101
|
Fahmy RA, Kotry GS, Ramadan OR. Periodontal regeneration of dehisence defects using a modified perforated collagen membrane. A comparative experimental study. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.fdj.2018.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
102
|
Natale Júnior V, Souza FÁ, Vedovatto E, Nishioka RS, Poli PP, Carvalho PSPD. Preservation of Dental Sockets Filled with Composite Bovine Bone. A Single-Blind Randomized Clinical Trial. Braz Dent J 2018; 29:583-591. [DOI: 10.1590/0103-6440201802064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/22/2018] [Indexed: 01/11/2023] Open
Abstract
Abstract The purpose of this study was to evaluate the preservation of alveolar dimensions in human fresh extraction sockets filled with a composite bovine bone graft by means of design of single-blind randomized clinical trial. Forty participants had monoradicular teeth extracted (one teeth in each participant), and after were randomly divided into 2 groups: individuals whose fresh sockets were filled with the composite heterologous bone graft (Biomaterial Group), or with blood clot (Control Group). After extraction, the fresh sockets were measured at their greatest mesiodistal (MD) and bucco-lingual/palatal (BL/P) distance. Primary closure of the soft tissue was performed with a fibro-mucosal plug. After 120 post-operative days, the re-entry procedure was performed and the largest MD and BL/P measurements were again obtained to calculate the remodeling of the alveolar bone measured in percentage. In the biomaterial group, a percentage reduction of 1.62% and 3.29% in the MD and BL/P dimensions was observed 120 days after the extractions, whereas a reduction of 4.97% and 7.18% in the MD and BL/P dimensions occurred in the control group. There was a statistically significant difference (p<0.05) between the two groups for the bucco-palatal and mesiodistal measurements in the maxilla. In view of the results obtained, it can be concluded that composite bovine bone graft limited but did not impede alveolar bone remodeling.
Collapse
Affiliation(s)
- Vail Natale Júnior
- Faculdade de Medicina e Odontologia e Centro de Pesquisas Odontológicas São Leopoldo Mandic, Brazil
| | | | - Eduardo Vedovatto
- Faculdade de Medicina e Odontologia e Centro de Pesquisas Odontológicas São Leopoldo Mandic, Brazil
| | | | | | - Paulo Sérgio Perri de Carvalho
- Faculdade de Medicina e Odontologia e Centro de Pesquisas Odontológicas São Leopoldo Mandic, Brazil; Universidade Estadual Paulista, Brazil
| |
Collapse
|
103
|
|
104
|
Camps-Font O, Caro-Bonfill C, Sánchez-Garcés MÀ, Gay-Escoda C. Periodontal Regenerative Therapy for Preventing Bone Defects Distal to Mandibular Second Molars After Surgical Removal of Impacted Third Molars: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J Oral Maxillofac Surg 2018; 76:2482-2514. [DOI: 10.1016/j.joms.2018.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/22/2018] [Accepted: 07/22/2018] [Indexed: 12/15/2022]
|
105
|
Kaczmarek B, Sionkowska A, Otrocka-Domagała I, Polkowska I. In vivo studies of novel scaffolds with tannic acid addition. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
106
|
Siddeshappa ST, Bhatnagar S, Diwan V, Parvez H. Regenerative potential of subepithelial connective tissue graft in the treatment of periodontal infrabony defects. J Indian Soc Periodontol 2018; 22:492-497. [PMID: 30631227 PMCID: PMC6305092 DOI: 10.4103/jisp.jisp_312_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/02/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Due to high prevalence and progression of infrabony defects lead to increase in the possibility of tooth loss. Various regenerative techniques such as guided tissue regeneration, bone grafts, and biomimetic agents have been proposed. Subepithelial connective tissue graft (SCTG) is an autogenous membrane, which contains mesenchymal cells and has osteogenic, chondrogenic, and osteoblastic activities. The present study investigates the effective application of SCTG as an autogenous barrier membrane in the treatment of periodontal infrabony defect. MATERIALS AND METHODS Ten patients in the age group of 30-45 years suffering from chronic periodontitis with clinical and radiographic evidence of vertical defects were selected for the study. Clinical parameters evaluated were gingival index, plaque index, probing pocket depth, clinical attachment level, and gingival recession. These parameters were assessed at baseline, 6 and 9 months. Radiographic parameter (defect fill) was evaluated at baseline, 6, and 9 months postoperatively. Sites were treated with PERIOGLAS® and connective tissue graft. Statistical analysis was done using paired t-test. RESULTS All the patients finished the study. A significant improvement was observed regarding clinical parameters from baseline to 9 months. The radiographic defect fill was seen in all the cases at the end of 9 months, which was statistically significant in comparison with baseline scores. CONCLUSION SCTG could be effectively used as a barrier membrane for the treatment of periodontal infrabony defects.
Collapse
Affiliation(s)
| | - Shruti Bhatnagar
- Department of Periodontology, Rungta College of Dental Sciences and Research, Bhilai, Chhattisgarh, India
| | - Vikas Diwan
- Consultant Periodontist, Balaji Wards, Jagadalpur, Bastar, India
| | - Humera Parvez
- Consultant Periodontist, Ralas Enclave Society, Dagania, Raipur, Chhattisgarh, India
| |
Collapse
|
107
|
Neto AS, Ferreira JMF. Synthetic and Marine-Derived Porous Scaffolds for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1702. [PMID: 30216991 PMCID: PMC6165145 DOI: 10.3390/ma11091702] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/27/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022]
Abstract
Bone is a vascularized and connective tissue. The cortical bone is the main part responsible for the support and protection of the remaining systems and organs of the body. The trabecular spongy bone serves as the storage of ions and bone marrow. As a dynamic tissue, bone is in a constant remodelling process to adapt to the mechanical demands and to repair small lesions that may occur. Nevertheless, due to the increased incidence of bone disorders, the need for bone grafts has been growing over the past decades and the development of an ideal bone graft with optimal properties remains a clinical challenge. This review addresses the bone properties (morphology, composition, and their repair and regeneration capacity) and puts the focus on the potential strategies for developing bone repair and regeneration materials. It describes the requirements for designing a suitable scaffold material, types of materials (polymers, ceramics, and composites), and techniques to obtain the porous structures (additive manufacturing techniques like robocasting or derived from marine skeletons) for bone tissue engineering applications. Overall, the main objective of this review is to gather the knowledge on the materials and methods used for the production of scaffolds for bone tissue engineering and to highlight the potential of natural porous structures such as marine skeletons as promising alternative bone graft substitute materials without any further mineralogical changes, or after partial or total transformation into calcium phosphate.
Collapse
Affiliation(s)
- Ana S Neto
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - José M F Ferreira
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
108
|
Zohery AA, Meshri SM, Madi MI, Abd El Rehim SS, Nour ZM. Egyptian propolis compared to nanohydroxyapatite graft in the treatment of Class II furcation defects in dogs. J Periodontol 2018; 89:1340-1350. [PMID: 29802626 DOI: 10.1002/jper.17-0685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 11/12/2022]
Abstract
BACKGROUND Complementary and alternative medicine approaches are gaining ground in everyday practice. Propolis is a bee product that has been suggested to have bone regenerative effects. This study was conducted to compare the effectiveness of Egyptian propolis with nanohydroxyapatite graft on furcation defect regeneration in mongrel dogs. METHODS A split mouth design was utilized in six clinically healthy mongrel dogs. A total of 24 Class II furcation defects were surgically created in mandibular third and fourth premolars. The defects on the right side were filled with nanohydroxyapatite graft and covered with collagen membrane, while on the left side the defects were filled with propolis and also covered with collagen membrane. The dogs were sacrificed after 1 and 3 months. Segments containing the defects were prepared for histological evaluation. RESULTS The histological evaluation after one month revealed newly formed bone in both treatment groups. However, after 3 months, the bone trabeculae appeared thinner in the collagen/nanohydroxyapatite group than in the collagen/propolis group. The histomorphometric evaluation showed a significant increase in bone height as well as bone surface area for the collagen/propolis group compared to collagen/nanohydroxyapatite group. CONCLUSIONS Both Egyptian propolis and nanohydroxyapatite graft material showed favorable periodontal regenerative effect. Propolis showed increased cellular proliferative ability that could be beneficial in reducing the healing period needed after periodontal therapy.
Collapse
Affiliation(s)
- Amr A Zohery
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Radiology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Suzanne M Meshri
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Radiology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Marwa I Madi
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Zubaida M Nour
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Radiology Department, Faculty of Dentistry, Alexandria University
| |
Collapse
|
109
|
Struillou X, Fruchet A, Rakic M, Badran Z, Rethore G, Sourice S, Fellah BH, LE Guehennec L, Gauthier O, Weiss P, Soueidan A. Evaluation of a hydrogel membrane on bone regeneration in furcation periodontal defects in dogs. Dent Mater J 2018; 37:825-834. [PMID: 29925730 DOI: 10.4012/dmj.2017-238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the study was to evaluate bone regeneration using a canine model with surgically created periodontal defects filled for 12 weeks using a stratified biomaterial consisting in a biphasic calcium phosphate (BCP) covered with a crosslinking hydrogel acting as polymer membrane of silated hydroxypropyl methylcellulose (Si-HPMC) as the tested new concept. Bilateral, critical-sized, defects were surgically created at the mandibular premolar teeth of six adult beagle dogs. The defects were randomly allocated and: (i) left empty for spontaneous healing or filled with: (ii) BCP and a collagen membrane; (iii) BCP and hydrogel Si-HPMC membrane. At 12 weeks, the experimental conditions resulted in significantly enhanced bone regeneration in the test BCP/Si-HPMC group. Within the limits of this study, we suggest that the hydrogel Si-HPMC may act as an occlusive barrier to protect bone area from soft connective tissue invasion and then effectively contribute to enhance bone regeneration.
Collapse
Affiliation(s)
- Xavier Struillou
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes.,Department of Periodontology, Faculty of Dental Surgery, University of Nantes.,Nantes University Hospital, UIC Odontology
| | - Aurélien Fruchet
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes.,Nantes University Hospital, UIC Odontology
| | - Mia Rakic
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes.,Institute for Biological Research "Sinisa Stankovic", University of Belgrade
| | - Zahi Badran
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes.,Department of Periodontology, Faculty of Dental Surgery, University of Nantes.,Faculty of Dentistry, Mcgill University
| | - Gildas Rethore
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes.,Nantes University Hospital, UIC Odontology
| | - Sophie Sourice
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes
| | | | - Laurent LE Guehennec
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes.,Nantes University Hospital, UIC Odontology
| | - Olivier Gauthier
- ONIRIS, College of Veterinary Medicine, Department of Small Animal Surgery
| | - Pierre Weiss
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes.,Nantes University Hospital, UIC Odontology
| | - Assem Soueidan
- INSERM, UMR-S 1229, RMeS, Faculty of Dental Surgery, University of Nantes.,Department of Periodontology, Faculty of Dental Surgery, University of Nantes.,Nantes University Hospital, UIC Odontology
| |
Collapse
|
110
|
Does Adding Silver Nanoparticles to Leukocyte- and Platelet-Rich Fibrin Improve Its Properties? BIOMED RESEARCH INTERNATIONAL 2018; 2018:8515829. [PMID: 29977918 PMCID: PMC5994260 DOI: 10.1155/2018/8515829] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/26/2018] [Indexed: 11/18/2022]
Abstract
Objectives Leucocyte- and platelet-rich fibrin (L-PRF) membrane can be used in various regenerative treatments. In the case of classical heterologous membrane exposure, microorganisms can be colonized on it and jeopardize the success of treatment. The aim of this study was to compare the antibacterial, mechanical, and histologic characteristics of the L-PRF membrane before and after the addition of silver nanoparticles (SNP). Materials and Method This study was performed on 10 volunteer men aged 25-35 years. 20 ml whole bloods were collected from each person and L-PRFs were made by routine and SNP modified method. Mechanical, antibacterial, and histological properties were evaluated. Results The antibacterial efficacy of L-PRF and nanosilver-modified L-PRF was presented as Klebsiella pneumonia had growth on the L-PRF membrane after 12 hours. After 24 hours, Klebsiella pneumonia and Streptococcus viridans had growth on L-PRF and only Klebsiella pneumonia had growth on SNP-L-PRF. The tensile strength and stiffness were significantly higher in the SNP-L-PRF. Precipitation of the SNPs was patchy in the outer layers and quite homogeneous in the inner core. Conclusion Modification of L-PRF with SNP improves the mechanical properties and antibacterial activity of the L-PRF. It can play an important role in regenerative procedures.
Collapse
|
111
|
Kunimatsu R, Awada T, Yoshimi Y, Ando K, Hirose N, Tanne Y, Sumi K, Tanimoto K. The C-terminus of the amelogenin peptide influences the proliferation of human bone marrow mesenchymal stem cells. J Periodontol 2018; 89:496-505. [DOI: 10.1002/jper.17-0087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 09/03/2017] [Accepted: 09/17/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Ryo Kunimatsu
- Department of Orthodontics; Applied Life Sciences; Hiroshima University; Institute of Biomedical & Health Sciences; Kasumi, Minami-ku Hiroshima Japan
| | - Tetsuya Awada
- Department of Orthodontics; Applied Life Sciences; Hiroshima University; Institute of Biomedical & Health Sciences; Kasumi, Minami-ku Hiroshima Japan
| | - Yuki Yoshimi
- Department of Orthodontics; Applied Life Sciences; Hiroshima University; Institute of Biomedical & Health Sciences; Kasumi, Minami-ku Hiroshima Japan
| | - Kazuyo Ando
- Department of Orthodontics; Applied Life Sciences; Hiroshima University; Institute of Biomedical & Health Sciences; Kasumi, Minami-ku Hiroshima Japan
| | - Naoto Hirose
- Department of Orthodontics; Applied Life Sciences; Hiroshima University; Institute of Biomedical & Health Sciences; Kasumi, Minami-ku Hiroshima Japan
| | - Yuki Tanne
- Department of Orthodontics; Applied Life Sciences; Hiroshima University; Institute of Biomedical & Health Sciences; Kasumi, Minami-ku Hiroshima Japan
| | - Keisuke Sumi
- Department of Orthodontics; Applied Life Sciences; Hiroshima University; Institute of Biomedical & Health Sciences; Kasumi, Minami-ku Hiroshima Japan
| | - Kotaro Tanimoto
- Department of Orthodontics; Applied Life Sciences; Hiroshima University; Institute of Biomedical & Health Sciences; Kasumi, Minami-ku Hiroshima Japan
| |
Collapse
|
112
|
Kuchler U, Rybaczek T, Dobask T, Heimel P, Tangl S, Klehm J, Menzel M, Gruber R. Bone-conditioned medium modulates the osteoconductive properties of collagen membranes in a rat calvaria defect model. Clin Oral Implants Res 2018; 29:381-388. [PMID: 29453780 DOI: 10.1111/clr.13133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Collagen membranes are not limited to be occlusive barriers as they actively support bone regeneration. However, the impact of bone-derived growth factors on their osteoconductive competence has not been examined. METHODS Twenty adult Sprague Dawley rats were included in the study. Calvaria defects with a diameter of five millimeter were created. The defect was covered with one layer of a collagen membrane previously soaked in conditioned medium of porcine bone chips or in culture medium alone. After 4 weeks, microcomputed tomography was performed. Undecalcified thin-ground sections were subjected to light and scanning electron microscopy. Primary outcome parameter was the bone volume in the defect. Unit of analysis was the bone-conditioned medium (BCM). RESULTS In the central defect area of the control and the BCM group, median new bone connected to the host bone was 0.54 and 0.32 mm³, respectively (p = .10). In the ectocranial defect area, the control group showed significantly more bone than the BCM group (0.90 and 0.26 mm³; p = .02). Based on an exploratory interpretation, the control group had smaller bony islands than the BCM group. Scanning electron microscopy and histology indicate the formation of bone but also the collagen membrane to be mineralized in the defect site. CONCLUSIONS These results demonstrate that the commercial collagen membrane holds an osteoconductive competence in a rat calvaria defect model. Soaking collagen membranes with BCM shifts bone formation toward the formation of bony islands rather than new bone connected to the host bone.
Collapse
Affiliation(s)
- Ulrike Kuchler
- Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Tina Rybaczek
- Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Toni Dobask
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Patrick Heimel
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Stefan Tangl
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Jessica Klehm
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Matthias Menzel
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Oral Biology, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
113
|
Cieplik F, Tabenski L, Hiller KA, Schmalz G, Buchalla W, Christgau M. Influence of autogenous platelet concentrate on combined GTR/graft therapy in intra-bony defects: A 13-year follow-up of a randomized controlled clinical split-mouth study. J Clin Periodontol 2018; 45:382-391. [PMID: 29247452 DOI: 10.1111/jcpe.12855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2017] [Indexed: 12/25/2022]
Abstract
AIM To investigate the clinical long-term outcomes 13 years following guided tissue regeneration (GTR) in deep intra-bony defects with and without additional application of autogenous platelet concentrate (APC). METHODS In 25 patients, two deep contra-lateral intra-bony defects were treated according to GTR using β-TCP and bio-resorbable membranes. In test defects, APC was applied additionally. After 13 years, clinical healing results were assessed and compared to results at baseline and after 1 year. Furthermore, a tooth survival analysis was carried out. RESULTS After 13 years, 22 patients were available for tooth survival analysis showing 81.8% of test and 86.4% of control teeth still in situ. Based on the 15 patients still available for split-mouth analysis, median CAL was 10.0 mm in test and 12.0 mm in control sites at baseline. After 1 year, both groups revealed significant CAL gains of 5.0 mm, followed by a new CAL loss of 1.0 mm in the following 12 years. There were no significant differences between test and control sites. CONCLUSION Within the limits of this study, the data show that most of the CAL gain following GTR can be maintained over 13 years. The additional use of APC had no positive influence on the long-term stability.
Collapse
Affiliation(s)
- Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Laura Tabenski
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany.,Private Practice, Bad Kissingen, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Gottfried Schmalz
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Michael Christgau
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany.,Private Practice, Düsseldorf, Germany
| |
Collapse
|
114
|
Fawzy El-Sayed KM, Dörfer CE. Animal Models for Periodontal Tissue Engineering: A Knowledge-Generating Process. Tissue Eng Part C Methods 2017; 23:900-925. [DOI: 10.1089/ten.tec.2017.0130] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Karim M. Fawzy El-Sayed
- Department of Oral Medicine and Periodontology, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
115
|
Therapeutic effect of bone marrow mesenchymal stem cells pretreated with acetylsalicylic acid on experimental periodontitis in rats. Int Immunopharmacol 2017; 54:320-328. [PMID: 29195233 DOI: 10.1016/j.intimp.2017.11.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 02/05/2023]
Abstract
Periodontitis is a local inflammatory environment with dysregulation of host responses, which results in destruction of periodontal tissues. Mesenchymal stem cells (MSCs) have been proven to play important roles in tissue regeneration by serving as progenitor cells, but its therapeutic outcomes are yet, evaluated variable and unpredictable because of the influence of local inflammation. Acetylsalicylic acid (ASA) has been reported to benefit for MSCs in terms of inflammation control and tissue regeneration. In this study, we aimed to explore the effect of bone marrow mesenchymal stem cells (BMMSCs) pretreated with ASA (ASA-BMMSCs) on periodontal bone repair in a ligature and bacteria-induced periodontitis model in rats. We show herein that, ASA-BMMSCs treatment reduced inflammatory infiltration and alveolar bone loss in periodontitis rats, reflected by immunohistochemistry staining of OPG/RANK-L and Micro-CT. Levels of TNF-α and IL-17 decreased while IL-10 increased after the treatment of ASA-BMMSCs in periodontitis rats. In addition, less osteoclasts number was detected in ASA-BMMSCs treated group. In vitro study showed that ASA facilitated BMMSCs proliferation and differentiation, which might explain the reduced bone loss in periodontitis. These results together suggest that local application of ASA-BMMSCs in periodontal lesion sites is capable of improving inflammatory microenvironment, promoting alveolar bone regeneration, thus leading to a recovery of periodontal homeostasis. Besides, this study also provides us a new idea that a combined application of ASA and BMMSCs may be a novel approach for periodontitis treatment and periodontal bone regeneration.
Collapse
|
116
|
Ma Y, Ji Y, Zhong T, Wan W, Yang Q, Li A, Zhang X, Lin M. Bioprinting-Based PDLSC-ECM Screening for in Vivo Repair of Alveolar Bone Defect Using Cell-Laden, Injectable and Photocrosslinkable Hydrogels. ACS Biomater Sci Eng 2017; 3:3534-3545. [PMID: 33445388 DOI: 10.1021/acsbiomaterials.7b00601] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Periodontitis is an inflammatory disease worldwide that may result in periodontal defect (especially alveolar bone defect) and even tooth loss. Stem-cell-based approach combined with injectable hydrogels has been proposed as a promising strategy in periodontal treatments. Stem cells fate closely depends on their extracellular matrix (ECM) characteristics. Hence, it is necessary to engineer an appropriate injectable hydrogel to deliver stem cells into the defect while serving as the ECM during healing. Therefore, stem cell-ECM interaction should be studied for better stem cell transplantation. In this study, we developed a bioprinting-based strategy to study stem cell-ECM interaction and thus screen an appropriate ECM for in vivo repair of alveolar bone defect. Periodontal ligament stem cells (PDLSCs) were encapsulated in injectable, photocrosslinkable composite hydrogels composed of gelatin methacrylate (GelMA) and poly(ethylene glycol) dimethacrylate (PEGDA). PDLSC-laden GelMA/PEGDA hydrogels with varying composition were efficiently fabricated via a 3D bioprinting platform by controlling the volume ratio of GelMA-to-PEGDA. PDLSC behavior and fate were found to be closely related to the engineered ECM composition. The 4/1 GelMA/PEGDA composite hydrogel was selected since the best performance in osteogenic differentiation in vitro. Finally, in vivo study indicated a maximal and robust new bone formation in the defects treated with the PDLSC-laden hydrogel with optimized composition as compared to the hydrogel alone and the saline ones. The developed approach would be useful for studying cell-ECM interaction in 3D and paving the way for regeneration of functional tissue.
Collapse
Affiliation(s)
| | | | - Tianyu Zhong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an 710004, P.R. China
| | - Wanting Wan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an 710004, P.R. China
| | | | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an 710004, P.R. China
| | | | | |
Collapse
|
117
|
Shao J, Yu N, Kolwijck E, Wang B, Tan KW, Jansen JA, Walboomers XF, Yang F. Biological evaluation of silver nanoparticles incorporated into chitosan-based membranes. Nanomedicine (Lond) 2017; 12:2771-2785. [PMID: 28967828 DOI: 10.2217/nnm-2017-0172] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate the antibacterial potential and biological performance of silver nanoparticles in chitosan-based membranes. MATERIALS & METHODS Electrospun chitosan/poly(ethylene oxide) membranes with different amounts of silver nanoparticles were evaluated for antibacterial properties and cytotoxicity in vitro and for tissue response in a rabbit subcutaneous model. RESULTS The nanoparticles displayed dose-dependent antibacterial properties against Porphyromonas gingivalis and Fusobacterium nucleatum, without showing noticeable cytotoxicity. The membranes with silver nanoparticles evoked a similar inflammatory response compared with the membranes without silver nanoparticles. CONCLUSION The antibacterial effect, combined with the findings on cyto- and biocompatibility warrants further investigation to the usefulness of chitosan/poly(ethylene oxide) membranes with silver nanoparticles, for clinical applications like guided tissue regeneration.
Collapse
Affiliation(s)
- Jinlong Shao
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Na Yu
- National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore.,Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Eva Kolwijck
- Department of Medical Microbiology, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Bing Wang
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Ke Wei Tan
- National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| | - Fang Yang
- Department of Biomaterials, Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
118
|
Abstract
No current therapy promotes root canal disinfection and regeneration of the pulp-dentin complex in cases of pulp necrosis. Antibiotic pastes used to eradicate canal infection negatively affect stem cell survival. Three-dimensional easy-to-fit antibiotic-eluting nanofibers, combined with injectable scaffolds, enriched or not with stem cells and/or growth factors, may increase the likelihood of achieving predictable dental pulp regeneration. Periodontitis is an aggressive disease that impairs the integrity of tooth-supporting structures and may lead to tooth loss. The latest advances in membrane biomodification to endow needed functionalities and technologies to engineer patient-specific membranes/constructs to amplify periodontal regeneration are presented.
Collapse
Affiliation(s)
- Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA.
| | - Divya Pankajakshan
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Jacques E Nör
- Department of Biomedical and Applied Sciences, Indiana, University School of Dentistry, Indianapolis, IN 46202, USA
| |
Collapse
|
119
|
Jung UW, Cha JK, Vignoletti F, Nuñez J, Sanz J, Sanz M. Simultaneous lateral bone augmentation and implant placement using a particulated synthetic bone substitute around chronic peri-implant dehiscence defects in dogs. J Clin Periodontol 2017; 44:1172-1180. [DOI: 10.1111/jcpe.12802] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Ui-Won Jung
- Department of Periodontology; Research Institute for Periodontal Regeneration; College of Dentistry; Yonsei University; Seoul South Korea
| | - Jae-Kook Cha
- Department of Periodontology; Research Institute for Periodontal Regeneration; College of Dentistry; Yonsei University; Seoul South Korea
- Faculty of Odontology; Department of Periodontology; University Complutense of Madrid; Madrid Spain
| | - Fabio Vignoletti
- Faculty of Odontology; Department of Periodontology; University Complutense of Madrid; Madrid Spain
| | - Javier Nuñez
- Faculty of Odontology; Department of Periodontology; University Complutense of Madrid; Madrid Spain
| | - Javier Sanz
- Faculty of Odontology; Department of Periodontology; University Complutense of Madrid; Madrid Spain
| | - Mariano Sanz
- Faculty of Odontology; Department of Periodontology; University Complutense of Madrid; Madrid Spain
| |
Collapse
|
120
|
Ozaki M, Takayama T, Yamamoto T, Ozawa Y, Nagao M, Tanabe N, Nakajima A, Suzuki N, Maeno M, Yamano S, Sato S. A collagen membrane containing osteogenic protein-1 facilitates bone regeneration in a rat mandibular bone defect. Arch Oral Biol 2017; 84:19-28. [PMID: 28938197 DOI: 10.1016/j.archoralbio.2017.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Osteogenic protein-1 (OP-1) has shown osteoinductive activities and is useful for clinical treatments, including bone regeneration. Regenerative procedures using a bioabsorbable collagen membrane (BCM) are well established in periodontal and implant dentistry. We evaluated the subsequent effects of the BCM in combination with OP-1 on bone regeneration in a rat mandibular circular critical-sized bone defect in vivo. DESIGN We used 8 rats that received surgery in both sides of the mandible, and created the total 16 defects which were divided into 4 groups: Group 1; no treatment, as a control, Group 2; BCM alone, Group 3; BCM containing low dose 0.5μg of OP-1 (L-OP-1), and Group 4; BCM containing high dose 2.0μg of OP-1 (H-OP-1). Newly formed bone was evaluated by micro computed tomography (micro-CT) and histological analyses at 8 weeks postoperatively. In quantitative and qualitative micro-CT analyses of the volume of new bone formation, bone density, and percentage of new bone area was evaluated. RESULTS BCM with rhOP-1 significantly increased and accelerated bone volume, bone mineral density, and percentage of new bone area compared to control and BCM alone at 8 weeks after surgery; these enhancements in bone regeneration in the OP-1-treated groups were dose-dependent. CONCLUSIONS OP-1 delivered with a BCM may have effective osteoinductive potency and be a good combination for bone regeneration. The use of such a combination device for osteogenesis may result in safer and more predictable bone regenerative outcomes in the future.
Collapse
Affiliation(s)
- Manami Ozaki
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Tadahiro Takayama
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan; Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan.
| | - Takanobu Yamamoto
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Yasumasa Ozawa
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Mayu Nagao
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | - Natsuko Tanabe
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Akira Nakajima
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan; Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Naoto Suzuki
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Masao Maeno
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Seiichi Yamano
- Department of Prosthodontics, New York University College of Dentistry, NY, U.S.A
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan; Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
121
|
The Mechanical Properties and Biometrical Effect of 3D Preformed Titanium Membrane for Guided Bone Regeneration on Alveolar Bone Defect. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7102123. [PMID: 29018818 PMCID: PMC5605874 DOI: 10.1155/2017/7102123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
The purpose of this study is to evaluate the effect of three-dimensional preformed titanium membrane (3D-PFTM) to enhance mechanical properties and ability of bone regeneration on the peri-implant bone defect. 3D-PFTMs by new mechanically compressive molding technology and manually shaped- (MS-) PFTMs by hand manipulation were applied in artificial peri-implant bone defect model for static compressive load test and cyclic fatigue load test. In 12 implants installed in the mandibular of three beagle dogs, six 3D-PFTMs, and six collagen membranes (CM) randomly were applied to 2.5 mm peri-implant buccal bone defect with particulate bone graft materials for guided bone regeneration (GBR). The 3D-PFTM group showed about 7.4 times higher mechanical stiffness and 5 times higher fatigue resistance than the MS-PFTM group. The levels of the new bone area (NBA, %), the bone-to-implant contact (BIC, %), distance from the new bone to the old bone (NB-OB, %), and distance from the osseointegration to the old bone (OI-OB, %) were significantly higher in the 3D-PFTM group than the CM group (p < .001). It was verified that the 3D-PFTM increased mechanical properties which were effective in supporting the space maintenance ability and stabilizing the particulate bone grafts, which led to highly efficient bone regeneration.
Collapse
|
122
|
Huang KC, Yano F, Murahashi Y, Takano S, Kitaura Y, Chang SH, Soma K, Ueng SW, Tanaka S, Ishihara K, Okamura Y, Moro T, Saito T. Sandwich-type PLLA-nanosheets loaded with BMP-2 induce bone regeneration in critical-sized mouse calvarial defects. Acta Biomater 2017; 59:12-20. [PMID: 28666885 DOI: 10.1016/j.actbio.2017.06.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
To overcome serious clinical problems caused by large bone defects, various approaches to bone regeneration have been researched, including tissue engineering, biomaterials, stem cells and drug screening. Previously, we developed a free-standing biodegradable polymer nanosheet composed of poly(L-lactic acid) (PLLA) using a simple fabrication process consisting of spin-coating and peeling techniques. Here, we loaded recombinant human bone morphogenetic protein-2 (rhBMP-2) between two 60-nm-thick PLLA nanosheets, and investigated these sandwich-type nanosheets in bone regeneration applications. The PLLA nanosheets displayed constant and sustained release of the loaded rhBMP-2 for over 2months in vitro. Moreover, we implanted the sandwich-type nanosheets with or without rhBMP-2 into critical-sized defects in mouse calvariae. Bone regeneration was evident 4weeks after implantation, and the size and robustness of the regenerated bone had increased by 8weeks after implantation in mice implanted with the rhBMP-2-loaded nanosheets, whereas no significant bone formation occurred over a period of 20weeks in mice implanted with blank nanosheets. The PLLA nanosheets loaded with rhBMP-2 may be useful in bone regenerative medicine; furthermore, the sandwich-type PLLA nanosheet structure may potentially be applied as a potent prolonged sustained-release carrier of other molecules or drugs. STATEMENTS OF SIGNIFICANCE Here we describe sandwich-type poly(L-lactic acid) (PLLA) nanosheets loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) as a novel method for bone regeneration. Biodegradable 60-nm-thick PLLA nanosheets display strong adhesion without any adhesive agent. The sandwich-type PLLA nanosheets displayed constant and sustained release of the loaded rhBMP-2 for over 2months in vitro. The nanosheets with rhBMP-2 markedly enhanced bone regeneration when they were implanted into critical-sized defects in mouse calvariae. In addition to their application for bone regeneration, PLLA nanosheets may be useful for various purposes in combination with various drugs or molecules, because they displays excellent capacity as a sustained-release carrier.
Collapse
|
123
|
Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res 2017; 21:9. [PMID: 28593053 PMCID: PMC5460509 DOI: 10.1186/s40824-017-0095-5] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022] Open
Abstract
Periodontal disease is categorized by the destruction of periodontal tissues. Over the years, there have been several clinical techniques and material options that been investigated for periodontal defect repair/regeneration. The development of improved biomaterials for periodontal tissue engineering has significantly improved the available treatment options and their clinical results. Bone replacement graft materials, barrier membranes, various growth factors and combination of these have been used. The available bone tissue replacement materials commonly used include autografts, allografts, xenografts and alloplasts. These graft materials mostly function as osteogenic, osteoinductive and/or osteoconductive scaffolds. Polymers (natural and synthetic) are more widely used as a barrier material in guided tissue regeneration (GTR) and guided bone regeneration (GBR) applications. They work on the principle of epithelial cell exclusion to allow periodontal ligament and alveolar bone cells to repopulate the defect before the normally faster epithelial cells. However, in an attempt to overcome complications related to the epithelial down-growth and/or collapse of the non-rigid barrier membrane and to maintain space, clinicians commonly use a combination of membranes with hard tissue grafts. This article aims to review various available natural tissues and biomaterial based bone replacement graft and membrane options used in periodontal regeneration applications.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, 25 Orde St, Toronto, ON M5T 3H7 Canada
| | - Nader Hamdan
- Department of Dental Clinical Sciences, Faculty of Dentistry, Dalhousie University, 5981 University Avenue, PO Box 15000, Halifax, Nova Scotia B3H 4R2 Canada
| | - Yuichi Ikeda
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-5810 Japan
| | - Marc Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, 25 Orde St, Toronto, ON M5T 3H7 Canada
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
| |
Collapse
|
124
|
Sun X, Xu C, Wu G, Ye Q, Wang C. Poly(Lactic-co-Glycolic Acid): Applications and Future Prospects for Periodontal Tissue Regeneration. Polymers (Basel) 2017; 9:E189. [PMID: 30970881 PMCID: PMC6432161 DOI: 10.3390/polym9060189] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 12/28/2022] Open
Abstract
Periodontal tissue regeneration is the ultimate goal of the treatment for periodontitis-affected teeth. The success of regenerative modalities relies heavily on the utilization of appropriate biomaterials with specific properties. Poly (lactic-co-glycolic acid) (PLGA), a synthetic aliphatic polyester, has been actively investigated for periodontal therapy due to its favorable mechanical properties, tunable degradation rates, and high biocompatibility. Despite the attractive characteristics, certain constraints associated with PLGA, in terms of its hydrophobicity and limited bioactivity, have led to the introduction of modification strategies that aimed to improve the biological performance of the polymer. Here, we summarize the features of the polymer and update views on progress of its applications as barrier membranes, bone grafts, and drug delivery carriers, which indicate that PLGA can be a good candidate material in the field of periodontal regenerative medicine.
Collapse
Affiliation(s)
- Xiaoyu Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China.
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam 1081 HV, The Netherlands.
| | - Chun Xu
- Laboratory of Regenerative Dentistry, School of Dentistry, The University of Queensland, Brisbane 4006, Australia.
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam 1081 HV, The Netherlands.
| | - Qingsong Ye
- Laboratory of Regenerative Dentistry, School of Dentistry, The University of Queensland, Brisbane 4006, Australia.
| | - Changning Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China.
| |
Collapse
|
125
|
Van Dyke TE. Pro-resolving mediators in the regulation of periodontal disease. Mol Aspects Med 2017; 58:21-36. [PMID: 28483532 DOI: 10.1016/j.mam.2017.04.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/07/2023]
Abstract
Periodontitis is an inflammatory disease of the supporting structures of the dentition that is initiated by bacteria that form a biofilm on the surface of the teeth. The pathogenesis of the disease is a result of complex interactions between the biofilm and the host response that results in dysbiosis of the microbiome and dysregulation of the inflammatory response. Current data suggest that the excess inflammation associated with periodontitis is due to a failure of resolution of inflammation pathways. In this review, the relationship between inflammation and microbial dysbiosis is examined in the context of pro-inflammation and pro-resolution mediators and their ability to modify the course of disease. The impact of local oral inflammation on systemic inflammation and the relationship of periodontitis to other inflammatory diseases, including type 2 diabetes and cardiovascular disease is reviewed. Active resolvers of inflammation, including the lipoxins and resolvins, show great promise as therapeutics for the treatment of periodontitis and other inflammatory diseases.
Collapse
|
126
|
Tassi SA, Sergio NZ, Misawa MYO, Villar CC. Efficacy of stem cells on periodontal regeneration: Systematic review of pre-clinical studies. J Periodontal Res 2017; 52:793-812. [PMID: 28394043 DOI: 10.1111/jre.12455] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2017] [Indexed: 01/10/2023]
Abstract
This systematic review aims to evaluate mesenchymal stem cells (MSC) periodontal regenerative potential in animal models. MEDLINE, EMBASE and LILACS databases were searched for quantitative pre-clinical controlled animal model studies that evaluated the effect of local administration of MSC on periodontal regeneration. The systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement guidelines. Twenty-two studies met the inclusion criteria. Periodontal defects were surgically created in all studies. In seven studies, periodontal inflammation was experimentally induced following surgical defect creation. Differences in defect morphology were identified among the studies. Autogenous, alogenous and xenogenous MSC were used to promote periodontal regeneration. These included bone marrow-derived MSC, periodontal ligament (PDL)-derived MSC, dental pulp-derived MSC, gingival margin-derived MSC, foreskin-derived induced pluripotent stem cells, adipose tissue-derived MSC, cementum-derived MSC, periapical follicular MSC and alveolar periosteal cells. Meta-analysis was not possible due to heterogeneities in study designs. In most of the studies, local MSC implantation was not associated with adverse effects. The use of bone marrow-derived MSC for periodontal regeneration yielded conflicting results. In contrast, PDL-MSC consistently promoted increased PDL and cementum regeneration. Finally, the adjunct use of MSC improved the regenerative outcomes of periodontal defects treated with membranes or bone substitutes. Despite the quality level of the existing evidence, the current data indicate that the use of MSC may provide beneficial effects on periodontal regeneration. The various degrees of success of MSC in periodontal regeneration are likely to be related to the use of heterogeneous cells. Thus, future studies need to identify phenotypic profiles of highly regenerative MSC populations.
Collapse
Affiliation(s)
- S A Tassi
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - N Z Sergio
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - M Y O Misawa
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - C C Villar
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil.,Department of Periodontics, University of Texas Health Science Center at San Antonio Dental School, San Antonio, TX, USA
| |
Collapse
|
127
|
The Effect of Thickness of Resorbable Bacterial Cellulose Membrane on Guided Bone Regeneration. MATERIALS 2017; 10:ma10030320. [PMID: 28772680 PMCID: PMC5503340 DOI: 10.3390/ma10030320] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 11/25/2022]
Abstract
This study introduces the effect of the thickness of a bacterial cellulose membrane by comparing the bone regeneration effect on rat skulls when using a collagen membrane and different thicknesses of resorbable bacterial cellulose membranes for guided bone regeneration. Barrier membranes of 0.10 mm, 0.15 mm, and 0.20 mm in thickness were made using bacterial cellulose produced as microbial fermentation metabolites. Mechanical strength was investigated, and new bone formation was evaluated through animal experimental studies. Experimental animals were sacrificed after having 2 weeks and 8 weeks of recovery, and specimens were processed for histologic and histomorphometric analyses measuring the area of bone regeneration (%) using an image analysis program. In 2 weeks, bone-like materials and fibrous connective tissues were observed in histologic analysis. In 8 weeks, all experimental groups showed the arrangement of osteoblasts surrounding the supporting body on the margin and center of the bone defect region. However, the amount of new bone formation was significantly higher (p < 0.05) in bacterial cellulose membrane with 0.10 mm in thickness compared to the other experimental groups. Within the limitations of this study, a bacterial cellulose membrane with 0.10 mm thickness induced the most effective bone regeneration.
Collapse
|
128
|
Zang SQ, Kang S, Hu X, Wang M, Wang XW, Zhou T, Wang QT. Comparison of Different Periodontal Healing of Critical Size Noncontained and Contained Intrabony Defects in Beagles. Chin Med J (Engl) 2017; 130:477-486. [PMID: 28218223 PMCID: PMC5324386 DOI: 10.4103/0366-6999.199834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Regenerative techniques help promote the formation of new attachment and bone filling in periodontal defects. However, the dimensions of intraosseous defects are a key determinant of periodontal regeneration outcomes. In this study, we evaluated the efficacy of use of anorganic bovine bone (ABB) graft in combination with collagen membrane (CM), to facilitate healing of noncontained (1-wall) and contained (3-wall) critical size periodontal defects. METHODS The study began on March 2013, and was completed on May 2014. One-wall (7 mm × 4 mm) and 3-wall (5 mm × 4 mm) intrabony periodontal defects were surgically created bilaterally in the mandibular third premolars and first molars in eight beagles. The defects were treated with ABB in combination with CM (ABB + CM group) or open flap debridement (OFD group). The animals were euthanized at 8-week postsurgery for histological analysis. Two independent Student's t-tests (1-wall [ABB + CM] vs. 1-wall [OFD] and 3-wall [ABB + CM] vs. 3-wall [OFD]) were used to assess between-group differences. RESULTS The mean new bone height in both 1- and 3-wall intrabony defects in the ABB + CM group was significantly greater than that in the OFD group (1-wall: 4.99 ± 0.70 mm vs. 3.01 ± 0.37 mm, P < 0.05; 3-wall: 3.11 ± 0.59 mm vs. 2.08 ± 0.24 mm, P < 0.05). The mean new cementum in 1-wall intrabony defects in the ABB + CM group was significantly greater than that in their counterparts in the OFD group (5.08 ± 0.68 mm vs. 1.16 ± 0.38 mm; P < 0.05). Likewise, only the 1-wall intrabony defect model showed a significant difference with respect to junctional epithelium between ABB + CM and OFD groups (0.67 ± 0.23 mm vs. 1.12 ± 0.28 mm, P < 0.05). CONCLUSIONS One-wall intrabony defects treated with ABB and CM did not show less periodontal regeneration than that in 3-wall intrabony defect. The noncontained 1-wall intrabony defect might be a more discriminative defect model for further research into periodontal regeneration.
Collapse
Affiliation(s)
- Sheng-Qi Zang
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Shuai Kang
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Hu
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Meng Wang
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin-Wen Wang
- Department of Oral Medicine, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Tao Zhou
- Nondestructive Lab, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710032, China
| | - Qin-Tao Wang
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
129
|
|
130
|
Jazayeri HE, Tahriri M, Razavi M, Khoshroo K, Fahimipour F, Dashtimoghadam E, Almeida L, Tayebi L. A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:913-929. [DOI: 10.1016/j.msec.2016.08.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023]
|
131
|
Treatment of a Developmental Groove and Supernumerary Root Using Guided Tissue Regeneration Technique. Case Rep Dent 2016; 2016:2738569. [PMID: 27965900 PMCID: PMC5124660 DOI: 10.1155/2016/2738569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/19/2016] [Indexed: 11/17/2022] Open
Abstract
Introduction. The radicular groove is a developmental groove which is usually found on the palatal or lateral aspects of the maxillary incisor teeth. The present case is a maxillary lateral incisor with a small second root and a deep radicular groove. The developmental groove caused a combined periodontal-endodontic lesion. Methods. Case was managed using a combined treatment procedure involving nonsurgical root canal therapy and surgical periodontal treatment. After completion of root canal treatment, guided tissue regeneration (GTR) was carried out using decalcified freeze dried bone allograft (DFDBA) and a bioabsorbable collagenous membrane. Tooth also was splinted for two months. Results. After 12 months the tooth was asymptomatic. The periapical radiolucency disappeared and probing depth did not exceed 3 mm. Conclusion. Combined treatment procedure involving nonsurgical root canal therapy and surgical periodontal regenerative treatment can be a predictable technique in treating combined endodontic-periodontal lesions caused by radicular groove.
Collapse
|
132
|
Bahammam MA. Effectiveness of bovine-derived xenograft versus bioactive glass with periodontally accelerated osteogenic orthodontics in adults: a randomized, controlled clinical trial. BMC Oral Health 2016; 16:126. [PMID: 27903250 PMCID: PMC5129202 DOI: 10.1186/s12903-016-0321-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/22/2016] [Indexed: 11/10/2022] Open
Abstract
Background Periodontally accelerated osteogenic orthodontics (PAOO) combines periodontal therapy with orthodontic therapy, which minimises treatment time. This study compared the effectiveness of a bovine-derived xenograft with that of bioactive glass when combined with PAOO for the treatment of adult patients with moderate crowding of the teeth. Methods In this prospective, single-masked clinical trial, 33 orthodontic patients (20 women, 13 men; mean age 21.2 ± 1.43 [18 − 27] years), were randomly allocated to one of three groups. Group 1 underwent a modified corticotomy technique on the labial side only, whereas group 2 was treated with the same technique combined with PAOO using a bovine-derived xenograft and group 3 was treated in the same way but combining PAOO with bioactive glass. The total treatment duration was recorded from the start of active orthodontic treatment, immediately after corticotomy, and at the time of debonding. Probing depth was evaluated clinically and bone density and root length were evaluated radiographically on the day of surgery (baseline, T1), post-treatment at debonding (T2), and 9 months post-treatment (T3). Results The duration of orthodontic treatment was markedly reduced to an average of 11.4 ± 0.14 weeks in all groups. All probing depths were < 3 mm, the interdental papillae were well preserved, there was no loss of tooth vitality, and there was no evidence of significant apical root resorption at any time interval. All groups showed a decrease in mean bone density at T2 followed by an increase at T3. The net percentage change that occurred between baseline and 9 months post-treatment was significantly different between the three groups. Groups 2 and 3, where grafts were incorporated, demonstrated a statistically significant greater increase in bone density than group 1 at T3. Conclusion Combination of orthodontic treatment and periodontal surgery is an effective treatment for adult patients that decreases the duration of active treatment and reduces the risk of root resorption. Use of a bovine-derived xenograft with modified corticotomy provided superior benefits in terms of increased bone density than did the use of bioactive glass. Trial registration The study was retrospectively registered at ClinicalTrials.gov under Clinical Trial Registration Number: NCT02796911.
Collapse
Affiliation(s)
- Maha A Bahammam
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University, P. O. Box 80209, Jeddah, 21589, Kingdom of Saudi Arabia.
| |
Collapse
|
133
|
Li H, Ji Q, Chen X, Sun Y, Xu Q, Deng P, Hu F, Yang J. Accelerated bony defect healing based on chitosan thermosensitive hydrogel scaffolds embedded with chitosan nanoparticles for the delivery of BMP2 plasmid DNA. J Biomed Mater Res A 2016; 105:265-273. [PMID: 27636714 DOI: 10.1002/jbm.a.35900] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/27/2016] [Accepted: 09/13/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Hui Li
- Department of Stomatology; The Affiliated Hospital of Qingdao University; Qingdao Shandong 266001 China
- School of Stomatology; Qingdao University; Qingdao Shandong 266001 China
- Department of Stomatology; Beijing Tongzhou Xinhua Hospital; Tongzhou Beijing 101100 China
| | - Qiuxia Ji
- Department of Stomatology; The Affiliated Hospital of Qingdao University; Qingdao Shandong 266001 China
- School of Stomatology; Qingdao University; Qingdao Shandong 266001 China
| | - Ximin Chen
- Orthopedic Center; Qilu Hospital of Shandong University; Qingdao Shandong 266035 China
| | - Yan Sun
- Department of Stomatology; The Affiliated Hospital of Qingdao University; Qingdao Shandong 266001 China
- School of Stomatology; Qingdao University; Qingdao Shandong 266001 China
| | - Quanchen Xu
- Department of Stomatology; The Affiliated Hospital of Qingdao University; Qingdao Shandong 266001 China
- School of Stomatology; Qingdao University; Qingdao Shandong 266001 China
| | - Panpan Deng
- Department of Stomatology; The Affiliated Hospital of Qingdao University; Qingdao Shandong 266001 China
- School of Stomatology; Qingdao University; Qingdao Shandong 266001 China
| | - Fang Hu
- Department of Stomatology; The Affiliated Hospital of Qingdao University; Qingdao Shandong 266001 China
- School of Stomatology; Qingdao University; Qingdao Shandong 266001 China
| | - Jianjun Yang
- Department of Stomatology; The Affiliated Hospital of Qingdao University; Qingdao Shandong 266001 China
- School of Stomatology; Qingdao University; Qingdao Shandong 266001 China
| |
Collapse
|
134
|
Zhu SY, Wang PL, Liao CS, Yang YQ, Yuan CY, Wang S, Dissanayaka WL, Heng BC, Zhang CF. Transgenic expression of ephrinB2 in periodontal ligament stem cells (PDLSCs) modulates osteogenic differentiation via signaling crosstalk between ephrinB2 and EphB4 in PDLSCs and between PDLSCs and pre-osteoblasts within co-culture. J Periodontal Res 2016; 52:562-573. [DOI: 10.1111/jre.12424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2016] [Indexed: 12/23/2022]
Affiliation(s)
- S. Y. Zhu
- Endodontology; Faculty of Dentistry; The University of Hong Kong; Pokfulam Hong Kong China
- HKU Shenzhen Institute of Research and Innovation; Hong Kon China
- Dental Implant Center; Xuzhou Stomatological Hospital; Xuzhou China
| | - P. L. Wang
- Dental Implant Center; Xuzhou Stomatological Hospital; Xuzhou China
| | - C. S. Liao
- Orthodontics; Faculty of Dentistry; The University of Hong Kong; Pokfulam Hong Kong China
| | - Y. Q. Yang
- Orthodontics; Faculty of Dentistry; The University of Hong Kong; Pokfulam Hong Kong China
| | - C. Y. Yuan
- Endodontology; Faculty of Dentistry; The University of Hong Kong; Pokfulam Hong Kong China
| | - S. Wang
- Endodontology; Faculty of Dentistry; The University of Hong Kong; Pokfulam Hong Kong China
| | - W. L. Dissanayaka
- Endodontology; Faculty of Dentistry; The University of Hong Kong; Pokfulam Hong Kong China
| | - B. C. Heng
- Endodontology; Faculty of Dentistry; The University of Hong Kong; Pokfulam Hong Kong China
| | - C. F. Zhang
- Endodontology; Faculty of Dentistry; The University of Hong Kong; Pokfulam Hong Kong China
- HKU Shenzhen Institute of Research and Innovation; Hong Kon China
| |
Collapse
|
135
|
Soluble eggshell membrane: A natural protein to improve the properties of biomaterials used for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:807-821. [DOI: 10.1016/j.msec.2016.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 04/18/2016] [Accepted: 05/01/2016] [Indexed: 02/07/2023]
|
136
|
Montevecchi M, Parrilli A, Fini M, Gatto MR, Muttini A, Checchi L. The influence of root surface distance to alveolar bone and periodontal ligament on periodontal wound healing. J Periodontal Implant Sci 2016; 46:303-319. [PMID: 27800213 PMCID: PMC5083814 DOI: 10.5051/jpis.2016.46.5.303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The purpose of this animal study was to perform a 3-dimensional micro-computed tomography (micro-CT) analysis in order to investigate the influence of root surface distance to the alveolar bone and the periodontal ligament on periodontal wound healing after a guided tissue regeneration (GTR) procedure. METHODS Three adult Sus scrofa domesticus specimens were used. The study sample included 6 teeth, corresponding to 2 third mandibular incisors from each animal. After coronectomy, a circumferential bone defect was created in each tooth by means of calibrated piezoelectric inserts. The experimental defects had depths of 3 mm, 5 mm, 7 mm, 9 mm, and 11 mm, with a constant width of 2 mm. One tooth with no defect was used as a control. The defects were covered with a bioresorbable membrane and protected with a flap. After 6 months, the animals were euthanised and tissue blocks were harvested and preserved for micro-CT analysis. RESULTS New alveolar bone was consistently present in all experimental defects. Signs of root resorption were observed in all samples, with the extent of resorption directly correlated to the vertical extent of the defect; the medial third of the root was the most commonly affected area. Signs of ankylosis were recorded in the defects that were 3 mm and 7 mm in depth. Density and other indicators of bone quality decreased with increasing defect depth. CONCLUSIONS After a GTR procedure, the periodontal ligament and the alveolar bone appeared to compete in periodontal wound healing. Moreover, the observed decrease in bone quality indicators suggests that intrabony defects beyond a critical size cannot be regenerated. This finding may be relevant for the clinical application of periodontal regeneration, since it implies that GTR has a dimensional limit.
Collapse
Affiliation(s)
- Marco Montevecchi
- Division of Periodontology and Implantology, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna School of Dentistry, Bologna, Italy
| | | | - Milena Fini
- Preclinical and Surgical Studies Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Maria Rosaria Gatto
- Division of Periodontology and Implantology, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna School of Dentistry, Bologna, Italy
| | - Aurelio Muttini
- Faculty of Veterinary Medicine, Teramo University, Teramo, Italy
| | - Luigi Checchi
- Division of Periodontology and Implantology, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna School of Dentistry, Bologna, Italy
| |
Collapse
|
137
|
Hu J, Cao Y, Xie Y, Wang H, Fan Z, Wang J, Zhang C, Wang J, Wu CT, Wang S. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice. Stem Cell Res Ther 2016; 7:130. [PMID: 27613503 PMCID: PMC5017121 DOI: 10.1186/s13287-016-0362-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/03/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023] Open
Abstract
Background Periodontitis, one of the most prevalent infectious diseases in humans, results in the destruction of tooth-supporting tissues. The purpose of the present study is to evaluate the effect of cell injection and cell sheet transplantation on periodontal regeneration in a swine model. Methods In the present study, human dental pulp stem cells (hDPSCs) were transplanted into a swine model for periodontal regeneration. Twelve miniature pigs were used to generate periodontitis with bone defects of 5 mm in width, 7 mm in length, and 3 mm in depth. hDPSCs were obtained for bone regeneration using cell injection or cell sheet transplantation. After 12 weeks, clinical, radiological, and histological assessments of regenerated periodontal tissues were performed to compare periodontal regeneration treated with xenogeneic cell injection and cell sheet implantation. Results Our study showed that translating hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. After 12 weeks, both the hDPSC sheet treatment and hDPSC injection significantly improved periodontal tissue healing clinically in comparison with the control group. The volume of regenerative bone in the hDPSC sheet group (52.7 ± 4.1 mm3) was significantly larger than in the hDPSC injection group (32.4 ± 5.1 mm3) (P < 0.05). The percentage of bone in the periodontium in the hDPSC injection group was 12.8 ± 4.4 %, while it was 17.4 ± 5.3 % in the hDPSC sheet group (P < 0.05). Conclusion Both hDPSC injection and cell sheet transplantation significantly regenerated periodontal bone in swine. The hDPSC sheet had more bone regeneration capacity compared with hDPSC injection. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0362-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingchao Hu
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No. 4, Beijing, 100050, China
| | - Yu Cao
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No. 4, Beijing, 100050, China
| | - Yilin Xie
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No. 4, Beijing, 100050, China
| | - Hua Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Zhipeng Fan
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No. 4, Beijing, 100050, China
| | - Jinsong Wang
- Beijing SH Bio-tech Corporation, Beijing, 100070, China
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No. 4, Beijing, 100050, China
| | - Jinsong Wang
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, 100069, China
| | - Chu-Tse Wu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China.
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No. 4, Beijing, 100050, China. .,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, 100069, China.
| |
Collapse
|
138
|
Chieruzzi M, Pagano S, Moretti S, Pinna R, Milia E, Torre L, Eramo S. Nanomaterials for Tissue Engineering In Dentistry. NANOMATERIALS 2016; 6:nano6070134. [PMID: 28335262 PMCID: PMC5224610 DOI: 10.3390/nano6070134] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/04/2016] [Accepted: 07/18/2016] [Indexed: 02/08/2023]
Abstract
The tissue engineering (TE) of dental oral tissue is facing significant changes in clinical treatments in dentistry. TE is based on a stem cell, signaling molecule, and scaffold triad that must be known and calibrated with attention to specific sectors in dentistry. This review article shows a summary of micro- and nanomorphological characteristics of dental tissues, of stem cells available in the oral region, of signaling molecules usable in TE, and of scaffolds available to guide partial or total reconstruction of hard, soft, periodontal, and bone tissues. Some scaffoldless techniques used in TE are also presented. Then actual and future roles of nanotechnologies about TE in dentistry are presented.
Collapse
Affiliation(s)
- Manila Chieruzzi
- Department of Civil and Environmental Engineering-UdR INSTM-University of Perugia, Strada di Pentima, 4-05100 Terni, Italy.
| | - Stefano Pagano
- Department of Surgical and Biomedical Sciences-University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| | - Silvia Moretti
- Department of Experimental Medicine-University of Perugia Polo Unico Sant'Andrea delle Fratte, 06132 Perugia, Italy.
| | - Roberto Pinna
- Department of Biomedical Science-University of Sassari viale San Pietro 43/C -07100 Sassari, Italy.
| | - Egle Milia
- Department of Biomedical Science-University of Sassari viale San Pietro 43/C -07100 Sassari, Italy.
| | - Luigi Torre
- Department of Civil and Environmental Engineering-UdR INSTM-University of Perugia, Strada di Pentima, 4-05100 Terni, Italy.
| | - Stefano Eramo
- Department of Surgical and Biomedical Sciences-University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| |
Collapse
|
139
|
Schwarz F, Golubovic V, Mihatovic I, Becker J. Periodontally diseased tooth roots used for lateral alveolar ridge augmentation. A proof-of-concept study. J Clin Periodontol 2016; 43:797-803. [DOI: 10.1111/jcpe.12579] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Frank Schwarz
- Department of Oral Surgery; Universitätsklinikum Düsseldorf; Düsseldorf Germany
| | - Vladimir Golubovic
- Department of Oral Surgery; Universitätsklinikum Düsseldorf; Düsseldorf Germany
| | - Ilja Mihatovic
- Department of Oral Surgery; Universitätsklinikum Düsseldorf; Düsseldorf Germany
| | - Jürgen Becker
- Department of Oral Surgery; Universitätsklinikum Düsseldorf; Düsseldorf Germany
| |
Collapse
|
140
|
Gonçalves F, de Moraes MS, Ferreira LB, Carreira ACO, Kossugue PM, Boaro LCC, Bentini R, Garcia CRDS, Sogayar MC, Arana-Chavez VE, Catalani LH. Combination of Bioactive Polymeric Membranes and Stem Cells for Periodontal Regeneration: In Vitro and In Vivo Analyses. PLoS One 2016; 11:e0152412. [PMID: 27031990 PMCID: PMC4816539 DOI: 10.1371/journal.pone.0152412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/14/2016] [Indexed: 11/18/2022] Open
Abstract
Regeneration of periodontal tissues requires a concerted effort to obtain consistent and predictable results in vivo. The aim of the present study was to test a new family of bioactive polymeric membranes in combination with stem cell therapy for periodontal regeneration. In particular, the novel polyester poly(isosorbide succinate-co-L-lactide) (PisPLLA) was compared with poly(L-lactide) (PLLA). Both polymers were combined with collagen (COL), hydroxyapatite (HA) and the growth factor bone morphogenetic protein-7 (BMP7), and their osteoinductive capacity was evaluated via in vitro and in vivo experiments. Membranes composed of PLLA/COL/HA or PisPLLA/COL/HA were able to promote periodontal regeneration and new bone formation in fenestration defects in rat jaws. According to quantitative real-time polymerase chain reaction (qRT-PCR) and Alizarin Red assays, better osteoconductive capacity and increased extracellular mineralization were observed for PLLA/COL/HA, whereas better osteoinductive properties were associated with PisPLLA/COL/HA. We concluded that membranes composed of either PisPLLA/COL/HA or PLLA/COL/HA present promising results in vitro as well as in vivo and that these materials could be potentially applied in periodontal regeneration.
Collapse
Affiliation(s)
- Flávia Gonçalves
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Míriam Santos de Moraes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–090
| | - Lorraine Braga Ferreira
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Ana Cláudia Oliveira Carreira
- NUCEL/NETCEM—Núcleo de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil, 05360–130
| | - Patrícia Mayumi Kossugue
- NUCEL/NETCEM—Núcleo de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil, 05360–130
| | - Letícia Cristina Cidreira Boaro
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Ricardo Bentini
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Célia Regina da Silva Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–090
| | - Mari Cleide Sogayar
- NUCEL/NETCEM—Núcleo de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil, 05360–130
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Victor Elias Arana-Chavez
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Luiz Henrique Catalani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
- * E-mail:
| |
Collapse
|
141
|
Park CH, Kim KH, Lee YM, Seol YJ. Advanced Engineering Strategies for Periodontal Complex Regeneration. MATERIALS 2016; 9:ma9010057. [PMID: 28787856 PMCID: PMC5456552 DOI: 10.3390/ma9010057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 01/18/2023]
Abstract
The regeneration and integration of multiple tissue types is critical for efforts to restore the function of musculoskeletal complex. In particular, the neogenesis of periodontal constructs for systematic tooth-supporting functions is a current challenge due to micron-scaled tissue compartmentalization, oblique/perpendicular orientations of fibrous connective tissues to the tooth root surface and the orchestration of multiple regenerated tissues. Although there have been various biological and biochemical achievements, periodontal tissue regeneration remains limited and unpredictable. The purpose of this paper is to discuss current advanced engineering approaches for periodontal complex formations; computer-designed, customized scaffolding architectures; cell sheet technology-based multi-phasic approaches; and patient-specific constructs using bioresorbable polymeric material and 3-D printing technology for clinical application. The review covers various advanced technologies for periodontal complex regeneration and state-of-the-art therapeutic avenues in periodontal tissue engineering.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Korea.
| | - Kyoung-Hwa Kim
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Korea.
| | - Yong-Moo Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Korea.
| | - Yang-Jo Seol
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Korea.
| |
Collapse
|
142
|
LEE JH, SEO SJ, KIM HW. Bioactive glass-based nanocomposites for personalized dental tissue regeneration. Dent Mater J 2016; 35:710-720. [DOI: 10.4012/dmj.2015-428] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jung-Hwan LEE
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University
| | - Seog-Jin SEO
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University
- Department of Nanobiomedical Science, Dankook University
| | - Hae-Won KIM
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University
- Department of Nanobiomedical Science, Dankook University
- BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University
- Department of Biomaterials Science, College of Dentistry, Dankook University
| |
Collapse
|
143
|
Lee SH, Lim YM, Jeong SI, An SJ, Kang SS, Jeong CM, Huh JB. The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration. J Adv Prosthodont 2015; 7:484-95. [PMID: 26816579 PMCID: PMC4722153 DOI: 10.4047/jap.2015.7.6.484] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 11/29/2022] Open
Abstract
PURPOSE This study was to evaluate the effects of bacterial cellulose (BC) membranes as a barrier membrane on guided bone regeneration (GBR) in comparison with those of the resorbable collagen membranes. MATERIALS AND METHODS BC membranes were fabricated using biomimetic technology. Surface properties were analyzed, Mechanical properties were measured, in vitro cell proliferation test were performed with NIH3T3 cells and in vivo study were performed with rat calvarial defect and histomorphometric analysis was done. The Mann-Whitney U test and the Wilcoxon signed rank test was used (α<.05). RESULTS BC membrane showed significantly higher mechanical properties such as wet tensile strength than collagen membrane and represented a three-dimensional multilayered structure cross-linked by nano-fibers with 60 % porosity. In vitro study, cell adhesion and proliferation were observed on BC membrane. However, morphology of the cells was found to be less differentiated, and the cell proliferation rate was lower than those of the cells on collagen membrane. In vivo study, the grafted BC membrane did not induce inflammatory response, and maintained adequate space for bone regeneration. An amount of new bone formation in defect region loaded with BC membrane was significantly similar to that of collagen membrane application. CONCLUSION BC membrane has potential to be used as a barrier membrane, and efficacy of the membrane on GBR is comparable to that of collagen membrane.
Collapse
Affiliation(s)
- So-Hyoun Lee
- Department of Prosthodontics, Dental Research Institute, Biomedical Research Institute, School of Dentistry, Pusan National University, YangSan, Republic of Korea
| | - Youn-Mook Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Sung In Jeong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Sung-Jun An
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Seong-Soo Kang
- Department of Veterinary Surgery, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Chang-Mo Jeong
- Department of Prosthodontics, Dental Research Institute, Biomedical Research Institute, School of Dentistry, Pusan National University, YangSan, Republic of Korea
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Biomedical Research Institute, School of Dentistry, Pusan National University, YangSan, Republic of Korea
| |
Collapse
|
144
|
Stepaniuk KS, Gingerich W. Evaluation of an Osseous Allograft Membrane for Guided Tissue Regeneration in the Dog. J Vet Dent 2015; 32:226-32. [DOI: 10.1177/089875641503200403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Clinical application of a demineralized freeze-dried cortical bone membrane allograft (DFBMA) for treatment of intra(infra)bony periodontal pockets in dogs was evaluated. The mean pre-treatment periodontal probing depth equaled 7.2-mm. Post-treatment probing depths in all 11 cases were normal, with a mean periodontal probing gain of 5.4-mm. Guided tissue regeneration using a commercially available veterinary canine DFBMA and canine demineralized freeze-dried bone allograft (DFDBA) resulted in clinically significant periodontal attachment gains. The gain of new periodontal tissue attachment was statistically significant (P < 0.0001). The commercially available veterinary allograft products predictably increased new periodontal attachment without any identified membrane sequelae in these 11 cases.
Collapse
Affiliation(s)
- Kevin S. Stepaniuk
- From the University of Minnesota College of Veterinary Medicine, Clinical Science Department (Stepaniuk), 1365 Gortner Ave., St. Paul, MN 55108; and, South Florida Veterinary Dentistry and Oral Surgery (Gingerich), 28400 Old 41 Road, STE 1, Bonita Springs, FL 34135. Dr. Stepaniuk's curent address is Columbia River Veterinary Specialists, 6607 NE 84th Street Suite 109, Vancouver, WA 98665
| | - Wade Gingerich
- From the University of Minnesota College of Veterinary Medicine, Clinical Science Department (Stepaniuk), 1365 Gortner Ave., St. Paul, MN 55108; and, South Florida Veterinary Dentistry and Oral Surgery (Gingerich), 28400 Old 41 Road, STE 1, Bonita Springs, FL 34135. Dr. Stepaniuk's curent address is Columbia River Veterinary Specialists, 6607 NE 84th Street Suite 109, Vancouver, WA 98665
| |
Collapse
|
145
|
Pamuk F, Cetinkaya BO, Keles GC, Balli U, Koyuncuoglu CZ, Cintan S, Kantarci A. Ankaferd blood stopper enhances healing after osseous grafting in patients with intrabony periodontal defects. J Periodontal Res 2015; 51:540-7. [DOI: 10.1111/jre.12334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 11/27/2022]
Affiliation(s)
- F. Pamuk
- Department of Periodontology; Faculty of Dentistry; Istanbul Aydin University; Istanbul Turkey
| | - B. O. Cetinkaya
- Department of Periodontology; Faculty of Dentistry; Ondokuzmayis University; Samsun Turkey
| | - G. C. Keles
- Department of Periodontology; Faculty of Dentistry; Ondokuzmayis University; Samsun Turkey
| | - U. Balli
- Department of Periodontology; Faculty of Dentistry; Bulent Ecevit University; Zonguldak Turkey
| | - C. Z. Koyuncuoglu
- Department of Periodontology; Faculty of Dentistry; Istanbul Aydin University; Istanbul Turkey
| | - S. Cintan
- Department of Periodontology; Faculty of Dentistry; Istanbul University; Istanbul Turkey
| | - A. Kantarci
- Department of Periodontology; Forsyth Institute; Cambridge MA USA
| |
Collapse
|
146
|
Abstract
Periodontitis is a chronic inflammatory disease which leads to destruction of both the soft and hard tissues of the periodontium. Tissue engineering is a therapeutic approach in regenerative medicine that aims to induce new functional tissue regeneration via the synergistic combination of cells, biomaterials, and/or growth factors. Advances in our understanding of the biology of stem cells, including embryonic stem cells and mesenchymal stem cells, have provided opportunities for periodontal tissue engineering. However, there remain a number of limitations affecting their therapeutic efficiency. Due to the considerable proliferation and differentiation capacities, recently described induced pluripotent stem cells (iPSCs) provide a new way for cell-based therapies for periodontal regeneration. This review outlines the latest status of periodontal tissue engineering and highlights the potential use of iPSCs in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Mi Du
- Shandong provincial key laboratory of oral tissue regeneration, Department of Periodontology, School of Stomatology, Shandong University, No.44-1 West Wenhua Rd., Jinan, 250012 People's Republic of China
| | - Xuejing Duan
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, No.324 Jingwu Rd., Jinan, 250000 People's Republic of China
| | - Pishan Yang
- Shandong provincial key laboratory of oral tissue regeneration, Department of Periodontology, School of Stomatology, Shandong University, No.44-1 West Wenhua Rd., Jinan, 250012 People's Republic of China
| |
Collapse
|
147
|
Qin X, Zou F, Chen W, Xu Y, Ma B, Huang Z, Zhu G, Zhou B. Demineralized Dentin as a Semi-Rigid Barrier for Guiding Periodontal Tissue Regeneration. J Periodontol 2015; 86:1370-9. [PMID: 26317665 DOI: 10.1902/jop.2015.150271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Guided tissue regeneration (GTR) is an accepted approach in the correction of periodontal bone loss. Nonetheless, the deficiencies of commonly applied absorbable membrane, such as flexibility and limited osteoconductive and osteoinductive capability, still leave much room for improvement. Thus, the feasibility of applying demineralized dentin tissue to improve the therapeutic effect of GTR in periodontal regeneration was explored. METHODS Demineralized dentin was harvested after acid treatment, and its physiochemical properties were assessed in terms of mineralization density, contact angle, three-point test, and cell attachment. Because of its similar characteristics with bone tissue, dentin that had been acid-treated for 6 hours was chosen to repair a periodontal defect using an induced-periodontitis canine model. Histologic measurements were taken to compare its therapeutic effects to an absorbable membrane group and an untreated group. RESULTS The demineralized dentin displayed continually decreased hardness and density as the acid etching time was prolonged. Enhanced attachment and spreading of bone marrow mesenchymal stem cells were observed on the 6-hour processed dentin. Furthermore, in the demineralized dentin group, more periodontal tissues were newly formed compared with the biomembrane and untreated groups. CONCLUSION Acid etching represents an easy and promising approach to obtain demineralized dentin with desirable properties, similar to bone, for clinical application to promote periodontal tissue regeneration.
Collapse
Affiliation(s)
- Xu Qin
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zou
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weimin Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwen Xu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhibin Huang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhou
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
148
|
de Santana RB, de Santana CMM. Human intrabony defect regeneration with rhFGF-2 and hyaluronic acid - a randomized controlled clinical trial. J Clin Periodontol 2015; 42:658-65. [DOI: 10.1111/jcpe.12406] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2015] [Indexed: 01/12/2023]
|
149
|
Farooq A, Yar M, Khan AS, Shahzadi L, Siddiqi SA, Mahmood N, Rauf A, Qureshi ZUA, Manzoor F, Chaudhry AA, ur Rehman I. Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:104-13. [PMID: 26249571 DOI: 10.1016/j.msec.2015.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/12/2015] [Accepted: 06/09/2015] [Indexed: 11/17/2022]
Abstract
Development of biodegradable composites having the ability to suppress or eliminate the pathogenic micro-biota or modulate the inflammatory response has attracted great interest in order to limit/repair periodontal tissue destruction. The present report includes the development of non-steroidal anti-inflammatory drug encapsulated novel biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) electro-spun (e-spun) composite nanofibrous mats and films and study of the effect of heat treatment on fibers and films morphology. It also describes comparative in-vitro drug release profiles from heat treated and control (non-heat treated) nanofibrous mats and films containing varying concentrations of piroxicam (PX). Electrospinning was used to obtain drug loaded ultrafine fibrous mats. The physical/chemical interactions were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy. The morphology, structure and pore size of the materials were investigated by scanning electron microscopy (SEM). The thermal behavior of the materials was investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Control (not heat treated) and heat treated e-spun fibers mats and films were tested for in vitro drug release studies at physiological pH7.4 and initially, as per requirement burst release patterns were observed from both fibers and films and later sustained release profiles were noted. In vitro cytocompatibility was performed using VERO cell line of epithelial cells and all the synthesized materials were found to be non-cytotoxic. The current observations suggested that these materials are potential candidates for periodontal regeneration.
Collapse
Affiliation(s)
- Ariba Farooq
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000, Pakistan
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000, Pakistan.
| | - Abdul Samad Khan
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000, Pakistan
| | - Lubna Shahzadi
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000, Pakistan
| | - Saadat Anwar Siddiqi
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000, Pakistan
| | - Nasir Mahmood
- Department of Allied Health Sciences and Chemical Pathology, University of Health Sciences, Lahore, Pakistan; Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Abdul Rauf
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | - Faisal Manzoor
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000, Pakistan
| | - Ihtesham ur Rehman
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore,54000, Pakistan; Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ, United Kingdom
| |
Collapse
|
150
|
Agarwal A, Gupta ND. Combination of bone allograft, barrier membrane and doxycycline in the treatment of infrabony periodontal defects: A comparative trial. Saudi Dent J 2015; 27:155-60. [PMID: 26236130 PMCID: PMC4501465 DOI: 10.1016/j.sdentj.2015.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 12/04/2014] [Accepted: 01/26/2015] [Indexed: 11/14/2022] Open
Abstract
Aim The purpose of the present study was to compare the regenerative potential of noncontained periodontal infrabony defects treated with decalcified freeze-dried bone allograft (DFDBA) and barrier membrane with or without local doxycycline. Methods This study included 48 one- or two-wall infrabony defects from 24 patients (age: 30–65 years) seeking treatment for chronic periodontitis. Defects were randomly divided into two groups and were treated with a combination of DFDBA and barrier membrane, either alone (combined treatment group) or with local doxycycline (combined treatment + doxycycline group). At baseline (before surgery) and 3 and 6 months after surgery, the pocket probing depth (PPD), clinical attachment level (CAL), radiological bone fill (RBF), and alveolar height reduction (AHR) were recorded. Analysis of variance and the Newman–Keuls post hoc test were used for statistical analysis. A two-tailed p-value of less than 0.05 was considered to be statistically significant. Results In the combined treatment group, the PPD reduction was 2.00 ± 0.38 mm (32%), CAL gain was 1.25 ± 0.31 mm (17.9%), and RBF was 0.75 ± 0.31 mm (20.7%) after 6 months. In the combined treatment + doxycycline group, these values were 2.75 ± 0.37 mm (44%), 1.5 ± 0.27 mm (21.1%), and 1.13 ± 0.23 mm (28.1%), respectively. AHR values for the groups without and with doxycycline were 12.5% and 9.4%, respectively. Conclusion There was no significant difference in the regeneration of noncontained periodontal infrabony defects between groups treated with DFDBA and barrier membrane with or without doxycycline.
Collapse
Affiliation(s)
- Ashish Agarwal
- Department of Periodontics, Institute of Dental Sciences, Bareilly, India
| | - N D Gupta
- Department of Periodontics, DR. Z.A. Dental College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|