101
|
Bonilla-Velez J, Mroz EA, Hammon RJ, Rocco JW. Impact of human papillomavirus on oropharyngeal cancer biology and response to therapy: implications for treatment. Otolaryngol Clin North Am 2013; 46:521-43. [PMID: 23910468 PMCID: PMC3740406 DOI: 10.1016/j.otc.2013.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oropharyngeal squamous cell carcinoma (OPSCC) originating from human papillomavirus infection has emerged as a new entity in head and neck cancer, defining a subset of patients with distinct carcinogenesis, risk factor profiles, and clinical presentation that show markedly improved survival than patients with classic OPSCC. De-escalation of therapy and identification of relevant biomarkers to aid in patient selection are actively being investigated. This review addresses the implications of these findings in clinical care.
Collapse
Affiliation(s)
- Juliana Bonilla-Velez
- Postdoctoral Research Fellow, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston MA
| | - Edmund A. Mroz
- Research Scientist, Center for Cancer Research and Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Rebecca J. Hammon
- Clinical Research Fellow, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston MA
| | - James W. Rocco
- Associate Professor of Otology and Laryngology and Director, Head and Neck Cancer Research, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston MA
- Associate Professor of Otology and Laryngology, Center for Cancer Research and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston MA
| |
Collapse
|
102
|
Chow LT, Broker TR. Human papillomavirus infections: warts or cancer? Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a012997. [PMID: 23685995 DOI: 10.1101/cshperspect.a012997] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human papillomaviruses (HPVs) are prevalent pathogens of mucosal and cutaneous epithelia. Productive infections of squamous epithelia lead to benign hyperproliferative warts, condylomata, or papillomas. Persistent infections of the anogenital mucosa by high-risk HPV genotypes 16 and 18 and closely related types can infrequently progress to high-grade intraepithelial neoplasias, carcinomas-in-situ, and invasive cancers in women and men. HPV-16 is also associated with a fraction of head and neck cancers. We discuss the interactions of the mucosotropic HPVs with the host regulatory proteins and pathways that lead to benign coexistence and enable HPV DNA amplification or, alternatively, to cancers that no longer support viral production.
Collapse
Affiliation(s)
- Louise T Chow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | |
Collapse
|
103
|
Vande Pol SB, Klingelhutz AJ. Papillomavirus E6 oncoproteins. Virology 2013; 445:115-37. [PMID: 23711382 DOI: 10.1016/j.virol.2013.04.026] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 02/07/2023]
Abstract
Papillomaviruses induce benign and malignant epithelial tumors, and the viral E6 oncoprotein is essential for full transformation. E6 contributes to transformation by associating with cellular proteins, docking on specific acidic LXXLL peptide motifs found on these proteins. This review examines insights from recent studies of human and animal E6 proteins that determine the three-dimensional structure of E6 when bound to acidic LXXLL peptides. The structure of E6 is related to recent advances in the purification and identification of E6 associated protein complexes. These E6 protein-complexes, together with other proteins that bind to E6, alter a broad array of biological outcomes including modulation of cell survival, cellular transcription, host cell differentiation, growth factor dependence, DNA damage responses, and cell cycle progression.
Collapse
Affiliation(s)
- Scott B Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, USA.
| | | |
Collapse
|
104
|
Schwartz S. Papillomavirus transcripts and posttranscriptional regulation. Virology 2013; 445:187-96. [PMID: 23706315 DOI: 10.1016/j.virol.2013.04.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022]
Abstract
Papillomavirus gene expression is strictly linked to the differentiation state of the infected cell and is highly regulated at the level of transcription and RNA processing. All papillomaviruses make extensive use of alternative mRNA polyadenylation and splicing to control gene expression. This chapter contains a compilation of all known alternatively spliced papillomavirus mRNAs and it summarizes our current knowledge of viral RNA elements, and viral and cellular factors that control papillomavirus mRNA processing.
Collapse
Affiliation(s)
- Stefan Schwartz
- Department of Laboratory Medicine, Section of Medical Microbiology, Lund University, BMC-B13, Sölvegatan 19, 223 62 Lund, Sweden.
| |
Collapse
|
105
|
HPV-18 E6 mutants reveal p53 modulation of viral DNA amplification in organotypic cultures. Proc Natl Acad Sci U S A 2013; 110:7542-9. [PMID: 23572574 DOI: 10.1073/pnas.1304855110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human papillomaviruses (HPVs) amplify in differentiated strata of a squamous epithelium. The HPV E7 protein destabilizes the p130/retinoblastoma susceptibility protein family of tumor suppressors and reactivates S-phase reentry, thereby facilitating viral DNA amplification. The high-risk HPV E6 protein destabilizes the p53 tumor suppressor and many other host proteins. However, the critical E6 targets relevant to viral DNA amplification have not been identified, because functionally significant E6 mutants are not stably maintained in transfected cells. Using Cre-loxP recombination, which efficiently generates HPV genomic plasmids in transfected primary human keratinocytes, we have recapitulated a highly productive infection of HPV-18 in organotypic epithelial cultures. By using this system, we now report the characterization of four HPV-18 E6 mutations. An E6 null mutant accumulated high levels of p53 and amplified very poorly. p53 siRNA or ectopic WT E6 partially restored amplification, whereas three missense E6 mutations that did not effectively destabilize p53 complemented the null mutant poorly. Unexpectedly, in cis, two of the missense mutants amplified, albeit to a lower extent than the WT and only in cells with undetectable p53. These observations and others implicate p53 and additional host proteins in regulating viral DNA amplification and also suggest an inhibitory effect of E6 overexpression. We show that high levels of viral DNA amplification are critical for late protein expression and report several previously undescribed viral RNAs, including bicistronic transcripts predicted to encode E5 and L2 or an alternative form of E1^E4 and L1.
Collapse
|
106
|
Campaner AB, Vespa Junior N, Giraldo PC, Leal Passos MR. Adverse Psychosexual Impact Related to the Treatment of Genital Warts and Cervical Intraepithelial Neoplasia. JOURNAL OF SEXUALLY TRANSMITTED DISEASES 2013; 2013:264093. [PMID: 26316956 PMCID: PMC4437422 DOI: 10.1155/2013/264093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/12/2013] [Accepted: 03/21/2013] [Indexed: 12/02/2022]
Abstract
Objective. To compare the psychosexual impact related to the treatment of genital warts and cervical intraepithelial neoplasia (CIN) in women. Methods. 75 patients presenting with HPV-induced genital lesions, belonging to one of two patient groups, were included in the study: 29 individuals with genital warts (GWs) and 46 individuals with CIN grades 2 or 3 (CIN 2/3). Initially, medical charts of each woman were examined for extraction of data on the type of HPV-induced infection and treatment administered. Subjects were interviewed to collect sociodemographic data as well as personal, gynecologic, obstetric, and sexual history. After this initial anamnesis, the Sexual Quotient-Female Version (SQ-F) questionnaire was applied to assess sexual function. After application of the questionnaire, patients answered specific questions produced by the researchers, aimed at assessing the impact of the disease and its treatment on their sexual lives. Results. It is noteworthy that patients with CIN 2/3 had statistically similar classification of sexual quotient to patients with GWs (P = 0.115). However, patients with GWs more frequently gave positive answers to the specific questions compared to patients with CIN 2/3. Conclusion. Based on these findings, it is clear that GWs have a greater impact on sexual behavior compared to CIN 2/3.
Collapse
Affiliation(s)
- Adriana Bittencourt Campaner
- Department of Obstetrics and Gynecology, School of Medicine of Santa Casa de São Paulo, Avenida Rebouças 1511, ap. 142, Jd. América, 05401-200 São Paulo, SP, Brazil
| | - Nelson Vespa Junior
- Department of Obstetrics and Gynecology, School of Medicine of Santa Casa de São Paulo, Avenida Rebouças 1511, ap. 142, Jd. América, 05401-200 São Paulo, SP, Brazil
| | - Paulo César Giraldo
- Department of Obstetrics and Gynecology, Federal University of Campinas, Brazil
| | - Mauro Romero Leal Passos
- Department of Obstetrics and Gynecology, Federal Fluminense University, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
107
|
Regulation of human papillomavirus gene expression by splicing and polyadenylation. Nat Rev Microbiol 2013; 11:239-51. [DOI: 10.1038/nrmicro2984] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
108
|
de Matos RPA, Sichero L, Mansur IM, do Bonfim CM, Bittar C, Nogueira RL, Küpper DS, Valera FCP, Nogueira ML, Villa LL, Calmon MF, Rahal P. Nucleotide and phylogenetic analysis of human papillomavirus types 6 and 11 isolated from recurrent respiratory papillomatosis in Brazil. INFECTION GENETICS AND EVOLUTION 2013; 16:282-9. [PMID: 23466889 DOI: 10.1016/j.meegid.2012.12.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/28/2012] [Accepted: 12/29/2012] [Indexed: 01/21/2023]
Abstract
There are few studies about the distribution of natural molecular variants of low-risk HPVs. Our aim was to evaluate the E6 early gene variability among HPV-6 and HPV-11 isolates detected in recurrent respiratory papillomatosis (RRP) samples obtained in a cohort of Brazilian patients. We also performed a phylogenetic analysis in order to compare nucleotide sequences identified in our study with previously reported isolates from different anatomic sites (laryngeal papillomas, genital warts, cervical cancer and anal swabs) obtained from other parts of the world to determine the phylogenetic relationships of variants detected in Brazil. The complete coding region of the E6 gene of 25 samples was cloned and sequenced: 18 isolates of HPV-6 (72%) and 7 isolates of HPV-11 (28%). A total of four different HPV-6 genomic variants and two HPV-11 genomic variants was identified. It was not possible to correlate specific variants with disease severity. Phylogenetic trees for both HPV types were constructed enclosing both E6 sequences detected in our study and formerly published sequences. In both phylogenetic trees, the sequences from Brazil did not group together. We could not establish a geographical association between HPV-6 or HPV-11 variants, unlike HPV-16 and HPV-18.
Collapse
Affiliation(s)
- Renata Prandini Adum de Matos
- UNESP - São Paulo State University, IBILCE, Institute of Bioscience, Language & Literature and Exact Science, Department of Biology, Rua Cristóvão Colombo 2265, Bairro Jardim Nazareth, CEP 15054-010, São José do Rio Preto, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
Human papilloma viruses (hpvs) are causally linked to cervical, head-and-neck, and oral cancers. [...]
Collapse
|
110
|
Bos grunniens papillomavirus type 1: a novel deltapapillomavirus associated with fibropapilloma in yak. J Gen Virol 2013; 94:159-165. [DOI: 10.1099/vir.0.046086-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Papillomaviruses (PVs) have been widely identified among vertebrates, but have not yet been reported to infect yaks. We report, for the first time, a novel deltapapillomavirus that was associated with fibropapilloma in yak herds on the Qinghai–Tibetan Plateau. Six skin papilloma samples were collected and examined using histopathology, immunohistochemistry and PCR assays. The samples were identified as fibropapilloma and were found to contain PV antigens. Sequencing of diagnostic PCR products and the full-length genome revealed that all samples were infected with the same PV type. The whole virus genome was 7946 bp in length and possessed the common PV genomic organization. The virus was identified as a novel PV type and designated Bos grunniens papillomavirus type 1 (BgPV-1) based on the nucleotide sequence alignment of the L1 ORF. It is classified in the Delta-4 species of the genus Deltapapillomavirus based on phylogenetic analysis of the L1 ORF. Identification of this novel PV type provides further information about the pathology, development of diagnostic methods and evolutionary studies of the family Papillomaviridae.
Collapse
|
111
|
Gravitt PE. Evidence and impact of human papillomavirus latency. Open Virol J 2012; 6:198-203. [PMID: 23341855 PMCID: PMC3547385 DOI: 10.2174/1874357901206010198] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/13/2012] [Accepted: 09/17/2012] [Indexed: 01/28/2023] Open
Abstract
At present, there is no consensus in the scientific community regarding the ability for human papillomavirus (HPV) infections to establish latency. Based on animal studies, a model of papillomavirus latency has been proposed in which papillomaviruses can be retained in the basal epithelial stem cell pool as latent infections and periodically induced to reactivate when the stem cell divides and one daughter cell is committed to terminal differentiation and induction of the viral life cycle. Tissue resident memory T-cells are hypothesized to control these periodic reactivation episodes and thus limit their duration. In this paper, evidence from human studies consistent with this model of papillomavirus latency is reviewed. Given the strong circumstantial evidence supporting a natural history of HPV infection which includes a immunologically controlled latent state, the longer term implications of HPV latency on a highly infected and aging population may warrant a more serious evaluation.
Collapse
Affiliation(s)
- Patti E Gravitt
- Perdana University Graduate School of Medicine, Jalan MAEPS Perdana, Serdang, Selangor MY 43400, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|
112
|
Kaczkowski B, Morevati M, Rossing M, Cilius F, Norrild B. A Decade of Global mRNA and miRNA Profiling of HPV-Positive Cell Lines and Clinical Specimens. Open Virol J 2012; 6:216-31. [PMID: 23341857 PMCID: PMC3547333 DOI: 10.2174/1874357901206010216] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/07/2012] [Accepted: 08/20/2012] [Indexed: 01/07/2023] Open
Abstract
For more than a decade, global gene expression profiling has been extensively used to elucidate the biology of human papillomaviruses (HPV) and their role in cervical- and head-and-neck cancers. Since 2008, the expression profiling of miRNAs has been reported in multiple HPV studies. Two major strategies have been employed in the gene and miRNA profiling studies: In the first approach, HPV positive tumors were compared to normal tissues or to HPV negative tumors. The second strategy relied on analysis of cell cultures transfected with single HPV oncogenes or with HPV genomes compared to untransfected cells considered as models for the development of premalignant and malignant transformations.In this review, we summarize what we have learned from a decade of global expression profiling studies. We performed comprehensive analysis of the overlap of the lists of differentially expressed genes and microRNAs, in both tissue samples and cell culture based studies. The review focuses mainly on HPV16, however reports from other HPV species are used as references. We discuss the low degree of consensus among different studies and the limitation of differential expression analysis as well as the fragmented miRNA-mRNA target correlation evidence. Furthermore, we propose an approach for future research to include more comprehensive miRNA-mRNA target correlation analysis and to apply systems biology/gene networks methodology.
Collapse
Affiliation(s)
- Bogumil Kaczkowski
- The Bioinformatics Centre, Department of Biology and Biomedical Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
113
|
Shamanna RA, Hoque M, Pe'ery T, Mathews MB. Induction of p53, p21 and apoptosis by silencing the NF90/NF45 complex in human papilloma virus-transformed cervical carcinoma cells. Oncogene 2012. [PMID: 23208500 PMCID: PMC4032571 DOI: 10.1038/onc.2012.533] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The heterodimeric nuclear factor 90/nuclear factor 45 complex (NF90/NF45) binds nucleic acids and is a multifunctional regulator of gene expression. Here we report that depletion of NF90/NF45 restores the expression of the p53 and p21 proteins in cervical carcinoma cells infected with high-risk human papillomaviruses (HPV). Knockdown of either NF90 or NF45 by RNA interference led to greatly elevated levels of p53 and p21 proteins in HPV-derived HeLa and SiHa cells, but not in other cancerous or normal cell lines. In HeLa cells, p21 mRNA increased concomitantly but the level of p53 mRNA was unaffected. RNA interference directed against p53 prevented the induction of both proteins. These results indicated that the up-regulation of p21 is due to p53-dependent transcription, whereas p53 is regulated post-transcriptionally. Proteasome-mediated turnover of p53 is accelerated by the HPV E6 and cellular E6AP proteins. We therefore examined the hypothesis that this pathway is regulated by NF90/NF45. Indeed, depletion of NF90 attenuated the expression of E6 RNA and inhibited transcription from the HPV early promoter, revealing a new role for NF90/NF45 in HPV gene expression. The transcription inhibition was largely independent of the reduction of P-TEFb levels caused by NF90 depletion. Consistent with p53 derepression, NF90/NF45-depleted HeLa cells displayed elevated PARP cleavage and susceptibility to camptothecin-induced apoptosis. We conclude that high-risk strains of HPV utilize the cellular NF90/NF45 complex for viral E6 expression in infected cervical carcinoma cell lines. Interference with NF90/NF45 function could assist in controlling cervical carcinoma.
Collapse
Affiliation(s)
- R A Shamanna
- 1] Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, NJ, USA [2] Graduate School of Biomedical Sciences, UMDNJ, Newark, NJ, USA
| | | | | | | |
Collapse
|
114
|
Kocjan BJ, Gale N, Hočevar Boltežar I, Seme K, Fujs Komloš K, Hošnjak L, Maver PJ, Jelen MM, Zupanič Pajnič I, Balažic J, Poljak M. Identical human papillomavirus (HPV) genomic variants persist in recurrent respiratory papillomatosis for up to 22 years. J Infect Dis 2012. [PMID: 23204170 DOI: 10.1093/infdis/jis733] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Seventy initial and 125 follow-up tissue specimens of laryngeal papillomas, obtained from 70 patients who had had recurrent respiratory papillomatosis for from 1-22 years, were investigated for the presence of human papillomavirus (HPV) DNA and HPV E5a, LCR and/or full-length genomic variants. HPV-6 was found in 130/195, HPV-11 in 63/195, and HPV-6/HPV-11 in 2/195 samples. Within 67/70 (95.7%) patients, all follow-up HPV isolates genetically matched completely initial HPV isolate over the highly variable parts of the genome or over the entire genome. Frequent recurrence of laryngeal papillomas is a consequence of long-term persistence of the identical initial HPV genomic variant.
Collapse
Affiliation(s)
- Boštjan J Kocjan
- Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Abreu ALP, Souza RP, Gimenes F, Consolaro MEL. A review of methods for detect human Papillomavirus infection. Virol J 2012; 9:262. [PMID: 23131123 PMCID: PMC3507852 DOI: 10.1186/1743-422x-9-262] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 11/02/2012] [Indexed: 02/07/2023] Open
Abstract
Human Papillomavirus (HPV) is the most common sexually transmitted virus. Worldwide, the most common high-risk (HR)-HPV are -16/18, and approximately 70% of cervical cancers (CC) are due to infection by these genotypes. Persistent infection by HR-HPV is a necessary but not sufficient cause of this cancer, which develops over a long period through precursor lesions, which can be detected by cytological screening. Although this screening has decreased the incidence of CC, HPV-related cervical disease, including premalignant and malignant lesions, continues to be a major burden on health-care systems. Although not completely elucidated, the HPV-driven molecular mechanisms underlying the development of cervical lesions have provided a number of potential biomarkers for both diagnostic and prognostic use in the clinical management of women with HPV-related cervical disease, and these biomarkers can also be used to increase the positive predictive value of current screening methods. In addition, they can provide insights into the biology of HPV-induced cancer and thus lead to the development of nonsurgical therapies. Considering the importance of detecting HPV and related biomarkers, a variety of methods are being developed for these purposes. This review summarizes current knowledge of detection methods for HPV, and related biomarkers that can be used to discriminate lesions with a high risk of progression to CC.
Collapse
Affiliation(s)
- André L P Abreu
- Division of Clinical Cytology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Av, Colombo 5790, 87020-900, Paraná, Brazil
| | | | | | | |
Collapse
|
116
|
Smahel M. Biolistic DNA vaccination against cervical cancer. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 940:339-55. [PMID: 23104353 DOI: 10.1007/978-1-62703-110-3_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The development of cervical cancer is associated with infection by oncogenic human papillomaviruses (HPVs), of which type 16 (HPV16) is the most prevalent in HPV-induced malignant diseases. The viral oncoproteins E6 and E7 are convenient targets for anti-tumor immunization. To adapt the corresponding genes for DNA vaccination, their oncogenicity needs to be reduced and immunogenicity enhanced. The main modifications for achieving these aims include mutagenesis, rearrangement of gene parts, and fusion with supportive cellular or viral/bacterial genes or their functional parts. As HPVs are strictly human specific, an animal model of HPV infection does not exist. Therefore, immunization against HPV-induced tumors is most frequently tested in mouse models utilizing transplantable syngeneic tumor cells producing the HPV16 E6/E7 oncoproteins. In this chapter, one such cell line designated TC-1 is characterized and the effect of immunization with the modified E7 fusion gene against TC-1-induced subcutaneous tumors is described. As down-regulation of MHC class I molecules is one of the most important escape mechanisms of cervical carcinoma cells, the TC-1/A9 clone with reversibly reduced MHC class I expression has been developed and, herein, its response to DNA vaccination is also shown and compared with that of the TC-1 cells.
Collapse
Affiliation(s)
- Michal Smahel
- Department of Experimental Virology, Laboratory of Molecular Oncology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| |
Collapse
|
117
|
Yuan H, Myers S, Wang J, Zhou D, Woo JA, Kallakury B, Ju A, Bazylewicz M, Carter YM, Albanese C, Grant N, Shad A, Dritschilo A, Liu X, Schlegel R. Use of reprogrammed cells to identify therapy for respiratory papillomatosis. N Engl J Med 2012; 367:1220-7. [PMID: 23013073 PMCID: PMC4030597 DOI: 10.1056/nejmoa1203055] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A patient with a 20-year history of recurrent respiratory papillomatosis had progressive, bilateral tumor invasion of the lung parenchyma. We used conditional reprogramming to generate cell cultures from the patient's normal and tumorous lung tissue. Analysis revealed that the laryngeal tumor cells contained a wild-type 7.9-kb human papillomavirus virus type 11 (HPV-11) genome, whereas the pulmonary tumor cells contained a 10.4-kb genome. The increased size of the latter viral genome was due to duplication of the promoter and oncogene regions. Chemosensitivity testing identified vorinostat as a potential therapeutic agent. At 3 months after treatment initiation, tumor sizes had stabilized, with durable effects at 15 months.
Collapse
Affiliation(s)
- Hang Yuan
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Mascolo M, Ilardi G, Romano MF, Celetti A, Siano M, Romano S, Luise C, Merolla F, Rocco A, Vecchione ML, De Rosa G, Staibano S. Overexpression of chromatin assembly factor-1 p60, poly(ADP-ribose) polymerase 1 and nestin predicts metastasizing behaviour of oral cancer. Histopathology 2012; 61:1089-105. [PMID: 22882088 PMCID: PMC3546388 DOI: 10.1111/j.1365-2559.2012.04313.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims The natural history of oral squamous cell carcinomas (OSCCs) is variable and difficult to predict. This study aimed to assess the value of the expression of poly(ADP-ribose) polymerase 1 (PARP-1), chromatin assembly factor-1 (CAF-1)/p60 and the stem cell markers CD133, CD166, CD44, CD44v6 and nestin as markers of outcome and progression-free survival in OSCC patients. Methods Clinical data were collected from 66 patients (41 male and 25 female, aged 29–92 years) who underwent surgery for OSCC of the tongue, floor, lips, and palate. During follow-up (range: 12–131 months), 14 patients experienced relapse/metastasis and/or death. The study was performed by immunohistochemistry on paraffin-embedded tumour tissues, western blot analysis of tumour protein lysates and human cell lines, and RNA silencing assays. In addition, the human papillomavirus (HPV) status of primary tumours was evaluated by immunohistochemistry and viral subtyping. Univariate and multivariate analyses were performed to determine the correlation between these parameters and the clinical and pathological variables of the study population. Results and conclusions We found that a PARP-1high/CAF-1 p60high/nestinhigh phenotype characterized the OSCCs with the worst prognosis (all HPV-negative). This may be of benefit in clinical management, since radio-enhancing anti-PARP-1 and/or anti-CAF-1/p60 agents may allow radioresistance to be bypassed in the nestin-overexpressing, metastasizing OSCC cells.
Collapse
Affiliation(s)
- Massimo Mascolo
- Department of Biomorphological and Functional Sciences, Pathology Section, School of Medicine, University 'Federico II', Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Turnell AS, Grand RJ. DNA viruses and the cellular DNA-damage response. J Gen Virol 2012; 93:2076-2097. [PMID: 22855786 DOI: 10.1099/vir.0.044412-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is clear that a number of host-cell factors facilitate virus replication and, conversely, a number of other factors possess inherent antiviral activity. Research, particularly over the last decade or so, has revealed that there is a complex inter-relationship between viral infection and the host-cell DNA-damage response and repair pathways. There is now a realization that viruses can selectively activate and/or repress specific components of these host-cell pathways in a temporally coordinated manner, in order to promote virus replication. Thus, some viruses, such as simian virus 40, require active DNA-repair pathways for optimal virus replication, whereas others, such as adenovirus, go to considerable lengths to inactivate some pathways. Although there is ever-increasing molecular insight into how viruses interact with host-cell damage pathways, the precise molecular roles of these pathways in virus life cycles is not well understood. The object of this review is to consider how DNA viruses have evolved to manage the function of three principal DNA damage-response pathways controlled by the three phosphoinositide 3-kinase (PI3K)-related protein kinases ATM, ATR and DNA-PK and to explore further how virus interactions with these pathways promote virus replication.
Collapse
Affiliation(s)
- Andrew S Turnell
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Roger J Grand
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
120
|
Abstract
Human papillomavirus (HPV) infection of the genital tract is common in young sexually active individuals, the majority of whom clear the infection without overt clinical disease. Most of those who do develop benign lesions eventually mount an effective cell-mediated immune (CMI) response, and the lesions regress. Regression of anogenital warts is accompanied histologically by a CD4(+) T cell-dominated Th1 response; animal models support this and provide evidence that the response is modulated by antigen-specific CD4(+) T cell-dependent mechanisms. Failure to develop an effective CMI response to clear or control infection results in persistent infection and, in the case of the oncogenic HPVs, an increased probability of progression to high-grade intraepithelial neoplasia and invasive carcinoma. Effective evasion of innate immune recognition seems to be the hallmark of HPV infections. The viral infectious cycle is exclusively intraepithelial: there is no viremia and no virus-induced cytolysis or cell death, and viral replication and release are not associated with inflammation. HPV globally downregulates the innate immune signaling pathways in the infected keratinocyte. Proinflammatory cytokines, particularly the type I interferons, are not released, and the signals for Langerhans cell (LC) activation and migration, together with recruitment of stromal dendritic cells and macrophages, are either not present or inadequate. This immune ignorance results in chronic infections that persist over weeks and months. Progression to high-grade intraepithelial neoplasia with concomitant upregulation of the E6 and E7 oncoproteins is associated with further deregulation of immunologically relevant molecules, particularly chemotactic chemokines and their receptors, on keratinocytes and endothelial cells of the underlying microvasculature, limiting or preventing the ingress of cytotoxic effectors into the lesions. Recent evidence suggests that HPV infection of basal keratinocytes requires epithelial wounding followed by the reepithelization of wound healing. The wound exudate that results provides a mechanistic explanation for the protection offered by serum neutralizing antibody generated by HPV L1 virus-like particle (VLP) vaccines.
Collapse
|
121
|
Kaczkowski B, Rossing M, Andersen DK, Dreher A, Morevati M, Visser MA, Winther O, Nielsen FC, Norrild B. Integrative analyses reveal novel strategies in HPV11,-16 and -45 early infection. Sci Rep 2012; 2:515. [PMID: 22808421 PMCID: PMC3398386 DOI: 10.1038/srep00515] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/02/2012] [Indexed: 01/24/2023] Open
Abstract
The interaction between human papillomavirus (HPV) and host cells is not well understood. We investigate the early stage of HPV infections by global expression profiling in a cell model, in which HaCaT cells were transfected with HPV11, HPV16 or HPV45 genomes. We report the differential expression of genes not previously implicated in HPV biology, such as the PSG family and ANKRD1, and of genes implicated in the biology of other viruses, e.g. MX1, IFI44 and DDX60. Carcinogenesis-related genes, e.g. ABL2, MGLL and CYR61, were upregulated by high-risk HPV16 and -45. The integrative analysis revealed the suppression of DNA repair by HPV11 and -16, and downregulation of cytoskeleton genes by all HPV types. Various signalling pathways were affected by the HPVs: IL-2 by HPV11; JAK-STAT by HPV16; and TGF-β, NOTCH and tyrosine kinase signalling by HPV45. This study uncovered novel strategies employed by HPV to establish infection and promote uncontrolled growth.
Collapse
Affiliation(s)
- Bogumil Kaczkowski
- The Bioinformatics Centre, Department of Biology and Biomedical Research and Innovation Centre, Copenhagen University, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark
| | - Maria Rossing
- Department of Clinical Biochemistry, Copenhagen University Hospital, Blegdamsvej 5, 2100 Copenhagen, Denmark
| | - Ditte K. Andersen
- Institute of Cellular and Molecular Medicine, DNA Tumor Virus Laboratory, University of Copenhagen, Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Anita Dreher
- Institute of Cellular and Molecular Medicine, DNA Tumor Virus Laboratory, University of Copenhagen, Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Marya Morevati
- Institute of Cellular and Molecular Medicine, DNA Tumor Virus Laboratory, University of Copenhagen, Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Melissa A. Visser
- Institute of Cellular and Molecular Medicine, DNA Tumor Virus Laboratory, University of Copenhagen, Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Ole Winther
- The Bioinformatics Centre, Department of Biology and Biomedical Research and Innovation Centre, Copenhagen University, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark
- DTU Informatics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Finn Cilius Nielsen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Blegdamsvej 5, 2100 Copenhagen, Denmark
| | - Bodil Norrild
- Institute of Cellular and Molecular Medicine, DNA Tumor Virus Laboratory, University of Copenhagen, Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
122
|
Chan PKS, Picconi MA, Cheung TH, Giovannelli L, Park JS. Laboratory and clinical aspects of human papillomavirus testing. Crit Rev Clin Lab Sci 2012; 49:117-36. [PMID: 22913405 PMCID: PMC3469219 DOI: 10.3109/10408363.2012.707174] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 05/13/2012] [Accepted: 06/25/2012] [Indexed: 12/14/2022]
Abstract
Human papillomavirus (HPV) infection is associated with a wide spectrum of disease that ranges from self-limited skin warts to life-threatening cancers. Since HPV plays a necessary etiological role in cervical cancer, it is logical to use HPV as a marker for early detection of cervical cancer and precancer. Recent advances in technology enable the development of high-throughput HPV assays of different formats, including DNA-based, mRNA-based, high-risk group-specific and type-specific methods. The ultimate goal of these assays is to improve the accuracy and cost-effectiveness of cervical screening programs. HPV testing has several potential advantages compared to cytology-based screening. However, since the cancer to transient infection ratio is always low in the general population, HPV test results are bound to have a low positive predictive value that may subject women to unnecessary follow-up investigations. The wide-spread administration of prophylactic HPV vaccine will substantially decrease the incidence of cancer and precancer. This poses a number of challenges to cytology-based screening, and the role of HPV testing is expected to increase. Finally, apart from technical and cost-effectiveness considerations, one should also keep in mind the psycho-social impact of using sexually-transmitted agents as a marker for cancer screening.
Collapse
Affiliation(s)
- Paul K S Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong Special Administrative Region, People's Republic of China.
| | | | | | | | | |
Collapse
|
123
|
HPV-16 E2 contributes to induction of HPV-16 late gene expression by inhibiting early polyadenylation. EMBO J 2012; 31:3212-27. [PMID: 22617423 DOI: 10.1038/emboj.2012.147] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 04/24/2012] [Indexed: 11/08/2022] Open
Abstract
We provide evidence that the human papillomavirus (HPV) E2 protein regulates HPV late gene expression. High levels of E2 caused a read-through at the early polyadenylation signal pAE into the late region of the HPV genome, thereby inducing expression of L1 and L2 mRNAs. This is a conserved property of E2 of both mucosal and cutaneous HPV types. Induction could be reversed by high levels of HPV-16 E1 protein, or by the polyadenylation factor CPSF30. HPV-16 E2 inhibited polyadenylation in vitro by preventing the assembly of the CPSF complex. Both the N-terminal and hinge domains of E2 were required for induction of HPV late gene expression in transfected cells as well as for inhibition of polyadenylation in vitro. Finally, overexpression of HPV-16 E2 induced late gene expression from a full-length genomic clone of HPV-16. We speculate that the accumulation of high levels of E2 during the viral life cycle, not only turns off the expression of the pro-mitotic viral E6 and E7 genes, but also induces the expression of the late HPV genes L1 and L2.
Collapse
|
124
|
Lucs A, Saltman B, Chung CH, Steinberg BM, Schwartz DL. Opportunities and challenges facing biomarker development for personalized head and neck cancer treatment. Head Neck 2012; 35:294-306. [PMID: 22287320 DOI: 10.1002/hed.21975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/08/2011] [Indexed: 12/25/2022] Open
Abstract
Head and neck oncologists have traditionally relied on clinical tumor features and patient characteristics to guide care of individual patients. As surgical, radiotherapeutic, and systemic treatments have evolved to become more anatomically precise and mechanistically specific, the opportunity for improved cure and functional patient recovery has never been more promising for this historically debilitating cancer. However, personalized treatment must be accompanied by sophisticated patient selection to triage the application of advanced therapies toward ideal patient candidates. In this monograph, we review current progress, investigative themes, and key challenges facing head and neck cancer biomarker development intended to make personalized head and neck cancer treatment a clinical reality.
Collapse
Affiliation(s)
- Alexandra Lucs
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Benjamin Saltman
- Department of Otolaryngology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Christine H Chung
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bettie M Steinberg
- The Feinstein Institute for Medical Research, Manhasset, NY, USA.,Department of Otolaryngology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - David L Schwartz
- The Feinstein Institute for Medical Research, Manhasset, NY, USA.,Department of Otolaryngology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.,Department of Radiation Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| |
Collapse
|
125
|
Abstract
The discovery that certain high-risk strains of human papillomavirus (HR-HPV) cause nearly 100% of invasive cervical cancer has spurred a revolution in cervical cancer prevention by promoting the development of viral vaccines. Although the efficacy of these vaccines has already been demonstrated, a complete understanding of viral latency and natural immunity is lacking, and solving these mysteries could help guide policies of cervical cancer screening and vaccine use. Here, we examine the epidemiological and biological understanding of the natural history of HPV infection, with an eye toward using these studies to guide the implementation of cervical cancer prevention strategies.
Collapse
Affiliation(s)
- Patti E Gravitt
- Perdana University Graduate School of Medicine, Serdang, Malaysia.
| |
Collapse
|
126
|
Tornesello ML, Cassese R, De Rosa N, Buonaguro L, Masucci A, Vallefuoco G, Palmieri S, Schiavone V, Piccoli R, Buonaguro FM. High prevalence of human papillomavirus infection in Eastern European and West African women immigrants in South Italy. APMIS 2011; 119:701-709. [PMID: 21917007 DOI: 10.1111/j.1600-0463.2011.02784.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Surveillance of human papillomavirus (HPV) prevalence and genotype distribution in migrant women from middle and low-income countries to developed countries is limited. The aim of this study was to analyze the spectrum of HPV genotypes and prevalence of cervical abnormalities in women emigrated mainly from Eastern Europe and West Africa and living in Southern Italy. The study included 233 migrant and 98 Italian-born women who self-referred to two gynecological outpatient clinics in the Campania region. Cervical specimens were subjected to cytological examination and viral testing by broad spectrum PCR. The prevalence rates of HPV infection were 57.9% and 94.1% among migrant and 19.4% and 88.5% among Italian women with normal and abnormal cytology respectively. HPV infection was detected in 56.1% of Southern and Eastern European, 62.5% of Central and South American, 55.5% of West African, and 73.3% of Southern Asian women with normal cervix. Among the 140 HPV-positive migrants, a total of 28 mucosal HPV genotypes were identified of which 11 types (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, and 58), epidemiological classified as carcinogenic to humans (group 1), accounted for 73.4% of all infections. As expected, HPV16 was the most common viral type in all groups with frequency rates ranging from 12.5% in African to 30.1% in Eastern and Southern European women. In conclusion, the estimated prevalence of HPV infection among migrant women is very high, probably reflecting either lifestyle or high incidence of HPV in their country of origin. The implementation of vaccination strategies and cervical cancer surveillance are critical for women in this risk group.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology and AIDS Reference Centre, National Cancer Institute, "Fond. Pascale", Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
There are at least 5 types of kisses, including ges-tural, cultural, osculum, basium, saviolum, and oro-genital.[...]
Collapse
|
128
|
Ure AE, Elfadl AK, Khalafalla AI, Gameel AAR, Dillner J, Forslund O. Characterization of the complete genomes of Camelus dromedarius papillomavirus types 1 and 2. J Gen Virol 2011; 92:1769-1777. [PMID: 21471319 DOI: 10.1099/vir.0.031039-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Camel papillomatosis has been described previously, but the genome of the suspected papillomavirus (PV) has not been identified. An outbreak of papillomatosis occurred in a dromedary farm of 55 animals in Sudan during August 2009. The disease was only present in young animals aged about 3-7 months, of which 44 % (11/25) were affected with lesions, mainly on the lips and lower jaw. This study reports for the first time the complete genomes of Camelus dromedarius papillomavirus types 1 (CdPV1) and 2 (CdPV2), isolated from a cauliflower-like nodule and a round oval raised nodule, respectively. Pairwise comparisons of their L1 nucleotide sequences revealed 69.2 % identity, and phylogenetic analyses suggested that these two PV types are grouped within the genus Deltapapillomavirus. Both viruses were isolated from fibropapillomas, although no putative E5 proteins homologous to that of bovine papillomavirus type 1 were identified. The genetic information will be useful for evolutionary studies of the family Papillomaviridae, as well as for the development of diagnostic methods for surveillance of the disease in dromedaries.
Collapse
Affiliation(s)
- A E Ure
- Department of Laboratory Medicine, Medical Microbiology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - A K Elfadl
- Department of Pathology, Faculty of Veterinary Medicine, University of Khartoum, PO Box 32, Khartoum North, Sudan
| | - A I Khalafalla
- Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, PO Box 32, Khartoum North, Sudan
| | - A A R Gameel
- Department of Pathology, Faculty of Veterinary Medicine, University of Khartoum, PO Box 32, Khartoum North, Sudan
| | - J Dillner
- Department of Laboratory Medicine, Medical Microbiology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - O Forslund
- Department of Laboratory Medicine, Medical Microbiology, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
129
|
Dreher A, Rossing M, Kaczkowski B, Andersen DK, Larsen TJ, Christophersen MK, Nielsen FC, Norrild B. Differential expression of cellular microRNAs in HPV 11, -16, and -45 transfected cells. Biochem Biophys Res Commun 2011; 412:20-5. [PMID: 21782796 DOI: 10.1016/j.bbrc.2011.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 07/05/2011] [Indexed: 12/14/2022]
Abstract
Human papillomaviruses (HPVs) are highly prevalent giving rise to both benign and malignant lesions why they are classified as high- and low-risk viruses. In this study we selected one low-risk (HPV 11) and two high-risk (HPV 16 and -45) types for genomewide miRNA analysis to investigate possible common and distinct features in the expression profiles. For this purpose we developed a cell culture model system in HaCaT cells for expression of the viral genomes under standardized conditions. We identified 25 miRNAs which were differentially regulated in two or three HPV types where 13 miRNAs were in common for all three types. Among the miRNAs identified, miR-125a-5p, miR-129-3p, miR-363, and miR-145 are related to human cancers. Noteworthy, miR-145 is found upregulated in the miRNA profiles of both high-risk HPV types. For selected differentially expressed miRNAs in HPV 16 predicted miRNA target transcript involved in signal transduction, RNA splicing and tumor invasive growth were validated by qRT-PCR. In addition, our results imply that the early 3' untranslated region (3'UTR) of the three HPV genomes were not a target for miRNA regulation.
Collapse
Affiliation(s)
- Anita Dreher
- Institute of Cellular and Molecular Medicine, DNA Tumor Virus Laboratory, University of Copenhagen, Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Mitsouras K, Faulhaber EA, Hui G, Joslin JO, Eng C, Barr MC, Irizarry KJ. Development of a PCR assay to detect papillomavirus infection in the snow leopard. BMC Vet Res 2011; 7:1-11. [PMID: 21767399 PMCID: PMC3154860 DOI: 10.1186/1746-6148-7-38] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 07/18/2011] [Indexed: 11/10/2022] Open
Abstract
Background Papillomaviruses (PVs) are a group of small, non-encapsulated, species-specific DNA viruses that have been detected in a variety of mammalian and avian species including humans, canines and felines. PVs cause lesions in the skin and mucous membranes of the host and after persistent infection, a subset of PVs can cause tumors such as cervical malignancies and head and neck squamous cell carcinoma in humans. PVs from several species have been isolated and their genomes have been sequenced, thereby increasing our understanding of the mechanism of viral oncogenesis and allowing for the development of molecular assays for the detection of PV infection. In humans, molecular testing for PV DNA is used to identify patients with persistent infections at risk for developing cervical cancer. In felids, PVs have been isolated and sequenced from oral papillomatous lesions of several wild species including bobcats, Asian lions and snow leopards. Since a number of wild felids are endangered, PV associated disease is a concern and there is a need for molecular tools that can be used to further study papillomavirus in these species. Results We used the sequence of the snow leopard papillomavirus UuPV1 to develop a PCR strategy to amplify viral DNA from samples obtained from captive animals. We designed primer pairs that flank the E6 and E7 viral oncogenes and amplify two DNA fragments encompassing these genes. We detected viral DNA for E6 and E7 in genomic DNA isolated from saliva, but not in paired blood samples from snow leopards. We verified the identity of these PCR products by restriction digest and DNA sequencing. The sequences of the PCR products were 100% identical to the published UuPV1 genome sequence. Conclusions We developed a PCR assay to detect papillomavirus in snow leopards and amplified viral DNA encompassing the E6 and E7 oncogenes specifically in the saliva of animals. This assay could be utilized for the molecular investigation of papillomavirus in snow leopards using saliva, thereby allowing the detection of the virus in the anatomical site where oral papillomatous lesions develop during later stages of infection and disease development.
Collapse
Affiliation(s)
- Katherine Mitsouras
- College of Osteopathic Medicine of the Pacific, Western University of Health, Sciences, Pomona, CA, USA
| | | | | | | | | | | | | |
Collapse
|
131
|
Gaisa MM, Goldstone SE. Diagnosis and Treatment of Anal Intraepithelial Neoplasia and Condylomata. SEMINARS IN COLON AND RECTAL SURGERY 2011. [DOI: 10.1053/j.scrs.2010.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
132
|
Opposing oncogenic activities of small DNA tumor virus transforming proteins. Trends Microbiol 2011; 19:174-83. [PMID: 21330137 DOI: 10.1016/j.tim.2011.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 01/04/2011] [Accepted: 01/12/2011] [Indexed: 01/10/2023]
Abstract
The E1A gene of species C human adenovirus is an intensely investigated model viral oncogene that immortalizes primary cells and mediates oncogenic cell transformation in cooperation with other viral or cellular oncogenes. Investigations using E1A proteins have illuminated important paradigms in cell proliferation and about the functions of cellular proteins such as the retinoblastoma protein. Studies with E1A have led to the unexpected discovery that E1A also suppresses cell transformation and oncogenesis. Here, I review our current understanding of the transforming and tumor-suppressive functions of E1A, and how E1A studies led to the discovery of a related tumor-suppressive function in benign human papillomaviruses. The potential role of these opposing functions in viral replication in epithelial cells is also discussed.
Collapse
|
133
|
Banerjee NS, Wang HK, Broker TR, Chow LT. Human papillomavirus (HPV) E7 induces prolonged G2 following S phase reentry in differentiated human keratinocytes. J Biol Chem 2011; 286:15473-82. [PMID: 21321122 DOI: 10.1074/jbc.m110.197574] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The productive program of human papillomaviruses occurs in differentiated squamous keratinocytes. We have previously shown that HPV-18 DNA amplification initiates in spinous cells in organotypic cultures of primary human keratinocytes during prolonged G(2) phase, as signified by abundant cytoplasmic cyclin B1 (Wang, H. K., Duffy, A. A., Broker, T. R., and Chow, L. T. (2009) Genes Dev. 23, 181-194). In this study, we demonstrated that the E7 protein, which induces S phase reentry in suprabasal cells by destabilizing the p130 pocket protein (Genovese, N. J., Banerjee, N. S., Broker, T. R., and Chow, L. T. (2008) J. Virol. 82, 4862-4873), also elicited extensive G(2) responses. Western blots and indirect immunofluorescence assays were used to probe for host proteins known to control G(2)/M progression. E7 expression induced cytoplasmic accumulation of cyclin B1 and cdc2 in the suprabasal cells. The elevated cdc2 had inactivating phosphorylation on Thr(14) or Tyr(15), and possibly both, due to an increase in the responsible Wee1 and Myt1 kinases. In cells that harbored cytoplasmic cyclin B1 or cdc2, there was also an accumulation of the phosphatase-inactive cdc25C phosphorylated on Ser(216), unable to activate cdc2. Moreover, E7 expression induced elevated expression of phosphorylated ATM (Ser(1981)) and the downstream phosphorylated Chk1, Chk2, and JNKs, kinases known to inactivate cdc25C. Similar results were observed in primary human keratinocyte raft cultures in which the productive program of HPV-18 took place. Collectively, this study has revealed the mechanisms by which E7 induces prolonged G(2) phase in the differentiated cells following S phase induction.
Collapse
Affiliation(s)
- N Sanjib Banerjee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | |
Collapse
|
134
|
Sánchez-Vargas LO, Díaz-Hernández C, Martinez-Martinez A. Detection of Human Papilloma Virus (HPV) in oral mucosa of women with cervical lesions and their relation to oral sex practices. Infect Agent Cancer 2010; 5:25. [PMID: 21129222 PMCID: PMC3014881 DOI: 10.1186/1750-9378-5-25] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 12/04/2010] [Indexed: 12/01/2022] Open
Abstract
Background Previous studies have either investigated the relationship of HPV with oral cancer or the prevalence of HPV on the oral cavity. The purpose of this investigation was to study the prevalence of HPV in oral cavity of women with oral sex practices and cervical lesions. Methods Forty six (46) non-smokers and non-alcoholic patients attended the "Clínica de Displasias" of "Ciudad Juarez" were sampled. This population had a CIN diagnosis sometime between the previous six months. On previous consent they filled out a questionnaire related to their oral sex practices. Afterwards one swab from cheeks and another from palate/gum were taken; PCR was used to determine generic HPV, HPV16 and HPV18. Results Seventy two percent (72%) of the patients stated to have oral sex practices regularly which all of them were positive to HPV either in oral mucus, palate/gum or both. The total of the given results showed that 35% had HPV16; among those distributed in 26% with regular oral sex practices and 9% stated as never practiced oral sex. An association was found between oral HPV16 positivity and progression to cervical CIN advanced lesions. On the other hand HPV18 was not detected. The frequency of HPV16 was higher in buccal mucosa (23%) versus palate/gum (16%). Conclusions This study suggests that buccal HPV16 infection is associated with CIN progression.
Collapse
Affiliation(s)
- Luis O Sánchez-Vargas
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México.
| | | | | |
Collapse
|
135
|
Differential expression of cellular microRNAs in HPV-11 transfected cells. An analysis by three different array platforms and qRT-PCR. Biochem Biophys Res Commun 2010; 403:357-62. [PMID: 21078297 DOI: 10.1016/j.bbrc.2010.11.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 11/10/2010] [Indexed: 11/22/2022]
Abstract
Human papillomavirus type 11 (HPV-11) infects the genital and the respiratory tract leading to condylomas and respiratory papillomatosis. HPV infections are restricted to epithelial tissue and the progression through the virus lifecycle is tightly coordinated to the differentiation of the host cell. The changes of cellular microRNAs by HPV-11 gene expression were investigated in a cell culture model of HaCaT cells transfected with HPV-11, with the goal of understanding which cellular processes were affected by the virus. Human microRNA profiling was conducted on three different array platform systems and because very few microRNAs (miR-663, -638, -149* and -92b*) were consistently found in all three array data sets we performed extensive statistical analyses of the array data and the qRT-PCR validation. We assume that the most reliable differentially expressed microRNAs are the ones identified by more than one array platform. We also show that TaqMan® qRT-PCR validation is of limited use for less abundant microRNAs.
Collapse
|
136
|
Abstract
Over the last 20 years, there has been increasing awareness of a subset of squamous cell carcinomas of the head and neck (HNSCC), i.e. HPV-positive HNSCC. These cancers seem to differ somewhat from HPV-negative HNSCC. Patients with HPV-positive HNSCC tend to be younger and have a lower intake of tobacco and alcohol. Distinct molecular profiles separate them from HPV-negative cancers and show similarities with HPV-positive cervical SCC. There is evidence that HPV-positive HNSCC is a sexually transmitted disease. Patients with HPV-positive HNSCC are often diagnosed at a late stage with large cystic lymph nodes in the neck. HPV-positive HNSCC show an affinity for the oropharynx, especially the tonsils and the base of the tongue, and tend to show low differentiation histopathologically. There is a better prognosis regardless of the treatment regimen for HPV-positive HNSCC compared with HPV-negative HNSCC, and this seems to be related to the immune system. Whether the new vaccines for HPV will protect not only against cervical cancer but also against HPV-positive HNSCC remains unknown.
Collapse
Affiliation(s)
- Christel Braemer Lajer
- Department of Oto-rhino-laryngology, Head and Neck Surgery, Rigshospitalet, University of Copenhagen, Denmark.
| | | |
Collapse
|