101
|
Ravera S, Colombo E, Pasquale C, Benedicenti S, Solimei L, Signore A, Amaroli A. Mitochondrial Bioenergetic, Photobiomodulation and Trigeminal Branches Nerve Damage, What's the Connection? A Review. Int J Mol Sci 2021; 22:4347. [PMID: 33919443 PMCID: PMC8122620 DOI: 10.3390/ijms22094347] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Injury of the trigeminal nerve in oral and maxillofacial surgery can occur. Schwann cell mitochondria are regulators in the development, maintenance and regeneration of peripheral nerve axons. Evidence shows that after the nerve injury, mitochondrial bioenergetic dysfunction occurs and is associated with pain, neuropathy and nerve regeneration deficit. A challenge for research is to individuate new therapies able to normalise mitochondrial and energetic metabolism to aid nerve recovery after damage. Photobiomodulation therapy can be an interesting candidate, because it is a technique involving cell manipulation through the photonic energy of a non-ionising light source (visible and NIR light), which produces a nonthermal therapeutic effect on the stressed tissue. METHODS The review was based on the following questions: (1) Can photo-biomodulation by red and NIR light affect mitochondrial bioenergetics? (2) Can photobiomodulation support damage to the trigeminal nerve branches? (preclinical and clinical studies), and, if yes, (3) What is the best photobiomodulatory therapy for the recovery of the trigeminal nerve branches? The papers were searched using the PubMed, Scopus and Cochrane databases. This review followed the ARRIVE-2.0, PRISMA and Cochrane RoB-2 guidelines. RESULTS AND CONCLUSIONS The reliability of photobiomodulatory event strongly bases on biological and physical-chemical evidence. Its principal player is the mitochondrion, whether its cytochromes are directly involved as a photoacceptor or indirectly through a vibrational and energetic variation of bound water: water as the photoacceptor. The 808-nm and 100 J/cm2 (0.07 W; 2.5 W/cm2; pulsed 50 Hz; 27 J per point; 80 s) on rats and 800-nm and 0.2 W/cm2 (0.2 W; 12 J/cm2; 12 J per point; 60 s, CW) on humans resulted as trustworthy therapies, which could be supported by extensive studies.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Esteban Colombo
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
| | - Luca Solimei
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
| | - Antonio Signore
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
- Department of Therapeutic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
102
|
Adebayo OG, Wopara I, Aduema W, Ebo OT, Umoren EB. Long-term consumption of Moringa oleifera-supplemented diet enhanced neurocognition, suppressed oxidative stress, acetylcholinesterase activity and neuronal degeneration in rat's hippocampus. Drug Metab Pers Ther 2021; 0:dmdi-2020-0189. [PMID: 33770830 DOI: 10.1515/dmdi-2020-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study investigates protection against oxidative stress and memory enhancing potential of long-term consumption of Moringa oleifera leaves. METHODS Male Wistar rat were fed with mixture of M. oleifera-supplemented diets (MOSD) partitioned in 1, 5, 10, and 20% continuously for 12 weeks. Object recognition test (ORT) and Morris water maze (MWM) was used for assessing neurocognition. Changes in body weight, Lipid peroxidation (MDA), Glutathione (GSH), Catalase (CAT) and Acetylcholinesterase (AChE) activity was assayed in the brain tissue. Histomorphometric of the hippocampus was also examined. RESULTS The diets progressively increase the body weigh after the 12 weeks, improved spatial (MWM) and non-spatial (ORT) memory performance, protect against oxidative stress, inhibit AChE activity and suppresses neuronal degeneration in the hippocampus when stained with Cresyl violent stain. CONCLUSIONS Conclusively, long-term consumption of MOSD shows strong protection against oxidative stress and hippocampal degeneration and improves neurocognition with dose dependent effect.
Collapse
Affiliation(s)
- Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Iheanyichukwu Wopara
- Department of Biochemistry, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Wadioni Aduema
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Oloruntoba T Ebo
- Department of Community Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Elizabeth B Umoren
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| |
Collapse
|
103
|
Adebayo OG, Wopara I, Aduema W, Ebo OT, Umoren EB. Long-term consumption of Moringa oleifera-supplemented diet enhanced neurocognition, suppressed oxidative stress, acetylcholinesterase activity and neuronal degeneration in rat's hippocampus. Drug Metab Pers Ther 2021; 36:223-231. [PMID: 34412171 DOI: 10.1515/dmpt-2020-0189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES This study investigates protection against oxidative stress and memory enhancing potential of long-term consumption of Moringa oleifera leaves. METHODS Male Wistar rat were fed with mixture of M. oleifera-supplemented diets (MOSD) partitioned in 1, 5, 10, and 20% continuously for 12 weeks. Object recognition test (ORT) and Morris water maze (MWM) was used for assessing neurocognition. Changes in body weight, Lipid peroxidation (MDA), Glutathione (GSH), Catalase (CAT) and Acetylcholinesterase (AChE) activity was assayed in the brain tissue. Histomorphometric of the hippocampus was also examined. RESULTS The diets progressively increase the body weigh after the 12 weeks, improved spatial (MWM) and non-spatial (ORT) memory performance, protect against oxidative stress, inhibit AChE activity and suppresses neuronal degeneration in the hippocampus when stained with Cresyl violent stain. CONCLUSIONS Conclusively, long-term consumption of MOSD shows strong protection against oxidative stress and hippocampal degeneration and improves neurocognition with dose dependent effect.
Collapse
Affiliation(s)
- Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Iheanyichukwu Wopara
- Department of Biochemistry, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Wadioni Aduema
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Oloruntoba T Ebo
- Department of Community Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Elizabeth B Umoren
- Neurophysiology Unit, Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| |
Collapse
|
104
|
Gupta R, Kumar P. Computational Analysis Indicates That PARP1 Acts as a Histone Deacetylases Interactor Sharing Common Lysine Residues for Acetylation, Ubiquitination, and SUMOylation in Alzheimer's and Parkinson's Disease. ACS OMEGA 2021; 6:5739-5753. [PMID: 33681613 PMCID: PMC7931403 DOI: 10.1021/acsomega.0c06168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/12/2021] [Indexed: 05/28/2023]
Abstract
Aim/Hypothesis : Lysine residues are known for the post-translational modifications (PTMs) such as acetylation, ubiquitination, and SUMOylation. In acetylation, histone deacetylase (HDAC) and its interactors cause transcriptional deregulation and cause mitochondrial dysfunction, apoptosis, inflammatory response, and cell-cycle impairment that cause brain homeostasis and neuronal cell death. Other regulatory PTMs involved in the pathogenesis of neurodegenerative diseases (NDDs) are ubiquitination and SUMOylation for the degradation of the misfolded proteins. Thus, we aim to investigate the potential acetylation/ubiquitination/SUMOylation crosstalk sites in the HDAC interactors, which cause NDDs. Furthermore, we aim to identify the influence of PTMs on the structural features of proteins and the impact of putative lysine mutation on disease susceptibility. Last, we aim to examine the impact of the putative mutation on acetylated lysine for ubiquitination and SUMOylation. Results : Herein, we integrate 1455 genes, 3094 genes, and 1940 genes related to HDAC interactors, Alzheimer's disease (AD), and Parkinson's disease (PD), respectively. Furthermore, the protein-protein interaction and PTM integrations from different databases identified 32 proteins that are associated with HDAC, AD, and PD with 1489 potential lysine-modified sites. HDAC interactors poly(ADP-ribose) polymerase 1 (PARP1), nucleophosmin (NPM1), and cyclin-dependent kinase 1 (CDK1) involved in the progression of NDDs and 64 and 75% of PTM sites in PARP1, NPM1, and CDK1 fall into coiled and ordered regions, respectively. Moreover, 15 putative lysine sites have been found in the crosstalk and K148, K249, K528, K637, K700, and K796 of PARP1 are crosstalk hotspots. Conclusion : The loss of acetylated hotspot sites results in the loss of ubiquitination and SUMOylation function on nearby sites, which is relatively higher when compared to the gain of function.
Collapse
|
105
|
Živančević K, Baralić K, Jorgovanović D, Buha Djordjević A, Ćurčić M, Antonijević Miljaković E, Antonijević B, Bulat Z, Đukić-Ćosić D. Elucidating the influence of environmentally relevant toxic metal mixture on molecular mechanisms involved in the development of neurodegenerative diseases: In silico toxicogenomic data-mining. ENVIRONMENTAL RESEARCH 2021; 194:110727. [PMID: 33465344 DOI: 10.1016/j.envres.2021.110727] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
This in silico toxicogenomic analysis aims to: (i) testify the hypothesis about the influence of the environmentally relevant toxic metals (lead, methylmercury (organic form of mercury), cadmium and arsenic) on molecular mechanisms involved in amyotrophic lateral sclerosis (ALS), Parkinson's Disease (PD) and Alzheimer's disease (AD) development; and (ii) demonstrate the capability of in silico toxicogenomic data-mining for distinguishing the probable mechanisms of mixture-induced toxic effects. The Comparative Toxicogenomics Database (CTD; http://ctd. mdibl.org) and Cytoscape software were used as the main data-mining tools in this analysis. The results have shown that there were 7, 13 and 14 common genes for all the metals present in the mixture for each of the selected neurodegenerative disease (ND), respectively: ALS, PD and AD. Physical interactions (68.18%) were the most prominent interactions between the genes extracted for ALS, co-expression (60.85%) for PD and interactions predicted by the server (44.30%) for AD. SOD2 gene was noted as the mutual gene for all the selected ND. Oxidative stress, folate metabolism, vitamin B12, AGE-RAGE, apoptosis were noted as the key disrupted molecular pathways that contribute to the neurodegenerative disease's development. Gene ontology analysis revealed biological processes affected by the investigated mixture (glutathione metabolic process was listed as the most important for ALS, cellular response to toxic substance for PD, and neuron death for AD). Our results emphasize the role of oxidative stress, particularly SOD2, in neurodegeneration triggered by environmental toxic metal mixture and give a new insight into common molecular mechanisms involved in ALS, PD and AD pathology.
Collapse
Affiliation(s)
- Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragica Jorgovanović
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| |
Collapse
|
106
|
Drastichova Z, Rudajev V, Pallag G, Novotny J. Proteome profiling of different rat brain regions reveals the modulatory effect of prolonged maternal separation on proteins involved in cell death-related processes. Biol Res 2021; 54:4. [PMID: 33557947 PMCID: PMC7871601 DOI: 10.1186/s40659-021-00327-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background Early-life stress in the form of maternal separation can be associated with alterations in offspring neurodevelopment and brain functioning. Here, we aimed to investigate the potential impact of prolonged maternal separation on proteomic profiling of prefrontal cortex, hippocampus and cerebellum of juvenile and young adult rats. A special attention was devoted to proteins involved in the process of cell death and redox state maintenance. Methods Long-Evans pups were separated from their mothers for 3 h daily over the first 3 weeks of life (during days 2–21 of age). Brain tissue samples collected from juvenile (22-day-old) and young adult (90-day-old) rats were used for label-free quantitative (LFQ) proteomic analysis. In parallel, selected oxidative stress markers and apoptosis-related proteins were assessed biochemically and by Western blot, respectively. Results In total, 5526 proteins were detected in our proteomic analysis of rat brain tissue. Approximately one tenth of them (586 proteins) represented those involved in cell death processes or regulation of oxidative stress balance. Prolonged maternal separation caused changes in less than half of these proteins (271). The observed alterations in protein expression levels were age-, sex- and brain region-dependent. Interestingly, the proteins detected by mass spectrometry that are known to be involved in the maintenance of redox state were not markedly altered. Accordingly, we did not observe any significant differences between selected oxidative stress markers, such as the levels of hydrogen peroxide, reduced glutathione, protein carbonylation and lipid peroxidation in brain samples from rats that underwent maternal separation and from the corresponding controls. On the other hand, a number of changes were found in cell death-associated proteins, mainly in those involved in the apoptotic and autophagic pathways. However, there were no detectable alterations in the levels of cleaved products of caspases or Bcl-2 family members. Taken together, these data indicate that the apoptotic and autophagic cell death pathways were not activated by maternal separation either in adolescent or young adult rats. Conclusion Prolonged maternal separation can distinctly modulate expression profiles of proteins associated with cell death pathways in prefrontal cortex, hippocampus and cerebellum of juvenile rats and the consequences of early-life stress may last into adulthood and likely participate in variations in stress reactivity. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00327-5.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladimir Rudajev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Gergely Pallag
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
107
|
Structural and Functional Synaptic Plasticity Induced by Convergent Synapse Loss in the Drosophila Neuromuscular Circuit. J Neurosci 2021; 41:1401-1417. [PMID: 33402422 DOI: 10.1523/jneurosci.1492-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/28/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Throughout the nervous system, the convergence of two or more presynaptic inputs on a target cell is commonly observed. The question we ask here is to what extent converging inputs influence each other's structural and functional synaptic plasticity. In complex circuits, isolating individual inputs is difficult because postsynaptic cells can receive thousands of inputs. An ideal model to address this question is the Drosophila larval neuromuscular junction (NMJ) where each postsynaptic muscle cell receives inputs from two glutamatergic types of motor neurons (MNs), known as 1b and 1s MNs. Notably, each muscle is unique and receives input from a different combination of 1b and 1s MNs; we surveyed multiple muscles for this reason. Here, we identified a cell-specific promoter that allows ablation of 1s MNs postinnervation and measured structural and functional responses of convergent 1b NMJs using microscopy and electrophysiology. For all muscles examined in both sexes, ablation of 1s MNs resulted in NMJ expansion and increased spontaneous neurotransmitter release at corresponding 1b NMJs. This demonstrates that 1b NMJs can compensate for the loss of convergent 1s MNs. However, only a subset of 1b NMJs showed compensatory evoked neurotransmission, suggesting target-specific plasticity. Silencing 1s MNs led to similar plasticity at 1b NMJs, suggesting that evoked neurotransmission from 1s MNs contributes to 1b synaptic plasticity. Finally, we genetically blocked 1s innervation in male larvae and robust 1b synaptic plasticity was eliminated, raising the possibility that 1s NMJ formation is required to set up a reference for subsequent synaptic perturbations.SIGNIFICANCE STATEMENT In complex neural circuits, multiple convergent inputs contribute to the activity of the target cell, but whether synaptic plasticity exists among these inputs has not been thoroughly explored. In this study, we examined synaptic plasticity in the structurally and functionally tractable Drosophila larval neuromuscular system. In this convergent circuit, each muscle is innervated by a unique pair of motor neurons. Removal of one neuron after innervation causes the adjacent neuron to increase neuromuscular junction outgrowth and functional output. However, this is not a general feature as each motor neuron differentially compensates. Further, robust compensation requires initial coinnervation by both neurons. Understanding how neurons respond to perturbations in adjacent neurons will provide insight into nervous system plasticity in both healthy and disease states.
Collapse
|
108
|
Lehman BJ, Lopez-Diaz FJ, Santisakultarm TP, Fang L, Shokhirev MN, Diffenderfer KE, Manor U, Emerson BM. Dynamic regulation of CTCF stability and sub-nuclear localization in response to stress. PLoS Genet 2021; 17:e1009277. [PMID: 33411704 PMCID: PMC7790283 DOI: 10.1371/journal.pgen.1009277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
The nuclear protein CCCTC-binding factor (CTCF) has diverse roles in chromatin architecture and gene regulation. Functionally, CTCF associates with thousands of genomic sites and interacts with proteins, such as cohesin, or non-coding RNAs to facilitate specific transcriptional programming. In this study, we examined CTCF during the cellular stress response in human primary cells using immune-blotting, quantitative real time-PCR, chromatin immunoprecipitation-sequence (ChIP-seq) analysis, mass spectrometry, RNA immunoprecipitation-sequence analysis (RIP-seq), and Airyscan confocal microscopy. Unexpectedly, we found that CTCF is exquisitely sensitive to diverse forms of stress in normal patient-derived human mammary epithelial cells (HMECs). In HMECs, a subset of CTCF protein forms complexes that localize to Serine/arginine-rich splicing factor (SC-35)-containing nuclear speckles. Upon stress, this species of CTCF protein is rapidly downregulated by changes in protein stability, resulting in loss of CTCF from SC-35 nuclear speckles and changes in CTCF-RNA interactions. Our ChIP-seq analysis indicated that CTCF binding to genomic DNA is largely unchanged. Restoration of the stress-sensitive pool of CTCF protein abundance and re-localization to nuclear speckles can be achieved by inhibition of proteasome-mediated degradation. Surprisingly, we observed the same characteristics of the stress response during neuronal differentiation of human pluripotent stem cells (hPSCs). CTCF forms stress-sensitive complexes that localize to SC-35 nuclear speckles during a specific stage of neuronal commitment/development but not in differentiated neurons. We speculate that these particular CTCF complexes serve a role in RNA processing that may be intimately linked with specific genes in the vicinity of nuclear speckles, potentially to maintain cells in a certain differentiation state, that is dynamically regulated by environmental signals. The stress-regulated activity of CTCF is uncoupled in persistently stressed, epigenetically re-programmed "variant" HMECs and certain cancer cell lines. These results reveal new insights into CTCF function in cell differentiation and the stress-response with implications for oxidative damage-induced cancer initiation and neuro-degenerative diseases.
Collapse
Affiliation(s)
- Bettina J. Lehman
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Fernando J. Lopez-Diaz
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Thom P. Santisakultarm
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Linjing Fang
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Maxim N. Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Kenneth E. Diffenderfer
- Stem Cell Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Beverly M. Emerson
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| |
Collapse
|
109
|
Kim D, Lee JH, Kim HY, Shin J, Kim K, Lee S, Park J, Kim J, Kim Y. Fluorescent indolizine derivative YI-13 detects amyloid-β monomers, dimers, and plaques in the brain of 5XFAD Alzheimer transgenic mouse model. PLoS One 2020; 15:e0243041. [PMID: 33362250 PMCID: PMC7757811 DOI: 10.1371/journal.pone.0243041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/15/2020] [Indexed: 01/02/2023] Open
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized by the aberrant production and accumulation of amyloid-β (Aβ) peptides in the brain. Accumulated Aβ in soluble oligomer and insoluble plaque forms are considered to be a pathological culprit and biomarker of the disorder. Here, we report a fluorescent universal Aβ-indicator YI-13, 5-(4-fluorobenzoyl)-7,8-dihydropyrrolo[1,2-b]isoquinolin-9(6H)-one, which detects Aβ monomers, dimers, and plaques. We synthesized a library of 26 fluorescence chemicals with the indolizine core and screen them through a series of in vitro tests utilizing Aβ as a target and YI-13 was selected as the final imaging candidate. YI-13 was found to stain and visualize insoluble Aβ plaques in the brain tissue, of a transgenic mouse model with five familial AD mutations (5XFAD), by a histochemical approach and to label soluble Aβ oligomers within brain lysates of the mouse model under a fluorescence plate reader. Among oligomers aggregated from monomers and synthetic dimers from chemically conjugated monomers, YI-13 preferred the dimeric Aβ.
Collapse
Affiliation(s)
- DaWon Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Jeong Hwa Lee
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Hye Yun Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Jisu Shin
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Kyeonghwan Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Sejin Lee
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | | | - JinIkyon Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
- * E-mail: (JK); (YK)
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
- * E-mail: (JK); (YK)
| |
Collapse
|
110
|
Chen Z, Zhang W, Deng M, Li Y, Zhou Y. CircGLCE alleviates intervertebral disc degeneration by regulating apoptosis and matrix degradation through the targeting of miR-587/STAP1. Aging (Albany NY) 2020; 12:21971-21991. [PMID: 33159017 PMCID: PMC7695369 DOI: 10.18632/aging.104035] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/17/2020] [Indexed: 01/07/2023]
Abstract
The purpose of this study was to identify a specific circular RNA and to investigate its regulatory mechanism in intervertebral disc degeneration (IDD). CircGLCE was selected after microarray analyses and was further analysed by RT-qPCR and FISH. CircGLCE was found to stably exist in the cytoplasm of nucleus pulposus (NP) cells. It was downregulated in IDD. After silencing CircGLCE, its function was assessed with RT-qPCR, immunofluorescence analysis and flow cytometry. Knockdown of CircGLCE promoted apoptosis and induced the expression of matrix-degrading enzymes in NP cells. CircGLCE served as a miR-587 sponge in NP cells. Inhibiting miR-587 counteracted the IDD-enhancing effect caused by silencing CircGLCE. STAP1 served as the miRNA target that mediated the functions of miR-587. In an IDD mouse model, the in vivo effects of overexpressing CircGLCE on IDD were confirmed by imaging techniques, TUNEL staining, FISH, western blotting, H&E staining and immunohistochemistry. Thus, CircGLCE attenuates IDD by inhibiting the apoptosis of NP cells and ECM degradation through the targeting of miR-587/STAP1. CircGLCE may be a potential therapeutic target for IDD treatments.
Collapse
Affiliation(s)
- Zhonghui Chen
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weibing Zhang
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ming Deng
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yaming Li
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Zhou
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
111
|
Panchal K, Tiwari AK. Miro, a Rho GTPase genetically interacts with Alzheimer's disease-associated genes ( Tau, Aβ42 and Appl) in Drosophila melanogaster. Biol Open 2020; 9:bio049569. [PMID: 32747449 PMCID: PMC7489762 DOI: 10.1242/bio.049569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Miro (mitochondrial Rho GTPases), a mitochondrial outer membrane protein, facilitates mitochondrial axonal transport along the microtubules to facilitate neuronal function. It plays an important role in regulating mitochondrial dynamics (fusion and fission) and cellular energy generation. Thus, Miro might be associated with the key pathologies of several neurodegenerative diseases (NDs) including Alzheimer's disease (AD). In the present manuscript, we have demonstrated the possible genetic interaction between Miro and AD-related genes such as Tau, Aβ42 and Appl in Drosophila melanogaster Ectopic expression of Tau, Aβ42 and Appl induced a rough eye phenotype, defects in phototaxis and climbing activity, and shortened lifespan in the flies. In our study, we have observed that overexpression of Miro improves the rough eye phenotype, behavioral activities (climbing and phototaxis) and ATP level in AD model flies. Further, the improvement examined in AD-related phenotypes was correlated with decreased oxidative stress, cell death and neurodegeneration in Miro overexpressing AD model flies. Thus, the obtained results suggested that Miro genetically interacts with AD-related genes in Drosophila and has the potential to be used as a therapeutic target for the design of therapeutic strategies for NDs.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics and Developmental Biology Laboratory, Department of Biological Sciences and Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India
| | - Anand Krishna Tiwari
- Genetics and Developmental Biology Laboratory, Department of Biological Sciences and Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India
| |
Collapse
|
112
|
Pokkunuri ID, Lokhandwala MF, Banday AA. Protein disulfide isomerase inhibition impairs Keap1/Nrf2 signaling and mitochondrial function and induces apoptosis in renal proximal tubular cells. Am J Physiol Renal Physiol 2020; 319:F686-F696. [PMID: 32830535 DOI: 10.1152/ajprenal.00049.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Renal proximal tubular apoptosis plays a critical role in kidney health and disease. However, cellular molecules that trigger renal apoptosis remain elusive. Here, we evaluated the effect of inhibiting protein disulfide isomerase (PDI), a critical thioredoxin chaperone protein, on apoptosis as well as the underlying mechanisms in human renal proximal tubular (HK2) cells. HK2 cells were transfected with PDI-specific siRNA in the absence and presence of an antioxidant, tempol. PDI siRNA transfection resulted in a decrease of ~70% in PDI protein expression and enzyme activity. PDI inhibition increased caspase-3 activity and induced profound cell apoptosis. Mitochondrial function, as assessed by mitochondrial cytochrome c levels, mitochondrial membrane potential, oxygen consumption, and ATP levels, was significantly reduced in PDI-inhibited cells. Also, PDI inhibition caused nuclear factor erythroid 2-related factor 2 (Nrf2; a redox-sensitive transcription factor) cytoplasmic sequestration, decreased superoxide dismutase and glutathione-S-transferase activities, and increased oxidative stress. In PDI-inhibited cells, tempol reduced apoptosis, caspase-3 activity, and oxidative stress and also restored Nrf2 nuclear translocation and mitochondrial function. Silencing Nrf2 in the cells abrogated the beneficial effect of tempol, whereas Kelch-like ECH-associated protein 1 (an Nrf2 regulatory protein) silencing protected cells from PDI inhibitory effects. Collectively, our data indicate that PDI inhibition diminishes Nrf2 nuclear translocation, causing oxidative stress that further triggers mitochondrial dysfunction and renal cell apoptosis. This study suggests an important role for PDI in renal cell apoptosis involving Nrf2 and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Indira D Pokkunuri
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas
| | - Mustafa F Lokhandwala
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas
| | - Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
113
|
Omeragic A, Kayode O, Hoque MT, Bendayan R. Potential pharmacological approaches for the treatment of HIV-1 associated neurocognitive disorders. Fluids Barriers CNS 2020; 17:42. [PMID: 32650790 PMCID: PMC7350632 DOI: 10.1186/s12987-020-00204-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
HIV associated neurocognitive disorders (HAND) are the spectrum of cognitive impairments present in patients infected with human immunodeficiency virus type 1 (HIV-1). The number of patients affected with HAND ranges from 30 to 50% of HIV infected individuals and although the development of combinational antiretroviral therapy (cART) has improved longevity, HAND continues to pose a significant clinical problem as the current standard of care does not alleviate or prevent HAND symptoms. At present, the pathological mechanisms contributing to HAND remain unclear, but evidence suggests that it stems from neuronal injury due to chronic release of neurotoxins, chemokines, viral proteins, and proinflammatory cytokines secreted by HIV-1 activated microglia, macrophages and astrocytes in the central nervous system (CNS). Furthermore, the blood-brain barrier (BBB) not only serves as a route for HIV-1 entry into the brain but also prevents cART therapy from reaching HIV-1 brain reservoirs, and therefore could play an important role in HAND. The goal of this review is to discuss the current data on the epidemiology, pathology and research models of HAND as well as address the potential pharmacological treatment approaches that are being investigated.
Collapse
Affiliation(s)
- Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Olanre Kayode
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
114
|
Memon AA, Coleman JJ, Amara AW. Effects of exercise on sleep in neurodegenerative disease. Neurobiol Dis 2020; 140:104859. [PMID: 32243913 PMCID: PMC7497904 DOI: 10.1016/j.nbd.2020.104859] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
As the population ages, the incidence and prevalence of neurodegenerative disorders will continue to increase. Persons with neurodegenerative disease frequently experience sleep disorders, which not only affect quality of life, but potentially accelerate progression of the disease. Unfortunately, pharmacological interventions are often futile or have adverse effects. Therefore, investigation of non-pharmacological interventions has the potential to expand the treatment landscape for these disorders. The last decade has observed increasing recognition of the beneficial role of exercise in brain diseases, and neurodegenerative disorders in particular. In this review, we will focus on the therapeutic role of exercise for sleep dysfunction in four neurodegenerative diseases, namely Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Available data suggest that exercise may have the potential to improve sleep disorders and attenuate neurodegeneration, particularly in Alzheimer's disease and Parkinson's disease. However, additional research is required in order to understand the most effective exercise therapy for these indications; the best way to monitor the response to interventions; the influence of exercise on sleep dysfunction in Huntington's disease and amyotrophic lateral sclerosis; and the mechanisms underlying exercise-induced sleep modifications.
Collapse
Affiliation(s)
- Adeel A Memon
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Juliana J Coleman
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Amy W Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America; UAB Center for Exercise Medicine, Birmingham, AL 35205, United States of America; UAB Sleep and Circadian Research Core, United States of America.
| |
Collapse
|
115
|
Mohd Sairazi NS, Sirajudeen KNS. Natural Products and Their Bioactive Compounds: Neuroprotective Potentials against Neurodegenerative Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:6565396. [PMID: 32148547 PMCID: PMC7042511 DOI: 10.1155/2020/6565396] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
In recent years, natural products, which originate from plants, animals, and fungi, together with their bioactive compounds have been intensively explored and studied for their therapeutic potentials for various diseases such as cardiovascular, diabetes, hypertension, reproductive, cancer, and neurodegenerative diseases. Neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis are characterized by the progressive dysfunction and loss of neuronal structure and function that resulted in the neuronal cell death. Since the multifactorial pathological mechanisms are associated with neurodegeneration, targeting multiple mechanisms of actions and neuroprotection approach, which involves preventing cell death and restoring the function to damaged neurons, could be promising strategies for the prevention and therapeutic of neurodegenerative diseases. Natural products have emerged as potential neuroprotective agents for the treatment of neurodegenerative diseases. This review focused on the therapeutic potential of natural products and their bioactive compounds to exert a neuroprotective effect on the pathologies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nur Shafika Mohd Sairazi
- Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Medical Campus, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - K. N. S. Sirajudeen
- Department of Chemical Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
116
|
Meng SX, Wang B, Li WT. Intermittent hypoxia improves cognition and reduces anxiety-related behavior in APP/PS1 mice. Brain Behav 2020; 10:e01513. [PMID: 31877583 PMCID: PMC7010588 DOI: 10.1002/brb3.1513] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/20/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Although hypoxia can exacerbate symptoms of various neurological disorders, accumulating evidence has indicated that intermittent hypoxia (IH) may exert protective effects against brain diseases. In the present study, we aimed to determine whether exposure to IH exerts beneficial effects in a transgenic murine model of Alzheimer's disease (AD). Because comorbid anxiety is prevalent among patients with AD, we explored the effects of IH on anxiety-like behaviors and associated factors in APP/PS1 mice. METHODS APP/PS1 mice were subjected to IH for two weeks. We assessed cognitive performance and anxiety-related behavior using standard behavioral assessments. Amyloid beta (Aβ) levels in the hippocampus were assessed using immunofluorescence and enzyme-linked immunosorbent assays (ELISA). We also assessed cell morphology and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. RESULTS Exposure to IH significantly increased cognitive performance and decreased anxiety-related behaviors in APP/PS1 mice. Immunofluorescence and ELISA results revealed that IH pretreatment significantly lowered Aβ levels in the cortex and hippocampus. Morphological studies validated the neuroprotective effect of IH exposure on hippocampal neurogenesis. Molecular studies revealed IH-enhanced BDNF expression and inhibition of apoptosis-related protein expression in the hippocampus of APP/PS1 mice. CONCLUSIONS Our study demonstrates that IH improves cognition and reduces anxiety in a murine model of AD. Thus, further studies are required to determine whether IH can be used as a preventive/adjuvant therapy in patients with AD.
Collapse
Affiliation(s)
- Sheng-Xi Meng
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bing Wang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wen-Tao Li
- Department of Vasculocardiology, Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
117
|
Park H, Kam TI, Dawson TM, Dawson VL. Poly (ADP-ribose) (PAR)-dependent cell death in neurodegenerative diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:1-29. [PMID: 32381174 DOI: 10.1016/bs.ircmb.2019.12.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Disruption of cellular functions with aging-induced accumulation of neuronal stressors causes cell death which is a common feature of neurodegenerative diseases. Studies in a variety of neurodegenerative disease models demonstrate that poly (ADP-ribose) (PAR)-dependent cell death, also named parthanatos, is responsible for neuronal loss in neurological diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Parthanatos has distinct features that differ from caspase-dependent apoptosis, necrosis or autophagic cell death. Parthanatos can be triggered by the accumulation of PAR due to overactivation of PAR polymerase-1 (PARP-1). Excess PAR, induces the mitochondrial release apoptosis-inducing factor (AIF), which binds to macrophage migration inhibitory factor (MIF) carrying MIF into the nucleus where it cleaves genomic DNA into large fragments. In this review, we will discuss the molecular mechanisms of parthanatos and their role in neurodegenerative diseases. Furthermore, we will discuss promising therapeutic interventions within the pathological PAR signaling cascade that could be designed to halt the progression of neurodegeneration.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
118
|
Ünver Saraydin S, Saraydin D, Şahin İnan ZD. A study of digital image analysis on the acrylamide derivative monomers induced apoptosis in rat cerebrum. Microsc Res Tech 2020; 83:436-445. [PMID: 31916363 DOI: 10.1002/jemt.23431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 11/10/2022]
Abstract
Nowadays, apoptosis is mostly evaluated visually in histological studies. By using the quantitative digital image analysis, this study aimed to investigate the effect of acrylamide-based monomers (acrylamide [AAm], methacrylamide [MAAm], N-isopropylacrylamide [NIPAm]) on the cerebrum tissues in rats, which are the most common water-soluble monomers in the production of polymeric hydrogels used as biomaterials. The Wistar albino rats weighing ~220-240 g were divided into control and three test groups. The control group received 1 mL of saline, and the test groups received 1 mL of aqueous 50 mg/kg/day intramuscular injection of AAm, MAAm, and NIPAm, respectively. At the end of the experiments, brain tissues of all rats euthanized by intramuscular injection of sodium pentobarbital were removed. Terminal deoxynucleotide transferase dUTP nick and labeling (TUNEL) method was applied to brain tissue sections. The monomers have been shown to cause apoptosis due to oxidative stress in cerebrum tissue. Based on apoptosis by tunneling method, quantitative digital image analysis of cell fragments was performed with Olympus cellSens Dimension 1.15 software, and the number, total count area, selected area, average area, and ROI% values of the fragments were found. In addition, the total area and ROI% values of the fragments increased linearly with increasing the molar mass of monomers from the digital image analysis data. Quantitative digital image analysis can facilitate the monitoring of apoptosis caused by the oxidative stress of monomers used in the production of the biomaterials.
Collapse
Affiliation(s)
- Serpil Ünver Saraydin
- Medicine Faculty, Histology & Embryology Department, Sivas Cumhuriyet University, Sivas, Turkey
| | - Dursun Saraydin
- Chemistry Department, Sivas Cumhuriyet University, Science Faculty, Sivas, Turkey
| | - Zeynep Deniz Şahin İnan
- Medicine Faculty, Histology & Embryology Department, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
119
|
Leong YQ, Ng KY, Chye SM, Ling APK, Koh RY. Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death. Metab Brain Dis 2020; 35:11-30. [PMID: 31811496 DOI: 10.1007/s11011-019-00516-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
Extracellular senile plaques and intracellular neurofibrillary tangles are the neuropathological findings of the Alzheimer's disease (AD). Based on the amyloid cascade hypothesis, the main component of senile plaques, the amyloid-beta (Aβ) peptide, and its derivative called amyloid precursor protein (APP) both have been found to place their central roles in AD development for years. However, the recent therapeutics have yet to reverse or halt this disease. Previous evidence demonstrates that the accumulation of Aβ peptides and APP can exert neurotoxicity and ultimately neuronal cell death. Hence, we discuss the mechanisms of excessive production of Aβ peptides and APP serving as pathophysiologic stimuli for the initiation of various cell signalling pathways including apoptosis, necrosis, necroptosis and autophagy which lead to neuronal cell death. Conversely, the activation of such pathways could also result in the abnormal generation of APP and Aβ peptides. An elucidation of actions of APP and its metabolite, Aβ, could be vital in suggesting novel therapeutic opportunities.
Collapse
Affiliation(s)
- Yong Qi Leong
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Soi Moi Chye
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
120
|
Lv H, Wei GY, Guo CS, Deng YF, Jiang YM, Gao C, Jian CD. 20S proteasome and glyoxalase 1 activities decrease in erythrocytes derived from Alzheimer's disease patients. Neural Regen Res 2020; 15:178-183. [PMID: 31535667 PMCID: PMC6862418 DOI: 10.4103/1673-5374.264473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As a result of accumulating methylglyoxal and advanced glycation end products in the brains of patients with Alzheimer's disease, it is considered a protein precipitation disease. The ubiquitin proteasome system is one of the most important mechanisms for cells to degrade proteins, and thus is very important for maintaining normal physiological function of the nervous system. This study recruited 48 individuals with Alzheimer's disease (20 males and 28 females aged 75 ± 6 years) and 50 healthy volunteers (21 males and 29 females aged 72 ± 7 years) from the Affiliated Hospital of Youjiang Medical University for Nationalities (Baise, China) between 2014 and 2017. Plasma levels of malondialdehyde and H2O2 were measured by colorimetry, while glyoxalase 1 activity was detected by spectrophotometry. In addition, 20S proteasome activity in erythrocytes was measured with a fluorescent substrate method. Ubiquitin and glyoxalase 1 protein expression in erythrocyte membranes was detected by western blot assay. The results demonstrated that compared with the control group, patients with Alzheimer's disease exhibited increased plasma malondialdehyde and H2O2 levels, and decreased glyoxalase 1 activity; however, expression level of glyoxalase 1 protein remained unchanged. Moreover, activity of the 20S proteasome was decreased and expression of ubiquitin protein was increased in erythrocytes. These findings indicate that proteasomal and glyoxalase activities may be involved in the occurrence of Alzheimer's disease, and erythrocytes may be a suitable tissue for Alzheimer's disease studies. This study was approved by the Ethics Committee of Youjiang Medical University for Nationalities (approval No. YJ12017013) on May 3, 2017.
Collapse
Affiliation(s)
- Hui Lv
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, China
| | - Gui-Yuan Wei
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, China
| | - Can-Shou Guo
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, China
| | - Yu-Feng Deng
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, China
| | - Yong-Ming Jiang
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, China
| | - Ce Gao
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, China
| | - Chong-Dong Jian
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
121
|
Wallace ZS, Rosenthal SB, Fisch KM, Ideker T, Sasik R. On entropy and information in gene interaction networks. Bioinformatics 2019; 35:815-822. [PMID: 30102349 DOI: 10.1093/bioinformatics/bty691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/14/2018] [Accepted: 08/08/2018] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Modern biological experiments often produce candidate lists of genes presumably related to the studied phenotype. One can ask if the gene list as a whole makes sense in the context of existing knowledge: Are the genes in the list reasonably related to each other or do they look like a random assembly? There are also situations when one wants to know if two or more gene sets are closely related. Gene enrichment tests based on counting the number of genes two sets have in common are adequate if we presume that two genes are related only when they are in fact identical. If by related we mean well connected in the interaction network space, we need a new measure of relatedness for gene sets. RESULTS We derive entropy, interaction information and mutual information for gene sets on interaction networks, starting from a simple phenomenological model of a living cell. Formally, the model describes a set of interacting linear harmonic oscillators in thermal equilibrium. Because the energy function is a quadratic form of the degrees of freedom, entropy and all other derived information quantities can be calculated exactly. We apply these concepts to estimate the probability that genes from several independent genome-wide association studies are not mutually informative; to estimate the probability that two disjoint canonical metabolic pathways are not mutually informative; and to infer relationships among human diseases based on their gene signatures. We show that the present approach is able to predict observationally validated relationships not detectable by gene enrichment methods. The converse is also true; the two methods are therefore complementary. AVAILABILITY AND IMPLEMENTATION The functions defined in this paper are available in an R package, gsia, available for download at https://github.com/ucsd-ccbb/gsia.
Collapse
Affiliation(s)
- Z S Wallace
- Department of Mathematics, Tufts University School of Arts and Sciences, Medford, MA, USA
| | - S B Rosenthal
- Department of Medicine, Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA, USA
| | - K M Fisch
- Department of Medicine, Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA, USA
| | - T Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - R Sasik
- Department of Medicine, Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
122
|
Song S, Amores D, Chen C, McConnell K, Oh B, Poon A, George PM. Controlling properties of human neural progenitor cells using 2D and 3D conductive polymer scaffolds. Sci Rep 2019; 9:19565. [PMID: 31863072 PMCID: PMC6925212 DOI: 10.1038/s41598-019-56021-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem cell-derived neural progenitor cells (hNPCs) are a promising cell source for stem cell transplantation to treat neurological diseases such as stroke and peripheral nerve injuries. However, there have been limited studies investigating how the dimensionality of the physical and electrical microenvironment affects hNPC function. In this study, we report the fabrication of two- and three-dimensional (2D and 3D respectively) constructs composed of a conductive polymer to compare the effect of electrical stimulation of hydrogel-immobilized hNPCs. The physical dimension (2D vs 3D) of stimulating platforms alone changed the hNPCs gene expression related to cell proliferation and metabolic pathways. The addition of electrical stimulation was critical in upregulating gene expression of neurotrophic factors that are important in regulating cell survival, synaptic remodeling, and nerve regeneration. This study demonstrates that the applied electrical field controls hNPC properties depending on the physical nature of stimulating platforms and cellular metabolic states. The ability to control hNPC functions can be beneficial in understanding mechanistic changes related to electrical modulation and devising novel treatment methods for neurological diseases.
Collapse
Affiliation(s)
- Shang Song
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Danielle Amores
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Cheng Chen
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Kelly McConnell
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Byeongtaek Oh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ada Poon
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Paul M George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
123
|
Olasehinde TA, Olaniran AO, Okoh AI. Neuroprotective effects of some seaweeds against Zn - induced neuronal damage in HT-22 cells via modulation of redox imbalance, inhibition of apoptosis and acetylcholinesterase activity. Metab Brain Dis 2019; 34:1615-1627. [PMID: 31346859 DOI: 10.1007/s11011-019-00469-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/14/2019] [Indexed: 02/07/2023]
Abstract
Zinc plays an important role in neuronal signaling and neurotransmission. However, dyshomeostasis of this metal or its accumulation in the brain has been linked with neurological disorders such as Alzheimer's disease and Parkinson's disease. In this study, the neuroprotective effects of Ecklonia maxima (KPM), Gracilaria gracilis (GCL), Ulva lactuca (ULT) and Gelidium pristoides (MNP) in Zn -induced neurotoxicity in HT-22 cells was examined. Cells were treated with Zinc sulphate and/or aqueous - ethanol extracts and cell viability, apoptosis, acetylcholinesterase activity, including some antioxidant enzymes (catalase and superoxide dismutase activity) and glutathione (GSH) levels were determined. Malondialdehyde and nitric oxide levels produced in the Zn and/or seaweed extract treated cells were also determined. Prior treatment with the seaweed extracts improved cell viability and inhibited Zn - induced cell death. Acetylcholinesterase activity was significantly high in Zn treated cells compared to the control. Pre-treatment with the seaweed extracts triggered a decrease in acetylcholinesterase activity in Zn - treated cells. Furthermore, treatment with Zn caused a significant reduction in GSH levels as well as a decrease in superoxide dismutase and catalase activities. In contrast, the seaweed extract increased antioxidant enzyme activities and GSH levels. An increase in malondialdehyde and nitric oxide levels was also reversed after treatment with the seaweed extracts. These results suggest that the seaweed extracts improved cholinergic transmission disrupted by Zn - induced neurotoxicity and protected the cells against oxidative damage and neuroinflammation. The neuroprotective effects of the seaweed extracts could be linked to their bioactive constituents. Hence these seaweeds are potential sources of active ingredients with neuroprotective potentials and could be used for the development of functional foods and/or nutraceuticals.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, 5700, South Africa.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, 5700, South Africa.
- Nutrition and Toxicology Division, Department of Food Technology, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria.
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, South Africa
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, 5700, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, 5700, South Africa
| |
Collapse
|
124
|
Thadathil N, Hori R, Xiao J, Khan MM. DNA double-strand breaks: a potential therapeutic target for neurodegenerative diseases. Chromosome Res 2019; 27:345-364. [PMID: 31707536 PMCID: PMC7934912 DOI: 10.1007/s10577-019-09617-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
The complexity of neurodegeneration restricts the ability to understand and treat the neurological disorders affecting millions of people worldwide. Therefore, there is an unmet need to develop new and more effective therapeutic strategies to combat these devastating conditions and that will only be achieved with a better understanding of the biological mechanism associated with disease conditions. Recent studies highlight the role of DNA damage, particularly, DNA double-strand breaks (DSBs), in the progression of neuronal loss in a broad spectrum of human neurodegenerative diseases. This is not unexpected because neurons are prone to DNA damage due to their non-proliferative nature and high metabolic activity. However, it is not clear if DSBs is a primary driver of neuronal loss in disease conditions or simply occurs concomitant with disease progression. Here, we provide evidence that supports a critical role of DSBs in the pathogenesis of the neurodegenerative diseases. Among different kinds of DNA damages, DSBs are the most harmful and perilous type of DNA damage and can lead to cell death if left unrepaired or repaired with error. In this review, we explore the current state of knowledge regarding the role of DSBs repair mechanisms in preserving neuronal function and survival and describe how DSBs could drive the molecular mechanisms resulting in neuronal death in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We also discuss the potential implications of DSBs as a novel therapeutic target and prognostic marker in patients with neurodegenerative conditions.
Collapse
Affiliation(s)
- Nidheesh Thadathil
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Roderick Hori
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jianfeng Xiao
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Division of Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
125
|
Lim HS, Kim YJ, Sohn E, Yoon J, Kim BY, Jeong SJ. Annona atemoya leaf extract ameliorates cognitive impairment in amyloid-β injected Alzheimer's disease-like mouse model. Exp Biol Med (Maywood) 2019; 244:1665-1679. [PMID: 31679404 DOI: 10.1177/1535370219886269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Annona atemoya is a hybrid of Annona squamosa and Annona cherimola that grow in several subtropical or tropical areas such as Florida in the US, Philippines, Cuba, Jamaica, Taiwan, and Jeju in South Korea. We report that the A. atemoya leaves (AAL) have inhibitory effects on the pathogenesis and regulatory mechanisms of Alzheimer’s disease (AD). Ethanol extract of AAL prevented amyloid-β (Aβ) aggregation and increased free radical scavenging activity. In addition, AAL extract exerted protective effects against neuronal cell death in HT22 hippocampal cells. Moreover, oral administration of AAL extract significantly improved memory loss in the passive avoidance task and Y-maze test, as well as downregulated the expression of neuronal markers neuronal nuclei and brain-derived neurotrophic factor in Aβ-injected AD mice. To verify the molecular mechanisms responsible for anti-AD actions of AAL, we conducted the antibody microarray analysis and found that epidermal growth factor receptor/G protein-coupled receptor kinase 2 signaling was activated in neuronal cells and AD-like mouse models. Additionally, quantitative analyses of the six standard compounds using high-performance liquid chromatography revealed that rutin is the most abundant compound of AAL. Furthermore, efficacy analyses of six standard compounds showed that rutin and isoquercitrin had significant inhibitory activity on Aβ aggregation. Taken together with biological activity and the content of compounds, rutin maybe a bioactive compound of AAL in the AD pathogenesis. Overall, our findings provide the first scientific support for the therapeutic effects of AAL in AD and AD-related disorders.Impact statementOur study was aimed to find a novel candidate drug for Alzheimer’s disease (AD) using natural products. We assessed the effects of Annona atemoya extracts on crucial events in the pathogenesis of AD. A. atemoya leaf (AAL) extract significantly inhibited amyloid-β aggregation, oxidative stress, neuronal cell death, and memory impairment through the epidermal growth factor receptor/G protein-coupled receptor kinase 2 pathway. Simultaneous analysis using HPLC determined six standard compounds of AAL extract, and rutin was identified as a bioactive compound. Of note, the anti-AD activity of AAL extract was more significant compared to other extracts from medicinal plants of which efficacy was previously reported. The potential of AAL extract as an anti-AD agent may provide insight into the new drug development for AD treatment.
Collapse
Affiliation(s)
- Hye-Sun Lim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Yu Jin Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea.,College of Pharmacy, Chungnam National University, Daejeon 34134, South Korea
| | - Eunjin Sohn
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Jiyeon Yoon
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Bu-Yeo Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Soo-Jin Jeong
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| |
Collapse
|
126
|
Kozłowska A, Kozera P, Majewski M, Godlewski J. Co-expression of caspase-3 or caspase-8 with galanin in the human stomach section affected by carcinoma. Apoptosis 2019; 23:484-491. [PMID: 30019295 PMCID: PMC6153556 DOI: 10.1007/s10495-018-1470-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neoplastic process may cause distinct changes in the morphology, i.e. size and number of the neurons of the neuronal plexuses forming the enteric nervous system (ENS) of the human intestine. Moreover, it was also reported that these changes were not directly associated with apoptosis. Thus, the main aim of this study was to determine the atrophic changes of myenteric plexuses (MPs) in the vicinity of cancer invasion and the potential reason which may be responsible for these changes if they occur. Tissue samples from the stomach were collected from ten patients which undergo organ resection due to cancer diagnosis. Samples were taken from the margin of cancer invasion and from a macroscopically-unchanged part of the stomach wall. Triple-immunofluorescence staining of the 10-µm-thick cryostat sections was used to visualize the co-expression of caspase-3 (CASP3) or caspase-8 (CASP8) with galanin (GAL) in the MPs of ENS. Microscopic observations of MPs located closely to gastric cancer invasion showed that they were significantly smaller than plexuses located distally. The percentage of neurons containing CASP3 within MPs located close to cancer-affected regions of the stomach was higher, while containing CASP8 was lower compared to the unchanged regions. Additionally, elevated high expression of CASP3 or CASP8 in the neurons from MPs was accompanied by a decreased expression of GAL. To our knowledge, this is the first report describing the decomposition of MPs within cancer-affected human stomach wall and the possible role of apoptosis in this process.
Collapse
Affiliation(s)
- Anna Kozłowska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av 30, 10-082, Olsztyn, Poland.
| | - Piotr Kozera
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av 30, 10-082, Olsztyn, Poland
| | - Mariusz Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av 30, 10-082, Olsztyn, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av 30, 10-082, Olsztyn, Poland
| |
Collapse
|
127
|
Shou JW, Cheung CK, Gao J, Shi WW, Shaw PC. Berberine Protects C17.2 Neural Stem Cells From Oxidative Damage Followed by Inducing Neuronal Differentiation. Front Cell Neurosci 2019; 13:395. [PMID: 31551713 PMCID: PMC6733922 DOI: 10.3389/fncel.2019.00395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022] Open
Abstract
Neurodegeneration is the loss of structure and/or function of neurons. Oxidative stress has been suggested as one of the common etiology in most of the neurodegenerative diseases. Previous studies have demonstrated the beneficial effects of berberine in various neurodegenerative and neuropsychiatric disorders. In this study, we hypothesized that berberine could protect C17.2 neural stem cells (NSCs) from 2,2′-Azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative damage then promote neuronal differentiation. AAPH was used to induce oxidative damage. After the damage, berberine protected C17.2 cells were kept cultured for another week in differentiation medium with/without berberine. Changes in cell morphology were detected by microscopy and cell viability was determined by MTT assay. Real-time PCR and western blot analysis were performed to confirm the associated pathways. Berberine was able to protect C17.2 NSCs from the oxidative damage. It lowered the cellular reactive oxygen species (ROS) level in C17.2 cells via Nuclear Factor Erythroid 2-Related Factor 1/2 (NRF1/2) – NAD(P)H Quinone Dehydrogenase 1 (NQO-1) – Heme Oxygenase 1 (HO-1) pathway. It also down-regulated the apoptotic factors-Caspase 3 and Bcl2 Associated X (Bax) and upregulated the anti-apoptotic factor-Bcl2 to reduce cell apoptosis. Besides, berberine increased C17.2 cell viability via up-regulating Extracellular-signal-Related Kinase (ERK) and phosphor-Extracellular-signal-Related Kinase (pERK) expression. Then, berberine promoted C17.2 cell to differentiate into neurons and the differentiation mechanism involved the activation of WNT/β-catenin pathway as well as the upregulation of expression levels of pro-neural factors Achaete-Scute Complex-Like 1 (ASCL1), Neurogenin 1 (NeuroG1), Neuronal Differentiation 2 (NeuroD2) and Doublecortin (DCX). In conclusion, berberine protected C17.2 NSCs from oxidative damage then induced them to differentiate into neurons.
Collapse
Affiliation(s)
- Jia-Wen Shou
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chun-Kai Cheung
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jian Gao
- Shenzhen Health Development Research Center, Shenzhen, China
| | - Wei-Wei Shi
- Shenzhen Health Development Research Center, Shenzhen, China
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
128
|
Oliver D, Reddy PH. Dynamics of Dynamin-Related Protein 1 in Alzheimer's Disease and Other Neurodegenerative Diseases. Cells 2019; 8:cells8090961. [PMID: 31450774 PMCID: PMC6769467 DOI: 10.3390/cells8090961] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 12/28/2022] Open
Abstract
The purpose of this article is to highlight the role of dynamin-related protein 1 (Drp1) in abnormal mitochondrial dynamics, mitochondrial fragmentation, autophagy/mitophagy, and neuronal damage in Alzheimer's disease (AD) and other neurological diseases, including Parkinson's, Huntington's, amyotrophic lateral sclerosis, multiple sclerosis, diabetes, and obesity. Dynamin-related protein 1 is one of the evolutionarily highly conserved large family of GTPase proteins. Drp1 is critical for mitochondrial division, size, shape, and distribution throughout the neuron, from cell body to axons, dendrites, and nerve terminals. Several decades of intense research from several groups revealed that Drp1 is enriched at neuronal terminals and involved in synapse formation and synaptic sprouting. Different phosphorylated forms of Drp1 acts as both increased fragmentation and/or increased fusion of mitochondria. Increased levels of Drp1 were found in diseased states and caused excessive fragmentation of mitochondria, leading to mitochondrial dysfunction and neuronal damage. In the last two decades, several Drp1 inhibitors have been developed, including Mdivi-1, Dynasore, P110, and DDQ and their beneficial effects tested using cell cultures and mouse models of neurodegenerative diseases. Recent research using genetic crossing studies revealed that a partial reduction of Drp1 is protective against mutant protein(s)-induced mitochondrial and synaptic toxicities. Based on findings from cell cultures, mouse models and postmortem brains of AD and other neurodegenerative disease, we cautiously conclude that reduced Drp1 is a promising therapeutic target for AD and other neurological diseases.
Collapse
Affiliation(s)
- Darryll Oliver
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX 79413, USA.
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
129
|
Sharma BR, Karki R, Kanneganti TD. Role of AIM2 inflammasome in inflammatory diseases, cancer and infection. Eur J Immunol 2019; 49:1998-2011. [PMID: 31372985 DOI: 10.1002/eji.201848070] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/22/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022]
Abstract
AIM2 is a cytosolic innate immune receptor which recognizes double-stranded DNA (dsDNA) released during cellular perturbation and pathogenic assault. AIM2 recognition of dsDNA leads to the assembly of a large multiprotein oligomeric complex termed the inflammasome. This inflammasome assembly leads to the secretion of bioactive interleukin-1β (IL-1β) and IL-18 and induction of an inflammatory form of cell death called pyroptosis. Sensing of dsDNA by AIM2 in the cytosol is crucial to mediate protection against the invading pathogens including bacteria, virus, fungi and parasites. AIM2 also responds to dsDNA released from damaged host cells, resulting in the secretion of the effector cytokines thereby driving the progression of sterile inflammatory diseases such as skin disease, neuronal disease, chronic kidney disease, cardiovascular disease and diabetes. Additionally, the protection mediated by AIM2 in the development of colorectal cancer depends on its ability to regulate epithelial cell proliferation and gut microbiota in maintaining intestinal homeostasis independently of the effector cytokines. In this review, we will highlight the recent progress on the role of the AIM2 inflammasome as a guardian of cellular integrity in modulating chronic inflammatory diseases, cancer and infection.
Collapse
Affiliation(s)
- Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
130
|
Szatmari B, Balicza P, Nemeth G, Molnar MJ. The Panomics Approach in Neurodegenerative Disorders. Curr Med Chem 2019; 26:1712-1720. [PMID: 28685677 DOI: 10.2174/0929867324666170705120038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The molecular genetic technologies revolutionized the diagnostics of many disorders. Thanks to the new molecular techniques and the rapid improvement of the information technologies the number of mendelien inherited disorders has increased rapidly in the last five years. The omics era brought radical changes in the understanding of complex disorders and the underlying pathomechanisms. However, in most complex disorders the genome wide association studies could not clarify the genetic background even for disorders where a very strong heritability had been observed. OBJECTIVE In this paper the changing concept of the neurodegenerative disorders is discussed. The traditional classification of these disorders was purely based on clinical symptoms and morphological signs in the last century. Identifying the signature lesions of various neurodegenerative disorders may reveal a common pathological pathway in these disorders. New neuroimaging methods provided additional tools to assess pathological pathways in vivo already in the early stages of the diseases. Visualizing in vivo amyloid deposits and neuroinflammation improved our understanding of their role in various neurodegenerative disorders. Genetics may be the most precise way to identify the background of these disorders. However, there is only limited number of cases where true association can be proved between the disorder and the genetic mutations. Most of the neurodegenerative disorders seem to be multifactorial and cannot be traced back to one single cause. CONCLUSION In conclusion, shifting from a classification based on symptomatology only to a modern multidisciplinary approach, based on the constantly evolving panomics findings, would improve our understanding of neurodegenerative diseases and could be the basis of novel therapeutic research.
Collapse
Affiliation(s)
| | - Peter Balicza
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Gyorgy Nemeth
- Medical Division, Gedeon Richter Plc., Budapest, Hungary
| | - Maria Judit Molnar
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| |
Collapse
|
131
|
Death-Associated Protein Kinase 1 Phosphorylation in Neuronal Cell Death and Neurodegenerative Disease. Int J Mol Sci 2019; 20:ijms20133131. [PMID: 31248062 PMCID: PMC6651373 DOI: 10.3390/ijms20133131] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Regulated neuronal cell death plays an essential role in biological processes in normal physiology, including the development of the nervous system. However, the deregulation of neuronal apoptosis by various factors leads to neurodegenerative diseases such as ischemic stroke and Alzheimer’s disease (AD). Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin (Ca2+/CaM)-dependent serine/threonine (Ser/Thr) protein kinase that activates death signaling and regulates apoptotic neuronal cell death. Although DAPK1 is tightly regulated under physiological conditions, DAPK1 deregulation in the brain contributes to the development of neurological disorders. In this review, we describe the molecular mechanisms of DAPK1 regulation in neurons under various stresses. We also discuss the role of DAPK1 signaling in the phosphorylation-dependent and phosphorylation-independent regulation of its downstream targets in neuronal cell death. Moreover, we focus on the major impact of DAPK1 deregulation on the progression of neurodegenerative diseases and the development of drugs targeting DAPK1 for the treatment of diseases. Therefore, this review summarizes the DAPK1 phosphorylation signaling pathways in various neurodegenerative diseases.
Collapse
|
132
|
Linsley JW, Reisine T, Finkbeiner S. Cell death assays for neurodegenerative disease drug discovery. Expert Opin Drug Discov 2019; 14:901-913. [PMID: 31179783 DOI: 10.1080/17460441.2019.1623784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Neurodegenerative diseases affect millions of people worldwide. Neurodegeneration is gradual over time, characterized by neuronal death that causes deterioration of cognitive or motor functions, ultimately leading to the patient's death. Currently, there are no treatments that effectively slow the progression of any neurodegenerative disease, but improved microscopy assays and models for neurodegeneration could lead the way to the discovery of disease-modifying therapeutics. Areas covered: Herein, the authors describe cell-based assays used to discover drugs with the potential to slow neurodegeneration, and their associated disease models. They focus on microscopy technologies that can be adapted to a high-throughput screening format that both detect cell death and monitor early signs of neurodegeneration and functional changes to identify drugs that the block early stages of neurodegeneration. Expert opinion: Many different phenotypes have been used in screens for the development of therapeutics towards neurodegenerative disease. The context of each phenotype in relation to neurodegeneration must be established to identify therapeutics likely to successfully target and treat disease. The use of improved models of neurodegeneration, statistical analyses, computational models, and improved markers of neuronal death will help in this pursuit and lead to better screening methods to identify therapeutic compounds against neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy W Linsley
- a Gladstone Center for Systems and Therapeutics , San Francisco , CA , USA
| | - Terry Reisine
- b Independent scientific consultant , Santa Cruz , CA , USA
| | - Steven Finkbeiner
- a Gladstone Center for Systems and Therapeutics , San Francisco , CA , USA.,c Neuroscience Graduate Program, University of California , San Francisco , CA , USA.,d Biomedical Sciences and Neuroscience Graduate Program, University of California , San Francisco , CA , USA.,e Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes , San Francisco , CA , USA.,f Department of Neurology, University of California , San Francisco , CA , USA.,g Department of Physiology, University of California , San Francisco , CA , USA
| |
Collapse
|
133
|
Zhang J, Wang L, Wang H, Su Z, Pang X. Neuroinflammation and central PI3K/Akt/mTOR signal pathway contribute to bone cancer pain. Mol Pain 2019; 15:1744806919830240. [PMID: 30717619 PMCID: PMC6390230 DOI: 10.1177/1744806919830240] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Pain is one of the most common and distressing symptoms suffered by patients with progression of cancer; however, the mechanisms responsible for hyperalgesia are not well understood. Since the midbrain periaqueductal gray is an important component of the descending inhibitory pathway controlling on central pain transmission, in this study, we examined the role for pro-inflammatory cytokines of the periaqueductal gray in regulating mechanical and thermal hyperalgesia evoked by bone cancer via phosphatidylinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signals. METHODS Breast sarcocarcinoma Walker 256 cells were implanted into the tibia bone cavity of rats to induce mechanical and thermal hyperalgesia. Western blot analysis and ELISA were used to examine PI3K/protein kinase B (Akt)/mTOR and pro-inflammatory cytokine receptors and the levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α). RESULTS Protein expression levels of p-PI3K/p-Akt/p-mTOR were amplified in the periaqueductal gray of bone cancer rats, and blocking PI3K-mTOR pathways in the periaqueductal gray attenuated hyperalgesia responses. In addition, IL-1β, IL-6, and TNF-α were elevated in the periaqueductal gray of bone cancer rats, and expression of their respective receptors (namely, IL-1R, IL-6R, and tumor necrosis factor receptor (TNFR) subtype TNFR1) was upregulated. Inhibition of IL-1R, IL-6R, and TNFR1 alleviated mechanical and thermal hyperalgesia in bone cancer rats, accompanied with downregulated PI3K-mTOR. CONCLUSIONS Our data suggest that upregulation of pro-inflammatory cytokine signal in the periaqueductal gray of cancer rats amplifies PI3K-mTOR signal in this brain region and alters the descending pathways in regulating pain transmission, and this thereby contributes to the development of bone cancer-induced pain.
Collapse
Affiliation(s)
- Jian Zhang
- 1 Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Luping Wang
- 2 Department of Anesthesiology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Hushan Wang
- 1 Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Zhenbo Su
- 3 Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaochuan Pang
- 4 Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
134
|
Lee SY, Hur SJ. Mechanisms of Neuroprotective Effects of Peptides Derived from Natural Materials and Their Production and Assessment. Compr Rev Food Sci Food Saf 2019; 18:923-935. [DOI: 10.1111/1541-4337.12451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Seung Yun Lee
- Dept. of Animal Science and TechnologyChung‐Ang Univ. 4726 Seodong‐daero, Daedeok‐myeon Anseong‐si Gyeonggi 17546 Republic of Korea
| | - Sun Jin Hur
- Dept. of Animal Science and TechnologyChung‐Ang Univ. 4726 Seodong‐daero, Daedeok‐myeon Anseong‐si Gyeonggi 17546 Republic of Korea
| |
Collapse
|
135
|
Gabandé‐Rodríguez E, Keane L, Capasso M. Microglial phagocytosis in aging and Alzheimer's disease. J Neurosci Res 2019; 98:284-298. [DOI: 10.1002/jnr.24419] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/20/2019] [Accepted: 03/08/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Enrique Gabandé‐Rodríguez
- Department of Molecular Neuropathology Centro de Biología Molecular “Severo Ochoa” (CSIC‐UAM) Madrid Spain
| | - Lily Keane
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
| | - Melania Capasso
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
| |
Collapse
|
136
|
Chen MK, Peng CC, Maner RS, Zulkefli ND, Huang SM, Hsieh CL. Geniposide ameliorated fluoxetine-suppressed neurite outgrowth in Neuro2a neuroblastoma cells. Life Sci 2019; 226:1-11. [PMID: 30953644 DOI: 10.1016/j.lfs.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/01/2019] [Accepted: 04/01/2019] [Indexed: 01/08/2023]
Abstract
AIM Fluoxetine (FXT), a selective serotonin reuptake inhibitor (SSRI), is one of the most common psychiatric medications clinically prescribed; while over-produced serotonin may suppress neurite development. The role of major iridoids like geniposide (GPS) and genipin (GNP) from Gardenia jasminoides Ellis fruit (family Rubiaceae) in ameliorating the anti-neurite outgrowth effect of FXT is poorly understood. In this study, the effects of these iridoids on FXT-suppressed neurite outgrowth in Neuro2a neuroblastoma cells were investigated. MAIN METHODS Neuro2a cells were treated with FXT and GPS. The effect of GPS-FXT co-treatment on neurite outgrowth was observed using inverted phase-contrast microscope imaging system, while neurite outgrowth markers - microtubule-associated protein-2 (MAP2) and growth-associated protein 43 (GAP43) were analyzed using RT-PCR, Western blot and immunofluorescence staining. The transcription factor-cAMP response element binding (CREB), and signaling pathways - mitogen-activated protein kinase (MAPK) and protein kinase B/mammalian target of rapamycin (AKT/mTOR) were also analyzed with the help of Western blot. KEY FINDINGS The results showed that FXT decreased the neurite outgrowth in Neuro2a cells and also downregulated gene and protein expression of MAP2 and GAP43. It also downregulated the protein expression of phosphorylated-CREB, MAPK, and AKT/mTOR signaling pathways. In contrast, GPS counteracted the effects of FXT. GPS-FXT co-treatment increased the percentage of neurite-bearing cells by 3.6-fold at 200 μM as compared to FXT treatment only. SIGNIFICANCE This study has provided the possible molecular mechanism showing how FXT exerted its detrimental side-effects on the neurite differentiation, and via the same mechanism how GPS attenuated these side effects.
Collapse
Affiliation(s)
- Ming-Kai Chen
- Department of Biology, National Changhua University of Education, 1 Jin-De Rd., Changhua 50007, Taiwan
| | - Chiung-Chi Peng
- Graduate Institute of Clinical Medicine, Taipei Medical University, 250 Wu-Xing St., Taipei 11031, Taiwan.
| | - Rida S Maner
- Department of Biology, National Changhua University of Education, 1 Jin-De Rd., Changhua 50007, Taiwan
| | - Nor Diana Zulkefli
- Department of Biology, National Changhua University of Education, 1 Jin-De Rd., Changhua 50007, Taiwan
| | - Shang-Ming Huang
- Department of Biology, National Changhua University of Education, 1 Jin-De Rd., Changhua 50007, Taiwan
| | - Chiu-Lan Hsieh
- Department of Biology, National Changhua University of Education, 1 Jin-De Rd., Changhua 50007, Taiwan.
| |
Collapse
|
137
|
Samuelsen JT, Michelsen VB, Bruun JA, Dahl JE, Jensen E, Örtengren U. The dental monomer HEMA causes proteome changes in human THP-1 monocytes. J Biomed Mater Res A 2019; 107:851-859. [DOI: 10.1002/jbm.a.36601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/16/2018] [Accepted: 12/26/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Jack-Ansgar Bruun
- Department of Medical Biology, Faculty of Health Sciences; University of Tromsø; Tromsø Norway
| | - Jon E. Dahl
- Nordic Institute of Dental Materials (NIOM); Oslo Norway
| | - Einar Jensen
- Department of Pharmacy, Faculty of Health Sciences; University of Tromsø; Tromsø Norway
| | - Ulf Örtengren
- Department of Clinical Dentistry, Faculty of Health Sciences; University of Tromsø; Tromsø Norway
- Department of Cariology; Institute for Odontology, Sahlgrenska Academy, Göteborg University; Göteborg Sweden
| |
Collapse
|
138
|
Zhang Z, Zhang S, Lui CNP, Zhu P, Zhang Z, Lin K, Dai Y, Yung KKL. Traditional Chinese medicine-based neurorestorative therapy for Alzheimer’s and Parkinson’s disease. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The prevalence of multiple neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), has been dramatically increasing, particularly in the aging population. However, the currently available therapies merely alleviate the symptoms of these diseases and are unable to retard disease progression significantly. Traditional Chinese medicine (TCM) has been used in clinical practice for thousands of years for ameliorating symptoms or interfering with the pathogenesis of aging- associated diseases. Modern pharmacological studies have proved that TCM imparts disease-modifying therapeutic effects against these diseases, such as protection of neurons, clearance of protein aggregates, and regulation of neuroinflammation. This review summarizes the evidence from recent studies on AD and PD therapies regarding the neuroprotective activities and molecular mechanisms of a series of TCM formulations comprising herbs and their active ingredients. The findings of this review support the use of TCM as an alternative source of therapy for the treatment of neurodegenerative diseases.
Collapse
|
139
|
Letra L, Rodrigues T, Matafome P, Santana I, Seiça R. Adiponectin and sporadic Alzheimer's disease: Clinical and molecular links. Front Neuroendocrinol 2019; 52:1-11. [PMID: 29038028 DOI: 10.1016/j.yfrne.2017.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/05/2017] [Accepted: 10/10/2017] [Indexed: 01/21/2023]
Abstract
Obesity has been consistently associated with Alzheimer's disease (AD) though the exact mechanisms by which it influences cognition are still elusive and subject of current research. Adiponectin, the most abundant adipokine in circulation, is inversely correlated with adipose tissue dysfunction and seems to be a central player in this association. In fact, different signalling pathways are shared by adiponectin and proteins involved in AD pathophysiology and considerable amount of evidence supports its direct and indirect influence on β-amyloid and tau aggregates formation. In this paper we present a critical review of cellular, animal and clinical studies which have contributed to a more thorough understanding of the extent to which adiponectin influences the risk of developing AD as well as its progression. Finally, the effect of acetylcholinesterase inhibitors on circulating adiponectin levels, possible therapeutic applications and future research strategies are also discussed.
Collapse
Affiliation(s)
- Liliana Letra
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Neurology Department, Centro Hospitalar do Baixo Vouga - Aveiro, Av. Artur Ravara, 3814-501 Aveiro, Portugal.
| | - Tiago Rodrigues
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Paulo Matafome
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, 3000-075 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Raquel Seiça
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
140
|
Alhazzani A, Rajagopalan P, Albarqi Z, Devaraj A, Mohamed MH, Al-Hakami A, Chandramoorthy HC. Mesenchymal Stem Cells (MSCs) Coculture Protects [Ca 2+] i Orchestrated Oxidant Mediated Damage in Differentiated Neurons In Vitro. Cells 2018; 7:cells7120250. [PMID: 30563298 PMCID: PMC6315478 DOI: 10.3390/cells7120250] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022] Open
Abstract
Cell-therapy modalities using mesenchymal stem (MSCs) in experimental strokes are being investigated due to the role of MSCs in neuroprotection and regeneration. It is necessary to know the sequence of events that occur during stress and how MSCs complement the rescue of neuronal cell death mediated by [Ca2+]i and reactive oxygen species (ROS). In the current study, SH-SY5Y-differentiated neuronal cells were subjected to in vitro cerebral ischemia-like stress and were experimentally rescued from cell death using an MSCs/neuronal cell coculture model. Neuronal cell death was characterized by the induction of proinflammatory tumor necrosis factor (TNF)-α, interleukin (IL)-1β and -12, up to 35-fold with corresponding downregulation of anti-inflammatory cytokine transforming growth factor (TGF)-β, IL-6 and -10 by approximately 1 to 7 fold. Increased intracellular calcium [Ca2+]i and ROS clearly reaffirmed oxidative stress-mediated apoptosis, while upregulation of nuclear factor NF-κB and cyclo-oxygenase (COX)-2 expressions, along with ~41% accumulation of early and late phase apoptotic cells, confirmed ischemic stress-mediated cell death. Stressed neuronal cells were rescued from death when cocultured with MSCs via increased expression of anti-inflammatory cytokines (TGF-β, 17%; IL-6, 4%; and IL-10, 13%), significantly downregulated NF-κB and proinflammatory COX-2 expression. Further accumulation of early and late apoptotic cells was diminished to 23%, while corresponding cell death decreased from 40% to 17%. Low superoxide dismutase 1 (SOD1) expression at the mRNA level was rescued by MSCs coculture, while no significant changes were observed with catalase (CAT) and glutathione peroxidase (GPx). Interestingly, increased serotonin release into the culture supernatant was proportionate to the elevated [Ca2+]i and corresponding ROS, which were later rescued by the MSCs coculture to near normalcy. Taken together, all of these results primarily support MSCs-mediated modulation of stressed neuronal cell survival in vitro.
Collapse
Affiliation(s)
- Adel Alhazzani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Zaher Albarqi
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
| | - Anantharam Devaraj
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
- Department of Microbiology and Clinical Parasitology, College of Medicine King Khalid University, Abha 61421, Saudi Arabia.
| | - Mohamed Hessian Mohamed
- Department of Biochemistry, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta City 31512, Egypt.
| | - Ahmed Al-Hakami
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
- Department of Microbiology and Clinical Parasitology, College of Medicine King Khalid University, Abha 61421, Saudi Arabia.
| | - Harish C Chandramoorthy
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
- Department of Microbiology and Clinical Parasitology, College of Medicine King Khalid University, Abha 61421, Saudi Arabia.
| |
Collapse
|
141
|
Heckmann BL, Tummers B, Green DR. Crashing the computer: apoptosis vs. necroptosis in neuroinflammation. Cell Death Differ 2018; 26:41-52. [PMID: 30341422 DOI: 10.1038/s41418-018-0195-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death (PCD) plays critical roles in development, homeostasis, and both control and progression of a plethora of diseases, including cancer and neurodegenerative pathologies. Besides classical apoptosis, several different forms of PCD have now been recognized, including necroptosis. The way a cell dies determines the reaction of the surrounding environment, and immune activation in response to cell death proceeds in a manner dependent on which death pathways are activated. Apoptosis and necroptosis are major mechanisms of cell death that typically result in opposing immune responses. Apoptotic death usually leads to immunologically silent responses whereas necroptotic death releases molecules that promote inflammation, a process referred to as necroinflammation. Diseases of the nervous system, in particular neurodegenerative diseases, are characterized by neuronal death and progressive neuroinflammation. The mechanisms of neuronal death are not well defined and significant cross-talk between pathways has been suggested. Moreover, it has been proposed that the dying of neurons is a catalyst for activating immune cells in the brain and sustaining inflammatory output. In the current review we discuss the effects of apoptotis and necroptosis on inflammatory immune activation, and evaluate the roles of each cell death pathway in a variety of pathologies with specific focus on neurodegeneration. A putative model is proposed for the regulation of neuronal death and neuroinflammation that features a role for both the apoptotic and necroptotic pathways in disease establishment and progression.
Collapse
Affiliation(s)
- Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
142
|
Chi H, Chang HY, Sang TK. Neuronal Cell Death Mechanisms in Major Neurodegenerative Diseases. Int J Mol Sci 2018; 19:E3082. [PMID: 30304824 PMCID: PMC6213751 DOI: 10.3390/ijms19103082] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Neuronal cell death in the central nervous system has always been a challenging process to decipher. In normal physiological conditions, neuronal cell death is restricted in the adult brain, even in aged individuals. However, in the pathological conditions of various neurodegenerative diseases, cell death and shrinkage in a specific region of the brain represent a fundamental pathological feature across different neurodegenerative diseases. In this review, we will briefly go through the general pathways of cell death and describe evidence for cell death in the context of individual common neurodegenerative diseases, discussing our current understanding of cell death by connecting with renowned pathogenic proteins, including Tau, amyloid-beta, alpha-synuclein, huntingtin and TDP-43.
Collapse
Affiliation(s)
- Hao Chi
- Institute of Biotechnology, National Tsing Hua University, Hsinchu City 30013, Taiwan.
| | - Hui-Yun Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu City 30013, Taiwan.
| | - Tzu-Kang Sang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu City 30013, Taiwan.
| |
Collapse
|
143
|
Sevoflurane Exacerbates Cognitive Impairment Induced by A β 1-40 in Rats through Initiating Neurotoxicity, Neuroinflammation, and Neuronal Apoptosis in Rat Hippocampus. Mediators Inflamm 2018; 2018:3802324. [PMID: 30402039 PMCID: PMC6198580 DOI: 10.1155/2018/3802324] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/25/2018] [Indexed: 01/04/2023] Open
Abstract
Objective This study was aimed at investigating whether sevoflurane inhalation induced cognitive impairment in rats with a possible mechanism involved in the event. Methods Thirty-two rats were randomly divided into four groups of normal saline (NS) + O2, NS + sevoflurane (sevo), amyloid-β peptide (Aβ) + O2, and Aβ + sevo. The rats in the four groups received bilateral intrahippocampus injections of NS or Aβ. The treated hippocampus was harvested after inhaling 30% O2 or 2.5% sevoflurane. Evaluation of cognitive function was performed by Morris water maze (MWZ) and an Aβ1–42 level was determined by ELISA. Protein and mRNA expressions were executed by immunohistochemical (IHC) staining, Western blotting, and qRT-PCR. Results Compared with the NS-treated group, sevoflurane only caused cognitive impairment and increased the level of Aβ1–42 of the brain in the Aβ-treated group. Sevoflurane inhalation but not O2 significantly increased glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule (IBA)1 expression in Aβ-treated hippocampus of rats. Expression levels for Bcl-xL, caspase-9, receptor for advanced glycation end products (RAGE) and brain-derived neurotrophic factor (BDNF) were significantly different in quantification of band intensity between the rats that inhaled O2 and sevoflurane in Aβ-treated groups (all P < 0.05). Interleukin- (IL-) 1β, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) mRNA expression increased after the rats inhaled sevoflurane in the Aβ-treated group (both P < 0.01). There were no significant differences in the change of GFAP, IBA1, Bcl-xL, caspase-9, RAGE, BDNF, IL-1β, NF-κB, and iNOS in the NS + O2 and NS + sevo group (all P > 0.05). Conclusion Sevoflurane exacerbates cognitive impairment induced by Aβ1–40 in rats through initiating neurotoxicity, neuroinflammation, and neuronal apoptosis in rat hippocampus.
Collapse
|
144
|
Cheng J, North BJ, Zhang T, Dai X, Tao K, Guo J, Wei W. The emerging roles of protein homeostasis-governing pathways in Alzheimer's disease. Aging Cell 2018; 17:e12801. [PMID: 29992725 PMCID: PMC6156496 DOI: 10.1111/acel.12801] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022] Open
Abstract
Pathways governing protein homeostasis are involved in maintaining the structural, quantitative, and functional stability of intracellular proteins and involve the ubiquitin-proteasome system, autophagy, endoplasmic reticulum, and mTOR pathway. Due to the broad physiological implications of protein homeostasis pathways, dysregulation of proteostasis is often involved in the development of multiple pathological conditions, including Alzheimer's disease (AD). Similar to other neurodegenerative diseases that feature pathogenic accumulation of misfolded proteins, Alzheimer's disease is characterized by two pathological hallmarks, amyloid-β (Aβ) plaques and tau aggregates. Knockout or transgenic overexpression of various proteostatic components in mice results in AD-like phenotypes. While both Aβ plaques and tau aggregates could in turn enhance the dysfunction of these proteostatic pathways, eventually leading to apoptotic or necrotic neuronal death and pathogenesis of Alzheimer's disease. Therefore, targeting the components of proteostasis pathways may be a promising therapeutic strategy against Alzheimer's disease.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Brian J. North
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Tao Zhang
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Xiangpeng Dai
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Kaixiong Tao
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jianping Guo
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Wenyi Wei
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| |
Collapse
|
145
|
Jarvis TS, Roland FM, Dubiak KM, Huber PW, Smith BD. Time-lapse imaging of cell death in cell culture and whole living organisms using turn-on deep-red fluorescent probes. J Mater Chem B 2018; 6:4963-4971. [PMID: 30858977 PMCID: PMC6407891 DOI: 10.1039/c8tb01495g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell death is a central process in developmental biology and also an important indicator of disease status and treatment efficacy. Two related fluorescent probes are described that are molecular conjugates of one or two zinc dipicolylamine (ZnDPA) coordination complexes with an appended solvatochromic benzothiazolium squaraine dye. The probes were designed to target the anionic phospholipid, phosphatidylserine (PS), that is exposed on the surface of dead and dying cells. A series of spectrometric and microscopy studies using liposomes and red blood cell ghosts as models showed that the probe with two ZnDPA targeting units produced higher affinity, stronger fluorescence "turn-on" effect, and better image contrast than the probe with one ZnDPA. Both fluorescent probes enabled "no-wash" time-lapse microscopic imaging of mammalian cell death within a culture. The probe with two ZnDPA units was used for non-invasive time-lapse imaging of cell death during the development of Xenopus laevis (frog) embryos. In vivo fluorescence micrographs revealed probe accumulation within the embryo tail, head and spine regions that were undergoing regression and apoptosis during growth and maturation. These new fluorescent probes are likely to be useful for time-resolved, non-invasive in vivo imaging of cell death process in range of living organisms. From a broader perspective, it should be possible to utilize the negative solvatochromism exhibited by benzothiazolium squaraine dyes for development of various "turn-on" deep-red fluorescent probes and materials that target cell surface biomarkers for in vitro and in vivo imaging.
Collapse
Affiliation(s)
- Tia S. Jarvis
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Felicia M. Roland
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kyle M. Dubiak
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul W. Huber
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
146
|
Sneha P, Panda PK, Gharemirshamlu FR, Bamdad K, Balaji S. Structural discordance in HIV-1 Vpu from brain isolate alarms amyloid fibril forming behavior- a computational perspective. J Theor Biol 2018; 451:35-45. [PMID: 29705491 DOI: 10.1016/j.jtbi.2018.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/14/2018] [Accepted: 04/25/2018] [Indexed: 11/15/2022]
Abstract
HIV-1 being the most widespread type worldwide, its accounts for almost 95% of all infections including HIV associated dementia (HAD) that triggers neurological dysfunction and neurodegeneration in patients. The common features associated with HAD and other neurodegenerative diseases are accumulation of amyloid plaques, neuronal loss and deterioration of cognitive abilities, amongst which amyloid fibrillation is considered to be a hallmark. The success of effective therapeutics lies in the understanding of mechanisms leading to neurotoxicity. Few viral proteins like gp-120 are known to be involved in aggregation and enhancement of viral infectivity while comprehending the neurotoxic role of some other proteins is still underway. In the current study, amyloidogenic potential of HIV-1 Vpu protein from brain isolate is investigated through computational approaches. The aggregation propensity of brain derived HIV-1 Vpu was assessed by several amyloid prediction servers that projected the region 4-35 to be amyloidogenic. The protein structure was modeled and subjected to 70 ns molecular dynamics (MD) simulation to investigate the transformation of α-helical conformation of the predicted aggregate region into β-sheet, proposing the protein's ability to initiate fibril formation that is central to amyloidogenic proteins. The structural features of brain derived HIV-1 Vpu were consistent with the in silico amyloid prediction results that depicts the conformational change in the region 8-28 of which residues Ala8, Ile9, Val10, Ala19, Ile20 and Val21 constitutes β-sheet formation. The α-helix/β-sheet discordance of the predicted region was reflected in the simulation study highlighting the possible structural transition associated with HIV-1 Vpu protein of brain isolate.
Collapse
Affiliation(s)
- Patil Sneha
- School of Biotechnology and Bioinformatics, D.Y. Patil deemed to be University, CBD Belapur, Sector 15, Navi Mumbai, Maharashtra 400614, India; Research and Development Centre, Bharathiar University, Coimbatore 641046 India
| | - Pritam Kumar Panda
- School of Biotechnology and Bioinformatics, D.Y. Patil deemed to be University, CBD Belapur, Sector 15, Navi Mumbai, Maharashtra 400614, India
| | | | - Kourosh Bamdad
- Faculty of Science(,) Payame Noor University, 19395-4697 Iran
| | - Seetharaman Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 Karnataka, India.
| |
Collapse
|
147
|
Ma W, Jin GW, Gehret PM, Chada NC, Suh WH. A Novel Cell Penetrating Peptide for the Differentiation of Human Neural Stem Cells. Biomolecules 2018; 8:biom8030048. [PMID: 29987263 PMCID: PMC6163344 DOI: 10.3390/biom8030048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/27/2022] Open
Abstract
Retinoic acid (RA) is a bioactive lipid that has been shown to promote neural stem cell differentiation. However, the highly hydrophobic molecule needs to first solubilize and translocate across the cell membrane in order to exert a biological response. The cell entry of RA can be aided by cell penetrating peptides (CPPs), which are short amino acid sequences that are able to carry bioactive cargo past the cell membrane. In this work, a novel cell penetrating peptide was developed to deliver RA to human neural stem cells and, subsequently, promote neuronal differentiation. The novel CPP consists of a repeating sequence, whose number of repeats is proportional to the efficiency of cell penetration. Using fluorescence microscopy, the mode of translocation was determined to be related to an endocytic pathway. The levels of β-III tubulin (Tubb3) and microtubule associated protein 2 (MAP2) expression in neural stem cells treated with RA conjugated to the CPP were assessed by quantitative immunocytochemistry.
Collapse
Affiliation(s)
- Weili Ma
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| | - Geun-Woo Jin
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| | - Paul M Gehret
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| | - Neil C Chada
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| | - Won Hyuk Suh
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
148
|
Meng X, Li N, Zhang Y, Fan D, Yang C, Li H, Guo D, Pan S. Beneficial Effect of β-Elemene Alone and in Combination with Hyperbaric Oxygen in Traumatic Brain Injury by Inflammatory Pathway. Transl Neurosci 2018; 9:33-37. [PMID: 29992051 PMCID: PMC6034101 DOI: 10.1515/tnsci-2018-0007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/09/2018] [Indexed: 11/25/2022] Open
Abstract
Background Present study evaluates the neuroprotective effect of β-elemene alone and in combination with hyperbaric oxygen (HO) in traumatic brain injury (TBI). Methodology TBI was induced by dropping a weight from a specific height. All the animals were separated in to five groups (n=20) like control group; TBI group; β-elemene treated group which receives β-elemene (100 mg/kg, i.p.) half an hour after the injury; HO group which receives hyperbaric oxygen therapy and β-elemene + HO group which receives β-elemene (100 mg/kg, i.p.) half an hour after the injury and hyperbaric oxygen therapy. Neurological function was assessed to evaluate the effect of β-elemene in TBI rats. Thereafter level of inflammatory cytokines and expression of protein of inflammatory pathway was assessed in the brain tissues of TBI rats. In addition TUNEL assay was also done for the determination apoptosis in neuronal cells. Result Data of the report reveals that β-elemene alone and in combination with hyperbaric oxygen (HO) significantly decreases the neurological score Compared to TBI group. Moreover level of inflammatory cytokines and expression of LTR4 and casepase 3 significantly decrease and increase in the expression of IkB in β-elemene alone and in combination with hyperbaric oxygen (HO) treated group compared to TBI group. Data of TUNEL assay also reveals that β-elemene treated group shows significant decrease in the TUNEL positive cells and apoptosis index compared to TBI group. Conclusion Thus present study concludes the neuroprotective effect of β-elemene against TBI and it shows synergistic effect on TBI when treated with HO.
Collapse
Affiliation(s)
- Xiangen Meng
- Department of Hyperbric Oxygen, Navy General Hospital, Beijing, 100048, P.R. China
| | - Na Li
- Department of Hyperbric Oxygen, Navy General Hospital, Beijing, 100048, P.R. China
| | - Yu Zhang
- Department of Hyperbric Oxygen, Navy General Hospital, Beijing, 100048, P.R. China
| | - Danfeng Fan
- Department of Hyperbric Oxygen, Navy General Hospital, Beijing, 100048, P.R. China
| | - Chen Yang
- Department of Hyperbric Oxygen, Navy General Hospital, Beijing, 100048, P.R. China
| | - Hang Li
- Department of Hyperbric Oxygen, Navy General Hospital, Beijing, 100048, P.R. China
| | - Dazhi Guo
- Department of Hyperbric Oxygen, Navy General Hospital, Beijing, 100048, P.R. China
| | - Shuyi Pan
- Department of Hyperbric Oxygen, Navy General Hospital, Beijing, 100048, P.R. China
| |
Collapse
|
149
|
Xu D, Zhao H, Gao H, Zhao H, Liu D, Li J. Participation of pro-inflammatory cytokines in neuropathic pain evoked by chemotherapeutic oxaliplatin via central GABAergic pathway. Mol Pain 2018; 14:1744806918783535. [PMID: 29900804 PMCID: PMC6047101 DOI: 10.1177/1744806918783535] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Neuropathic pain is observed in patients as chemotherapeutic oxaliplatin is
used to treat metastatic digestive tumors; however, the mechanisms
responsible for hyperalgesia are not well understood. Chronic
neuroinflammation is one of the hallmarks of pathophysiology of neuropathic
pain. Since the midbrain periaqueductal gray is an important component of
the descending inhibitory pathway controlling on central pain transmission,
we examined the role for pro-inflammatory cytokines system of the
periaqueductal gray in regulating mechanical hyperalgesia and cold
hypersensitivity evoked by oxaliplatin. Methods Neuropathic pain was induced by intraperitoneal injection of oxaliplatin in
rats. ELISA and western blot analysis were used to examine pro-inflammatory
cytokine levels and their receptors expression. Results IL-1β, IL-6, and TNF-α were elevated within the periaqueductal gray of
oxaliplatin rats. Protein expression of IL-1β, IL-6, and TNF-α receptors
(namely, IL-1R, IL-6R, and TNFR subtype TNFR1) in the plasma membrane
periaqueductal gray of oxaliplatin rats was upregulated, whereas the total
expression of pro-inflammatory cytokine receptors was not altered. In
oxaliplatin rats, impaired inhibitory gamma-aminobutyric acid within the
periaqueductal gray was accompanied with decreases in withdrawal thresholds
to mechanical stimulus and % time spent on the cold plate. Our data further
showed that the concentrations of gamma-aminobutyric acid were largely
restored by blocking those pro-inflammatory cytokine receptors in
periaqueductal gray of oxaliplatin rats; and mechanical hyperalgesia and
cold hypersensitivity evoked by oxaliplatin were attenuated. Stimulation of
gamma-aminobutyric acid receptors in the periaqueductal gray also blunted
neuropathic pain in oxaliplatin rats. Conclusions Our data suggest that the upregulation of pro-inflammatory cytokines and
membrane pro-inflammatory cytokine receptor in the periaqueductal gray of
oxaliplatin rats is likely to impair the descending inhibitory pathways in
regulating pain transmission and thereby contributes to the development of
neuropathic pain after application of chemotherapeutic oxaliplatin.
Collapse
Affiliation(s)
- Dongsheng Xu
- 1 Tumor Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Zhao
- 1 Tumor Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Han Gao
- 1 Tumor Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huiling Zhao
- 1 Tumor Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dandan Liu
- 2 Center of Physical Examination, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Li
- 3 Department of Radiology, The First Hospital (Eastern Division) of Jilin University, Changchun, Jilin, China
| |
Collapse
|
150
|
Gholinejad M, Jafari Anarkooli I, Taromchi A, Abdanipour A. Adenosine decreases oxidative stress and protects H 2O 2-treated neural stem cells against apoptosis through decreasing Mst1 expression. Biomed Rep 2018; 8:439-446. [PMID: 29732147 DOI: 10.3892/br.2018.1083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
Overproduction of free radicals during oxidative stress induces damage to key biomolecules and activates programed cell death pathways. Neuronal cell death in the nervous system leads to a number of neurodegenerative diseases. The aim of the present study was to evaluate the neuroprotective effect of adenosine on inhibition of apoptosis induced by hydrogen peroxide (H2O2) in bone marrow-derived neural stem cells (B-dNSCs), with focus on its regulatory effect on the expression of mammalian sterile 20-like kinase 1 (Mst1), as a novel proapoptotic kinase. B-dNSCs were exposed to adenosine at different doses (2, 4, 6, 8 and 10 µM) for 48 h followed by 125 µM H2O2 for 30 min. Using MTT, terminal deoxynucleotidyl transferase dUTP nick-end labeling and real-time reverse transcription polymerase chain reaction assays, the effects of adenosine on cell survival, apoptosis and Mst1, nuclear factor (erythroid-derived 2)-like 2 and B-cell lymphoma 2 and adenosine A1 receptor expression were evaluated in pretreated B-dNSCs compared with controls (cells treated with H2O2 only). Firstly, results of the MTT assay indicated 6 µM adenosine to be the most protective dose in terms of promotion of cell viability. Subsequent assays using this dosage indicated that apoptosis rate and Mst1 expression in B-dNSCs pretreated with 6 µM adenosine were significantly decreased compared with the control group. These findings suggest that adenosine protects B-dNSCs against oxidative stress-induced cell death, and therefore, that it may be used to promote the survival rate of B-dNSCs and as a candidate for the treatment of oxidative stress-mediated neurological diseases.
Collapse
Affiliation(s)
- Masoumeh Gholinejad
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Iraj Jafari Anarkooli
- Department of Anatomy, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Amirhossein Taromchi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Alireza Abdanipour
- Department of Anatomy, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| |
Collapse
|