID: 30866765 PMCID: PMC6334779 DOI: 10.1080/22221751.2018.1561158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 01/08/2023]
Abstract
Of the more than 190 distinct species of Mycobacterium genus, many are economically and clinically important pathogens of humans or animals. Among those mycobacteria that infect humans, three species namely Mycobacterium tuberculosis (causative agent of tuberculosis), Mycobacterium leprae (causative agent of leprosy) and Mycobacterium abscessus (causative agent of chronic pulmonary infections) pose concern to global public health. Although antibiotics have been successfully developed to combat each of these, the emergence of drug-resistant strains is an increasing challenge for treatment and drug discovery. Here we describe the impact of the rapid expansion of genome sequencing and genome/pathway annotations that have greatly improved the progress of structure-guided drug discovery. We focus on the applications of comparative genomics, metabolomics, evolutionary bioinformatics and structural proteomics to identify potential drug targets. The opportunities and challenges for the design of drugs for M. tuberculosis, M. leprae and M. abscessus to combat resistance are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Asma Munir
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Marcin J. Skwark
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
134
|
Alhaji NB, Isola TO. Antimicrobial usage by pastoralists in food animals in North-central Nigeria: The associated socio-cultural drivers for antimicrobials misuse and public health implications. One Health 2018; 6:41-47. [PMID: 30533485 PMCID: PMC6249405 DOI: 10.1016/j.onehlt.2018.11.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/12/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Antimicrobials are used to maintain good health and productivity of food animals. Misuse of antibiotics in livestock contributes to development of antimicrobial resistance, an emerging One Health issue. This study assessed pastoralists' knowledge and practices regarding antimicrobial usage, explore pathways for resistant pathogens emergence and associated social drivers for antimicrobial misuse in pastoral herds of North-central Nigeria. An interview questionnaire-based cross-sectional survey was conducted in randomly selected pastoral households. Descriptive and analytical statistical analyses were performed at 95% confidence level. All the 384 pastoralists participated in the study. Majority (58%) of respondents had no formal education. Only 8.1% of respondents knew antibiotic misuse to be when given under-dose and 70.1% of them did not know what misuse entailed. About 58.3% reported self-prescription of antimicrobials used on animals, while 67% of them reported arbitrary applications for dosage determination. Most frequently used antimicrobials were tetracycline (96.6%), tylosin (95.6%) and penicillin (94.0%). Identified pathways for antimicrobial resistant pathogens spread to humans were through contaminated animal products; contaminated animals and fomites; and environmental wastes. Improper antimicrobial usage (p < 0.001), non-enforcement of laws regulating antimicrobial usage (p < 0.001), weak financial status (p < 0.001), low education and expertise (p < 0.001), and nomadic culture (p < 0.001), influenced antimicrobials misuse in livestock. The study revealed low levels of knowledge and practices regarding antimicrobial usage in livestock. Socio-cultural activities significantly influenced antimicrobials misuse in livestock. Improve pastoralists' knowledge about effects of antimicrobials misuse and promotion of prudent usage in livestock will mitigate antimicrobial resistance menace in animals and humans.
Collapse
Affiliation(s)
- Nma Bida Alhaji
- Niger State Ministry of Livestock and Fisheries, Minna, Nigeria
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tajudeen Opeyemi Isola
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
135
|
Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol 2018; 9:2928. [PMID: 30555448 PMCID: PMC6283892 DOI: 10.3389/fmicb.2018.02928] [Citation(s) in RCA: 493] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 11/13/2022] Open
Abstract
Emergence of antibiotic resistant pathogenic bacteria poses a serious public health challenge worldwide. However, antibiotic resistance genes are not confined to the clinic; instead they are widely prevalent in different bacterial populations in the environment. Therefore, to understand development of antibiotic resistance in pathogens, we need to consider important reservoirs of resistance genes, which may include determinants that confer self-resistance in antibiotic producing soil bacteria and genes encoding intrinsic resistance mechanisms present in all or most non-producer environmental bacteria. While the presence of resistance determinants in soil and environmental bacteria does not pose a threat to human health, their mobilization to new hosts and their expression under different contexts, for example their transfer to plasmids and integrons in pathogenic bacteria, can translate into a problem of huge proportions, as discussed in this review. Selective pressure brought about by human activities further results in enrichment of such determinants in bacterial populations. Thus, there is an urgent need to understand distribution of resistance determinants in bacterial populations, elucidate resistance mechanisms, and determine environmental factors that promote their dissemination. This comprehensive review describes the major known self-resistance mechanisms found in producer soil bacteria of the genus Streptomyces and explores the relationships between resistance determinants found in producer soil bacteria, non-producer environmental bacteria, and clinical isolates. Specific examples highlighting potential pathways by which pathogenic clinical isolates might acquire these resistance determinants from soil and environmental bacteria are also discussed. Overall, this article provides a conceptual framework for understanding the complexity of the problem of emergence of antibiotic resistance in the clinic. Availability of such knowledge will allow researchers to build models for dissemination of resistance genes and for developing interventions to prevent recruitment of additional or novel genes into pathogens.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
136
|
Kraljević Pavelić S, Simović Medica J, Gumbarević D, Filošević A, Pržulj N, Pavelić K. Critical Review on Zeolite Clinoptilolite Safety and Medical Applications in vivo. Front Pharmacol 2018; 9:1350. [PMID: 30538633 PMCID: PMC6277462 DOI: 10.3389/fphar.2018.01350] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022] Open
Abstract
Unique and outstanding physical and chemical properties of zeolite materials make them extremely useful in a variety of applications including agronomy, ecology, manufacturing, and industrial processes. Recently, a more specific application of one naturally occurring zeolite material, clinoptilolite, has been widely studied in veterinary and human medicine. Due to a number of positive effects on health, including detoxification properties, the usage of clinoptilolite-based products in vivo has increased enormously. However, concerns have been raised in the public about the safety of clinoptilolite materials for in vivo applications. Here, we review the scientific literature on the health effects and safety in medical applications of different clinoptilolite-based materials and propose some comprehensive, scientifically-based hypotheses on possible biological mechanisms underlying the observed effects on the health and body homeostasis. We focus on the safety of the clinoptilolite material and the positive medical effects related to detoxification, immune response, and the general health status.
Collapse
Affiliation(s)
- Sandra Kraljević Pavelić
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, Rijeka, Croatia
| | | | - Darko Gumbarević
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, Rijeka, Croatia
| | - Ana Filošević
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, Rijeka, Croatia
| | - Nataša Pržulj
- Computer Science Department, University College London, London, United Kingdom
| | - Krešimir Pavelić
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, Rijeka, Croatia
- Juraj Dobrila University of Pula, Pula, Croatia
| |
Collapse
|
137
|
Paul C, Filippidou S, Jamil I, Kooli W, House GL, Estoppey A, Hayoz M, Junier T, Palmieri F, Wunderlin T, Lehmann A, Bindschedler S, Vennemann T, Chain PSG, Junier P. Bacterial spores, from ecology to biotechnology. ADVANCES IN APPLIED MICROBIOLOGY 2018; 106:79-111. [PMID: 30798805 DOI: 10.1016/bs.aambs.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The production of a highly specialized cell structure called a spore is a remarkable example of a survival strategy displayed by bacteria in response to challenging environmental conditions. The detailed analysis and description of the process of sporulation in selected model organisms have generated a solid background to understand the cellular processes leading to the formation of this specialized cell. However, much less is known regarding the ecology of spore-formers. This research gap needs to be filled as the feature of resistance has important implications not only on the survival of spore-formers and their ecology, but also on the use of spores for environmental prospection and biotechnological applications.
Collapse
Affiliation(s)
- Christophe Paul
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sevasti Filippidou
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Isha Jamil
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Wafa Kooli
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Geoffrey L House
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Aislinn Estoppey
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Mathilda Hayoz
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Thomas Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Vital-IT group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Fabio Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Tina Wunderlin
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anael Lehmann
- Laboratory of stable isotope geochemistry, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Torsten Vennemann
- Laboratory of stable isotope geochemistry, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Patrick S G Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
138
|
Xue K, Zhou J, Van Nostrand J, Mench M, Bes C, Giagnoni L, Renella G. Functional activity and functional gene diversity of a Cu-contaminated soil remediated by aided phytostabilization using compost, dolomitic limestone and a mixed tree stand. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:229-238. [PMID: 29980041 DOI: 10.1016/j.envpol.2018.06.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Trace elements (TEs) availability, biochemical activity and functional gene diversity was studied in a Cu-contaminated soil, revegetated for six years with a mixed stand of willow, black poplar, and false indigo-bush, and amended or not with compost plus dolomitic limestone (OMDL). The OMDL amendment significantly reduced Cu and As availability and soil toxicity, and increased the biochemical activity and microbial functional diversity assessed with the GEOCHIP technique, as compared to the unamended soil (Unt). The OMDL soil showed significantly higher abundance of 25 functional genes involved in decomposition organic compounds, and 11, 3 and 11 functional genes involved in the N, P and S biogeochemical cycles. Functional gene abundance was positively correlated with nutrient contents but negatively correlated with Cu availability and soil toxicity. The abundance of microbial functional genes encoding for resistance to various TEs also increased, possibly due to the microbial proliferation and lower Cu exposure in the presence of high total soil Cu concentration. Genes encoding for antibiotic resistance due to the co-occurrence of TEs and antibiotic resistant genes on genetic mobile elements. Overall, phytomanagement confirmed its potential to restore the biological fertility and diversity of a severely Cu-contaminated soil, but the increase of TEs and antibiotic resistant gene abundances deserve attention in future studies.
Collapse
Affiliation(s)
- Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 730722, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 730722, USA
| | - Joy Van Nostrand
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 730722, USA
| | - Michel Mench
- BIOGECO, INRA, University of Bordeaux, 33615, Pessac Cedex, France
| | - Clemence Bes
- BIOGECO, INRA, University of Bordeaux, 33615, Pessac Cedex, France
| | - Laura Giagnoni
- Department of Agrifood Production and Environmental Sciences, University of Florence, Italy
| | - Giancarlo Renella
- Department of Agrifood Production and Environmental Sciences, University of Florence, Italy.
| |
Collapse
|
139
|
Korzeniewska E, Harnisz M. Relationship between modification of activated sludge wastewater treatment and changes in antibiotic resistance of bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:304-315. [PMID: 29791883 DOI: 10.1016/j.scitotenv.2018.05.165] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 05/23/2023]
Abstract
Biological treatment processes at wastewater treatment plants (WWTPs), which are the most common methods of sewage treatment, could cause selective elimination and/or changes in the proportions of phenotypes/genotypes within bacterial populations in effluent. Therefore, WWTPs based on activated sludge used in sewage treatment constitute an important reservoir of enteric bacteria which harbour potentially transferable resistance genes. Together with treated wastewater, these microorganisms can penetrate the soil, surface water, rural groundwater supplies and drinking water. Because of this, the aim of this study was to determine the impact of various modification of sewage treatment (the conventional anaerobic/anoxic/oxic (A2/O) process, mechanical-biological (MB) system, sequencing batch reactors (SBR), mechanical-biological system with elevated removal of nutrients (MB-ERN)) on the amount of antibiotic resistant bacteria (ARB) (including E. coli) and antibiotic resistance genes (ARGs) in sewage flowing out of the 13 treatment plants using activated sludge technology. There were no significant differences in ARB and ARGs regardless of time of sampling and type of treated wastewater (p > 0.05). The highest percentage of reduction (up to 99.9%) in the amount of ARB and ARGs was observed in WWTPs with MB and MB-ERN systems. The lowest reduction was detected in WWTPs with SBR. A significant increase (p < 0.05) in the percentage of bacteria resistant to the new generation antibiotics (CTX and DOX) in total counts of microorganisms was observed in effluents (EFF) from WWTPs with A2/O system and with SBR. Among all ARGs analyzed, the highest prevalence of ARGs copies in EFF samples was observed for sul1, tet(A) and qepA, the lowest for blaTEM and blaSHV. Although, the results of presented study demonstrate high efficiency of ARB and ARGs removal during the wastewater treatment processes, especially by WWTPs with MB and MB-ERN systems, EFF is still an important reservoir of ARGs which can be transferred to other microorganisms.
Collapse
Affiliation(s)
- Ewa Korzeniewska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland.
| | - Monika Harnisz
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland.
| |
Collapse
|
140
|
Blandón LM, Noseda MD, Islan GA, Castro GR, de Melo Pereira GV, Thomaz-Soccol V, Soccol CR. Optimization of culture conditions for kefiran production in whey: The structural and biocidal properties of the resulting polysaccharide. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2018.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
141
|
Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR. Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front Microbiol 2018; 9:2066. [PMID: 30298054 PMCID: PMC6160567 DOI: 10.3389/fmicb.2018.02066] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/13/2018] [Indexed: 12/28/2022] Open
Abstract
History of mankind is regarded as struggle against infectious diseases. Rather than observing the withering away of bacterial diseases, antibiotic resistance has emerged as a serious global health concern. Medium of antibiotic resistance in bacteria varies greatly and comprises of target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Further aggravation to prevailing situation arose on observing bacteria gradually becoming resistant to different classes of antibiotics through acquisition of resistance genes from same and different genera of bacteria. Attributing bacteria with feature of better adaptability, dispersal of antibiotic resistance genes to minimize effects of antibiotics by various means including horizontal gene transfer (conjugation, transformation, and transduction), Mobile genetic elements (plasmids, transposons, insertion sequences, integrons, and integrative-conjugative elements) and bacterial toxin-antitoxin system led to speedy bloom of antibiotic resistance amongst bacteria. Proficiency of bacteria to obtain resistance genes generated an unpleasant situation; a grave, but a lot unacknowledged, feature of resistance gene transfer.
Collapse
Affiliation(s)
- Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | | | | | | |
Collapse
|
142
|
Cai Q, Hu J. Effect of UVA/LED/TiO 2 photocatalysis treated sulfamethoxazole and trimethoprim containing wastewater on antibiotic resistance development in sequencing batch reactors. WATER RESEARCH 2018; 140:251-260. [PMID: 29723814 DOI: 10.1016/j.watres.2018.04.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/30/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Controlling of antibiotics is the crucial step for preventing antibiotic resistance genes (ARGs) dissemination; UV photocatalysis has been identified as a promising pre-treatment technology for antibiotics removal. However, information about the effects of intermediates present in the treated antibiotics wastewater on the downstream biological treatment processes or ARGs development is very limited. In the present study, continuous UVA/LED/TiO2 photocatalysis removed more than 90% of 100 ppb sulfamethoxazole (SMX)/trimethoprim (TMP), the treated wastewater was fed into SBR systems for over one year monitoring. Residual SMX/TMP (2-3 ppb) and intermediates present in the treated wastewater did not adversely affect SBR performance in terms of TOC and TN removal. SMX and TMP resistance genes (sulI, sulII, sulIII, dfrII, dfrV and dfr13) were also quantified in SBRs microbial consortia. Results suggested that continuous feeding of treated SMX/TMP containing wastewaters did not trigger any ARGs promotion during the one year operation. By stopping the input of 100 ppb SMX/TMP, abundance of sulII and dfrV genes were reduced by 83% and 100%, respectively. sulI gene was identified as the most persistence ARG, and controlling of 100 ppb SMX input did not achieve significant removal of sulI gene. A significant correlation between sulI gene and class 1 integrons was found at the level of p = 1.4E-10 (r = 0.94), and sulII gene positively correlated with the plasmid transfer efficiency (r = 2.442E-10, r = 0.87). Continuous input of 100 ppb SMX enhanced plasmid transfer efficiency in the SBR system, resulting in sulII gene abundance increasing more than 40 times.
Collapse
Affiliation(s)
- Qinqing Cai
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Jiangyong Hu
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore.
| |
Collapse
|
143
|
Scortti M, Han L, Alvarez S, Leclercq A, Moura A, Lecuit M, Vazquez-Boland J. Epistatic control of intrinsic resistance by virulence genes in Listeria. PLoS Genet 2018; 14:e1007525. [PMID: 30180166 PMCID: PMC6122793 DOI: 10.1371/journal.pgen.1007525] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/29/2018] [Indexed: 01/31/2023] Open
Abstract
Elucidating the relationships between antimicrobial resistance and virulence is key to understanding the evolution and population dynamics of resistant pathogens. Here, we show that the susceptibility of the gram-positive bacterium Listeria monocytogenes to the antibiotic fosfomycin is a complex trait involving interactions between resistance and virulence genes and the environment. We found that a FosX enzyme encoded in the listerial core genome confers intrinsic fosfomycin resistance to both pathogenic and non-pathogenic Listeria spp. However, in the genomic context of the pathogenic L. monocytogenes, FosX-mediated resistance is epistatically suppressed by two members of the PrfA virulence regulon, hpt and prfA, which upon activation by host signals induce increased fosfomycin influx into the bacterial cell. Consequently, in infection conditions, most L. monocytogenes isolates become susceptible to fosfomycin despite possessing a gene that confers high-level resistance to the drug. Our study establishes the molecular basis of an epistatic interaction between virulence and resistance genes controlling bacterial susceptibility to an antibiotic. The reported findings provide the rationale for the introduction of fosfomycin in the treatment of Listeria infections even though these bacteria are intrinsically resistant to the antibiotic in vitro.
Collapse
Affiliation(s)
- Mariela Scortti
- Microbial Pathogenesis Group, Division of Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Little France campus, Edinburgh, United Kingdom
- Division of Infection & Immunity, The Roslin Institute, University of Edinburgh, Easter Bush campus, Edinburgh, United Kingdom
| | - Lei Han
- Microbial Pathogenesis Group, Division of Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Little France campus, Edinburgh, United Kingdom
| | - Sonsiray Alvarez
- Microbial Pathogenesis Group, Division of Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Little France campus, Edinburgh, United Kingdom
| | - Alexandre Leclercq
- Institut Pasteur, Biology of Infection Unit, INSERM U111 and National Reference Centre / WHO Collaborating Centre for Listeria, Paris, France
| | - Alexandra Moura
- Institut Pasteur, Biology of Infection Unit, INSERM U111 and National Reference Centre / WHO Collaborating Centre for Listeria, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, INSERM U111 and National Reference Centre / WHO Collaborating Centre for Listeria, Paris, France
- Paris Descartes University, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Paris, France
| | - Jose Vazquez-Boland
- Microbial Pathogenesis Group, Division of Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Little France campus, Edinburgh, United Kingdom
- Division of Infection & Immunity, The Roslin Institute, University of Edinburgh, Easter Bush campus, Edinburgh, United Kingdom
| |
Collapse
|
144
|
Muloi D, Ward MJ, Pedersen AB, Fèvre EM, Woolhouse ME, van Bunnik BA. Are Food Animals Responsible for Transfer of Antimicrobial-Resistant Escherichia coli or Their Resistance Determinants to Human Populations? A Systematic Review. Foodborne Pathog Dis 2018; 15:467-474. [PMID: 29708778 PMCID: PMC6103250 DOI: 10.1089/fpd.2017.2411] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of farm animals in the emergence and dissemination of both AMR bacteria and their resistance determinants to humans is poorly understood and controversial. Here, we systematically reviewed the current evidence that food animals are responsible for transfer of AMR to humans. We searched PubMed, Web of Science, and EMBASE for literature published between 1940 and 2016. Our results show that eight studies (18%) suggested evidence of transmission of AMR from food animals to humans, 25 studies (56%) suggested transmission between animals and humans with no direction specified and 12 studies (26%) did not support transmission. Quality of evidence was variable among the included studies; one study (2%) used high resolution typing tools, 36 (80%) used intermediate resolution typing tools, six (13%) relied on low resolution typing tools, and two (5%) based conclusions on co-occurrence of resistance. While some studies suggested to provide evidence that transmission of AMR from food animals to humans may occur, robust conclusions on the directionality of transmission cannot be drawn due to limitations in study methodologies. Our findings highlight the need to combine high resolution genomic data analysis with systematically collected epidemiological evidence to reconstruct patterns of AMR transmission between food animals and humans.
Collapse
Affiliation(s)
- Dishon Muloi
- Usher Institute of Population Health Sciences & Informatics, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Melissa J. Ward
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Amy B. Pedersen
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Eric M. Fèvre
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- International Livestock Research Institute, Nairobi, Kenya
| | - Mark E.J. Woolhouse
- Usher Institute of Population Health Sciences & Informatics, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Bram A.D. van Bunnik
- Usher Institute of Population Health Sciences & Informatics, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
145
|
Tang S, Zheng J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv Healthc Mater 2018; 7:e1701503. [PMID: 29808627 DOI: 10.1002/adhm.201701503] [Citation(s) in RCA: 546] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/26/2018] [Indexed: 12/30/2022]
Abstract
The increase of antibiotic resistance in bacteria has become a major concern for successful diagnosis and treatment of infectious diseases. Over the past few decades, significant progress has been achieved on the development of nanotechnology-based medicines for combating multidrug resistance in microorganisms. Among this, silver nanoparticles (AgNPs) hold great promise in addressing this challenge due to their broad-spectrum and robust antimicrobial properties. This review illustrates the antibacterial mechanisms of silver nanoparticles and further elucidates how different structural factors including surface chemistry, size, and shape, impact their antibacterial activities, which are expected to promote the future development of more potent silver nanoparticle-based antibacterial agents.
Collapse
Affiliation(s)
- Shaoheng Tang
- Department of Chemistry and Biochemistry; The University of Texas at Dallas; 800 W. Campbell Rd. Richardson TX 75080 USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry; The University of Texas at Dallas; 800 W. Campbell Rd. Richardson TX 75080 USA
| |
Collapse
|
146
|
Prevalence of Antibiotic and Heavy Metals Resistance in Coliforms Isolated from Hospital Wastewater. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.2.65] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
147
|
Santovito E, Greco D, Logrieco AF, Avantaggiato G. Eubiotics for Food Security at Farm Level: Yeast Cell Wall Products and Their Antimicrobial Potential Against Pathogenic Bacteria. Foodborne Pathog Dis 2018; 15:531-537. [PMID: 29874106 DOI: 10.1089/fpd.2018.2430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The population increase in the last century was the first cause of the industrialization of animal productions, together with the necessity to satisfy the high food demand and the lack of space and land for the husbandry practices. As a consequence, the farmers moved from extensive to intensive agricultural systems and introduced new practices, such as the administration of antimicrobial drugs. Antibiotics were then used as growth promoters and for disease prevention. The uncontrolled and continuous use of antibiotics contributed to the spread of antibiotic resistance in animals, and this had adverse impacts on human health. This emergence led the European Union, in 2003, to ban the marketing and use of antibiotics as growth promoters, and for prophylaxis purposes from January 2006. This ban caused problems in farms, due to the decrease in animal performances (weight gain, feed conversion ratio, reproduction, etc.), and the rise in the incidence of certain diseases, such as those induced by Clostridium perfringens, Salmonella, Escherichia coli, and Listeria monocytogenes. The economic losses due to the ban increased the interest in researching alternative strategies for the prophylaxis of infectious diseases and for health and growth promotion, such as feed additives. Yeast-based materials, such as cell wall extract, represent promising alternatives to antibiotics, on the base of their prebiotic activity and their claimed capacity to bind enteropathogenic bacteria. Several authors reported examples of the effectiveness of yeast cell wall products in adsorbing bacteria, but there is a lack of knowledge on the mechanisms involved in this interaction. The purpose of this review is to provide an overview of the current approaches used for the control of pathogenic bacteria in feed, with a particular focus on the use of yeast-derived materials proposed to control zoonoses at farm level, and on their effect on animal health.
Collapse
Affiliation(s)
- Elisa Santovito
- Institute of Sciences of Food Production (ISPA) , National Research Council (CNR), Bari, Italy
| | - Donato Greco
- Institute of Sciences of Food Production (ISPA) , National Research Council (CNR), Bari, Italy
| | - Antonio F Logrieco
- Institute of Sciences of Food Production (ISPA) , National Research Council (CNR), Bari, Italy
| | - Giuseppina Avantaggiato
- Institute of Sciences of Food Production (ISPA) , National Research Council (CNR), Bari, Italy
| |
Collapse
|
148
|
Wallace JS, Garner E, Pruden A, Aga DS. Occurrence and transformation of veterinary antibiotics and antibiotic resistance genes in dairy manure treated by advanced anaerobic digestion and conventional treatment methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:764-772. [PMID: 29455089 DOI: 10.1016/j.envpol.2018.02.024] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 05/24/2023]
Abstract
Manure treatment technologies are rapidly developing to minimize eutrophication of surrounding environments and potentially decrease the introduction of antibiotics and antibiotic resistant genes (ARGs) into the environment. While laboratory and pilot-scale manure treatment systems boast promising results, antibiotic and ARG removals in full-scale systems receiving continuous manure input have not been evaluated. The effect of treatment on ARGs is similarly lacking. This study examines the occurrence and transformation of sulfonamides, tetracyclines, tetracycline degradation products, and related ARGs throughout a full-scale advanced anaerobic digester (AAD) receiving continuous manure and antibiotic input. Manure samples were collected throughout the AAD system to evaluate baseline antibiotic and ARG input (raw manure), the effect of hygenization (post-pasteurized manure) and anaerobic digestion (post-digestion manure) on antibiotic and ARG levels. Antibiotics were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the ARGs tet(O), tet(W), sul1 and sul2 were analyzed by quantitative polymerase chain reaction (Q-PCR). Significant reductions in the concentrations of chlortetracycline, oxytetracycline, tetracycline and their degradation products were observed in manure liquids following treatment (p < 0.001), concomitant to significant increases in manure solids (p < 0.001). These results suggest sorption is the major removal route for tetracyclines during AAD. Significant decreases in the epimer-to-total residue ratios for chlortetracycline and tetracycline in manure solids further indicate degradation is desorption-limited. Moreover, sul1 and sul2 copies decreased significantly (p < 0.001) following AAD in the absence of sulfonamide antibiotics, while tetracyclines-resistant genes remained unchanged. A cross-sectional study of dairy farms utilizing natural aeration and liquid-solid separation treatments was additionally performed to compare levels of antibiotics and ARGs found in AAD with the levels in common manure management systems. The concentration of antibiotics in raw manure varied greatly between farms while minimal differences in ARGs were observed. However, significant (p < 0.01) differences in the levels of antibiotics and ARGs (except tet(W)) were observed in the effluents from the three different manure management systems.
Collapse
Affiliation(s)
- Joshua S Wallace
- Department of Chemistry, University at Buffalo-The State University of New York, Buffalo, NY, USA
| | - Emily Garner
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Diana S Aga
- Department of Chemistry, University at Buffalo-The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
149
|
Plasmid-mediated colistin resistance in animals: current status and future directions. Anim Health Res Rev 2018; 18:136-152. [DOI: 10.1017/s1466252317000111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AbstractColistin, a peptide antibiotic belonging to the polymyxin family, is one of the last effective drugs for the treatment of multidrug resistant Gram-negative infections. Recent discovery of a novel mobile colistin resistance gene,mcr-1, from people and food animals has caused a significant public health concern and drawn worldwide attention. Extensive usage of colistin in food animals has been proposed as a major driving force for the emergence and transmission ofmcr-1; thus, there is a worldwide trend to limit colistin usage in animal production. However, despite lack of colistin usage in food animals in the USA,mcr-1-positiveEscherichia coliisolates were still isolated from swine. In this paper, we provided an overview of colistin usage and epidemiology ofmcr-1in food animals, and summarized the current status of mechanistic and evolutionary studies of the plasmid-mediated colistin resistance. Based on published information, we further discussed several non-colistin usage risk factors that may contribute to the persistence, transmission, and emergence of colistin resistance in an animal production system. Filling the knowledge gaps identified in this review is critical for risk assessment and risk management of colistin resistance, which will facilitate proactive and effective strategies to mitigate colistin resistance in future animal production systems.
Collapse
|
150
|
Wen Q, Yang L, Zhao Y, Huang L, Chen Z. Insight into effects of antibiotics on reactor performance and evolutions of antibiotic resistance genes and microbial community in a membrane reactor. CHEMOSPHERE 2018; 197:420-429. [PMID: 29366956 DOI: 10.1016/j.chemosphere.2018.01.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/03/2018] [Accepted: 01/14/2018] [Indexed: 06/07/2023]
Abstract
A lab-scale anoxic/oxic-membrane bioreactor was designed to treat antibiotics containing wastewater at different antibiotics concentrations (0.5 mg/L, 1 mg/L and 3 mg/L of each antibiotic). Overall COD and NH4+N removal (more than 90%) were not affected during the exposure to antibiotics and good TN removal was also achieved, while TP removal was significantly affected. The maximum removal efficiency of penicillin and chlorotetracycline reached 97.15% and 96.10% respectively due to strong hydrolysis, and sulfamethoxazole reached 90.07% by biodegradation. However, 63.87% of norfloxacin maximum removal efficiency was achieved mainly by sorption. The system had good ability to reduce ARGs, peaking to more than 4 orders of magnitude, which mainly depended on the biomass retaining of the membrane module. Antibiotics concentration influenced the evolution of ARGs and bacterial communities in the reactor. This research provides great implication to reduce ARGs and antibiotics in antibiotics containing wastewater using A/O-MBR.
Collapse
Affiliation(s)
- Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Lian Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Yaqi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Long Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730070, PR China.
| |
Collapse
|