101
|
Su P, Yang Y, Wang G, Chen X, Ju Y. Curcumin attenuates resistance to irinotecan via induction of apoptosis of cancer stem cells in chemoresistant colon cancer cells. Int J Oncol 2018; 53:1343-1353. [PMID: 29956726 DOI: 10.3892/ijo.2018.4461] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/30/2018] [Indexed: 11/06/2022] Open
Abstract
Resistance to conventional chemotherapeutic agents, including irinotecan (CPT‑11), 5-fluorouracil and capecitabine is a major cause for therapeutic failure in patients with colorectal cancer (CRC). Increasing evidence has demonstrated that cancer cells exhibiting stem cell-like characteristics are associated with the development of resistance to chemotherapeutic agents. As a plant polyphenol, curcumin has been demonstrated to have the ability to ameliorate resistance of CRC to chemotherapeutic agents, but the associations among curcumin, cancer stem cells (CSCs) and chemoresistance of CRC remain unclear. The present study established a CPT‑11-resistant colon cancer cell line, LoVo/CPT‑11 cells, and detected the expression levels of CSC identification markers [cluster of differentiation (CD)44, CD133, epithelial cell adhesion molecule (EpCAM) and CD24] in parental cells and CPT‑11-resistant cells. It was revealed that the expression levels of the colon CSC markers in LoVo/CPT‑11 cells were significantly higher compared those in parental cells at the mRNA and protein level. The effect of curcumin on the chemoresistance to CPT‑11 and the expression levels of CSC identification markers in LoVo/CPT‑11 cells separately treated with curcumin and CPT‑11 were further investigated. The results revealed that curcumin significantly attenuated chemoresistance to CPT‑11, and treatment with curcumin resulted in a significant reduction of the expression levels of CSC identification markers. Furthermore, a tumor sphere formation assay was used to enrich colon CSCs from LoVo/CPT‑11 cells, and demonstrated that curcumin efficiently diminished the traits of colon CSCs, as evidenced by the inability to form tumor spheres, the reduction in the expression of CSC identification markers, and apoptosis-induced effects on sphere-forming cells treated with curcumin alone or in combination with CPT‑11. Altogether, the present data demonstrated that curcumin attenuated resistance to chemotherapeutic drugs through induction of apoptosis of CSCs among colon cancer cells. These findings may provide novel evidence for the therapeutic application of curcumin in CRC intervention.
Collapse
Affiliation(s)
- Pengfei Su
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, Shunde, Guangdong 528300, P.R. China
| | - Yong Yang
- Department of General Surgery, Heping Hospital Affiliated with Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Guoxin Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, Shunde, Guangdong 528300, P.R. China
| | - Xiaowu Chen
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, Shunde, Guangdong 528300, P.R. China
| | - Yongle Ju
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, Shunde, Guangdong 528300, P.R. China
| |
Collapse
|
102
|
Sonodynamic therapy: A potential treatment for atherosclerosis. Life Sci 2018; 207:304-313. [PMID: 29940244 DOI: 10.1016/j.lfs.2018.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 06/07/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022]
Abstract
Atherosclerosis (AS), a chronic arterial disease, is one of the major causes of morbidity and mortality worldwide. Several treatment modalities have been demonstrated to be effective in treating AS; however, the mortality rate due to AS remains high. Sonodynamic therapy (SDT) is a promising new treatment using low-intensity ultrasound in combination with sonosensitizers. Although SDT was developed from photodynamic therapy (PDT), it has a stronger tissue-penetrating capability and exhibits a more focused effect on the target lesional site requiring treatment. Furthermore, SDT has been demonstrated to suppress the formation of atheromatous plaques, and it can increase plaque stability both in vitro and in vivo. In this article, we critically summarize the recent literature on SDT, focusing on its possible mechanism of action as well as the existing and newly discovered sonosensitizers and chemotherapeutic agents for the treatment of AS.
Collapse
|
103
|
Ryu EJ, Kim DW, Shin MJ, Jo HS, Park JH, Cho SB, Lee CH, Yeo HJ, Yeo EJ, Choi YJ, Kim DS, Cho SW, Cho YJ, Sohn EJ, Son O, Lee KW, Han KH, Park J, Eum WS, Choi SY. PEP‑1‑glutaredoxin 1 protects against hippocampal neuronal cell damage from oxidative stress via regulation of MAPK and apoptotic signaling pathways. Mol Med Rep 2018; 18:2216-2228. [PMID: 29916538 DOI: 10.3892/mmr.2018.9176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/11/2018] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress is known to be a primary risk factor for neuronal diseases. Glutaredoxin (GLRX)‑1, a redox‑regulator of the thioredoxin superfamily, is known to exhibit an important role in cell survival via various cellular functions. However, the precise roles of GLRX1 in brain ischemia are still not fully understood. The present study investigated whether transduced PEP‑1‑GLRX1 protein has protective effects against oxidative stress in cells and in an animal model. Transduced PEP‑1‑GLRX1 protein increased HT‑22 cell viability under oxidative stress and this fusion protein significantly reduced intracellular reactive oxygen species and levels of DNA damage. In addition, PEP‑1‑GLRX1 protein regulated RAC‑a serine/threonine‑protein kinase and mitogen‑activated protein kinase signaling, in addition to apoptotic signaling including B cell lymphoma (Bcl)‑2, Bcl‑2 associated X, apoptosis regulator, pro‑caspase‑9 and p53 expression levels. In an ischemic animal model, it was verified that PEP‑1‑GLRX1 transduced into the Cornu Ammonis 1 region of the animal brain, where it markedly protected against ischemic injury. These results indicate that PEP‑1‑GLRX1 attenuates neuronal cell death resulting from oxidative stress in vitro and in vivo. Therefore, PEP‑1‑GLRX1 may exhibit a beneficial role in the treatment of neuronal disorders, including ischemic injury.
Collapse
Affiliation(s)
- Eun Ji Ryu
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of South Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Su Bin Cho
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Chi Hern Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan‑Si, South Chungcheong 31538, Republic of South Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Republic of South Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon, Gangwon 24253, Republic of South Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Ora Son
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Keun Wook Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| |
Collapse
|
104
|
Kim HY, Jang JE, Ahn DR. Dimeric Human β-Defensin 3 as a Universal Platform for Intracellular Delivery of Nucleic Acid Cargos. ACS APPLIED BIO MATERIALS 2018. [DOI: 10.1021/acsabm.8b00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
105
|
Inhibition of Endoplasmic Reticulum Stress-induced Apoptosis by Silkworm Storage Protein 1. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-017-0424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
106
|
Deng M, Jiang Z, Li Y, Zhou Y, Li J, Wang X, Yao Y, Wang W, Li P, Xu B. Effective elimination of adult B-lineage acute lymphoblastic leukemia by disulfiram/copper complex in vitro and in vivo in patient-derived xenograft models. Oncotarget 2018; 7:82200-82212. [PMID: 27203215 PMCID: PMC5347685 DOI: 10.18632/oncotarget.9413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/28/2016] [Indexed: 11/25/2022] Open
Abstract
Disulfiram (DS), a clinically used drug to control alcoholism, has displayed promising anti-cancer activity against a wide range of tumors. Here, we demonstrated that DS/copper (Cu) complex effectively eliminated adult B-ALL cells in vitro and in vivo in patient-derived xenograft (PDX) humanized mouse models, reflected by inhibition of cell proliferation, induction of apoptosis, suppression of colony formation, and reduction of PDX tumor growth, while sparing normal peripheral blood mononuclear cells. Mechanistically, these events were associated with disruption of mitochondrial membrane potential and down-regulation of the anti-apoptotic proteins Bcl-2 and Bcl-xL. Further analysis on B-ALL patients' clinical characteristics revealed that the ex vivo efficacy of DS/Cu in primary samples was significantly correlated to p16 gene deletion and peripheral blood WBC counts at diagnosis, while age, LDH level, extramedullary infiltration, status post intensive induction therapy, immune phenotype, risk category, and Ph chromosome had no effect. Together, these findings indicate that disulfiram, particularly when administrated in combination with copper, might represent a potential repurposing agent for treatment of adult B-ALL patients, including those clinically characterized by one or more adverse prognostic factors.
Collapse
Affiliation(s)
- Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwu Jiang
- Key Laboratory of Regenerative Biology, Southern China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yin Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jie Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangmeng Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yao Yao
- Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Weiguang Wang
- Research Institute for Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Peng Li
- Key Laboratory of Regenerative Biology, Southern China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
107
|
Premkumar J, Thottiam Vasudevan R. Bioingredients: functional properties and health impacts. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
108
|
Liu Y, Zhang X, Zhou M, Nan X, Chen X, Zhang X. Mitochondrial-Targeting Lonidamine-Doxorubicin Nanoparticles for Synergistic Chemotherapy to Conquer Drug Resistance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43498-43507. [PMID: 29171954 DOI: 10.1021/acsami.7b14577] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lonidamine (LND) can act on mitochondria and inhibit energy metabolism in cancer cells and therefore has been used together with chemotherapy drugs for synergistically enhanced therapeutic efficacy. However, its use is hindered by the poor solubility and slow diffusion in the cytoplasm. To address these problems, we designed and prepared aqueous dispersible nanoparticles (NPs) containing integrated components including triphenylphosphine (TPP) to target the mitochondria of cells and LND and doxorubicin (DOX) for synergistic cancer treatment and conquering drug resistance. This design allows the NPs to concentrate in the mitochondria of cells, solve the low solubility of LND, and contain very high load of LND and DOX in comparison with previously reported drug-delivery systems based on various carrier nanomaterials. Detailed mechanism studies reveal that TPP-LND-DOX NPs could induce significant reactive oxygen species production, mitochondrial membrane potential decrease, and mitochondrial apoptosis pathway, thereby leading to great cytotoxicity in cancer cells. In vivo anticancer activities indicate that TPP-LND-DOX NPs exhibit the highest efficacy in tumor inhibition among all tested groups and show high effectiveness in drug-resistant model. This work demonstrates the potential use of our TPP-LND-DOX NPs to jointly promote the mitochondria apoptosis pathway and contribute to conquer drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Yanqiu Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University , Suzhou, Jiangsu 215123, P.R. China
| | - Xiujuan Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University , Suzhou, Jiangsu 215123, P.R. China
| | - Mengjiao Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University , Suzhou, Jiangsu 215123, P.R. China
| | - Xueyan Nan
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University , Suzhou, Jiangsu 215123, P.R. China
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh , Edinburgh EH9 3JL, United Kingdom
| | - Xiaohong Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University , Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
109
|
Liu H, Zhou M. Antitumor effect of Quercetin on Y79 retinoblastoma cells via activation of JNK and p38 MAPK pathways. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:531. [PMID: 29237430 PMCID: PMC5729262 DOI: 10.1186/s12906-017-2023-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
Background Quercetin (QCT) is a flavonol present in many vegetables, it is proved to show chemo preventive effect against lung, cervical, prostate, breast and colon cancer due to its anti-inflammatory, anti-tumor and anti-oxidant property. Looking into the reported chemo-preventive effect we speculated antitumor activity in retinoblastoma (RB) Y79 cells, we also studied the molecular mechanism for antitumor activity. Methods The effect of QCT on Y79 cell viability count was done by cell counting kit, cell cycle distribution, apoptosis studies and mitochondrial membrane potential was evaluated by flow cytometry. Protein expression was done by western blot analysis. Results The outcomes of study showed that QCT reduced Y79 cell viability and caused arrest of G1 phase in cell cycle via decreasing the expression levels of cyclin-dependent kinase (CDK)2/6 and cyclin D3 and by increasing the levels of both CDK inhibitor proteins p21 and p27. Apoptosis of Y79 cells mediated by QCT occurred via activation of both caspases-3/-9. Flow cytometry studies showed that QCT caused collapse in mitochondrial membrane potential (ΔΨm) in Y79 cells. Western blot studies confirmed that QCT brought about phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). We also established that inhibitors of JNK and p38 MAPK suppressed QCT mediated activation of both caspases-3/-9 and subdued the apoptosis of cancerous Y79 cells. Conclusion All the results of the study suggest that QCT induced the apoptosis of Y79 cells via activation of JNK and p38 MAPK pathways, providing a novel treatment approach for human RB.
Collapse
|
110
|
Protective Effects of Hesperidin (Citrus Flavonone) on High Glucose Induced Oxidative Stress and Apoptosis in a Cellular Model for Diabetic Retinopathy. Nutrients 2017; 9:nu9121312. [PMID: 29207476 PMCID: PMC5748762 DOI: 10.3390/nu9121312] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate the protective effects and mechanisms of hesperidin, a plant based active flavanone found in citrus fruits, under the oxidative stress and apoptosis induced by high levels of glucose in retinal ganglial cells (RGCs). RGC-5 cells were pretreated with hesperidin (12.5, 25, or 50 μmol/L) for 6 h followed by exposure to high (33.3 mmol/L) d-glucose for 48 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was adopted to evaluate cell viability. Mitochondrial function was estimated by measuring the mitochondrial membrane potential (ΔΨm). A fluorescent probe was employed to evaluate the intercellular production of reactive oxygen species (ROS). Colorimetric assay kits were used to evaluate lipid peroxidation, antioxidant enzyme activities, and protein carbonyls formation. The expression of apoptosis-related proteins and mitogen-activated protein kinase (MAPK) were measured with Western blotting. Hesperidin inhibited high glucose-mediated cell loss and restored mitochondrial function including a reversion of ΔΨm loss and cytochrome c release. Treated with hesperidin, high glucose-induced increase in ROS, malondialdehyde, and protein carbonyl levels were blocked in RGC-5 cells. Hesperidin was found to elevate the activities of superoxide dismutase, catalase, glutathione peroxidase, and to recover glutathione levels. Hesperidin inhibited high glucose-induced cell apoptosis by attenuating the downregulation of caspase-9, caspase-3, and Bax/Bcl-2. Furthermore, the phosphorylation of c-Jun N-terminal kinases (JNK) and p38 MAPK triggered by high glucose were attenuated in RGC-5 cells after their incubation with hesperdin. We concluded that hesperidin may protect RGC-5 cells from high glucose-induced injury since it owns the properties of antioxidant action and blocks mitochondria-mediated apoptosis.
Collapse
|
111
|
Thomas AP, Palanikumar L, Jeena MT, Kim K, Ryu JH. Cancer-mitochondria-targeted photodynamic therapy with supramolecular assembly of HA and a water soluble NIR cyanine dye. Chem Sci 2017; 8:8351-8356. [PMID: 29619181 PMCID: PMC5858757 DOI: 10.1039/c7sc03169f] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022] Open
Abstract
Mitochondria-targeted cancer therapies have proven to be more effective than other similar non-targeting techniques, especially in photodynamic therapy (PDT). Indocyanine dye derivatives, particularly IR-780, are widely known for their PDT utility. However, poor water solubility, dark toxicity, and photobleaching are limiting factors for these dyes, which otherwise show promise based on their good absorption in the near-infrared (NIR) region and mitochondria targeting ability. Herein, we introduce an indocyanine derivative (IR-Pyr) that is highly water soluble, exhibiting higher mitochondrial targetability and better photostability than IR-780. Furthermore, electrostatic interactions between the positively charged IR-Pyr and negatively charged hyaluronic acid (HA) were utilized to construct a micellar aggregate that is selective towards cancer cells. The cancer mitochondria-targeted strategy confirms high PDT efficacy as proved by in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Ajesh P Thomas
- Department of Chemistry , School of Natural Sciences , Ulsan National Institute of Science and Technology (UNIST) , Ulsan-44919 , South Korea .
| | - L Palanikumar
- Department of Chemistry , School of Natural Sciences , Ulsan National Institute of Science and Technology (UNIST) , Ulsan-44919 , South Korea .
| | - M T Jeena
- Department of Chemistry , School of Natural Sciences , Ulsan National Institute of Science and Technology (UNIST) , Ulsan-44919 , South Korea .
| | - Kibeom Kim
- Department of Chemistry , School of Natural Sciences , Ulsan National Institute of Science and Technology (UNIST) , Ulsan-44919 , South Korea .
| | - Ja-Hyoung Ryu
- Department of Chemistry , School of Natural Sciences , Ulsan National Institute of Science and Technology (UNIST) , Ulsan-44919 , South Korea .
| |
Collapse
|
112
|
Langemann D, Trochimiuk M, Appl B, Hundsdoerfer P, Reinshagen K, Eschenburg G. Sensitization of neuroblastoma for vincristine-induced apoptosis by Smac mimetic LCL161 is attended by G2 cell cycle arrest but is independent of NFκB, RIP1 and TNF-α. Oncotarget 2017; 8:87763-87772. [PMID: 29152118 PMCID: PMC5675670 DOI: 10.18632/oncotarget.21193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/14/2017] [Indexed: 12/29/2022] Open
Abstract
We demonstrated sensitization for chemotherapy by Smac mimetic (SM) LCL161, a potent antagonist of inhibitor of apoptosis proteins (IAP), in neuroblastoma (NB). Vinca alkaloids, particularly vincristine (VCR), displayed the strongest impact on inhibition of proliferation and apoptosis induction in combination with LCL161. The underlying signaling pathways remain elusive, though. LCL161 induces a quick degradation of cellular IAP 1 (cIAP-1). Combination of LCL161 with VCR had only marginal effects on X-linked IAP (XIAP) protein expression. Cell death is accompanied by activation of intrinsic (caspase-9 and MMP) and extrinsic (caspase-8) pathways of apoptosis, repression of migratory potential and cell cycle arrest in G2 phase. LCL161-induced cIAP degradation leads to activation of non-canonical and blockade of canonical NF-κB pathways but not induction of apoptosis. Surprisingly NF-κB and TNF-α signaling is negligible for VCR- and VCR/LCL161-induced apoptosis since chemical inhibition of NF-κB using BAY-7085 and PBS-1086, as well as application of TNF-α blocking antibody Humira (adalimumab) has no relevant effect on cell death. Recently formation of a TNF-α-independent complex (ripoptosome) consisting of RIP1, FADD and caspase-8 following IAP inhibition by SM has been described. However, targeting of RIP1 by Necrostatin was not sufficient to influence apoptosis induced by VCR/LCL161.
Collapse
Affiliation(s)
- Doerte Langemann
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Magdalena Trochimiuk
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Appl
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Hundsdoerfer
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Eschenburg
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
113
|
Fiocchetti M, Cipolletti M, Brandi V, Polticelli F, Ascenzi P. Neuroglobin and friends. J Mol Recognit 2017; 30. [DOI: 10.1002/jmr.2654] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/05/2017] [Accepted: 06/14/2017] [Indexed: 01/02/2023]
Affiliation(s)
| | | | | | - Fabio Polticelli
- Dipartimento di Scienze; Università Roma Tre; Rome Italy
- Istituto Nazionale di Fisica Nucleare; Sezione dell'Università Roma Tre; Rome Italy
| | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica; Università Roma Tre; Rome Italy
| |
Collapse
|
114
|
Yan H, Che X, Lv Q, Zhang L, Dongol S, Wang Y, Sun H, Jiang J. Grifolin induces apoptosis and promotes cell cycle arrest in the A2780 human ovarian cancer cell line via inactivation of the ERK1/2 and Akt pathways. Oncol Lett 2017; 13:4806-4812. [PMID: 28588729 PMCID: PMC5452918 DOI: 10.3892/ol.2017.6092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/28/2017] [Indexed: 12/30/2022] Open
Abstract
Grifolin, a secondary metabolic product isolated from the mushroom Albatrellus confluence, has been demonstrated to possess antitumor activities in a variety of malignant cells. However, the signaling pathways and the molecular mechanisms underlying the anticancer effects of the agent in human ovarian cancer remain to be elucidated. The aim of the present study was to examine the effect of grifolin treatment on the human ovarian cancer cell line, A2780. MTT and flow cytometry analysis were used to analyze the viability of A2780 cells following treatment with grifolin. Western blotting was used analyze the expression of apoptosis-associated and cell cycle arrest-associated proteins. The results of MTT assays and flow cytometry analysis revealed that grifolin suppressed cell viability, induced apoptosis and triggered cell cycle arrest. Western blotting revealed that grifolin treatment resulted in inactivation of protein kinase B (Akt) and extracellular signal-related kinase 1/2 (ERK1/2), accompanied by upregulation of Bcl-2 associated X, apoptosis regulator, cleaved-caspase-3 and cleaved-poly (ADP-ribose) polymerase, and downregulation of B cell lymphoma-2, cyclin dependent kinase 4 and cyclinD1. The results of the present study indicated that grifolin had significant anti-cancer effects on the human ovarian cancer A2780 cells, which occurred via the Akt and ERK1/2 signaling pathways to at least a certain extent. These results demonstrate the therapeutic potential of grifolin as a treatment for ovarian cancer.
Collapse
Affiliation(s)
- Hong Yan
- Department of Obstetrics and Gynecology, Shandong University Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Obstetrics and Gynecology, Women and Children's Hospital, Decheng Dezhou, Shandong 253017, P.R. China
| | - Xiaoxia Che
- Department of Obstetrics and Gynecology, Shandong University Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qingtao Lv
- Department of Pharmaceutical Chemistry, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| | - Lili Zhang
- Department of Ultrasonography, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250355, P.R. China
| | - Samina Dongol
- Department of Obstetrics and Gynecology, Shandong University Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yilin Wang
- Department of Obstetrics and Gynecology, Shandong University Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hengzi Sun
- Department of Obstetrics and Gynecology, Shandong University Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Shandong University Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
115
|
Yin Z, Zhao X, Yang D, Cao X, Yu Y, Jiang H, Zhou X, Li C, Guo Q. LFG-500, a newly synthesized flavonoid, induces apoptosis in human ovarian carcinoma SKOV3 cells with involvement of the reactive oxygen species-mitochondria pathway. Exp Ther Med 2017; 13:2819-2827. [PMID: 28587346 PMCID: PMC5450748 DOI: 10.3892/etm.2017.4343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/01/2016] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is the main cause of gynecologic malignancy-related mortality in women. Therefore, the disease requires improvements in treatment options and in the potency of chemotherapeutic drugs. The study of apoptosis in tumor cells is an important field for cancer therapy and cancer molecular biology. It has recently been established that LFG-500, a new synthesized flavonoid with a piperazine and benzyl group substitution, has strong anticancer activity. However, its exact molecular mechanism is not fully understood. The present study aimed to examine the effects of LFG-500 on human ovarian cancer SKOV3 cells, as well as to identify its underlying mechanisms. The data showed that LFG-500 inhibited the growth of SKOV3 cells in a concentration-dependent manner. It was found that LFG-500 induced apoptosis in SKOV3 cells, detected by DAPI staining and an Annexin V/PI double-staining assay. Moreover, LFG-500 reduced caspase-3 protein expression and increased the Bcl-2-associated X protein/B-cell lymphoma 2 protein ratio. Further findings revealed that LFG-500 treatment resulted in reactive oxygen species (ROS) accumulation and loss of mitochondrial transmembrane potential. Collectively, these results demonstrated that LFG-500 efficiently induced apoptosis in SKOV3 cells, an event possibly associated with the trigging of the mitochondrial apoptotic pathway through ROS accumulation. Therefore, LFG-500 shows potential as a potent anticancer agent for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Zeyuan Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xue Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Dan Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xin Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Haijing Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
116
|
Farghadani R, Rajarajeswaran J, Mohd Hashim NB, Abdulla MA, Muniandy S. A novel β-diiminato manganeseIII complex as the promising anticancer agent induces G0/G1 cell cycle arrest and triggers apoptosis via mitochondrial-dependent pathways in MCF-7 and MDA-MB-231 human breast cancer cells. RSC Adv 2017. [DOI: 10.1039/c7ra02478a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Novel β-diiminato manganeseIII complex has shown promising anti-breast cancer activity.
Collapse
Affiliation(s)
- Reyhaneh Farghadani
- Department of Molecular Medicine
- Faculty of Medicine
- University of Malaya
- Kuala Lumpur
- Malaysia
| | | | | | - Mahmood Ameen Abdulla
- Department of Biomedical Science
- Faculty of Medicine
- University of Malaya
- Kuala Lumpur
- Malaysia
| | | |
Collapse
|
117
|
Meng Q, Zhao Y, An L, Li X, Liu P. Inhibitory effect of bufalin on retinoblastoma cells (HXO-RB44) via the independent mitochondrial and death receptor pathway. Am J Transl Res 2016; 8:4968-4974. [PMID: 27904697 PMCID: PMC5126339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Cinobufacini (Huachansu) is a Chinese medicine prepared from the skin of Bufo bufo gargarizans Cantor (Bufonidae), and has long been used in traditional Chinese medicine. In the present study, the anti-retinoblastoma constituent bufalin obtained from Cinobufacini was investigated. Treatment of human retinoblastoma (HXO-RB44) cells with bufalin induced apoptosis which was accompanied by a decrease in mitochondrial membrane potential, activation of caspase-9, caspase-8 and caspase-3, as well as changes in the expression of cytochrome C. Bufalin induced the cleavage of caspase-3 and apoptosis, and it was inhibited by both Z-LETD-FMK and Z-IETD-FMK treatment. Taken together, these results demonstrate that bufalin-induced apoptosis in human retinoblastoma (HXO-RB44) cells involved both intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Qingfeng Meng
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Yan Zhao
- Department of Allergy, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - LiXin An
- Department of Allergy, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Xia Li
- Department of Bioinformatic, The Harbin Medical UniversityHarbin 150086, Heilongjiang Province, China
| | - Ping Liu
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| |
Collapse
|
118
|
Wang ZK, Zhou XL, Song XB, Zhuang DM, Wang ZY, Yang DB, Wang L. Alleviation of Lead-Induced Apoptosis by Puerarin via Inhibiting Mitochondrial Permeability Transition Pore Opening in Primary Cultures of Rat Proximal Tubular Cells. Biol Trace Elem Res 2016; 174:166-176. [PMID: 27116952 DOI: 10.1007/s12011-016-0701-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/08/2016] [Indexed: 12/22/2022]
Abstract
Previous study has demonstrated that mitochondrial-dependent apoptotic pathway is involved in the nephroprotective effect of puerarin (PU) against lead-induced cytotoxicity in primary cultures of rat proximal tubular (rPT) cells. To further clarify how PU exerts its antiapoptotic effects, this study was designed to investigate the role of mitochondrial permeability transition (MPT) and subsequent apoptotic events in the process of PU against Pb-induced cytotoxicity in rPT cells. The results showed that Pb-mediated mitochondrial permeability transition pore (MPTP) opening together with mitochondrial cytochrome c release, activations of caspase-9 and caspase-3, and subsequent poly-ADP-ribose polymerase (PARP) cleavage can be effectively blocked by the addition of PU. Simultaneously, upregulation and downregulation of Bcl-2 and Bax with increased Bcl-2/Bax ratio due to PU administration further alleviated Pb-induced mitochondrial apoptosis. Moreover, PU can reverse Pb-induced ATP depletion by restoring mitochondrial fragmentation to affect ATP production and by regulating expression levels of ANT-1 and ANT-2 to improve ATP transport. In summary, PU produced a significant protection against Pb-induced mitochondrial apoptosis in rPT cells by inhibiting MPTP opening to ameliorate the mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhong-Kun Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, China
| | - Xue-Lei Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611130, China
| | - Xiang-Bin Song
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, China
| | - Dong-Ming Zhuang
- Institute of Pathogen Biology, Taishan Medical College, East Road of Yingsheng No.2, Tai'an, 271000, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, China
| | - Du-Bao Yang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, China.
| |
Collapse
|
119
|
Morén C, González-Casacuberta I, Álvarez-Fernández C, Bañó M, Catalán-Garcia M, Guitart-Mampel M, Juárez-Flores DL, Tobías E, Milisenda J, Cardellach F, Gatell JM, Sánchez-Palomino S, Garrabou G. HIV-1 promonocytic and lymphoid cell lines: an in vitro model of in vivo mitochondrial and apoptotic lesion. J Cell Mol Med 2016; 21:402-409. [PMID: 27758070 PMCID: PMC5264141 DOI: 10.1111/jcmm.12985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/21/2016] [Indexed: 11/29/2022] Open
Abstract
To characterize mitochondrial/apoptotic parameters in chronically human immunodeficiency virus (HIV-1)-infected promonocytic and lymphoid cells which could be further used as therapeutic targets to test pro-mitochondrial or anti-apoptotic strategies as in vitro cell platforms to deal with HIV-infection. Mitochondrial/apoptotic parameters of U1 promonocytic and ACH2 lymphoid cell lines were compared to those of their uninfected U937 and CEM counterparts. Mitochondrial DNA (mtDNA) was quantified by rt-PCR while mitochondrial complex IV (CIV) function was measured by spectrophotometry. Mitochondrial-nuclear encoded subunits II-IV of cytochrome-c-oxidase (COXII-COXIV), respectively, as well as mitochondrial apoptotic events [voltage-dependent-anion-channel-1(VDAC-1)-content and caspase-9 levels] were quantified by western blot, with mitochondrial mass being assessed by spectrophotometry (citrate synthase) and flow cytometry (mitotracker green assay). Mitochondrial membrane potential (JC1-assay) and advanced apoptotic/necrotic events (AnexinV/propidium iodide) were measured by flow cytometry. Significant mtDNA depletion spanning 57.67% (P < 0.01) was found in the U1 promonocytic cells further reflected by a significant 77.43% decrease of mitochondrial CIV activity (P < 0.01). These changes were not significant for the ACH2 lymphoid cell line. COXII and COXIV subunits as well as VDAC-1 and caspase-9 content were sharply decreased in both chronic HIV-1-infected promonocytic and lymphoid cell lines (<0.005 in most cases). In addition, U1 and ACH2 cells showed a trend (moderate in case of ACH2), albeit not significant, to lower levels of depolarized mitochondrial membranes. The present in vitro lymphoid and especially promonocytic HIV model show marked mitochondrial lesion but apoptotic resistance phenotype that has been only partially demonstrated in patients. This model may provide a platform for the characterization of HIV-chronicity, to test novel therapeutic options or to study HIV reservoirs.
Collapse
Affiliation(s)
- Constanza Morén
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine-University of Barcelona, Internal Medicine Department-Hospital Clínic of Barcelona (HCB), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ingrid González-Casacuberta
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine-University of Barcelona, Internal Medicine Department-Hospital Clínic of Barcelona (HCB), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Carmen Álvarez-Fernández
- Cellex-IDIBAPS, Faculty of Medicine-University of Barcelona, Infectious Diseases Unit-Hospital Clínic of Barcelona (HCB), Barcelona, Spain
| | - Maria Bañó
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine-University of Barcelona, Internal Medicine Department-Hospital Clínic of Barcelona (HCB), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marc Catalán-Garcia
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine-University of Barcelona, Internal Medicine Department-Hospital Clínic of Barcelona (HCB), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mariona Guitart-Mampel
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine-University of Barcelona, Internal Medicine Department-Hospital Clínic of Barcelona (HCB), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Diana Luz Juárez-Flores
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine-University of Barcelona, Internal Medicine Department-Hospital Clínic of Barcelona (HCB), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ester Tobías
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine-University of Barcelona, Internal Medicine Department-Hospital Clínic of Barcelona (HCB), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid, Spain
| | - José Milisenda
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine-University of Barcelona, Internal Medicine Department-Hospital Clínic of Barcelona (HCB), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Francesc Cardellach
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine-University of Barcelona, Internal Medicine Department-Hospital Clínic of Barcelona (HCB), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Josep Maria Gatell
- Cellex-IDIBAPS, Faculty of Medicine-University of Barcelona, Infectious Diseases Unit-Hospital Clínic of Barcelona (HCB), Barcelona, Spain
| | - Sonsoles Sánchez-Palomino
- Cellex-IDIBAPS, Faculty of Medicine-University of Barcelona, Infectious Diseases Unit-Hospital Clínic of Barcelona (HCB), Barcelona, Spain
| | - Glòria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine-University of Barcelona, Internal Medicine Department-Hospital Clínic of Barcelona (HCB), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
120
|
Song XB, Liu G, Wang ZY, Wang L. Puerarin protects against cadmium-induced proximal tubular cell apoptosis by restoring mitochondrial function. Chem Biol Interact 2016; 260:219-231. [PMID: 27717697 DOI: 10.1016/j.cbi.2016.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/03/2016] [Accepted: 10/03/2016] [Indexed: 12/26/2022]
Abstract
Puerarin (PU) is a potent free radical scavenger with a protective effect in nephrotoxin-mediated oxidative damage. Here, we show a novel molecular mechanism by which PU exerts its anti-apoptotic effects in cadmium (Cd)-exposed primary rat proximal tubular (rPT) cells. Morphological assessment and flow cytometric analysis revealed that PU significantly decreased Cd-induced apoptotic cell death of rPT cells. Administration of PU protected cells against Cd-induced depletion of mitochondrial membrane potential (ΔΨm) and lipid peroxidation. Cd-mediated mitochondrial permeability transition pore (MPTP) opening, disruption of mitochondrial ultrastructure, mitochondrial cytochrome c (cyt-c) release, caspase-3 activation and subsequently poly ADP-ribose polymerase (PARP) cleavage could be effectively blocked by the addition of PU. Moreover, up-regulation of Bcl-2 and down-regulation of Bax and hence increased Bcl-2/Bax ratio were observed with the PU administration. In addition, PU reversed Cd-induced ATP depletion by restoring ΔΨm to affect ATP production and by regulating expression levels of ANT-1 and ANT-2 to improve ATP transport. In summary, PU inhibited Cd-induced apoptosis in rPT cells by ameliorating the mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiang-Bin Song
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an 271018, People's Republic of China
| | - Gang Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an 271018, People's Republic of China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an 271018, People's Republic of China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an 271018, People's Republic of China.
| |
Collapse
|
121
|
Kelly PS, McSweeney S, Coleman O, Carillo S, Henry M, Chandran D, Kellett A, Bones J, Clynes M, Meleady P, Barron N. Process-relevant concentrations of the leachable bDtBPP impact negatively on CHO cell production characteristics. Biotechnol Prog 2016; 32:1547-1558. [DOI: 10.1002/btpr.2345] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/26/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Paul S. Kelly
- National Institute for Cellular Biotechnology, Dublin City University; Glasnevin Dublin 9 Ireland
- Synthesis and Solid State Pharmaceutical Cluster; University of Limerick; Ireland
| | - Shane McSweeney
- National Institute for Cellular Biotechnology, Dublin City University; Glasnevin Dublin 9 Ireland
- Synthesis and Solid State Pharmaceutical Cluster; University of Limerick; Ireland
| | - Orla Coleman
- National Institute for Cellular Biotechnology, Dublin City University; Glasnevin Dublin 9 Ireland
| | - Sara Carillo
- Synthesis and Solid State Pharmaceutical Cluster; University of Limerick; Ireland
- National Institute for Bioprocessing Research and Training; Fosters Avenue, Mount Merrion, Blackrock Co Dublin Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University; Glasnevin Dublin 9 Ireland
| | - Deepak Chandran
- National Institute for Cellular Biotechnology, Dublin City University; Glasnevin Dublin 9 Ireland
- School of Chemical Sciences; Dublin City University; Glasnevin Dublin Ireland
| | - Andrew Kellett
- National Institute for Cellular Biotechnology, Dublin City University; Glasnevin Dublin 9 Ireland
- Synthesis and Solid State Pharmaceutical Cluster; University of Limerick; Ireland
- School of Chemical Sciences; Dublin City University; Glasnevin Dublin Ireland
| | - Jonathan Bones
- Synthesis and Solid State Pharmaceutical Cluster; University of Limerick; Ireland
- National Institute for Bioprocessing Research and Training; Fosters Avenue, Mount Merrion, Blackrock Co Dublin Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University; Glasnevin Dublin 9 Ireland
- Synthesis and Solid State Pharmaceutical Cluster; University of Limerick; Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University; Glasnevin Dublin 9 Ireland
- Synthesis and Solid State Pharmaceutical Cluster; University of Limerick; Ireland
| | - Niall Barron
- National Institute for Cellular Biotechnology, Dublin City University; Glasnevin Dublin 9 Ireland
- Synthesis and Solid State Pharmaceutical Cluster; University of Limerick; Ireland
| |
Collapse
|
122
|
Yu X, Zhong J, Yan L, Li J, Wang H, Wen Y, Zhao Y. Curcumin exerts antitumor effects in retinoblastoma cells by regulating the JNK and p38 MAPK pathways. Int J Mol Med 2016; 38:861-8. [DOI: 10.3892/ijmm.2016.2676] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/07/2016] [Indexed: 11/05/2022] Open
|
123
|
Comparison of cell cycle components, apoptosis and cytoskeleton-related molecules and therapeutic effects of flavopiridol and geldanamycin on the mouse fibroblast, lung cancer and embryonic stem cells. Tumour Biol 2016; 37:12423-12440. [DOI: 10.1007/s13277-016-5108-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022] Open
|
124
|
Grando SA. The mitochondrion is a common target of disease pathophysiology in pemphigus and pemphigoid. Exp Dermatol 2016; 24:655-6. [PMID: 26014338 DOI: 10.1111/exd.12772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Sergei A Grando
- Department of Dermatology, University of California, Irvine, CA, USA
| |
Collapse
|
125
|
WITHDRAWN: Osthole attenuated myocardial ischemia/reperfusion via a mitochondrial apoptosis. Curr Res Transl Med 2016. [DOI: 10.1016/j.retram.2016.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
126
|
Bugueno IM, Khelif Y, Seelam N, Morand DN, Tenenbaum H, Davideau JL, Huck O. Porphyromonas gingivalis Differentially Modulates Cell Death Profile in Ox-LDL and TNF-α Pre-Treated Endothelial Cells. PLoS One 2016; 11:e0154590. [PMID: 27124409 PMCID: PMC4849801 DOI: 10.1371/journal.pone.0154590] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/17/2016] [Indexed: 12/24/2022] Open
Abstract
Objective Clinical studies demonstrated a potential link between atherosclerosis and periodontitis. Porphyromonas gingivalis (Pg), one of the main periodontal pathogen, has been associated to atheromatous plaque worsening. However, synergism between infection and other endothelial stressors such as oxidized-LDL or TNF-α especially on endothelial cell (EC) death has not been investigated. This study aims to assess the role of Pg on EC death in an inflammatory context and to determine potential molecular pathways involved. Methods Human umbilical vein ECs (HUVECs) were infected with Pg (MOI 100) or stimulated by its lipopolysaccharide (Pg-LPS) (1μg/ml) for 24 to 48 hours. Cell viability was measured with AlamarBlue test, type of cell death induced was assessed using Annexin V/propidium iodide staining. mRNA expression regarding caspase-1, -3, -9, Bcl-2, Bax-1 and Apaf-1 has been evaluated with RT-qPCR. Caspases enzymatic activity and concentration of APAF-1 protein were evaluated to confirm mRNA results. Results Pg infection and Pg-LPS stimulation induced EC death. A cumulative effect has been observed in Ox-LDL pre-treated ECs infected or stimulated. This effect was not observed in TNF-α pre-treated cells. Pg infection promotes EC necrosis, however, in infected Ox-LDL pre-treated ECs, apoptosis was promoted. This effect was not observed in TNF-α pre-treated cells highlighting specificity of molecular pathways activated. Regarding mRNA expression, Pg increased expression of pro-apoptotic genes including caspases-1,-3,-9, Bax-1 and decreased expression of anti-apoptotic Bcl-2. In Ox-LDL pre-treated ECs, Pg increased significantly the expression of Apaf-1. These results were confirmed at the protein level. Conclusion This study contributes to demonstrate that Pg and its Pg-LPS could exacerbate Ox-LDL and TNF-α induced endothelial injury through increase of EC death. Interestingly, molecular pathways are differentially modulated by the infection in function of the pre-stimulation.
Collapse
Affiliation(s)
- Isaac Maximiliano Bugueno
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Yacine Khelif
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Narendra Seelam
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie-dentaire, Department of Periodontology, Strasbourg, France
| | - David-Nicolas Morand
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie-dentaire, Department of Periodontology, Strasbourg, France
| | - Henri Tenenbaum
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie-dentaire, Department of Periodontology, Strasbourg, France
| | - Jean-Luc Davideau
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie-dentaire, Department of Periodontology, Strasbourg, France
| | - Olivier Huck
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie-dentaire, Department of Periodontology, Strasbourg, France
- * E-mail:
| |
Collapse
|
127
|
Jin H, Dong YY, Zhang H, Cui Y, Xie K, Lou G. shRNA Depletion of cIAP1 Sensitizes Human Ovarian Cancer Cells to Anticancer Agent-Induced Apoptosis. Oncol Res 2016; 22:167-76. [PMID: 26168135 PMCID: PMC7838445 DOI: 10.3727/096504015x14298122915664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Emerging evidence suggests a potential role of cellular inhibitor of apoptosis protein 1 (cIAP1) in the development of human ovarian cancer. However, its function in the progression of ovarian cancer has not been clearly determined. Our study aimed to investigate the effect of cIAP1 gene depletion on the chemosensitivity of ovarian cancer cells. We developed a novel short hairpin RNA (shRNA) plasmid specifically targeting cIAP1. Cell proliferation, invasion, and apoptosis of the shRNA-transfected cells were evaluated using MTT, Transwell chamber, and flow cytometric assays, respectively. The concentration of MMP-9 in the supernatant was detected by ELISA. Targeted depletion of cIAP1 by shRNA significantly reduced expression levels of cIAP1 mRNA and protein, leading to inhibition of cell proliferation and invasion capability in SKOV3 cells. At the same time, cIAP1 downregulation decreased the secretion of MMP-9. shRNA depletion of cIAP1 enhanced chemosensitivity of ovarian cancer cells to Taxol and carboplatin-induced apoptosis. cIAP1 is associated with tumor progression in human ovarian cancer. Therefore, cIAP1 might be a potential target for therapeutic anticancer drugs.
Collapse
Affiliation(s)
- Hong Jin
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | | | | | | | | | | |
Collapse
|
128
|
Zhang D, Zhao N, Ma B, Wang Y, Zhang G, Yan X, Hu S, Xu T. Procaspase-9 induces its cleavage by transnitrosylating XIAP via the Thioredoxin system during cerebral ischemia-reperfusion in rats. Sci Rep 2016; 6:24203. [PMID: 27052476 PMCID: PMC4823698 DOI: 10.1038/srep24203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/21/2016] [Indexed: 12/18/2022] Open
Abstract
Transnitrosylation is an important mechanism by which nitric oxide (NO) modulates cell signaling pathways. For instance, SNO-caspase-3 can transnitrosylate the X-linked inhibitor of apoptosis (XIAP) to enhance apoptosis. XIAP is a potent antagonist of caspase apoptotic activity. Decrease in XIAP activity via nitrosylation results in SNO-XIAP-mediated caspase activation. Considering the functional liaison of procaspase-9 and XIAP, we hypothesized that procaspase-9 nitrosylates XIAP directly. Our data confirmed that cerebral ischemia-reperfusion induced XIAP nitrosylation, procaspase-9 denitrosylation and cleavage. Interestingly, the time courses of the nitrosylation of procaspase-9 and XIAP were negatively correlated, which was more prominent after cerebral ischemia-reperfusion, suggesting a direct interaction. The nitrosylation of XIAP, as well as the denitrosylation and cleavage of procaspase-9, were inhibited by DNCB, TrxR1 AS-ODNs, or TAT-AVPY treatment. Meanwhile, DNCB, TrxR1 AS-ODNs, or TAT-AVPY also inhibited the decrease in hippocampal CA1 neurons induced by ischemia-reperfusion in rats. The denitrosylation and cleavage of procaspase-9 induced by OGD/reoxygenation in SH-SY5Y cells were inhibited when cells were co-transfected with wild-type procaspase-9 and XIAP mutant (C449G). These data suggest that cerebral ischemia-reperfusion induces a transnitrosylation from procaspase-9 to XIAP via the Trx system to consequently cause apoptosis. Additionally, Cys325 is a critical S-nitrosylation site of procaspase-9.
Collapse
Affiliation(s)
- Dengyue Zhang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou 221004, China
| | - Ningjun Zhao
- Institute of Emergency Rescue Medicine, Xuzhou Medical College, Xuzhou 221002, China.,Emergency Center of the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China
| | - Bin Ma
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou 221004, China.,Institute of Emergency Rescue Medicine, Xuzhou Medical College, Xuzhou 221002, China
| | - Yan Wang
- Institute of Emergency Rescue Medicine, Xuzhou Medical College, Xuzhou 221002, China
| | - Gongliang Zhang
- Department of Physiology, College of Basic Medical Science, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xianliang Yan
- Institute of Emergency Rescue Medicine, Xuzhou Medical College, Xuzhou 221002, China.,Emergency Center of the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China
| | - Shuqun Hu
- Institute of Emergency Rescue Medicine, Xuzhou Medical College, Xuzhou 221002, China.,Emergency Center of the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China
| | - Tie Xu
- Institute of Emergency Rescue Medicine, Xuzhou Medical College, Xuzhou 221002, China.,Emergency Center of the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China
| |
Collapse
|
129
|
Apoptosis Activation in Human Lung Cancer Cell Lines by a Novel Synthetic Peptide Derived from Conus californicus Venom. Toxins (Basel) 2016; 8:38. [PMID: 26861394 PMCID: PMC4773791 DOI: 10.3390/toxins8020038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the most common types of cancer in men and women and a leading cause of death worldwide resulting in more than one million deaths per year. The venom of marine snails Conus contains up to 200 pharmacologically active compounds that target several receptors in the cell membrane. Due to their diversity and specific binding properties, Conus toxins hold great potential as source of new drugs against cancer. We analyzed the cytotoxic effect of a 17-amino acid synthetic peptide (s-cal14.1a) that is based on a native toxin (cal14.1a) isolated from the sea snail Conus californicus. Cytotoxicity studies in four lung cancer cell lines were complemented with measurement of gene expression of apoptosis-related proteins Bcl-2, BAX and the pro-survival proteins NFκB-1 and COX-2, as well as quantification of caspase activity. Our results showed that H1299 and H1437 cell lines treated with s-call4.1a had decreased cell viability, activated caspases, and reduced expression of the pro-survival protein NFκB-1. To our knowledge, this is the first report describing activation of apoptosis in human lung cancer cell lines by s-cal14.1a and we offer insight into the possible mechanism of action.
Collapse
|
130
|
Mitupatum T, Aree K, Kittisenachai S, Roytrakul S, Puthong S, Kangsadalampai S, Rojpibulstit P. Hep88 mAb-mediated paraptosis-like apoptosis in HepG2 cells via downstream upregulation and activation of caspase-3, caspase-8 and caspase-9. Asian Pac J Cancer Prev 2016; 16:1771-9. [PMID: 25773824 DOI: 10.7314/apjcp.2015.16.5.1771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide. Presently, targeted therapy via monoclonal antibodies to specific tumor-associated antigens is being continuously developed. Hep88 mAb has proven to exert tumoricidal effects on the HepG2 cell via a paraptosis-like morphology. To verify the pathway, we then demonstrated downstream up-regulation of caspase-3, caspase-8 and caspase-9, assessingmRNA expression by real-time PCR and associated enzyme activity by colorimetric assay. Active caspase-3 determination was also accomplished by flow cytometry. Active caspase-3 expression was increased by Hep88 mAb treatment in a dose-and time-dependent manner. All of the results indicated that Hep88 mAb induced programmed cell death in the HepG2 cell line from paraptosis-like to apoptosis by downstream induction of caspases. These conclusions imply that Hep88mAb might be a promising tool for the effective treatment of HCC in the future.
Collapse
Affiliation(s)
- Thantip Mitupatum
- Faculty of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, Thailand E-mail :
| | | | | | | | | | | | | |
Collapse
|
131
|
Malki A, Ashour HMA, Elbayaa RY, Issa DAE, Aziz HA, Chen X. Novel 1,5-diphenyl-6-substituted 1H-pyrazolo[3,4-d]pyrimidin-4(5H)-ones induced apoptosis in RKO colon cancer cells. J Enzyme Inhib Med Chem 2015; 31:1286-99. [DOI: 10.3109/14756366.2015.1118686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ahmed Malki
- Biomedical Science Program, Department of Health Sciences, College of Art and Sciences, Qatar University, Doha, Qatar,
| | - Hayam M. A. Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt,
| | - Rasha Y. Elbayaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt,
- Department of Analytical & Pharmaceutical Chemistry, Faculty of Pharmacy & Drug Manufacturing, Pharos University, Alexandria, Egypt, and
| | - Doaa A. E. Issa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt,
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon, and
| | - Hassan A. Aziz
- Biomedical Science Program, Department of Health Sciences, College of Art and Sciences, Qatar University, Doha, Qatar,
| | - Xiaozhuo Chen
- Department of Biomedical Sciences, Edison Biotechnology Institute, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, USA
| |
Collapse
|
132
|
Yang SD, Yang DL, Sun YP, Wang BL, Ma L, Feng SQ, Ding WY. 17β-estradiol protects against apoptosis induced by interleukin-1β in rat nucleus pulposus cells by down-regulating MMP-3 and MMP-13. Apoptosis 2015; 20:348-57. [PMID: 25576195 DOI: 10.1007/s10495-015-1086-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In our previous study, 17β-estradiol was proved to protect rat annulus fibrosus cells against apoptosis induced by interleukin-1β (IL-1β). However, whether 17β-estradiol has protective effect on rat nucleus pulposus cells remains unclear. The purpose of this study was to further explore the effects of 17β-estradiol on rat nucleus pulposus cells based on IL-1β-induced apoptosis. TUNEL assay and Annexin V/PI double staining were used to detect apoptosis and revealed that IL-1β induced notable apoptosis, which was reversed by 17β-estradiol. Meanwhile, cell viability and binding ability were decreased by IL-1β, but activated caspase-3 was increased. However, all of the detected effects of IL-1β were eliminated by 17β-estradiol. Furthermore, real-time quantitative RT-PCR was used to further find that IL-1β downregulated expression level of type II collagen, aggrecan, tissue inhibitor of matrix metalloproteinase (TIMP)-1, while upregulated matrix metalloproteinase (MMP)-3, MMP-13 and Bcl-2, which was further confirmed by western blot. Finally, 17β-estradiol was proved to abolish the above negative effects of IL-1β. In summary, this work presented that IL-1β maybe induced apoptosis of rat nucleus pulposus cells, which was resisted by 17β-estradiol by down-regulating MMP-3 and MMP-13 via a mitochondrial pathway. This research provides a novel insight into the anti-apoptotic effect of 17β-estradiol on IL-1β-induced cytotoxicity, and may potentially lead to a better understanding of the clinical effects of 17β-estradiol, especially in terms of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Si-Dong Yang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China
| | | | | | | | | | | | | |
Collapse
|
133
|
Garcinia dulcis Fruit Extract Induced Cytotoxicity and Apoptosis in HepG2 Liver Cancer Cell Line. BIOMED RESEARCH INTERNATIONAL 2015; 2015:916902. [PMID: 26557713 PMCID: PMC4628706 DOI: 10.1155/2015/916902] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 12/30/2022]
Abstract
Garcinia dulcis or locally known in Malaysia as “mundu” belongs to the family of Clusiaceae. The study was conducted to investigate the anticancer potential of different parts of G. dulcis fruit extracts and their possible mechanism of action in HepG2 liver cancer cell line. MTT assay showed that the peel, flesh, and seed extracts of G. dulcis induced cytotoxicity in HepG2 cell line with IC50 values of 46.33 ± 4.51, 38.33 ± 3.51, and 7.5 ± 2.52 µg/mL, respectively. The flesh extract of G. dulcis induced cell cycle arrest at sub-G1 (apoptosis) phase in a time-dependent manner. Staining with Annexin V-FITC and propidium iodide showed that 41.2% of the cell population underwent apoptosis after 72 hours of exposure of the HepG2 cell line to G. dulcis flesh extract. Caspase-3 has been shown to be activated which finally leads to the death of HepG2 cell (apoptosis). GC-MS analysis showed that the highest percentage of compound identified in the extract of G. dulcis flesh was hydroxymethylfurfural and 3-methyl-2,5-furandione, together with xanthones and flavonoids (based on literature), could synergistically contribute to the observed effects. This finding suggested that the flesh extract of G. dulcis has its own potential as cancer chemotherapeutic agent against liver cancer cell.
Collapse
|
134
|
Hao X, Yan Q, Zhao J, Wang W, Huang Y, Chen Y. TAT Modification of Alpha-Helical Anticancer Peptides to Improve Specificity and Efficacy. PLoS One 2015; 10:e0138911. [PMID: 26405806 PMCID: PMC4583266 DOI: 10.1371/journal.pone.0138911] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/06/2015] [Indexed: 01/10/2023] Open
Abstract
HPRP-A1 is an amphipathic α-helical anticancer peptide (ACP) derived from the N-terminus of ribosomal protein L1 (RpL1) of Helicobacter pylori. In our previously study, HPRP-A1 has been reported that induced HeLa cell apoptosis in a caspase-dependent approach and involved both by the death receptor ‘extrinsic’ pathway and the mitochondria ‘intrinsic’ pathway. Here we report the construction of a new hybrid peptide, HPRP-A1-TAT, comprising the cell-permeating peptide TAT linked to the C-terminus of HPRP-A1. This peptide exhibits higher anticancer activity against HeLa cells with lower toxicity against human RBC than HPRP-A1. Two FITC-labeled peptides, FITC-HPRP-A1 and FITC-HPRP-A1-TAT, were used to investigate and compare the cellular uptake mechanism using fluorescence spectra and flow cytometry. Compared with HPRP-A1, HPRP-A1-TAT quickly crossed cell, entered the cytoplasm via endocytosis, and disrupted the cell membrane integrity. HPRP-A1-TAT exhibited stronger anticancer activity than HPRP-A1 at the same concentration by increasing early apoptosis of HeLa cells and inducing caspase activity. Notably, after 24 h, the cellular concentration of HPRP-A1-TAT was higher than that of HPRP-A1. This result suggests that TAT protects HPRP-A1 against degradation, likely due to its high number of positively charged amino acids or the further release of peptides into cancer cells from endocytotic vesicles. We believe that this TAT modification approach may provide an effective new strategy for improving the therapeutic index and anticancer activity of ACPs for clinical use.
Collapse
Affiliation(s)
- Xueyu Hao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Qiuyan Yan
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Jing Zhao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Wenren Wang
- Changchun ProteLight Pharmaceutical & Biotechnology Co., Ltd., Changchun, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
- * E-mail: (YH); (YC)
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
- * E-mail: (YH); (YC)
| |
Collapse
|
135
|
Liu Z, Ding Y, Ye N, Wild C, Chen H, Zhou J. Direct Activation of Bax Protein for Cancer Therapy. Med Res Rev 2015; 36:313-41. [PMID: 26395559 DOI: 10.1002/med.21379] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/18/2015] [Accepted: 08/22/2015] [Indexed: 12/13/2022]
Abstract
Bax, a central cell death regulator, is an indispensable gateway to mitochondrial dysfunction and a major proapoptotic member of the B-cell lymphoma 2 (Bcl-2) family proteins that control apoptosis in normal and cancer cells. Dysfunction of apoptosis renders the cancer cell resistant to treatment as well as promotes tumorigenesis. Bax activation induces mitochondrial membrane permeabilization, thereby leading to the release of apoptotic factor cytochrome c and consequently cancer cell death. A number of drugs in clinical use are known to indirectly activate Bax. Intriguingly, recent efforts demonstrate that Bax can serve as a promising direct target for small-molecule drug discovery. Several direct Bax activators have been identified to hold promise for cancer therapy with the advantages of specificity and the potential of overcoming chemo- and radioresistance. Further investigation of this new class of drug candidates will be needed to advance them into the clinic as a novel means to treat cancer.
Collapse
Affiliation(s)
- Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555
| | - Ye Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555
| | - Christopher Wild
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555
| |
Collapse
|
136
|
Maharsy W, Aries A, Mansour O, Komati H, Nemer M. Ageing is a risk factor in imatinib mesylate cardiotoxicity. Eur J Heart Fail 2015; 16:367-76. [PMID: 24504921 PMCID: PMC4238824 DOI: 10.1002/ejhf.58] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/24/2013] [Accepted: 01/03/2014] [Indexed: 01/27/2023] Open
Abstract
AIMS Chemotherapy-induced heart failure is increasingly recognized as a major clinical challenge. Cardiotoxicity of imatinib mesylate, a highly selective and effective anticancer drug belonging to the new class of tyrosine kinase inhibitors, is being reported in patients, some progressing to congestive heart failure. This represents an unanticipated challenge that could limit effective drug use. Understanding the mechanisms and risk factors of imatinib mesylate cardiotoxicity is crucial for prevention of cardiovascular complications in cancer patients. METHODS AND RESULTS We used genetically engineered mice and primary rat neonatal cardiomyocytes to analyse the action of imatinib on the heart. We found that treatment with imatinib (200 mg/kg/day for 5 weeks) leads to mitochondrial-dependent myocyte loss and cardiac dysfunction, as confirmed by electron microscopy, RNA analysis, and echocardiography. Imatinib cardiotoxicity was more severe in older mice, in part due to an age-dependent increase in oxidative stress. Mechanistically, depletion of the transcription factor GATA4 resulting in decreased levels of its prosurvival targets Bcl-2 and Bcl-XL was an underlying cause of imatinib toxicity. Consistent with this, GATA4 haploinsufficient mice were more susceptible to imatinib, and myocyte-specific up-regulation of GATA4 or Bcl-2 protected against drug-induced cardiotoxicity. CONCLUSION The results indicate that imatinib action on the heart targets cardiomyocytes and involves mitochondrial impairment and cell death that can be further aggravated by oxidative stress. This in turn offers a possible explanation for the current conflicting data regarding imatinib cardiotoxicity in cancer patients and suggests that cardiac monitoring of older patients receiving imatinib therapy may be especially warranted.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Benzamides/toxicity
- Cardiotoxicity
- Echocardiography
- GATA4 Transcription Factor/metabolism
- Imatinib Mesylate
- In Situ Nick-End Labeling
- Mice
- Mice, Transgenic
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/ultrastructure
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Oxidative Stress/drug effects
- Piperazines/toxicity
- Protein Kinase Inhibitors/toxicity
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Pyrimidines/toxicity
- Rats
- Risk Factors
- Ventricular Dysfunction, Left/chemically induced
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Wael Maharsy
- Molecular Genetics and Cardiac Regeneration Laboratory,
University of Ottawa, Department of Biochemistry, Microbiology and ImmunologyOttawa, Canada
| | - Anne Aries
- Institut de recherches cliniques de Montréal
(IRCM)Montreal, Canada
- Institut de Recherche en Hématologie et
Transplantation (IRHT)Mulhouse, France
| | - Omar Mansour
- Molecular Genetics and Cardiac Regeneration Laboratory,
University of Ottawa, Department of Biochemistry, Microbiology and ImmunologyOttawa, Canada
| | - Hiba Komati
- Molecular Genetics and Cardiac Regeneration Laboratory,
University of Ottawa, Department of Biochemistry, Microbiology and ImmunologyOttawa, Canada
| | - Mona Nemer
- Molecular Genetics and Cardiac Regeneration Laboratory,
University of Ottawa, Department of Biochemistry, Microbiology and ImmunologyOttawa, Canada
- Institut de recherches cliniques de Montréal
(IRCM)Montreal, Canada
- Corresponding author. Molecular Genetics and Cardiac Regeneration Laboratory,
University of Ottawa Department of Biochemistry, Microbiology and Immunology, 550 Cumberland (246),
Ottawa, Ontario, Canada, K1N 6N5. Tel: +1 613 562 5270, Fax: +1 613 562 5271,
| |
Collapse
|
137
|
MicroRNA-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and -independent pathways. Br J Cancer 2015; 113:660-8. [PMID: 26247574 PMCID: PMC4647684 DOI: 10.1038/bjc.2015.252] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/10/2015] [Accepted: 06/13/2015] [Indexed: 12/17/2022] Open
Abstract
Background: Previously, miR-345 was identified as one of the most significantly downregulated microRNAs in pancreatic cancer (PC); however, its functional significance remained unexplored. Methods: miR-345 was overexpressed in PC cells by stable transfection, and its effect on growth, apoptosis and mitochondrial-membrane potential was examined by WST-1, Hoechst-33342/Annexin-V, and JC-1 staining, respectively. Gene expression was examined by quantitative reverse-transcription-PCR and/or immunoblotting, and subcellular fractions prepared and caspase-3/7 activity determined by commercially available kits. miR-345 target validation was performed by mutational analysis and luciferase-reporter assay. Results: miR-345 is significantly downregulated in PC tissues and cell lines relative to normal pancreatic cells, and its expression decreases gradually in PC progression model cell lines. Forced expression of miR-345 results in reduced growth of PC cells because of the induction of apoptosis, accompanied by a loss in mitochondrial membrane potential, cytochrome-c release, caspases-3/7 activation, and PARP-1 cleavage, as well as mitochondrial-to-nuclear translocation of apoptosis-inducing factor. These effects could be reversed by the treatment of miR-345-overexpressing PC cells with anti-miR-345 oligonucleotides. BCL2 was characterised as a novel target of miR-345 and its forced-expression abrogated the effects of miR-345 in PC cells. Conclusions: miR-345 downregulation confers apoptosis resistance to PC cells, and its restoration could be exploited for therapeutic benefit.
Collapse
|
138
|
Yang PY, Hu DN, Lin IC, Liu FS. Butein Shows Cytotoxic Effects and Induces Apoptosis in Human Ovarian Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:769-82. [DOI: 10.1142/s0192415x15500482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Butein is a polyphenol, one of the compounds of chalcones, which are flavonoids that are widely biosynthesized in plants, and exhibits different pharmacological activities. Plants containing butein have been used in Chinese traditional medicine. Recently, it has been reported that butein suppresses proliferation and triggers apoptosis in various human cancer cells in vitro and in vivo. The aim of this study was to investigate its pro-apoptotic effect and mechanisms in two cultured human ovarian cancer cells (ES-2 and TOV-21G). The effects of butein on cell viability were assessed by a MTT assay at 3, 10, 30, and 100 μ/M. The apoptotic pathway related factors, including the mitochondrial transmembrane potential (MTP), cytochrome c, caspase cascade, and Bcl-2 family proteins, were examined. MTT assay revealed that butein was cytotoxic to both ovarian cancer cells in a dose- and time-dependent manner. JC-1 flow cytometry, cytochrome c, and caspase activity assays revealed that butein damaged the MTP, increased the level of cytosol cytochrome c and the activities of caspase-3, -8, and -9 in the two ovarian cancer cells. Western blot analysis revealed that butein down-regulated the anti-apoptotic proteins Bcl-2 and Bcl-xL and increased the pro-apoptotic proteins Bax and Bad. These findings suggest that butein-induced apoptosis in ovarian cancer cells via the activation of both extrinsic and intrinsic pathways. In addition, butein also down-regulated the expressions of the inhibitor of apoptosis (IAP) proteins, XIAP, survivin, CIAP-1, and CIAP-2. This indicates that the inhibition of IAP proteins was also involved in butein-induced apoptosis. The results of our study suggest that butein may be a promising anticancer agent in treating ovarian cancer.
Collapse
Affiliation(s)
- Pei-Yu Yang
- Department of Medical Research, Show Chwan Memorial Hospital, Changhua 500, Taiwan, ROC
| | - Dan-Ning Hu
- Tissue Culture Center, New York Eye & Ear Infirmary of Mount Sinai, New York, NY, USA
| | - I-Ching Lin
- Department of Family Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC
- Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Fu-Shing Liu
- Cancer Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan, ROC
| |
Collapse
|
139
|
Wang YD, Su YJ, Li JY, Yao XC, Liang GJ. Rapamycin, an mTOR inhibitor, induced apoptosis via independent mitochondrial and death receptor pathway in retinoblastoma Y79 cell. Int J Clin Exp Med 2015; 8:10723-10730. [PMID: 26379864 PMCID: PMC4565247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/23/2015] [Indexed: 06/05/2023]
Abstract
Rapamycin is helpful in the treatment of certain cancers by inhibiting mTOR (mammalian target of rapamycin) pathway. Here, rapamycin mediated apoptosis were investigated in human retinoblastoma Y79 cells. The MTT assay showed that the IC50 value of rapamycin against Y79 cells was 0.136 ± 0.032 μmol/L. Flow cytometry analysis indicated that the percentage of apoptotic cells was increased from 2.16 ± 0.41% to 12.24 ± 3.10%, 20.16 ± 4.22%, and 31.32 ± 5.78% after 0.1, 0.2, and 0.4 μmol/L rapamycin or without rapamycin treatment for 48 hours. Flow cytometry analysis showed that rapamycin induced mitochondrial membrane potential (∆Ψm) collapse in Y79 cells in a concentration-dependent manner. Western blot assay showed that rapamycin led to release of cytochrome c from mitochondrial membranes to cytosol. Further Western blot assays showed that rapamycin induced activation of caspase-9 and caspase-8 and the cleavage of caspase-3. Rapamycin induced cleavages of caspase-3 and apoptosis was inhibited by both Z-LETD-FMK and Z-IETD-FMK treatment. Together, all these results illustrated that rapamycin induced apoptosis in human retinoblastoma Y79 cells involvement of both intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Yan-Dong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University Guangzhou 510060, China
| | - Yong-Jing Su
- The First Affiliated Hospital, Sun Yat-sen University Guangzhou 510080, China
| | - Jian-Ying Li
- The First Affiliated Hospital, Sun Yat-sen University Guangzhou 510080, China
| | - Xiang-Chao Yao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University Guangzhou 510060, China
| | - Guang-Jiang Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University Guangzhou 510060, China
| |
Collapse
|
140
|
Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead. Arch Toxicol 2015; 90:1193-209. [PMID: 26082307 DOI: 10.1007/s00204-015-1547-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/03/2015] [Indexed: 12/26/2022]
Abstract
Previous studies have already demonstrated that mitochondria play a key role in Pb-induced apoptosis in primary cultures of rat proximal tubular (rPT) cells. To further clarify the underlying mechanism of Pb-induced mitochondrial apoptosis, this study was designed to investigate the role of mitochondrial permeability transition (MPT) and its regulatory components in Pb-induced apoptosis in rPT cells. Mitochondrial permeability transition pore (MPTP) opening together with disruption of mitochondrial ultrastructure, translocation of cytochrome c from mitochondria to cytoplasm and subsequent caspase-3 activation were observed in this study, suggesting that MPT is involved in Pb-induced apoptosis in rPT cells. Simultaneously, Pb-induced caspase-3 activation and apoptosis can be significantly inhibited by three MPTP inhibitors (CsA, DIDS, BA), which target different regulatory components of MPTP (Cyp-D, VDAC, ANT), respectively, demonstrating that Cyp-D, VDAC and ANT participate in MPTP regulation during lead exposure. Moreover, decreased ATP levels and increased ADP/ATP ratio induced by lead treatment can be significantly reversed by BA, indicating that Pb-mediated ANT dysfunction resulted in ATP depletion. In addition, up-regulation of VDAC-1, ANT-1 together with down-regulation of Cyp-D, VDAC-2 and ANT-2 at both the levels of transcription and translation were revealed in rPT cells under lead exposure conditions. In conclusion, Pb-mediated mitochondrial apoptosis in rPT cells is dependent on MPTP opening. Different expression levels in each isoform of three regulatory components contribute to alteration in their functions, which may promote the MPTP opening.
Collapse
|
141
|
Besteiro S. Toxoplasma control of host apoptosis: the art of not biting too hard the hand that feeds you. MICROBIAL CELL 2015; 2:178-181. [PMID: 28362004 PMCID: PMC5349139 DOI: 10.15698/mic2015.06.209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sébastien Besteiro
- DIMNP, UMR 5235 CNRS, Université de Montpellier, 34095 Montpellier, France
| |
Collapse
|
142
|
Saad M, Abdelsalam R, Kenawy S, Attia A. Ischemic preconditioning and postconditioning alleviates hippocampal tissue damage through abrogation of apoptosis modulated by oxidative stress and inflammation during transient global cerebral ischemia–reperfusion in rats. Chem Biol Interact 2015; 232:21-9. [DOI: 10.1016/j.cbi.2015.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/25/2015] [Accepted: 03/09/2015] [Indexed: 02/02/2023]
|
143
|
Kim YJ, Kim JY, Kang SW, Chun GS, Ban JY. Protective effect of geranylgeranylacetone against hydrogen peroxide-induced oxidative stress in human neuroblastoma cells. Life Sci 2015; 131:51-6. [PMID: 25921766 DOI: 10.1016/j.lfs.2015.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/02/2015] [Accepted: 04/06/2015] [Indexed: 01/27/2023]
Abstract
AIMS Heat shock protein 70 (HSP70), one of the major HSPs, has been reported to suppress apoptosis and formation of pathogenic proteins in neurodegenerative disorders. Geranylgeranylacetone (GGA), an anti-ulcer drug, induces HSP70 and thereby protects against cellular damage in various diseases. We investigated the effect of GGA on hydrogen peroxide (H2O2)-induced neurotoxicity in human neuroblastoma SH-SY5Y cells. MAIN METHODS H2O2-induced neuronal toxicity was measured by a CCK-8 assay and Hoechst 33342 staining. We also assessed oxidative stress and apoptosis by measuring reactive oxygen species (ROS) generation with 2′,7′-dichlorofluorescein diacetate (DCFH-DA), caspase-3 activity, and mitogen-activated protein kinase (MAPK) pathway. KEY FINDINGS GGA showed a concentration-dependent inhibition on H2O2-induced apoptotic cell death. H2O2-induced induction of HSP70 was enhanced by GGA pretreatment. GGA effectively suppressed the up-regulation of Bax and down-regulation of Bcl-2. GGA also blocked the H2O2-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). In addition, GGA attenuated H2O2-induced ROS generation and caspase-3 activity. SIGNIFICANCE These results demonstrate that GGA protects SH-SY5Y cells from H2O2-induced apoptosis, at least in part by enhancing HSP70 production. Neuroprotective properties of GGA indicate that this compound may be a potential therapeutic agent for the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun Ji Kim
- Department of Dental Pharmacology, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Joo Youn Kim
- Division for Healthcare Technology Assessment Research, National Evidence-based Healthcare Collaborating Agency (NECA), Seoul, Republic of Korea
| | - Sang Wook Kang
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Gae Sig Chun
- Department of Oral Physiology, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Ju Yeon Ban
- Department of Dental Pharmacology, School of Dentistry, Dankook University, Cheonan, Republic of Korea.
| |
Collapse
|
144
|
Zhang Y, Chen L, Li F, Wang H, Yao Y, Shu J, Ying MZ. Cryptotanshinone protects against adriamycin-induced mitochondrial dysfunction in cardiomyocytes. PHARMACEUTICAL BIOLOGY 2015; 54:237-42. [PMID: 25858002 DOI: 10.3109/13880209.2015.1029052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
CONTEXT The serious side effect of Adriamycin (ADR) is cardiomyopathy. Cryptotanshinone (CRY) is widely and safely used as antioxidant with MTD more than 5 mg/g in rats (p.o). OBJECTIVE The objective of this study is to study the protection effects of CRY against ADR-induced mitochondrial dysfunction in cardiomyocytes. MATERIALS AND METHODS The chemical administration lasted for 20 days with an effective dose of CRY (p.o.) at 50 mg/kg in rats. Mitochondrial respiratory chain complex activities, ATP generation, mitochondrial membrane potential (MMP), superoxide anion free radical, oxidative stress-relative enzymes, and mitochondrial biogenesis-relative factors in normal control, ADR (i.p., 1.25 mg/kg), and ADR (i.p., 1.25 mg/kg) + CYP (p.o., 50 mg/kg) groups were detected. RESULTS 50 mg/kg CRY significantly promoted the energy production of ATP (16.99 ± 2.38 nmol/g Pro) (Pro: Protein) by increasing the complexes activities except II (p > 0.05). After the treatment of CRY, the suppressed MMP was increased while superoxide anion free radical (0.57 ± 0.07/mg Pro) was inhibited markedly. Mitochondrial biogenesis-relative factors PGC-1α, NRF-1, and TFAM were also promoted. Remarkable augmentations of NO, inducible nitric oxide synthase (iNOS), and increased activity of GSH-PX (p < 0.05) were also detected after the treatment of CRY, while no obvious changes on the activity of nitric oxide synthase (cNOS; p > 0.05) were observed. DISCUSSION AND CONCLUSION These results suggest that CRY protects against ADR-induced mitochondrial dysfunction in cardiomyocytes. It could be an ideal potential drug of cardioprotection.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Cardiomyopathies/chemically induced
- Cardiomyopathies/metabolism
- Cardiomyopathies/prevention & control
- Cardiotoxicity/prevention & control
- Disease Models, Animal
- Doxorubicin/toxicity
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Oxidative Stress/drug effects
- Phenanthrenes/isolation & purification
- Phenanthrenes/pharmacology
- Phenanthrenes/therapeutic use
- Rats, Wistar
- Salvia miltiorrhiza/chemistry
Collapse
Affiliation(s)
- Yanshan Zhang
- a Department of Tumor Surgery , Wuwei Tumor Hospital , Wuwei, Gansu PR China
| | - Liang Chen
- b Department of Paediatrics , Changhai Hospital, Second Military Medical University , Shanghai , PR China
| | - Fan Li
- c International Medical Center, Chinese PLA General Hospital , Beijing PR China
| | - Huijuan Wang
- d Department of Tumor Chemotherapy , Wuwei Tumor Hospital , Wuwei, Gansu , PR China
| | - Yunyi Yao
- e Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College , Xuzhou, Jiangsu , PR China , and
| | - Jiamei Shu
- f Department of Cardiology , The Second Affiliated Hospital of Soochow University , Suzhou, Jiangsu PR China
| | - Ming-Zhong Ying
- c International Medical Center, Chinese PLA General Hospital , Beijing PR China
| |
Collapse
|
145
|
Hou X, Tong Q, Wang W, Xiong W, Shi C, Fang J. Dihydromyricetin protects endothelial cells from hydrogen peroxide-induced oxidative stress damage by regulating mitochondrial pathways. Life Sci 2015; 130:38-46. [PMID: 25818185 DOI: 10.1016/j.lfs.2015.03.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/25/2015] [Accepted: 03/18/2015] [Indexed: 12/14/2022]
Abstract
HEADING AIMS Dihydromyricetin (DMY) is the most abundant ingredient in vine tea. Here, we investigated the cytoprotective effects and possible mechanisms of DMY on hydrogen peroxide (H2O2)-induced oxidative stress damage in human umbilical vein endothelial cells (HUVECs). MATERIALS AND METHODS The percentage of cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. We determined the antioxidant properties of DMY by measuring the activity of superoxide dismutase (SOD) and malondialdehyde (MDA). Flow cytometry was used to measure apoptosis in HUVECs that were double stained with Hoechst 33342 and propidium iodide (PI). The generation of intracellular reactive oxygen species (ROS) was measured in 2',7'-dichlorofluorescin diacetate (DCFH-DA)-loaded HUVECs using a fluorescent microscope. Moreover, the expression of apoptosis-related proteins was determined by Western blotting. In addition, the release of nitric oxide (NO) was analyzed using a commercial kit. KEY FINDINGS HUVECs treated with H2O2 had a notable decrease in cell viability that was attenuated when cells were pretreated with DMY (37.5-300μM). DMY pretreatment significantly attenuated H2O2-induced apoptosis in HUVECs and inhibited intracellular ROS overproduction. Finally, pretreatment of cells with DMY prior to H2O2 exposure resulted in the inhibition of p53 activation, followed by the regulation of the expression of Bcl-2 and Bax, the release of cytochrome c, the cleavage (activation) of caspase-9 and caspase-3, and then the suppression of PARP cleavage in H2O2-induced HUVECs. SIGNIFICANCE Our study is the first to report that DMY can protect HUVECs from oxidative stress damage, an effect that is mediated by the mitochondrial apoptotic pathways.
Collapse
Affiliation(s)
- Xiaolong Hou
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tong
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqing Wang
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiong
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyang Shi
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianguo Fang
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
146
|
Zamaraev AV, Kopeina GS, Zhivotovsky B, Lavrik IN. Cell death controlling complexes and their potential therapeutic role. Cell Mol Life Sci 2015; 72:505-517. [PMID: 25323133 PMCID: PMC11113151 DOI: 10.1007/s00018-014-1757-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/18/2014] [Accepted: 10/09/2014] [Indexed: 12/26/2022]
Abstract
Programmed cell death plays a central role in the regulation of homeostasis and development of multicellular organisms. Deregulation of programmed cell death is connected to a number of disorders, including cancer and autoimmune diseases. Initiation of cell death occurs in the multiprotein complexes or high molecular weight platforms. Composition, structure, and molecular interactions within these platforms influence the cellular decision toward life or death and, therefore, define the induction of a particular cell death program. Here, we discuss in detail the key cell-death complexes-including DISC, complex II, and TNFRI complex I/II, and the necrosome, RIPoptosome, apoptosome, and PIDDosome-that control apoptosis or necroptosis pathways as well as their regulation. The possibility of their pharmacological targeting leading to the development of new strategies of interference with cell death programs via control of the high molecular weight platforms will be discussed.
Collapse
Affiliation(s)
- Alexey V Zamaraev
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Gelina S Kopeina
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden.
| | - Inna N Lavrik
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
- Department of Translational Inflammation, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
147
|
Saad MA, Abdel Salam RM, Kenawy SA, Attia AS. Pinocembrin attenuates hippocampal inflammation, oxidative perturbations and apoptosis in a rat model of global cerebral ischemia reperfusion. Pharmacol Rep 2015; 67:115-22. [DOI: 10.1016/j.pharep.2014.08.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
|
148
|
Sah BNP, Vasiljevic T, McKechnie S, Donkor ON. Identification of Anticancer Peptides from Bovine Milk Proteins and Their Potential Roles in Management of Cancer: A Critical Review. Compr Rev Food Sci Food Saf 2015; 14:123-138. [DOI: 10.1111/1541-4337.12126] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/03/2014] [Indexed: 01/06/2023]
Affiliation(s)
- B. N. P. Sah
- College of Health and Biomedicine; Victoria Univ; Werribee Campus; PO Box 14428 Melbourne Victoria 8001 Australia
| | - T. Vasiljevic
- College of Health and Biomedicine; Victoria Univ; Werribee Campus; PO Box 14428 Melbourne Victoria 8001 Australia
| | - S. McKechnie
- College of Engineering and Science; Victoria Univ; Werribee Campus; PO Box 14428 Melbourne Victoria 8001 Australia
| | - O. N. Donkor
- College of Health and Biomedicine; Victoria Univ; Werribee Campus; PO Box 14428 Melbourne Victoria 8001 Australia
| |
Collapse
|
149
|
Siddiqui WA, Ahad A, Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol 2015; 89:289-317. [PMID: 25618543 DOI: 10.1007/s00204-014-1448-7] [Citation(s) in RCA: 512] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/23/2014] [Indexed: 01/12/2023]
Abstract
Apoptosis is a critically important biological process that plays an essential role in cell fate and homeostasis. An important component of the apoptotic pathway is the family of proteins commonly known as the B cell lymphoma-2 (Bcl-2). The primary role of Bcl-2 family members is the regulation of apoptosis. Although the structure of Bcl-2 family of proteins was reported nearly 10 years ago, however, it still surprises us with its structural and functional complexity and diversity. A number of studies have demonstrated that Bcl-2 family influences many other cellular processes beyond apoptosis which are generally independent of the regulation of apoptosis, suggesting additional roles for Bcl-2. The disruption of the regulation of apoptosis is a causative event in many diseases. Since the Bcl-2 family of proteins is the key regulator of apoptosis, the abnormalities in its function have been implicated in many diseases including cancer, neurodegenerative disorders, ischemia and autoimmune diseases. In the past few years, our understanding of the mechanism of action of Bcl-2 family of proteins and its implications in various pathological conditions has enhanced significantly. The focus of this review is to summarize the current knowledge on the structure and function of Bcl-2 family of proteins in apoptotic cellular processes. A number of drugs have been developed in the past few years that target different Bcl-2 members. The role of Bcl-2 proteins in the pathogenesis of various diseases and their pharmacological significance as effective molecular therapeutic targets is also discussed.
Collapse
Affiliation(s)
- Waseem Ahmad Siddiqui
- Department of Biochemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | | | | |
Collapse
|
150
|
Zhou X, An G, Chen J. Hydrogen sulfide improves left ventricular function in smoking rats via regulation of apoptosis and autophagy. Apoptosis 2014; 19:998-1005. [PMID: 24658667 DOI: 10.1007/s10495-014-0978-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The present study was designed to investigate the protective effects of hydrogen sulfide (H2S) against cigarette smoking-induced left ventricular dysfunction in rats. Left ventricular structure and function were assessed using two-dimensional echocardiography. Cardiomyocyte apoptosis was determined by Annexin V/PI and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining. Cardiac autophagy was evaluated by detection of autophagy-related protein expression and observation of autophagosomes. Our results indicated that administration of NaHS (a donor of H2S) could protect against smoking-induced left ventricular systolic dysfunction. H2S was found to exert anti-apoptotic effects in the myocardium of smoking rats by inhibiting JNK and P38 mitogen-activated protein kinases pathways and activating PI3K/Akt signaling. Moreover, H2S could also reduce smoking-induced autophagic cell death via regulation of AMPK/mTOR signaling pathway. In conclusion, our study demonstrates that H2S can improve left ventricular systolic function in smoking rats via regulation of apoptosis and autophagy.
Collapse
|