101
|
Owens DK, Bajsa-Hirschel J, Duke SO, Carbonari CA, Gomes GLGC, Asolkar R, Boddy L, Dayan FE. The Contribution of Romidepsin to the Herbicidal Activity of Burkholderia rinojensis Biopesticide. JOURNAL OF NATURAL PRODUCTS 2020; 83:843-851. [PMID: 32091209 DOI: 10.1021/acs.jnatprod.9b00405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The culture broth of Burkholderia rinojensis strain A396 is herbicidal to a number of weed species with greater observed efficacy against broadleaf than grass weeds. A portion of this activity is attributed to romidepsin, a 16-membered cyclic depsipeptide bridged by a 15-membered macrocyclic disulfide. Romidepsin, which is present in small amounts in the broth (18 to 25 μg mL-1), was isolated and purified using standard chromatographic techniques. It was established that romidepsin is a natural proherbicide that targets the activity of plant histone deacetylases (HDAC). Assays to measure plant HDAC activity were optimized by testing a number of HDAC substrates. The activity of romidepsin was greater when its macrocyclic-forming disulfide bridge was reduced to liberate a highly reactive free butenyl thiol side chain. Reduction was achieved using 200 mM tris(2-carboxyethyl)phosphine hydrochloride. A similar bioactivation of the proherbicide via reduction of the disulfide bridge of romidepsin was observed in plant-cell-free extracts. Molecular dynamic simulation of the binding of romidepsin to Arabidopsis thaliana HDAC19 indicated the reduced form of the compound could reach deep inside the catalytic domain and interact with an associated zinc atom required for enzyme activity.
Collapse
Affiliation(s)
- Daniel K Owens
- Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, USDA-ARS, Thad Cochran Center, University Avenue, University, Mississippi 38677 United States
| | - Stephen O Duke
- Natural Products Utilization Research Unit, USDA-ARS, Thad Cochran Center, University Avenue, University, Mississippi 38677 United States
| | - Caio A Carbonari
- Faculty of Agronomic Sciences, São Paulo State University, Botucatu, 01049-010, SP, Brazil
| | - Giovanna L G C Gomes
- Faculty of Agronomic Sciences, São Paulo State University, Botucatu, 01049-010, SP, Brazil
| | - Ratnakar Asolkar
- Marrone Bio Innovations, 1540 Drew Avenue, Davis, California 95618, United States
| | - Louis Boddy
- Marrone Bio Innovations, 1540 Drew Avenue, Davis, California 95618, United States
| | - Franck E Dayan
- Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
102
|
Herpell JB, Schindler F, Bejtović M, Fragner L, Diallo B, Bellaire A, Kublik S, Foesel BU, Gschwendtner S, Kerou M, Schloter M, Weckwerth W. The Potato Yam Phyllosphere Ectosymbiont Paraburkholderia sp. Msb3 Is a Potent Growth Promotor in Tomato. Front Microbiol 2020; 11:581. [PMID: 32373084 PMCID: PMC7186400 DOI: 10.3389/fmicb.2020.00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/17/2020] [Indexed: 01/07/2023] Open
Abstract
The genus Paraburkholderia includes a variety of species with promising features for sustainable biotechnological solutions in agriculture through increasing crop productivity. Here, we present a novel Paraburkholderia isolate, a permanent and predominant member of the Dioscoreae bulbifera (yam family, Dioscoreaceae) phyllosphere, making up to 25% of the microbial community on leaf acumens. The 8.5 Mbp genome of isolate Msb3 encodes an unprecedented combination of features mediating a beneficial plant-associated lifestyle, including biological nitrogen fixation (BNF), plant hormone regulation, detoxification of various xenobiotics, degradation of aromatic compounds and multiple protein secretion systems including both T3SS and T6SS. The isolate exhibits significant growth promotion when applied to agriculturally important plants such as tomato, by increasing the total dry biomass by up to 40%. The open question about the “beneficial” nature of this strain led us to investigate ecological and generic boundaries in Burkholderia sensu lato. In a refined phylogeny including 279 Burkholderia sensu lato isolates strain Msb3 clusters within Clade I Paraburkholderia, which also includes few opportunistic strains that can potentially act as pathogens, as revealed by our ecological meta-data analysis. In fact, we demonstrate that all genera originating from the “plant beneficial and environmental” (PBE) Burkholderia species cluster include opportunists. This indicates that further functional examinations are needed before safe application of these strains in sustainable agricultural settings can be assured.
Collapse
Affiliation(s)
- Johannes B Herpell
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Florian Schindler
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Mersad Bejtović
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Lena Fragner
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Bocar Diallo
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Anke Bellaire
- Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bärbel U Foesel
- Research Unit for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Silvia Gschwendtner
- Research Unit for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Melina Kerou
- Archaea Biology and Ecogenomics Division, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
103
|
Burkholderia cepacia Complex Bacteria: a Feared Contamination Risk in Water-Based Pharmaceutical Products. Clin Microbiol Rev 2020; 33:33/3/e00139-19. [PMID: 32295766 DOI: 10.1128/cmr.00139-19] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Burkholderia cepacia (formerly Pseudomonas cepacia) was once thought to be a single bacterial species but has expanded to the Burkholderia cepacia complex (Bcc), comprising 24 closely related opportunistic pathogenic species. These bacteria have a widespread environmental distribution, an extraordinary metabolic versatility, a complex genome with three chromosomes, and a high capacity for rapid mutation and adaptation. Additionally, they present an inherent resistance to antibiotics and antiseptics, as well as the abilities to survive under nutrient-limited conditions and to metabolize the organic matter present in oligotrophic aquatic environments, even using certain antimicrobials as carbon sources. These traits constitute the reason that Bcc bacteria are considered feared contaminants of aqueous pharmaceutical and personal care products and the frequent reason behind nonsterile product recalls. Contamination with Bcc has caused numerous nosocomial outbreaks in health care facilities, presenting a health threat, particularly for patients with cystic fibrosis and chronic granulomatous disease and for immunocompromised individuals. This review addresses the role of Bcc bacteria as a potential public health problem, the mechanisms behind their success as contaminants of pharmaceutical products, particularly in the presence of biocides, the difficulties encountered in their detection, and the preventive measures applied during manufacturing processes to control contamination with these objectionable microorganisms. A summary of Bcc-related outbreaks in different clinical settings, due to contamination of diverse types of pharmaceutical products, is provided.
Collapse
|
104
|
Castellanos L, Naranjo-Gaybor SJ, Forero AM, Morales G, Wilson EG, Ramos FA, Choi YH. Metabolic fingerprinting of banana passion fruits and its correlation with quorum quenching activity. PHYTOCHEMISTRY 2020; 172:112272. [PMID: 32032827 DOI: 10.1016/j.phytochem.2020.112272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Banana passion fruit of the Passiflora genus, are commercially cultivated on a small to medium scale, mainly as edible fruits or as components of traditional herbal medicines. This subgenus comprises several species and hybrid specimens that grow readily in the wild. Due to their taxonomical complexity, many of these species have recently been reclassified (Ocampo Pérez and Coppens d'Eeckenbrugge, 2017), and their chemical profile has still to be determined. In this study, an 1H NMR-based platform was applied to the chemical profiling of seven wild species of the Passiflora subgenus, and UHPLC-DAD-MS was additionally used for the identification of phenolic compounds. A total of 59 compounds were detected including 26 O- and C-glycosidated flavonoids and polyphenols, nine organic acids, seven amino acids, GABA, sucrose, glucose, myo-inositol, and five other non-identified compounds. Two of the identified compounds are the previously undescribed C-glycosyl flavonoids, apigenin-4'-O-β-glucopyranosyl, 8-C-β-(6″acetyl)-glucopyranoside and apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside. These C-glycosyl flavonoids were isolated to confirm their proposed structures by NMR and LCMS analysis. The PCA score plots obtained from the 1H NMR data of the studied Passiflora samples showed P. cumbalensis and P. uribei as the species with the most distinguishable chemical profile. In addition, a correlation analysis using OPLS-DA was conducted between 1H-NMR data and the quorum quenching activity (QQ) of Chromobacterium violaceum ATCC 31532. This analysis revealed P. lehmannii, and P. uribei extracts to be the most active, and apigenin-4'-O-β-glucopyranosyl, 8-C-β-(6″acetyl)-glucopyranoside and apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside were identified as possibly responsible for the QQ activity. To confirm this, QQ activity of both compounds was tested against C. violaceum ATCC 3153. An inhibition of violacein production of 0.135 mM (100 μg/mL) and 0.472 mM (300 μg/mL) was observed for apigenin-4'-O-β-glucopyranosyl,8-C-β-(6″acetyl)-glucopyranoside and apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside respectively, while bacterial growth was unaffected in both cases. Furthermore, both compounds showed the ability to inhibit the production of the toxoflavin of the phytopathogen Burkholderia glumae ATCC 33617.
Collapse
Affiliation(s)
- Leonardo Castellanos
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia; Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands.
| | - Sandra Judith Naranjo-Gaybor
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia; Universidad de las Fuerzas Armadas. ESPE Carrera de Ingeniería Agropecuaria Extensión Santo Domingo, Av. General Rumiñahui s/n, Sangolquí, Ecuador
| | - Abel M Forero
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia
| | - Gustavo Morales
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia
| | - Erica Georgina Wilson
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Freddy A Ramos
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands; College of Pharmacy, Kyung Hee University, 02447, Seoul, Republic of Korea
| |
Collapse
|
105
|
Potential PGPR Properties of Cellulolytic, Nitrogen-Fixing, Phosphate-Solubilizing Bacteria in Rehabilitated Tropical Forest Soil. Microorganisms 2020; 8:microorganisms8030442. [PMID: 32245141 PMCID: PMC7143980 DOI: 10.3390/microorganisms8030442] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 11/17/2022] Open
Abstract
In the midst of the major soil degradation and erosion faced by tropical ecosystems, rehabilitated forests are being established to avoid the further deterioration of forest lands. In this context, cellulolytic, nitrogen-fixing (N-fixing), phosphate-solubilizing bacteria are very important functional groups in regulating the elemental cycle and plant nutrition, hence replenishing the nutrient content in forest soils. As is the case for other potential plant growth-promoting (PGP) rhizobacteria, these functional bacteria could have cross-functional abilities or beneficial traits that are essential for plants and can improve their growth. This study was conducted to isolate, identify, and characterize selected PGP properties of these three functional groups of bacteria from tropical rehabilitated forest soils at Universiti Putra Malaysia Bintulu Sarawak Campus, Malaysia. The bacteria were isolated based on their colonial growth on respective functional media, identified using both molecular and selected biochemical properties, and were assessed for their functional quantitative activities as well as PGP properties based on seed germination tests and indole-3-acetic acid (IAA) production. Out of the 15 identified bacterial isolates that exhibited beneficial phenotypic traits, a third belong to the genus Burkholderia and a fifth to Stenotrophomonas sp., with both genera consisting of members from two different functional groups. The results of the experiments confirm the multiple PGP traits of some selected bacterial isolates based on their respective high functional activities, root and shoot lengths, and seedling vigor improvements when bacterized on mung bean seeds, as well as significant IAA production. The results of this study suggest that these functional bacterial strains could potentially be included in bio-fertilizer formulations for crop growth on acid soils.
Collapse
|
106
|
Tang A, Haruna AO, Majid NMA, Jalloh MB. Potential PGPR Properties of Cellulolytic, Nitrogen-Fixing, Phosphate-Solubilizing Bacteria in Rehabilitated Tropical Forest Soil. Microorganisms 2020; 8:microorganisms8030442. [PMID: 32245141 DOI: 10.1101/351916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 05/22/2023] Open
Abstract
In the midst of the major soil degradation and erosion faced by tropical ecosystems, rehabilitated forests are being established to avoid the further deterioration of forest lands. In this context, cellulolytic, nitrogen-fixing (N-fixing), phosphate-solubilizing bacteria are very important functional groups in regulating the elemental cycle and plant nutrition, hence replenishing the nutrient content in forest soils. As is the case for other potential plant growth-promoting (PGP) rhizobacteria, these functional bacteria could have cross-functional abilities or beneficial traits that are essential for plants and can improve their growth. This study was conducted to isolate, identify, and characterize selected PGP properties of these three functional groups of bacteria from tropical rehabilitated forest soils at Universiti Putra Malaysia Bintulu Sarawak Campus, Malaysia. The bacteria were isolated based on their colonial growth on respective functional media, identified using both molecular and selected biochemical properties, and were assessed for their functional quantitative activities as well as PGP properties based on seed germination tests and indole-3-acetic acid (IAA) production. Out of the 15 identified bacterial isolates that exhibited beneficial phenotypic traits, a third belong to the genus Burkholderia and a fifth to Stenotrophomonas sp., with both genera consisting of members from two different functional groups. The results of the experiments confirm the multiple PGP traits of some selected bacterial isolates based on their respective high functional activities, root and shoot lengths, and seedling vigor improvements when bacterized on mung bean seeds, as well as significant IAA production. The results of this study suggest that these functional bacterial strains could potentially be included in bio-fertilizer formulations for crop growth on acid soils.
Collapse
Affiliation(s)
- Amelia Tang
- Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu 97008, Sarawak, Malaysia
| | - Ahmed Osumanu Haruna
- Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu 97008, Sarawak, Malaysia
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nik Muhamad Ab Majid
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohamadu Boyie Jalloh
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan Branch, Locked Bag No. 3, Sandakan 90509, Sabah, Malaysia
| |
Collapse
|
107
|
Current Progress in Nitrogen Fixing Plants and Microbiome Research. PLANTS 2020; 9:plants9010097. [PMID: 31940996 PMCID: PMC7020401 DOI: 10.3390/plants9010097] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 01/10/2023]
Abstract
In agroecosystems, nitrogen is one of the major nutrients limiting plant growth. To meet the increased nitrogen demand in agriculture, synthetic fertilizers have been used extensively in the latter part of the twentieth century, which have led to environmental challenges such as nitrate pollution. Biological nitrogen fixation (BNF) in plants is an essential mechanism for sustainable agricultural production and healthy ecosystem functioning. BNF by legumes and associative, endosymbiotic, and endophytic nitrogen fixation in non-legumes play major roles in reducing the use of synthetic nitrogen fertilizer in agriculture, increased plant nutrient content, and soil health reclamation. This review discusses the process of nitrogen-fixation in plants, nodule formation, the genes involved in plant-rhizobia interaction, and nitrogen-fixing legume and non-legume plants. This review also elaborates on current research efforts involved in transferring nitrogen-fixing mechanisms from legumes to non-legumes, especially to economically important crops such as rice, maize, and wheat at the molecular level and relevant other techniques involving the manipulation of soil microbiome for plant benefits in the non-legume root environment.
Collapse
|
108
|
Kaltenpoth M, Flórez LV. Versatile and Dynamic Symbioses Between Insects and Burkholderia Bacteria. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:145-170. [PMID: 31594411 DOI: 10.1146/annurev-ento-011019-025025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Symbiotic associations with microorganisms represent major sources of ecological and evolutionary innovations in insects. Multiple insect taxa engage in symbioses with bacteria of the genus Burkholderia, a diverse group that is widespread across different environments and whose members can be mutualistic or pathogenic to plants, fungi, and animals. Burkholderia symbionts provide nutritional benefits and resistance against insecticides to stinkbugs, defend Lagria beetle eggs against pathogenic fungi, and may be involved in nitrogen metabolism in ants. In contrast to many other insect symbioses, the known associations with Burkholderia are characterized by environmental symbiont acquisition or mixed-mode transmission, resulting in interesting ecological and evolutionary dynamics of symbiont strain composition. Insect-Burkholderia symbioses present valuable model systems from which to derive insights into general principles governing symbiotic interactions because they are often experimentally and genetically tractable and span a large fraction of the diversity of functions, localizations, and transmission routes represented in insect symbioses.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| | - Laura V Flórez
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| |
Collapse
|
109
|
Abstract
Shewanella baltica was the dominant culturable nitrate-reducing bacterium in the eutrophic and strongly stratified Baltic Sea in the 1980s, where it primarily inhabited the oxic-anoxic transition zone. The genomic structures of 46 of these isolates were investigated through comparative genomic hybridization (CGH), which revealed a gradient of genomic similarity, ranging from 65% to as high as 99%. The core genome of the S. baltica species was enriched in anaerobic respiration-associated genes. Auxiliary genes, most of which locate within a few genomic islands (GIs), were nonuniformly distributed among the isolates. Specifically, hypothetical and mobile genetic element (MGE)-associated genes dominated intraclade gene content differences, whereas gain/loss of functional genes drove gene content differences among less related strains. Among the major S. baltica clades, gene signatures related to specific redox-driven and spatial niches within the water column were identified. For instance, genes involved in anaerobic respiration of sulfur compounds may provide key adaptive advantages for clade A strains in anoxic waters where sulfur-containing electron acceptors are present. Genes involved in cell motility, in particular, a secondary flagellar biosynthesis system, may be associated with the free-living lifestyle by clade E strains. Collectively, this study revealed characteristics of genome variations present in the water column and active speciation of S. baltica strains, driven by niche partitioning and horizontal gene transfer (HGT).IMPORTANCE Speciation in nature is a fundamental process driving the formation of the vast microbial diversity on Earth. In the central Baltic Sea, the long-term stratification of water led to formation of a large-scale vertical redoxcline that provided a gradient of environmental niches with respect to the availability of electron acceptors and donors. The region was home to Shewanella baltica populations, which composed the dominant culturable nitrate-reducing bacteria, particularly in the oxic-anoxic transition zone. Using the collection of S. baltica isolates as a model system, genomic variations showed contrasting gene-sharing patterns within versus among S. baltica clades and revealed genomic signatures of S. baltica clades related to redox niche specialization as well as particle association. This study provides important insights into genomic mechanisms underlying bacterial speciation within this unique natural redoxcline.
Collapse
|
110
|
Yoneyama T, Terakado-Tonooka J, Bao Z, Minamisawa K. Molecular Analyses of the Distribution and Function of Diazotrophic Rhizobia and Methanotrophs in the Tissues and Rhizosphere of Non-Leguminous Plants. PLANTS 2019; 8:plants8100408. [PMID: 31614562 PMCID: PMC6843303 DOI: 10.3390/plants8100408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 01/16/2023]
Abstract
Biological nitrogen fixation (BNF) by plants and its bacterial associations represent an important natural system for capturing atmospheric dinitrogen (N2) and processing it into a reactive form of nitrogen through enzymatic reduction. The study of BNF in non-leguminous plants has been difficult compared to nodule-localized BNF in leguminous plants because of the diverse sites of N2 fixation in non-leguminous plants. Identification of the involved N2-fixing bacteria has also been difficult because the major nitrogen fixers were often lost during isolation attempts. The past 20 years of molecular analyses has led to the identification of N2 fixation sites and active nitrogen fixers in tissues and the rhizosphere of non-leguminous plants. Here, we examined BNF hotspots in six reported non-leguminous plants. Novel rhizobia and methanotrophs were found to be abundantly present in the free-living state at sites where carbon and energy sources were predominantly available. In the carbon-rich apoplasts of plant tissues, rhizobia such as Bradyrhizobium spp. microaerobically fix N2. In paddy rice fields, methane molecules generated under anoxia are oxidized by xylem aerenchyma-transported oxygen with the simultaneous fixation of N2 by methane-oxidizing methanotrophs. We discuss the effective functions of the rhizobia and methanotrophs in non-legumes for the acquisition of fixed nitrogen in addition to research perspectives.
Collapse
Affiliation(s)
- Tadakatsu Yoneyama
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
- National Agriculture and Food Research Organization, Kannondai 3-1-1, Tsukuba, Ibaraki 305-8666, Japan.
| | - Junko Terakado-Tonooka
- National Agriculture and Food Research Organization, Kannondai 3-1-1, Tsukuba, Ibaraki 305-8666, Japan.
| | - Zhihua Bao
- School of Ecology and Environment, Inner Mongolia University, 235 West University Blvd., Hohhot 010021, Inner Mongolia, China.
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| |
Collapse
|
111
|
Uehling JK, Entler MR, Meredith HR, Millet LJ, Timm CM, Aufrecht JA, Bonito GM, Engle NL, Labbé JL, Doktycz MJ, Retterer ST, Spatafora JW, Stajich JE, Tschaplinski TJ, Vilgalys RJ. Microfluidics and Metabolomics Reveal Symbiotic Bacterial-Fungal Interactions Between Mortierella elongata and Burkholderia Include Metabolite Exchange. Front Microbiol 2019; 10:2163. [PMID: 31632357 PMCID: PMC6779839 DOI: 10.3389/fmicb.2019.02163] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/03/2019] [Indexed: 01/12/2023] Open
Abstract
We identified two poplar (Populus sp.)-associated microbes, the fungus, Mortierella elongata strain AG77, and the bacterium, Burkholderia strain BT03, that mutually promote each other’s growth. Using culture assays in concert with a novel microfluidic device to generate time-lapse videos, we found growth specific media differing in pH and pre-conditioned by microbial growth led to increased fungal and bacterial growth rates. Coupling microfluidics and comparative metabolomics data results indicated that observed microbial growth stimulation involves metabolic exchange during two ordered events. The first is an emission of fungal metabolites, including organic acids used or modified by bacteria. A second signal of unknown nature is produced by bacteria which increases fungal growth rates. We find this symbiosis is initiated in part by metabolic exchange involving fungal organic acids.
Collapse
Affiliation(s)
- Jessie K Uehling
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.,Department of Biology, Duke University, Durham, NC, United States
| | - Matthew R Entler
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Hannah R Meredith
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.,Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Larry J Millet
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,The Bredesen Center, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Collin M Timm
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jayde A Aufrecht
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Gregory M Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Nancy L Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jessy L Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Genome Science & Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Genome Science & Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Scott T Retterer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | | | - Rytas J Vilgalys
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
112
|
Paraburkholderia guartelaensis sp. nov., a nitrogen-fixing species isolated from nodules of Mimosa gymnas in an ecotone considered as a hotspot of biodiversity in Brazil. Arch Microbiol 2019; 201:1435-1446. [PMID: 31428824 DOI: 10.1007/s00203-019-01714-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/14/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
A polyphasic approach was used to infer the phylogenetic position of six nitrogen-fixing symbiotic bacteria isolated from Mimosa gymnas nodules grown in an ecotone between the Brazilian biomes of Atlantic Forest and Cerrado, considered as a hotspot of biodiversity. The 16S rRNA gene phylogeny indicated the highest similarity with Paraburkholderia oxyphila (98.7-98.9%), but similar values were found with other Paraburkholderia species. The multilocus sequence analysis (MLSA) of five (recA, gyrB, trpB, gltB, and atpD) housekeeping genes indicated that the CNPSo strains represent a novel lineage, sharing less than 95.7% of nucleotide identity (NI) with other Paraburkholderia species, being more closely related to P. nodosa. Genome parameters were analyzed for strain CNPSo 3008T, and DNA-DNA hybridization revealed a maximum of 55.9% of DNA-DNA relatedness with P. nodosa, while average nucleotide identity with the two closest species was of 93.84% with P. nodosa and of 87.93% with P. mimosarum, both parameters confirming that the strain represents a new species. In the analysis of the nodulation nodC gene, all CNPSo strains showed the highest similarity with P. nodosa, and nodulation tests indicated host specificity with Mimosa. Other phylogenetic, physiological, and chemotaxonomic properties were evaluated. All data obtained support the description of the novel species Paraburkholderia guartelaensis sp. nov., with CNPSo 3008T (= U13000T = G29.01T) indicated as the type strain.
Collapse
|
113
|
Khojandi N, Haselkorn TS, Eschbach MN, Naser RA, DiSalvo S. Intracellular Burkholderia Symbionts induce extracellular secondary infections; driving diverse host outcomes that vary by genotype and environment. THE ISME JOURNAL 2019; 13:2068-2081. [PMID: 31019270 PMCID: PMC6776111 DOI: 10.1038/s41396-019-0419-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Symbiotic associations impact and are impacted by their surrounding ecosystem. The association between Burkholderia bacteria and the soil amoeba Dictyostelium discoideum is a tractable model to unravel the biology underlying symbiont-endowed phenotypes and their impacts. Several Burkholderia species stably associate with D. discoideum and typically reduce host fitness in food-rich environments while increasing fitness in food-scarce environments. Burkholderia symbionts are themselves inedible to their hosts but induce co-infections with secondary bacteria that can serve as a food source. Thus, Burkholderia hosts are "farmers" that carry food bacteria to new environments, providing a benefit when food is scarce. We examined the ability of specific Burkholderia genotypes to induce secondary co-infections and assessed host fitness under a range of co-infection conditions and environmental contexts. Although all Burkholderia symbionts intracellularly infected Dictyostelium, we found that co-infections are predominantly extracellular, suggesting that farming benefits are derived from extracellular infection of host structures. Furthermore, levels of secondary infection are linked to conditional host fitness; B. agricolaris infected hosts have the highest level of co-infection and have the highest fitness in food-scarce environments. This study illuminates the phenomenon of co-infection induction across Dictyostelium associated Burkholderia species and exemplifies the contextual complexity of these associations.
Collapse
Affiliation(s)
- Niloufar Khojandi
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
- Department of Molecular Microbiology and Immunology, St. Louis University, St. Louis, MO, 63104, USA
| | - Tamara S Haselkorn
- Department of Biology, University of Central Arkansas, 201 Donaghey Avenue, Conway, AR, 72035, USA
| | - Madison N Eschbach
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
| | - Rana A Naser
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
| | - Susanne DiSalvo
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA.
| |
Collapse
|
114
|
Abstract
Burkholderia bacteria are multifaceted organisms that are ecologically and metabolically diverse. The Burkholderia genus has gained prominence because it includes human pathogens; however, many strains are nonpathogenic and have desirable characteristics such as beneficial plant associations and degradation of pollutants. The diversity of the Burkholderia genus is reflected within the large genomes that feature multiple replicons. Burkholderia genomes encode a plethora of natural products with potential therapeutic relevance and biotechnological applications. This review highlights Burkholderia as an emerging source of natural products. An overview of the taxonomy of the Burkholderia genus, which is currently being revised, is provided. We then present a curated compilation of natural products isolated from Burkholderia sensu lato and analyze their characteristics in terms of biosynthetic class, discovery method, and bioactivity. Finally, we describe and discuss genome characteristics and highlight the biosynthesis of a select number of natural products that are encoded in unusual biosynthetic gene clusters. The availability of >1000 Burkholderia genomes in public databases provides an opportunity to realize the genetic potential of this underexplored taxon for natural product discovery.
Collapse
Affiliation(s)
- Sylvia Kunakom
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S. Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
115
|
Hu G, Zhang L, Yun Y, Peng Y. Taking insight into the gut microbiota of three spider species: No characteristic symbiont was found corresponding to the special feeding style of spiders. Ecol Evol 2019; 9:8146-8156. [PMID: 31380078 PMCID: PMC6662400 DOI: 10.1002/ece3.5382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022] Open
Abstract
Microorganisms in insect guts have been recognized as having a great impact on their hosts' nutrition, health, and behavior. Spiders are important natural enemies of pests, and the composition of the gut microbiota of spiders remains unclear. Will the bacterial taxa in spiders be same as the bacterial taxa in insects, and what are the potential functions of the gut bacteria in spiders? To gain insight into the composition of the gut bacteria in spiders and their potential function, we collected three spider species, Pardosa laura, Pardosa astrigera, and Nurscia albofasciata, in the field, and high-throughput sequencing of the 16S rRNA V3 and V4 regions was used to investigate the diversity of gut microbiota across the three spider species. A total of 23 phyla and 150 families were identified in these three spider species. The dominant bacterial phylum across all samples was Proteobacteria. Burkholderia, Ralstonia, Ochrobactrum, Providencia, Acinetobacter, Proteus, and Rhodoplanes were the dominant genera in the guts of the three spider species. The relative abundances of Wolbachia and Rickettsiella detected in N. albofasciata were significantly higher than those in the other two spider species. The relative abundance of Thermus, Amycolatopsis, Lactococcus, Acinetobacter Microbacterium, and Koribacter detected in spider gut was different among the three spider species. Biomolecular interaction networks indicated that the microbiota in the guts had complex interactions. The results of this study also suggested that at the genus level, some of the gut bacteria taxa in the three spider species were the same as the bacteria in insect guts.
Collapse
Affiliation(s)
- Guowen Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, School of Life SciencesHubei UniversityWuhanChina
| | - Lihua Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, School of Life SciencesHubei UniversityWuhanChina
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, School of Life SciencesHubei UniversityWuhanChina
- Centre for Behavioral Ecology & Evolution, School of Life SciencesHubei UniversityWuhanChina
| | - Yu Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, School of Life SciencesHubei UniversityWuhanChina
- Centre for Behavioral Ecology & Evolution, School of Life SciencesHubei UniversityWuhanChina
| |
Collapse
|
116
|
Shirakawa M, Uehara I, Tanaka M. Mycorrhizosphere Bacterial Communities and their Sensitivity to Antibacterial Activity of Ectomycorrhizal Fungi. Microbes Environ 2019; 34:191-198. [PMID: 31080215 PMCID: PMC6594744 DOI: 10.1264/jsme2.me18146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/04/2019] [Indexed: 11/12/2022] Open
Abstract
We investigated whether ectomycorrhizal (ECM) fungal species exhibit antibacterial activity towards culturable bacterial communities in mycorrhizospheres. Four hundred and thirty bacterial strains were isolated from the ECM root tips of Pinus densiflora and bulk soil, and 21 were co-cultured with six ECM fungal species. Three hundred and twenty-nine bacterial 16S rDNA sequences were identified in ECM roots (n=185) and bulk soil (n=144). Mycorrhizosphere isolates were dominated by Gram-negative Proteobacteria from 16 genera, including Burkholderia, Collimonas, Paraburkholderia, and Rhizobium. Paraburkholderia accounted for approximately 60%. In contrast, bulk soil isolates contained a high number of Gram-positive Firmicutes, particularly from Bacillus. Paraburkholderia accounted for ≤20% of the bacterial isolates from bulk soil, which was significantly lower than its percentage in ECM root tips. Co-cultures of six ECM fungal species with the 21 bacterial strains revealed that eight strains of three Gram-positive genera-Arthrobacter, Bacillus, and Lysinibacillus-were sensitive to the antibacterial activity of the fungi. In contrast, the Gram-negative strains, including five Paraburkholderia strains, two Burkholderia strains, and a Rhizobium sp., were not sensitive. The strength of fungal antibacterial activity varied in a species-dependent manner, but consistently affected Gram-positive bacteria. These results suggest that Gram-positive bacteria are excluded from the mycorrhizosphere by the antibacterial activity of ECM fungi, which develops specific soil bacterial communities in the mycorrhizosphere.
Collapse
Affiliation(s)
- Makoto Shirakawa
- Graduate School of Agriculture, Tokyo University of Agriculture1–1–1 Sakuragaoka, Setagaya, Tokyo, 156–8502Japan
| | - Iwao Uehara
- Faculty of Regional Environment Sci., Tokyo University of Agriculture1–1–1 Sakuragaoka, Setagaya, Tokyo, 156–8502Japan
| | - Megumi Tanaka
- Faculty of Regional Environment Sci., Tokyo University of Agriculture1–1–1 Sakuragaoka, Setagaya, Tokyo, 156–8502Japan
| |
Collapse
|
117
|
Chen H, Bian Z, Ravichandran V, Li R, Sun Y, Huo L, Fu J, Bian X, Xia L, Tu Q, Zhang Y. Biosynthesis of polyketides by trans-AT polyketide synthases in Burkholderiales. Crit Rev Microbiol 2019; 45:162-181. [PMID: 31218924 DOI: 10.1080/1040841x.2018.1514365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Widely used as drugs and agrochemicals, polyketides are a family of bioactive natural products, with diverse structures and functions. Polyketides are produced by megaenzymes termed as polyketide synthases (PKSs). PKS biosynthetic pathways are divided into the cis-AT PKSs and trans-AT PKSs; a division based mainly on the absence of an acyltransferase (AT) domain in the trans-AT PKS modules. In trans-AT biosynthesis, the AT activity is contributed via one or several independent proteins, and there are few other characteristics that distinguish trans-AT PKSs from cis-AT PKSs, especially in the formation of the β-branch. The trans-AT PKSs constitute a major PKS pathway, and many are found in Burkholderia species, which are prevalent in the environment and prolific sources of polyketides. This review summarizes studies from 1973 to 2017 on the biosynthesis of natural products by trans-AT PKSs from Burkholderia species.
Collapse
Affiliation(s)
- Hanna Chen
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China.,b State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha , People's Republic of China
| | - Zhilong Bian
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Vinothkannan Ravichandran
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Ruijuan Li
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Yi Sun
- c Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences , Beijing , People's Republic of China
| | - Liujie Huo
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Jun Fu
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Xiaoying Bian
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Liqiu Xia
- b State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha , People's Republic of China
| | - Qiang Tu
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Youming Zhang
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China.,b State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha , People's Republic of China
| |
Collapse
|
118
|
Jung M, Lee DH. Abundance and diversity of gut-symbiotic bacteria, the genus Burkholderia in overwintering Riptortus pedestris (Hemiptera: Alydidae) populations and soil in South Korea. PLoS One 2019; 14:e0218240. [PMID: 31194818 PMCID: PMC6563995 DOI: 10.1371/journal.pone.0218240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Riptortus pedestris is a major agricultural pest on leguminous plants in South Korea and Japan. Recent studies have revealed that R. pedestris can form beneficial symbiosis with bacteria belonging to genus Burkholderia acquired from soil newly for every generation. Although their physiological interactions are relatively well-understood, infection rate and abundance of the Burkholderia in overwintering natural populations of R. pedestris remain unknown. Therefore, the objective of this study was to characterize Burkholderia infection ratio and clade composition of overwintering R. pedestris populations as well as prevalence and diversity of the genus Burkholderia in soil by conducting a two-year field survey. From the field survey, we found 29 overwintering R. pedestris adults in forested areas nearby soybean fields. Diagnostic PCR analysis revealed that overall infection rate of the symbiotic Burkholderia was 93.1% from overwintering adults. Among the Burkholderia-infected R. pedestris, 70.4% of individuals harbored unclassified Burkholderia clades whereas 22.2% and 7.4% of R. pedestris harbor stinkbug-associated beneficial and environmental (SBE) group and Burkholderia cepacia and complex (BCC), respectively. All R. pedestris were infected with a single clade of Burkholderia. In soil, 56.2% of soil samples were Burkholderia positive, and unlike R. pedestris, multiple Burkholderia clades were detected from 62.2% of those samples. Clade composition of the genus Burkholderia in the samples with the bacteria was 91.1%, 60.0%, 31.1% and 8.8% for plant-associated beneficial and environment (PBE), BCC, SBE and unclassified clade, respectively.
Collapse
Affiliation(s)
- Minhyung Jung
- Department of Life Sciences, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
| | - Doo-Hyung Lee
- Department of Life Sciences, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
- * E-mail:
| |
Collapse
|
119
|
Biofilm-Constructing Variants of Paraburkholderia phytofirmans PsJN Outcompete the Wild-Type Form in Free-Living and Static Conditions but Not In Planta. Appl Environ Microbiol 2019; 85:AEM.02670-18. [PMID: 30902863 DOI: 10.1128/aem.02670-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/09/2019] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Burkholderia colonize diverse ecological niches. Among the plant-associated strains, Paraburkholderia phytofirmans PsJN is an endophyte with a broad host range. In a spatially structured environment (unshaken broth cultures), biofilm-constructing specialists of P. phytofirmans PsJN colonizing the air-liquid interface arose at high frequency. In addition to forming a robust biofilm in vitro and in planta on Arabidopsis roots, those mucoid phenotypic variants display a reduced swimming ability and modulate the expression of several microbe-associated molecular patterns (MAMPs), including exopolysaccharides (EPS), flagellin, and GroEL. Interestingly, the variants induce low PR1 and PDF1.2 expression compared to that of the parental strain, suggesting a possible evasion of plant host immunity. We further demonstrated that switching from the planktonic to the sessile form did not involve quorum-sensing genes but arose from spontaneous mutations in two genes belonging to an iron-sulfur cluster: hscA (encoding a cochaperone protein) and iscS (encoding a cysteine desulfurase). A mutational approach validated the implication of these two genes in the appearance of variants. We showed for the first time that in a heterogeneous environment, P. phytofirmans strain PsJN is able to rapidly diversify and coexpress a variant that outcompete the wild-type form in free-living and static conditions but not in planta IMPORTANCE Paraburkholderia phytofirmans strain PsJN is a well-studied plant-associated bacterium known to induce resistance against biotic and abiotic stresses. In this work, we described the spontaneous appearance of mucoid variants in PsJN from static cultures. We showed that the conversion from the wild-type (WT) form to variants (V) correlates with an overproduction of EPS, an enhanced ability to form biofilm in vitro and in planta, and a reduced swimming motility. Our results revealed also that these phenotypes are in part associated with spontaneous mutations in an iron-sulfur cluster. Overall, the data provided here allow a better understanding of the adaptive mechanisms likely developed by P. phytofirmans PsJN in a heterogeneous environment.
Collapse
|
120
|
Mucoid switch in Burkholderia cepacia complex bacteria: Triggers, molecular mechanisms and implications in pathogenesis. ADVANCES IN APPLIED MICROBIOLOGY 2019; 107:113-140. [PMID: 31128746 DOI: 10.1016/bs.aambs.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacteria produce a vast range of exopolysaccharides (EPSs) to thrive in diverse environmental niches and often display a mucoid phenotype in solid media. One such exopolysaccharide, cepacian, is produced by bacteria of the genus Burkholderia and is of interest due to its role in pathogenesis associated with lung infections in cystic fibrosis (CF) patients. Cepacian is a repeat-unit polymer that has been implicated in biofilm formation, immune system evasion, interaction with host cells, resistance against antimicrobials, and virulence. Its biosynthesis proceeds through the Wzy-dependent polymerization and secretion mechanism, which requires a multienzymatic complex. Key aspects of its structure, genetic organization, and the regulatory network involved in mucoid switch and regulation of cepacian biosynthesis at transcriptional and posttranscriptional levels are reviewed. It is also evaluated the importance of cepacian biosynthesis/regulation key players as evolutionary targets of selection and highlighted the complexity of the regulatory network, which allows cells to coordinate the expression of metabolic functions to the ones of the cell wall, in order to be successful in ever changing environments, including in the interaction with host cells.
Collapse
|
121
|
Rojas-Rojas FU, Sánchez-López D, Tapia-García EY, Arroyo-Herrera I, Maymon M, Humm E, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Stamatis D, Reddy TBK, Ivanova N, Kyrpides N, Woyke T, Shapiro N, Hirsch AM, Ibarra JA, Estrada-de Los Santos P. Draft Genome of Burkholderia cenocepacia TAtl-371, a Strain from the Burkholderia cepacia Complex Retains Antagonism in Different Carbon and Nitrogen Sources. Curr Microbiol 2019; 76:566-574. [PMID: 30820638 DOI: 10.1007/s00284-019-01657-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Burkholderia cenocepacia TAtl-371 was isolated from the rhizosphere of a tomato plant growing in Atlatlahucan, Morelos, Mexico. This strain exhibited a broad antimicrobial spectrum against bacteria, yeast, and fungi. Here, we report and describe the improved, high-quality permanent draft genome of B. cenocepacia TAtl-371, which was sequenced using a combination of PacBio RS and PacBio RS II sequencing methods. The 7,496,106 bp genome of the TAtl-371 strain is arranged in three scaffolds, contains 6722 protein-coding genes, and 99 RNA only-encoding genes. Genome analysis revealed genes related to biosynthesis of antimicrobials such as non-ribosomal peptides, siderophores, chitinases, and bacteriocins. Moreover, analysis of bacterial growth on different carbon and nitrogen sources shows that the strain retains its antimicrobial ability.
Collapse
Affiliation(s)
- Fernando Uriel Rojas-Rojas
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340, Ciudad de México, Mexico
| | - David Sánchez-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340, Ciudad de México, Mexico
| | - Erika Yanet Tapia-García
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340, Ciudad de México, Mexico
| | - Ivan Arroyo-Herrera
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340, Ciudad de México, Mexico
| | - Maskit Maymon
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ethan Humm
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Marcel Huntemann
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Alicia Clum
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Manoj Pillay
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | | | - Neha Varghese
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Natalia Mikhailova
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Dimitrios Stamatis
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - T B K Reddy
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Natalia Ivanova
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Nikos Kyrpides
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Nicole Shapiro
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Ann M Hirsch
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, Los Angeles, CA, 90095, USA.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - J Antonio Ibarra
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340, Ciudad de México, Mexico
| | - Paulina Estrada-de Los Santos
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340, Ciudad de México, Mexico.
| |
Collapse
|
122
|
Su X, Shi Y, Li R, Lu ZN, Zou X, Wu JX, Han ZG. Application of qPCR assays based on haloacids transporter gene dehp2 for discrimination of Burkholderia and Paraburkholderia. BMC Microbiol 2019; 19:36. [PMID: 30744555 PMCID: PMC6371555 DOI: 10.1186/s12866-019-1411-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/31/2019] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND A major facilitator superfamily transporter Dehp2 was recently shown to be playing an important role in transport and biodegradation of haloacids in Paraburkholderia caribensis MBA4, and Dehp2 is phylogenetically conserved in Burkholderia sensu lato. RESULTS We designed both Burkholderia sensu stricto-specific and Paraburkholderia-specific qPCR assays based on dehp2 and 16S rRNA, and validated the qPCR assays in 12 bacterial strains. The qPCR assays could detect single species of Burkholderia sensu stricto or Paraburkholderia with high sensitivity and discriminate them in mixtures with high specificity over a wide dynamic range of relative concentrations. At relatively lower cost compared with sequencing-based approach, the qPCR assays will facilitate discrimination of Burkholderia sensu stricto and Paraburkholderia in a large number of samples. CONCLUSIONS For the first time, we report the utilization of a haloacids transporter gene for discriminative purpose in Burkholderia sensu lato. This enables not only quick decision on proper handling of putative pathogenic samples in Burkholderia sensu stricto group but also future exploitation of relevant species in Paraburkholderia group for haloacids biodegradation purposes.
Collapse
Affiliation(s)
- Xianbin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruihong Li
- Shanghai Quality Safety Centre of Agricultural Products, Shanghai, China
| | - Zhao-Ning Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiao-Xiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
123
|
Esmaeel Q, Jacquard C, Clément C, Sanchez L, Ait Barka E. Genome sequencing and traits analysis of Burkholderia strains reveal a promising biocontrol effect against grey mould disease in grapevine (Vitis vinifera L.). World J Microbiol Biotechnol 2019; 35:40. [DOI: 10.1007/s11274-019-2613-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/01/2019] [Indexed: 12/11/2022]
|
124
|
Baldeweg F, Hoffmeister D, Nett M. A genomics perspective on natural product biosynthesis in plant pathogenic bacteria. Nat Prod Rep 2019; 36:307-325. [DOI: 10.1039/c8np00025e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarizes findings from genomics-inspired natural product research in plant pathogenic bacteria and discusses emerging trends in this field.
Collapse
Affiliation(s)
- Florian Baldeweg
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering
- TU Dortmund University
- 44227 Dortmund
- Germany
| |
Collapse
|
125
|
Mannaa M, Park I, Seo YS. Genomic Features and Insights into the Taxonomy, Virulence, and Benevolence of Plant-Associated Burkholderia Species. Int J Mol Sci 2018; 20:E121. [PMID: 30598000 PMCID: PMC6337347 DOI: 10.3390/ijms20010121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 11/17/2022] Open
Abstract
The members of the Burkholderia genus are characterized by high versatility and adaptability to various ecological niches. With the availability of the genome sequences of numerous species of Burkholderia, many studies have been conducted to elucidate the unique features of this exceptional group of bacteria. Genomic and metabolic plasticity are common among Burkholderia species, as evidenced by their relatively large multi-replicon genomes that are rich in insertion sequences and genomic islands and contain a high proportion of coding regions. Such unique features could explain their adaptability to various habitats and their versatile lifestyles, which are reflected in a multiplicity of species including free-living rhizospheric bacteria, plant endosymbionts, legume nodulators, and plant pathogens. The phytopathogenic Burkholderia group encompasses several pathogens representing threats to important agriculture crops such as rice. Contrarily, plant-beneficial Burkholderia have also been reported, which have symbiotic and growth-promoting roles. In this review, the taxonomy of Burkholderia is discussed emphasizing the recent updates and the contributions of genomic studies to precise taxonomic positioning. Moreover, genomic and functional studies on Burkholderia are reviewed and insights are provided into the mechanisms underlying the virulence and benevolence of phytopathogenic and plant-beneficial Burkholderia, respectively, on the basis of cutting-edge knowledge.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Inmyoung Park
- Department of Oriental Food and Culinary Arts, Youngsan University, Busan 48015, Korea.
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
126
|
MarR Family Transcription Factors from Burkholderia Species: Hidden Clues to Control of Virulence-Associated Genes. Microbiol Mol Biol Rev 2018; 83:83/1/e00039-18. [PMID: 30487164 DOI: 10.1128/mmbr.00039-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Species within the genus Burkholderia exhibit remarkable phenotypic diversity. Genomic plasticity, including genome reduction and horizontal gene transfer, has been correlated with virulence traits in several species. However, the conservation of virulence genes in species otherwise considered to have limited potential for infection suggests that phenotypic diversity may not be explained solely on the basis of genetic diversity. Instead, differential organization and control of gene regulatory networks may underlie many phenotypic differences. In this review, we evaluate how regulation of gene expression by members of the multiple antibiotic resistance regulator (MarR) family of transcription factors may contribute to shaping the physiological diversity of Burkholderia species, with a focus on the clinically relevant human pathogens. All Burkholderia species encode a relatively large number of MarR proteins, a feature common to bacteria that must respond to environmental changes such as those associated with host invasion. However, evolution of gene regulatory networks has likely resulted in orthologous transcription factors controlling disparate sets of genes. Adaptation to, and survival in, diverse habitats, including a human or plant host, is key to the success of Burkholderia species as (opportunistic) pathogens, and recent reports suggest that control of virulence-associated genes by MarR proteins features prominently among the survival strategies employed by these species. We suggest that identification of MarR regulons will contribute significantly to clarification of virulence determinants and phenotypic diversity.
Collapse
|
127
|
Paulitsch F, Klepa MS, da Silva AR, do Carmo MRB, Dall’Agnol RF, Delamuta JRM, Hungria M, da Silva Batista JS. Phylogenetic diversity of rhizobia nodulating native Mimosa gymnas grown in a South Brazilian ecotone. Mol Biol Rep 2018; 46:529-540. [DOI: 10.1007/s11033-018-4506-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/15/2018] [Indexed: 11/29/2022]
|
128
|
Rare Biosphere Archaea Assimilate Acetate in Precambrian Terrestrial Subsurface at 2.2 km Depth. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8110418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The deep biosphere contains a large portion of the total microbial communities on Earth, but little is known about the carbon sources that support deep life. In this study, we used Stable Isotope Probing (SIP) and high throughput amplicon sequencing to identify the acetate assimilating microbial communities at 2260 m depth in the bedrock of Outokumpu, Finland. The long-term and short-term effects of acetate on the microbial communities were assessed by DNA-targeted SIP and RNA targeted cell activation. The microbial communities reacted within hours to the amended acetate. Archaeal taxa representing the rare biosphere at 2260 m depth were identified and linked to the cycling of acetate, and were shown to have an impact on the functions and activity of the microbial communities in general through small key carbon compounds. The major archaeal lineages identified to assimilate acetate and metabolites derived from the labelled acetate were Methanosarcina spp., Methanococcus spp., Methanolobus spp., and unclassified Methanosarcinaceae. These archaea have previously been detected in the Outokumpu deep subsurface as minor groups. Nevertheless, their involvement in the assimilation of acetate and secretion of metabolites derived from acetate indicated an important role in the supporting of the whole community in the deep subsurface, where carbon sources are limited.
Collapse
|
129
|
Issa A, Esmaeel Q, Sanchez L, Courteaux B, Guise JF, Gibon Y, Ballias P, Clément C, Jacquard C, Vaillant-Gaveau N, Aït Barka E. Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato ( Lycopersicon esculentum L.) Under High Temperature. FRONTIERS IN PLANT SCIENCE 2018; 9:1397. [PMID: 30405648 PMCID: PMC6201190 DOI: 10.3389/fpls.2018.01397] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/03/2018] [Indexed: 05/24/2023]
Abstract
Abnormal temperatures induce physiological and biochemical changes resulting in the loss of yield. The present study investigates the impact of the PsJN strain of Paraburkholderia phytofirmans on tomato (Lycopersicon esculentum Mill.) in response to heat stress (32°C). The results of this work showed that bacterial inoculation with P. phytofirmans strain PsJN increased tomato growth parameters such as chlorophyll content and gas exchange at both normal and high temperatures (25 and 32°C). At normal temperature (25°C), the rate of photosynthesis and the photosystem II activity increased with significant accumulations of sugars, total amino acids, proline, and malate in the bacterized tomato plants, demonstrating that the PsJN strain had a positive effect on plant growth. However, the amount of sucrose, total amino acids, proline, and malate were significantly affected in tomato leaves at 32°C compared to that at 25°C. Changes in photosynthesis and chlorophyll fluorescence showed that the bacterized tomato plants were well acclimated at 32°C. These results reinforce the current knowledge about the PsJN strain of P. phytofirmans and highlight in particular its ability to alleviate the harmful effects of high temperatures by stimulating the growth and tolerance of tomato plants.
Collapse
Affiliation(s)
- Alaa Issa
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Qassim Esmaeel
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Barbara Courteaux
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Jean-Francois Guise
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Villenave-d’Ornon, France
| | - Patricia Ballias
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Villenave-d’Ornon, France
| | - Christophe Clément
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Cédric Jacquard
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Nathalie Vaillant-Gaveau
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Essaïd Aït Barka
- SFR Condorcet FR CNRS 3417, Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
130
|
Draft Genome Sequence of Burkholderia reimsis BE51, a Plant-Associated Bacterium Isolated from Agricultural Rhizosphere. Microbiol Resour Announc 2018; 7:MRA00978-18. [PMID: 30533687 PMCID: PMC6256556 DOI: 10.1128/mra.00978-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/06/2018] [Indexed: 01/18/2023] Open
Abstract
Burkholderia reimsis BE51, isolated from maize rhizosphere, has a promising biocontrol activity against a set of phytopathogens. Here, we report its draft genome sequence with the aim of providing insight into the potentially produced secondary metabolites and genes related to plant growth-promoting and biocontrol properties. Burkholderia reimsis BE51, isolated from maize rhizosphere, has a promising biocontrol activity against a set of phytopathogens. Here, we report its draft genome sequence with the aim of providing insight into the potentially produced secondary metabolites and genes related to plant growth-promoting and biocontrol properties.
Collapse
|
131
|
Dose B, Niehs SP, Scherlach K, Flórez LV, Kaltenpoth M, Hertweck C. Unexpected Bacterial Origin of the Antibiotic Icosalide: Two-Tailed Depsipeptide Assembly in Multifarious Burkholderia Symbionts. ACS Chem Biol 2018; 13:2414-2420. [PMID: 30160099 DOI: 10.1021/acschembio.8b00600] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Icosalide is an unusual two-tailed lipocyclopeptide antibiotic that was originally isolated from a fungal culture. Yet, its biosynthesis and ecological function have remained enigmatic. By genome mining and metabolic profiling of a bacterial endosymbiont ( Burkholderia gladioli) of the pest beetle Lagria villosa, we unveiled a bacterial origin of icosalide. Functional analysis of the biosynthetic gene locus revealed an unprecedented nonribosomal peptide synthetase (NRPS) that incorporates two β-hydroxy acids by means of two starter condensation domains in different modules. This unusual assembly line, which may inspire new synthetic biology approaches, is widespread among many symbiotic Burkholderia species from diverse habitats. Biological assays showed that icosalide is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring. By creating a null mutant, we found that icosalide is a swarming inhibitor, which may play a role in symbiotic interactions and bears the potential for therapeutic applications.
Collapse
Affiliation(s)
- Benjamin Dose
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Sarah P. Niehs
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Laura V. Flórez
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
- Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
132
|
Esmaeel Q, Miotto L, Rondeau M, Leclère V, Clément C, Jacquard C, Sanchez L, Barka EA. Paraburkholderia phytofirmans PsJN-Plants Interaction: From Perception to the Induced Mechanisms. Front Microbiol 2018; 9:2093. [PMID: 30214441 PMCID: PMC6125355 DOI: 10.3389/fmicb.2018.02093] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
The use of plant-associated bacteria has received many scientific and economic attention as an effective and alternative method to reduce the chemical pesticides use in agriculture. The genus Burkholderia includes at least 90 species including pathogenic strains, plant pathogens, as well as plant beneficial species as those related to Paraburkholderia, which has been reported to be associated with plants and exerts a positive effect on plant growth and fitness. Paraburkholderia phytofirmans PsJN, a beneficial endophyte able to colonize a wide range of plants, is an established model for plant-associated endophytic bacteria. Indeed, in addition to its plant growth promoting ability, it can also induce plant resistance against biotic as well as abiotic stresses. Here, we summarized an inventory of knowledge on PsJN-plant interaction, from the perception to the resistance mechanisms induced in the plant by a way of the atypical colonization mode of this endophyte. We also have carried out an extensive genome analysis to identify all gene clusters which contribute to the adaptive mechanisms under different environments and partly explaining the high ecological competence of P. phytofirmans PsJN.
Collapse
Affiliation(s)
- Qassim Esmaeel
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Lidiane Miotto
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Marine Rondeau
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Valérie Leclère
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV- Institut Charles Viollette, SFR Condorcet FR CNRS 3417, Lille, France
| | - Christophe Clément
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Cédric Jacquard
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Essaid A Barka
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
133
|
Symbiotic and non-symbiotic Paraburkholderia isolated from South African Lebeckia ambigua root nodules and the description of Paraburkholderia fynbosensis sp. nov. Int J Syst Evol Microbiol 2018; 68:2607-2614. [DOI: 10.1099/ijsem.0.002884] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
134
|
Draghi WO, Degrossi J, Bialer M, Brelles-Mariño G, Abdian P, Soler-Bistué A, Wall L, Zorreguieta A. Biodiversity of cultivable Burkholderia species in Argentinean soils under no-till agricultural practices. PLoS One 2018; 13:e0200651. [PMID: 30001428 PMCID: PMC6042781 DOI: 10.1371/journal.pone.0200651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/29/2018] [Indexed: 11/19/2022] Open
Abstract
No-tillage crop production has revolutionized the agriculture worldwide. In our country more than 30 Mha are currently cultivated under no-till schemes, stressing the importance of this management system for crop production. It is widely recognized that soil microbiota is altered under different soil managements. In this regard the structure of Burkholderia populations is affected by soils management practices such as tillage, fertilization, or crop rotation. The stability of these structures, however, has not been evaluated under sustainable schemes where the impact of land practices could be less deleterious to physicochemical soils characteristics. In order to assess the structure of Burkholderia spp. populations in no-till schemes, culturable Burkholderia spp. strains were quantified and their biodiversity evaluated. Results showed that Burkholderia spp. biodiversity, but not their abundance, clearly displayed a dependence on agricultural managements. We also showed that biodiversity was mainly influenced by two soil factors: Total Organic Carbon and Total Nitrogen. Results showed that no-till schemes are not per se sufficient to maintain a richer Burkholderia spp. soil microbiota, and additional traits should be considered when sustainability of productive soils is a goal to fulfil productive agricultural schemes.
Collapse
Affiliation(s)
- Walter Omar Draghi
- Fundación Instituto Leloir, IIBBA CONICET, Buenos Aires, Argentina
- Instituto de Biotecnología y Biología Molecular–CCT La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail: (AZ); (WOD)
| | - Jose Degrossi
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Magalí Bialer
- Fundación Instituto Leloir, IIBBA CONICET, Buenos Aires, Argentina
| | - Graciela Brelles-Mariño
- Center for Research and Development of Industrial Fermentations, (CINDEFI, CCT-LA PLATA-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Patricia Abdian
- Fundación Instituto Leloir, IIBBA CONICET, Buenos Aires, Argentina
| | | | - Luis Wall
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA CONICET, Buenos Aires, Argentina
- * E-mail: (AZ); (WOD)
| |
Collapse
|
135
|
Yang CJ, Hu JM. Bacterial Leaf Nodule Symbiosis in Flowering Plants. Symbiosis 2018. [DOI: 10.5772/intechopen.73078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
136
|
Thongkongkaew T, Ding W, Bratovanov E, Oueis E, Garcı́a-Altares M, Zaburannyi N, Harmrolfs K, Zhang Y, Scherlach K, Müller R, Hertweck C. Two Types of Threonine-Tagged Lipopeptides Synergize in Host Colonization by Pathogenic Burkholderia Species. ACS Chem Biol 2018; 13:1370-1379. [PMID: 29669203 DOI: 10.1021/acschembio.8b00221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial infections of agriculturally important mushrooms and plants pose a major threat to human food sources worldwide. However, structures of chemical mediators required by the pathogen for host colonization and infection remain elusive in most cases. Here, we report two types of threonine-tagged lipopeptides conserved among mushroom and rice pathogenic Burkholderia species that facilitate bacterial infection of hosts. Genome mining, metabolic profiling of infected mushrooms, and heterologous expression of orphan gene clusters allowed the discovery of these unprecedented metabolites in the mushroom pathogen Burkholderia gladioli (haereogladin, burriogladin) and the plant pathogen Burkholderia glumae (haereoglumin and burrioglumin). Through targeted gene deletions, the molecular basis of lipopeptide biosynthesis by nonribosomal peptide synthetases was revealed. Surprisingly, both types of lipopeptides feature unusual threonine tags, which yield longer peptide backbones than one would expect based on the canonical colinearity of the NRPS assembly lines. Both peptides play an indirect role in host infection as biosurfactants that enable host colonization by mediating swarming and biofilm formation abilities. Moreover, MALDI imaging mass spectrometry was applied to investigate the biological role of the lipopeptides. Our results shed light on conserved mechanisms that mushroom and plant pathogenic bacteria utilize for host infection and expand current knowledge on bacterial virulence factors that may represent a new starting point for the targeted development of crop protection measures in the future.
Collapse
Affiliation(s)
- Tawatchai Thongkongkaew
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Wei Ding
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Evgeni Bratovanov
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Emilia Oueis
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Marı́a Garcı́a-Altares
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Nestor Zaburannyi
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Kirsten Harmrolfs
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Youming Zhang
- Shandong University−Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
- Chair for Natural Product Chemistry, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
137
|
Draft Genome Sequence of Plant Growth-Promoting Burkholderia sp. Strain BE12, Isolated from the Rhizosphere of Maize. GENOME ANNOUNCEMENTS 2018; 6:6/17/e00299-18. [PMID: 29700147 PMCID: PMC5920190 DOI: 10.1128/genomea.00299-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Burkholderia sp. strain BE12, isolated from a French agricultural soil, possesses antifungal activity against a set of phytopathogenic fungi and has friendly interactions with grapevine. Here, we present the draft genome sequence of BE12, along with genes related to plant growth-promoting traits and siderophores that this strain contains, supporting its plant growth and antifungal activities.
Collapse
|
138
|
Draft Genome Sequence of Burkholderia cepacia ATCC 17759, a Polyhydroxybutyrate-Co-Valerate Copolymer-Producing Bacterium. GENOME ANNOUNCEMENTS 2018; 6:6/17/e00348-18. [PMID: 29700161 PMCID: PMC5920182 DOI: 10.1128/genomea.00348-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Burkholderia cepacia ATCC 17759, isolated from forest soils in Trinidad, accumulates large amounts of polyhydroxyalkanoate copolymers when grown on xylose, mannose, arabinose, other carbohydrates, and organic acid cosubstrates. This 8.72-Mb draft genome sequence of B. cepacia ATCC 17759 will provide better insight into this organism's utility in lignocellulose bioconversion.
Collapse
|
139
|
Nguyen TT, Lee HH, Park I, Seo YS. Genome-Wide Analysis of Type VI System Clusters and Effectors in Burkholderia Species. THE PLANT PATHOLOGY JOURNAL 2018; 34:11-22. [PMID: 29422784 PMCID: PMC5796746 DOI: 10.5423/ppj.ft.11.2017.0231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
Type VI secretion system (T6SS) has been discovered in a variety of gram-negative bacteria as a versatile weapon to stimulate the killing of eukaryotic cells or prokaryotic competitors. Type VI secretion effectors (T6SEs) are well known as key virulence factors for important pathogenic bacteria. In many Burkholderia species, T6SS has evolved as the most complicated secretion pathway with distinguished types to translocate diverse T6SEs, suggesting their essential roles in this genus. Here we attempted to detect and characterize T6SSs and potential T6SEs in target genomes of plant-associated and environmental Burkholderia species based on computational analyses. In total, 66 potential functional T6SS clusters were found in 30 target Burkholderia bacterial genomes, of which 33% possess three or four clusters. The core proteins in each cluster were specified and phylogenetic trees of three components (i.e., TssC, TssD, TssL) were constructed to elucidate the relationship among the identified T6SS clusters. Next, we identified 322 potential T6SEs in the target genomes based on homology searches and explored the important domains conserved in effector candidates. In addition, using the screening approach based on the profile hidden Markov model (pHMM) of T6SEs that possess markers for type VI effectors (MIX motif) (MIX T6SEs), 57 revealed proteins that were not included in training datasets were recognized as novel MIX T6SE candidates from the Burkholderia species. This approach could be useful to identify potential T6SEs from other bacterial genomes.
Collapse
Affiliation(s)
- Thao Thi Nguyen
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Inmyoung Park
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Asian Food and Culinary Arts, Youngsan University, Busan 48015,
Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
140
|
Pratama AA, Haq IU, Nazir R, Chaib De Mares M, van Elsas JD. Draft genome sequences of three fungal-interactive Paraburkholderia terrae strains, BS007, BS110 and BS437. Stand Genomic Sci 2017; 12:81. [PMID: 29270249 PMCID: PMC5735546 DOI: 10.1186/s40793-017-0293-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/24/2017] [Indexed: 02/08/2023] Open
Abstract
Here, we report the draft genome sequences of three fungal-interactive 10.1601/nm.27008 strains, denoted BS110, BS007 and BS437. Phylogenetic analyses showed that the three strains belong to clade II of the genus 10.1601/nm.1619, which was recently renamed 10.1601/nm.26956. This novel genus primarily contains environmental species, encompassing non-pathogenic plant- as well as fungal-interactive species. The genome of strain BS007 consists of 11,025,273 bp, whereas those of strains BS110 and BS437 have 11,178,081 and 11,303,071 bp, respectively. Analyses of the three annotated genomes revealed the presence of (1) a large suite of substrate capture systems, and (2) a suite of genetic systems required for adaptation to microenvironments in soil and the mycosphere. Thus, genes encoding traits that potentially confer fungal interactivity were found, such as type 4 pili, type 1, 2, 3, 4 and 6 secretion systems, and biofilm formation (PGA, alginate and pel) and glycerol uptake systems. Furthermore, the three genomes also revealed the presence of a highly conserved five-gene cluster that had previously been shown to be upregulated upon contact with fungal hyphae. Moreover, a considerable number of prophage-like and CRISPR spacer sequences was found, next to genetic systems responsible for secondary metabolite production. Overall, the three 10.1601/nm.27008 strains possess the genetic repertoire necessary for adaptation to diverse soil niches, including those influenced by soil fungi.
Collapse
Affiliation(s)
- Akbar Adjie Pratama
- Department of Microbial Ecology, Microbial Ecology - Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen, 9747 AG The Netherlands
| | - Irshad Ul Haq
- Department of Microbial Ecology, Microbial Ecology - Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen, 9747 AG The Netherlands
| | - Rashid Nazir
- Department of Environmental Sciences COMSATS Institute of Information Technology, University Road, Abbottabad, 22060 Pakistan
| | - Maryam Chaib De Mares
- Department of Microbial Ecology, Microbial Ecology - Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen, 9747 AG The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Microbial Ecology - Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen, 9747 AG The Netherlands
| |
Collapse
|
141
|
Rasche F, Blagodatskaya E, Emmerling C, Belz R, Musyoki MK, Zimmermann J, Martin K. A preview of perennial grain agriculture: knowledge gain from biotic interactions in natural and agricultural ecosystems. Ecosphere 2017. [DOI: 10.1002/ecs2.2048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute); University of Hohenheim; 70593 Stuttgart Germany
| | - Evgenia Blagodatskaya
- Department of Soil Science of Temperate Ecosystems; Georg-August University Göttingen; 37077 Göttingen Germany
| | | | - Regina Belz
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute); University of Hohenheim; 70593 Stuttgart Germany
| | - Mary K. Musyoki
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute); University of Hohenheim; 70593 Stuttgart Germany
| | - Judith Zimmermann
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute); University of Hohenheim; 70593 Stuttgart Germany
| | - Konrad Martin
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute); University of Hohenheim; 70593 Stuttgart Germany
| |
Collapse
|
142
|
Zheng C, Wang Q, Ning Y, Fan Y, Feng S, He C, Zhang TC, Shen Z. Isolation of a 2-picolinic acid-assimilating bacterium and its proposed degradation pathway. BIORESOURCE TECHNOLOGY 2017; 245:681-688. [PMID: 28917103 DOI: 10.1016/j.biortech.2017.09.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Burkholderia sp. ZD1, aerobically utilizes 2-picolinic acid as a source of carbon, nitrogen and energy, was isolated. ZD1 completely degraded 2-picolinic acid when the initial concentrations ranged from 25 to 300mg/L. Specific growth rate (μ) and specific consumption rate (q) increased continually in the concentration range of 25-100mg/L, and then declined. Based on the Haldane model and Andrew's model, μmax and qmax were calculated as 3.9 and 16.5h-1, respectively. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) was used to determine the main intermediates in the degradation pathway. Moreover, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was innovatively used to deduce the ring cleavage mechanism of N-heterocycle of 2-picolinic acid. To our knowledge, this is the first report on not only the utilization of 2-picolinic acid by a Burkholderia sp., but also applying FT-ICR-MS and ATR-FTIR for exploring the biodegradation pathway of organic compounds.
Collapse
Affiliation(s)
- Chunli Zheng
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Qiaorui Wang
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Yanli Ning
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, PR China
| | - Yurui Fan
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Shanshan Feng
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Chi He
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China; School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.
| | - Tian C Zhang
- 205D, PKI, Civil Engineering Department, University of Nebraska-Lincoln at Omaha campus, Omaha, NE 68182-0178, USA
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| |
Collapse
|
143
|
Flynn TM, Koval JC, Greenwald SM, Owens SM, Kemner KM, Antonopoulos DA. Parallelized, Aerobic, Single Carbon-Source Enrichments from Different Natural Environments Contain Divergent Microbial Communities. Front Microbiol 2017; 8:2321. [PMID: 29234312 PMCID: PMC5712364 DOI: 10.3389/fmicb.2017.02321] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022] Open
Abstract
Microbial communities that inhabit environments such as soil can contain thousands of distinct taxa, yet little is known about how this diversity is maintained in response to environmental perturbations such as changes in the availability of carbon. By utilizing aerobic substrate arrays to examine the effect of carbon amendment on microbial communities taken from six distinct environments (soil from a temperate prairie and forest, tropical forest soil, subalpine forest soil, and surface water and soil from a palustrine emergent wetland), we examined how carbon amendment and inoculum source shape the composition of the community in each enrichment. Dilute subsamples from each environment were used to inoculate 96-well microtiter plates containing triplicate wells amended with one of 31 carbon sources from six different classes of organic compounds (phenols, polymers, carbohydrates, carboxylic acids, amines, amino acids). After incubating each well aerobically in the dark for 72 h, we analyzed the composition of the microbial communities on the substrate arrays as well as the initial inocula by sequencing 16S rRNA gene amplicons using the Illumina MiSeq platform. Comparisons of alpha and beta diversity in these systems showed that, while the composition of the communities that grow to inhabit the wells in each substrate array diverges sharply from that of the original community in the inoculum, these enrichment communities are still strongly affected by the inoculum source. We found most enrichments were dominated by one or several OTUs most closely related to aerobes or facultative anaerobes from the Proteobacteria (e.g., Pseudomonas, Burkholderia, and Ralstonia) or Bacteroidetes (e.g., Chryseobacterium). Comparisons within each substrate array based on the class of carbon source further show that the communities inhabiting wells amended with a carbohydrate differ significantly from those enriched with a phenolic compound. Selection therefore seems to play a role in shaping the communities in the substrate arrays, although some stochasticity is also seen whereby several replicate wells within a single substrate array display strongly divergent community compositions. Overall, the use of highly parallel substrate arrays offers a promising path forward to study the response of microbial communities to perturbations in a changing environment.
Collapse
Affiliation(s)
- Theodore M Flynn
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| | - Jason C Koval
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| | | | - Sarah M Owens
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Argonne, IL, United States
| | | |
Collapse
|
144
|
Minniti G, Hagen LH, Porcellato D, Jørgensen SM, Pope PB, Vaaje-Kolstad G. The Skin-Mucus Microbial Community of Farmed Atlantic Salmon ( Salmo salar). Front Microbiol 2017; 8:2043. [PMID: 29104567 PMCID: PMC5655796 DOI: 10.3389/fmicb.2017.02043] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/06/2017] [Indexed: 01/07/2023] Open
Abstract
The skin of the teleost is a flexible and scaled structure that protects the fish toward the external environment. The outermost surface of the skin is coated with mucus, which is believed to be colonized by a diverse bacterial community (commensal and/or opportunistic). Little is known about such communities and their role in fish welfare. In aquaculture, fish seem to be more susceptible to pathogens compared to wild fish. Indeed common fish farming practices may play important roles in promoting their vulnerability, possibly by causing changes to their microbiomes. In the present study, 16S rRNA gene amplicon sequencing was employed to analyze the composition of the farmed Salmo salar skin-mucus microbiome before and after netting and transfer. The composition of the bacterial community present in the rearing water was also investigated in order to evaluate its correlation with the community present on the fish skin. Our results reveal variability of the skin-mucus microbiome among the biological replicates before fish handling. On the contrary, after fish handling, the skin-mucus community exhibited structural similarity among the biological replicates and significant changes were observed in the bacterial composition compared to the fish analyzed prior to netting and transfer. Limited correlation was revealed between the skin-mucus microbiome and the bacterial community present in the rearing water. Finally, analysis of skin-mucus bacterial biomasses indicated low abundance for some samples, highlighting the need of caution when interpreting community data due to the possible contamination of water-residing bacteria.
Collapse
Affiliation(s)
- Giusi Minniti
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Live Heldal Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sven Martin Jørgensen
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Phillip B. Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
145
|
Ijaz AZ, Jeffries TC, Ijaz UZ, Hamonts K, Singh BK. Extending SEQenv: a taxa-centric approach to environmental annotations of 16S rDNA sequences. PeerJ 2017; 5:e3827. [PMID: 29038749 PMCID: PMC5639872 DOI: 10.7717/peerj.3827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/29/2017] [Indexed: 02/02/2023] Open
Abstract
Understanding how the environment selects a given taxon and the diversity patterns that emerge as a result of environmental filtering can dramatically improve our ability to analyse any environment in depth as well as advancing our knowledge on how the response of different taxa can impact each other and ecosystem functions. Most of the work investigating microbial biogeography has been site-specific, and logical environmental factors, rather than geographical location, may be more influential on microbial diversity. SEQenv, a novel pipeline aiming to provide environmental annotations of sequences emerged to provide a consistent description of the environmental niches using the ENVO ontology. While the pipeline provides a list of environmental terms on the basis of sample datasets and, therefore, the annotations obtained are at the dataset level, it lacks a taxa centric approach to environmental annotation. The work here describes an extension developed to enhance the SEQenv pipeline, which provided the means to directly generate environmental annotations for taxa under different contexts. 16S rDNA amplicon datasets belonging to distinct biomes were selected to illustrate the applicability of the extended SEQenv pipeline. A literature survey of the results demonstrates the immense importance of sequence level environmental annotations by illustrating the distribution of both taxa across environments as well as the various environmental sources of a specific taxon. Significantly enhancing the SEQenv pipeline in the process, this information would be valuable to any biologist seeking to understand the various taxa present in the habitat and the environment they originated from, enabling a more thorough analysis of which lineages are abundant in certain habitats and the recovery of patterns in taxon distribution across different habitats and environmental gradients.
Collapse
Affiliation(s)
- Ali Z. Ijaz
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Thomas C. Jeffries
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
- School of Science & Health, Western Sydney University, Penrith, Australia
- Indigo V Expeditions, Sentosa Cove, Singapore
| | - Umer Z. Ijaz
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Kelly Hamonts
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Brajesh K. Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| |
Collapse
|
146
|
Simonetti E, Roberts IN, Montecchia MS, Gutierrez-Boem FH, Gomez FM, Ruiz JA. A novel Burkholderia ambifaria strain able to degrade the mycotoxin fusaric acid and to inhibit Fusarium spp. growth. Microbiol Res 2017; 206:50-59. [PMID: 29146260 DOI: 10.1016/j.micres.2017.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/07/2017] [Accepted: 09/20/2017] [Indexed: 02/05/2023]
Abstract
Fusaric acid (FA) is a fungal metabolite produced by several Fusarium species responsible for wilts and root rot diseases of a great variety of plants. Bacillus spp. and Pseudomonas spp. have been considered as promising biocontrol agents against phytopathogenic Fusarium spp., however it has been demonstrated that FA negatively affects growth and production of some antibiotics in these bacteria. Thus, the capability to degrade FA would be a desirable characteristic in bacterial biocontrol agents of Fusarium wilt. Taking this into account, bacteria isolated from the rhizosphere of barley were screened for their ability to use FA as sole carbon and energy source. One strain that fulfilled this requirement was identified according to sequence analysis of 16S rRNA, gyrB and recA genes as Burkholderia ambifaria. This strain, designated T16, was able to grow with FA as sole carbon, nitrogen and energy source and also showed the ability to detoxify FA in barley seedlings. This bacterium also exhibited higher growth rate, higher cell densities, longer survival, higher levels of indole-3-acetic acid (IAA) production, enhanced biofilm formation and increased resistance to different antibiotics when cultivated in Luria Bertani medium at pH 5.3 compared to pH 7.3. Furthermore, B. ambifaria T16 showed distinctive plant growth-promoting features, such as siderophore production, phosphate-solubilization, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, in vitro antagonism against Fusarium spp. and improvement of grain yield when inoculated to barley plants grown under greenhouse conditions. This strain might serve as a new source of metabolites or genes for the development of novel FA-detoxification systems.
Collapse
Affiliation(s)
- Ester Simonetti
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires, CONICET, FAUBA. Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Irma N Roberts
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires, CONICET, FAUBA. Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Marcela S Montecchia
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires, CONICET, FAUBA. Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Flavio H Gutierrez-Boem
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires, CONICET, FAUBA. Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico M Gomez
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires, CONICET, FAUBA. Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jimena A Ruiz
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires, CONICET, FAUBA. Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
147
|
Vandamme P, Peeters C, De Smet B, Price EP, Sarovich DS, Henry DA, Hird TJ, Zlosnik JEA, Mayo M, Warner J, Baker A, Currie BJ, Carlier A. Comparative Genomics of Burkholderia singularis sp. nov., a Low G+C Content, Free-Living Bacterium That Defies Taxonomic Dissection of the Genus Burkholderia. Front Microbiol 2017; 8:1679. [PMID: 28932212 PMCID: PMC5592201 DOI: 10.3389/fmicb.2017.01679] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/21/2017] [Indexed: 12/03/2022] Open
Abstract
Four Burkholderia pseudomallei-like isolates of human clinical origin were examined by a polyphasic taxonomic approach that included comparative whole genome analyses. The results demonstrated that these isolates represent a rare and unusual, novel Burkholderia species for which we propose the name B. singularis. The type strain is LMG 28154T (=CCUG 65685T). Its genome sequence has an average mol% G+C content of 64.34%, which is considerably lower than that of other Burkholderia species. The reduced G+C content of strain LMG 28154T was characterized by a genome wide AT bias that was not due to reduced GC-biased gene conversion or reductive genome evolution, but might have been caused by an altered DNA base excision repair pathway. B. singularis can be differentiated from other Burkholderia species by multilocus sequence analysis, MALDI-TOF mass spectrometry and a distinctive biochemical profile that includes the absence of nitrate reduction, a mucoid appearance on Columbia sheep blood agar, and a slowly positive oxidase reaction. Comparisons with publicly available whole genome sequences demonstrated that strain TSV85, an Australian water isolate, also represents the same species and therefore, to date, B. singularis has been recovered from human or environmental samples on three continents.
Collapse
Affiliation(s)
- Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent UniversityGhent, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent UniversityGhent, Belgium
| | - Birgit De Smet
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent UniversityGhent, Belgium
| | - Erin P. Price
- Global and Tropical Health Division, Menzies School of Health Research, DarwinNT, Australia
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy DownsQLD, Australia
| | - Derek S. Sarovich
- Global and Tropical Health Division, Menzies School of Health Research, DarwinNT, Australia
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy DownsQLD, Australia
| | - Deborah A. Henry
- Centre for Understanding and Preventing Infection in Children, Department of Pediatrics, University of British Columbia, VancouverBC, Canada
| | - Trevor J. Hird
- Centre for Understanding and Preventing Infection in Children, Department of Pediatrics, University of British Columbia, VancouverBC, Canada
| | - James E. A. Zlosnik
- Centre for Understanding and Preventing Infection in Children, Department of Pediatrics, University of British Columbia, VancouverBC, Canada
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, DarwinNT, Australia
| | - Jeffrey Warner
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, TownsvilleQLD, Australia
| | - Anthony Baker
- Tasmanian Institute of Agriculture, University of Tasmania, HobartTAS, Australia
| | - Bart J. Currie
- Global and Tropical Health Division, Menzies School of Health Research, DarwinNT, Australia
| | - Aurélien Carlier
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent UniversityGhent, Belgium
| |
Collapse
|
148
|
Uroz S, Oger P. Caballeronia mineralivorans sp. nov., isolated from oak- Scleroderma citrinum mycorrhizosphere. Syst Appl Microbiol 2017; 40:345-351. [DOI: 10.1016/j.syapm.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
|
149
|
Zhang L, Wang S. Bacterial community diversity on in-shell walnut surfaces from six representative provinces in China. Sci Rep 2017; 7:10054. [PMID: 28855583 PMCID: PMC5577159 DOI: 10.1038/s41598-017-10138-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/04/2017] [Indexed: 11/09/2022] Open
Abstract
Walnuts (Juglans regia) have been associated with foodborne illness outbreaks in recent years. Thus, the purpose of this study was to investigate the distribution of bacteria on in-shell walnut surfaces from six representative provinces in China. The bacterial populations on walnut surfaces were investigated by high-throughput sequencing based on the bacterial 16 S rRNA hypervariable region V4. Twenty-eight samples were collected from fourteen regions in six provinces and harvested in different periods (the fresh in 2016 and the old in 2015). Proteobacteria was the most dominant phylum in all samples except for XJ1. In XJ1, and the most abundant phylum was Cyanobacteria, which also accounted for a large proportion of the abundance in YN1, YN11, XJ2 and SC11. In addition, Firmicutes and Actinobacteria were also the abundant phyla in the given samples. Some genera belonging to the opportunistic pathogens were detected, such as Pseudomonas, Acinetobacter, Burkholderia and Bacillus. The results revealed that the composition and abundance of bacterial consortiums on walnut surfaces varied among the geographical sites where they were harvested. Moreover, the storage time of samples also had impact on the abundance of bacteria. This study may provide a better understanding of the bacterial communities' diversity on in-shell walnut surfaces.
Collapse
Affiliation(s)
- Lihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China. .,Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA.
| |
Collapse
|
150
|
Flórez LV, Kaltenpoth M. Symbiont dynamics and strain diversity in the defensive mutualism between Lagria beetles and Burkholderia. Environ Microbiol 2017; 19:3674-3688. [PMID: 28752961 DOI: 10.1111/1462-2920.13868] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/18/2017] [Accepted: 07/22/2017] [Indexed: 12/11/2022]
Abstract
Defensive mutualisms are often facultative in nature, and their evolutionary dynamics can be shaped by changes in local antagonist communities or arms races with coevolving antagonists. Under these conditions, selection may favour hosts that flexibly acquire symbionts producing compounds with bioactivity against current antagonists. Here, we study the prevalence, dynamics and strain diversity of Burkholderia gladioli bacteria in Lagria beetles, a recently described protective symbiosis involving vertical transmission and antifungal defense for the host eggs. In Lagria hirta, we investigate the fate of the bacteria during the host life cycle. Despite a transmission route relying solely on the females, the bacteria are present in both sexes during the larval stage, suggesting a potentially multifaceted defensive role. In L. hirta and L. villosa adults, culture-dependent and -independent techniques revealed that individual beetles harbour diverse Burkholderia strains from at least two different phylogenetic clades, yet all closely related to free-living B. gladioli. Interestingly, rearing the beetles in the laboratory strongly impacted symbiont strain profiles in both beetle species. Our findings highlight the dynamic nature of the B. gladioli-Lagria symbiosis and present this as a valuable system for studying multiple strain coinfections, as well as the evolutionary and ecological factors regulating defensive symbiosis.
Collapse
Affiliation(s)
- Laura V Flórez
- Max Planck Institute for Chemical Ecology, Insect Symbiosis Research Group, Hans-Knöll-Str. 8, Jena 07745, Germany.,Department for Evolutionary Ecology, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, Mainz 55128, Germany
| | - Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology, Insect Symbiosis Research Group, Hans-Knöll-Str. 8, Jena 07745, Germany.,Department for Evolutionary Ecology, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, Mainz 55128, Germany
| |
Collapse
|