101
|
Bikash CR, Tal-Gan Y. Identification of highly potent competence stimulating peptide-based quorum sensing activators in Streptococcus mutans through the utilization of N-methyl and reverse alanine scanning. Bioorg Med Chem Lett 2019; 29:811-814. [PMID: 30711392 PMCID: PMC6379129 DOI: 10.1016/j.bmcl.2019.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 01/08/2023]
Abstract
Quorum sensing (QS) controls the pathogenic behavior of Streptococcus mutans, a primary cause of dental caries. S. mutans uses the competence stimulating peptide (CSP) to control mutacin production, a bacteriocin utilized by S. mutans to outcompete different commensal bacteria in mixed biofilm environments. In this study, we performed an N-methyl scan of an 18-CSP-based scaffold lacking the first two amino acid residues that were shown to be dispensable, to gain important mechanistic insight as to the role of backbone amide protons in the interaction between CSP and the ComD receptor. We then utilized the reverse alanine approach to develop CSP-based analogs with enhanced activities. The two most potent analogs were found to induce bacteriocin production at sub-nanomolar concentration using an interspecies inhibition assay. Overall, our analysis revealed that the 18-CSP sequence is not optimized and can be improved by replacement of multiple positions with alanine. Our results further suggest that the hydrophobic residues in S. mutans 18-CSP are involved in both receptor binding and activation.
Collapse
Affiliation(s)
- Chowdhury Raihan Bikash
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, United States.
| |
Collapse
|
102
|
Jackson K, Kelty E, Staszyk C, Tennant M. Peripheral caries and disease of the periodontium in Western Australian horses: An epidemiological, anatomical and histopathological assessment. Equine Vet J 2019; 51:617-624. [DOI: 10.1111/evj.13084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/01/2019] [Indexed: 12/27/2022]
Affiliation(s)
- K. Jackson
- Department of Anatomy, Physiology and Human Biology International Research Collaborative – Oral Health and Equity the University of Western Australia Nedlands Western Australia Australia
| | - E. Kelty
- School of Population and Global Health the University of Western Australia Nedlands Western Australia Australia
| | - C. Staszyk
- Faculty of Veterinary Medicine Institute of Veterinary‐Anatomy, Histology and Embryology Justus‐Liebig‐University Giessen Germany
| | - M. Tennant
- Department of Anatomy, Physiology and Human Biology International Research Collaborative – Oral Health and Equity the University of Western Australia Nedlands Western Australia Australia
| |
Collapse
|
103
|
Pantaroto HN, Amorim KP, Matozinho Cordeiro J, Souza JGS, Ricomini-Filho AP, Rangel EC, Ribeiro ALR, Vaz LG, Barão VAR. Proteome analysis of the salivary pellicle formed on titanium alloys containing niobium and zirconium. BIOFOULING 2019; 35:173-186. [PMID: 30935231 DOI: 10.1080/08927014.2019.1580360] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/17/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
The chemical composition of biomaterials can drive their biological responses; therefore, this in vitro study aimed to evaluate the proteomic profile of the salivary pellicle formed on titanium (Ti) alloys containing niobium (Nb) and zirconium (Zr). The experimental groups consisted of Ti35NbxZr (x = 5 and 10 wt%) alloys, and commercially pure titanium (cpTi); titanium aluminium vanadium (Ti6Al4V) alloys were used as controls. The physical and chemical characteristics of the Ti materials were analysed. The proteomic profile was evaluated by liquid chromatography coupled with tandem mass spectrometry. Bacterial adhesion (2 h) of mixed species (Streptococcus sanguinis and Actinomyces naeslundii) was investigated as colony-forming units (n = 6). This paper reports the finding that salivary pellicle composition can be modulated by the composition of the Ti material. The Ti35NbxZr group showed a significant ability to adsorb proteins from saliva, which can favour interactions with cells and compatibility with the body.
Collapse
Affiliation(s)
- Heloisa Navarro Pantaroto
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - Karina Pintaudi Amorim
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - Jairo Matozinho Cordeiro
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - João Gabriel S Souza
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - Antônio Pedro Ricomini-Filho
- b Department of Physiological Science , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| | - Elidiane C Rangel
- c Laboratory of Technological Plasmas, Engineering College , University Estadual Paulista (UNESP) , Sorocaba , São Paulo , Brazil
- d Faculdade de Ciências do Tocantins (FACIT) , Araguaína , Tocantins , Brazil
| | - Ana Lúcia R Ribeiro
- e Faculdade de Ciências Humanas, Econômicas e da Saúde de Araguaína/Instituto Tocantinense Presidente Antônio Carlos (FAHESA/ITPAC) , Araguaína , Tocantins , Brazil
| | - Luís Geraldo Vaz
- f Department of Dental Materials and Prosthodontics , University Estadual Paulista (UNESP), Araraquara Dental School , Araraquara , São Paulo , Brazil
| | - Valentim A R Barão
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas (UNICAMP) , Piracicaba , São Paulo , Brazil
| |
Collapse
|
104
|
Mitova N, Rashkova M, Popova C. Quantity, diversity and complexity of subgingival microorganisms in children with plaque-induced gingivitis. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1604156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Nadezhda Mitova
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Maya Rashkova
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Christina Popova
- Department of Periodontology, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
105
|
Souza JGS, Lima CV, Costa Oliveira BE, Ricomini-Filho AP, Faveri M, Sukotjo C, Feres M, Del Bel Cury AA, Barão VAR. Dose-response effect of chlorhexidine on a multispecies oral biofilm formed on pure titanium and on a titanium-zirconium alloy. BIOFOULING 2018; 34:1175-1184. [PMID: 30744421 DOI: 10.1080/08927014.2018.1557151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
This study aimed to test the dose-response effect of chlorhexidine on multispecies biofilms formed on commercially pure titanium (cpTi) and titanium-zirconium (TiZr) alloy. Biofilms were formed on cpTi and TiZr discs and treated two times per day with five different chlorhexidine concentrations (0.12, 0.20, 0.50, 1, 2%). The biofilms were collected for microbiological, biochemical and microscopic analyses. The significance of differences among groups was evaluated by linear regression, ANOVA, Bonferroni and Tukey tests. The mean number of colony-forming units decreased as the chlorhexidine concentration increased for both cpTi and TiZr (p < 0.05). The maximum effect was observed with the 0.5% concentration. Confocal microscopy images suggested an increase in the number of dead bacterial cells with increased chlorhexidine concentration. The biofilm pH increased after chlorhexidine exposure (p < 0.05). Chlorhexidine showed an antimicrobial dose-response effect in controlling biofilm on cpTi and TiZr. 0.5% chlorhexidine can be used to achieve the maximum antimicrobial effect on both materials.
Collapse
Affiliation(s)
- João Gabriel Silva Souza
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas , Piracicaba , São Paulo, Brazil
| | - Carolina Veloso Lima
- b Department of Physiological Science , Piracicaba Dental School, University of Campinas , Piracicaba , São Paulo, Brazil
| | | | - Antônio Pedro Ricomini-Filho
- b Department of Physiological Science , Piracicaba Dental School, University of Campinas , Piracicaba , São Paulo, Brazil
| | - Marcelo Faveri
- c c Dental Research Division, São Judas Tadeu University , São Paulo , Brazil
| | - Cortino Sukotjo
- d Department of Restorative Dentistry , University of Illinois at Chicago , Chicago , IL, USA
| | - Magda Feres
- e Dental Research Division , Guarulhos University and São Judas Tadeu University , São Paulo , Brazil
| | - Altair Antoninha Del Bel Cury
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas , Piracicaba , São Paulo, Brazil
| | - Valentim Adelino Ricardo Barão
- a Department of Prosthodontics and Periodontology , Piracicaba Dental School, University of Campinas , Piracicaba , São Paulo, Brazil
| |
Collapse
|
106
|
Bonner M, Fresno M, Gironès N, Guillén N, Santi-Rocca J. Reassessing the Role of Entamoeba gingivalis in Periodontitis. Front Cell Infect Microbiol 2018; 8:379. [PMID: 30420943 PMCID: PMC6215854 DOI: 10.3389/fcimb.2018.00379] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
The protozoan Entamoeba gingivalis resides in the oral cavity and is frequently observed in the periodontal pockets of humans and pets. This species of Entamoeba is closely related to the human pathogen Entamoeba histolytica, the agent of amoebiasis. Although E. gingivalis is highly enriched in people with periodontitis (a disease in which inflammation and bone loss correlate with changes in the microbial flora), the potential role of this protozoan in oral infectious diseases is not known. Periodontitis affects half the adult population in the world, eventually leads to edentulism, and has been linked to other pathologies, like diabetes and cardiovascular diseases. As aging is a risk factor for the disorder, it is considered an inevitable physiological process, even though it can be prevented and cured. However, the impact of periodontitis on the patient's health and quality of life, as well as its economic burden, are underestimated. Commonly accepted models explain the progression from health to gingivitis and then periodontitis by a gradual change in the identity and proportion of bacterial microorganisms in the gingival crevices. Though not pathognomonic, inflammation is always present in periodontitis. The recruitment of leukocytes to inflamed gums and their passage to the periodontal pocket lumen are speculated to fuel both tissue destruction and the development of the flora. The individual contribution to the disease of each bacterial species is difficult to establish and the eventual role of protozoa in the fate of this disease has been ignored. Following recent scientific findings, we discuss the relevance of these data and propose that the status of E. gingivalis be reconsidered as a potential pathogen contributing to periodontitis.
Collapse
Affiliation(s)
- Mark Bonner
- International Institute of Periodontology Victoriaville, QC, Canada
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Nancy Guillén
- Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, CNRS-ERL9195, Paris, France
| | | |
Collapse
|
107
|
Mombelli A, Hashim D, Cionca N. What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review. Clin Oral Implants Res 2018; 29 Suppl 18:37-53. [DOI: 10.1111/clr.13305] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Andrea Mombelli
- Division of Periodontology; University Clinics of Dental Medicine; University of Geneva; Geneva Switzerland
| | - Dena Hashim
- Division of Periodontology; University Clinics of Dental Medicine; University of Geneva; Geneva Switzerland
| | - Norbert Cionca
- Division of Periodontology; University Clinics of Dental Medicine; University of Geneva; Geneva Switzerland
| |
Collapse
|
108
|
van der Vorm LN, Brouwers JEIG, Mondria C, de Laat B, de Groot PG, Remijn JA. Salivary tissue factor induces thrombin generation in a diurnal rhythm. Res Pract Thromb Haemost 2018; 2:757-761. [PMID: 30349895 PMCID: PMC6178728 DOI: 10.1002/rth2.12130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Upon tooth extraction, extravascular tissue factor (TF) initiates coagulation to arrest bleeding. Additionally, saliva is in constant contact with the wound and contains extracellular vesicle-derived procoagulant TF. Since the duration of postextraction bleeding is highly variable between patients, we hypothesized this may be caused by variation in saliva-derived TF-induced clotting activity. OBJECTIVES We aimed to assess the variability of saliva-induced thrombin generation (TG) in healthy individuals. METHODS TG was performed according to the calibrated automated thrombinography (CAT) method. Diluted saliva was added (instead of recombinant TF and phospholipids [PL]) to normal pooled plasma (NPP) in the absence/presence of anti-TF antibodies. Saliva was collected from healthy individuals in the morning, afternoon and evening. RESULTS Addition of saliva to NPP induced TG curves similar to those induced by r-TF and PL. Moreover, addition of anti-TF antibodies abolished saliva-induced TG, indicating TF-dependence. A large inter-individual variability (peak CV 31%, range 73-220 nmol/L thrombin) in saliva-induced TG was observed. Interestingly, within subjects, saliva-induced TG was significantly (P = 0.009) increased in the morning (167 ± 40 nmol/L thrombin) compared to the afternoon (124 ± 39 nmol/L thrombin) and evening (123 ± 38 nmol/L thrombin). This diurnal variation was not attributable to gingival stimulation or damage induced by tooth brushing. CONCLUSIONS We identified a diurnal rhythm in salivary TF activity that may have implications for tooth extraction and dental surgery, as performing invasive procedures in the morning may be beneficial for rapid coagulation. Future studies should correlate salivary TF to clinical outcome (ie, postextraction bleeding) and assess a possible relation with bacterial status in the oral cavity.
Collapse
Affiliation(s)
- Lisa N. van der Vorm
- Cardiovascular Research Institute MaastrichtMaastricht University Medical CentreMaastrichtthe Netherlands
- Synapse Research InstituteMaastrichtthe Netherlands
- Department of Clinical Chemistry and HematologyGelre HospitalsApeldoornthe Netherlands
| | | | - Ceráya Mondria
- Department of Clinical Chemistry and HematologyGelre HospitalsApeldoornthe Netherlands
| | - Bas de Laat
- Cardiovascular Research Institute MaastrichtMaastricht University Medical CentreMaastrichtthe Netherlands
- Synapse Research InstituteMaastrichtthe Netherlands
- Department of Clinical Chemistry and HematologyGelre HospitalsApeldoornthe Netherlands
| | - Philip G. de Groot
- Cardiovascular Research Institute MaastrichtMaastricht University Medical CentreMaastrichtthe Netherlands
- Synapse Research InstituteMaastrichtthe Netherlands
| | - Jasper A. Remijn
- Cardiovascular Research Institute MaastrichtMaastricht University Medical CentreMaastrichtthe Netherlands
- Department of Clinical Chemistry and HematologyGelre HospitalsApeldoornthe Netherlands
| |
Collapse
|
109
|
Souza JGS, Cordeiro JM, Lima CV, Barão VAR. Citric acid reduces oral biofilm and influences the electrochemical behavior of titanium: An in situ
and in vitro
study. J Periodontol 2018; 90:149-158. [DOI: 10.1002/jper.18-0178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/02/2018] [Accepted: 06/30/2018] [Indexed: 01/31/2023]
Affiliation(s)
- João G. S. Souza
- Department of Prosthodontics and Periodontology; Piracicaba Dental School; University of Campinas (UNICAMP); Piracicaba, São Paulo Brazil
| | - Jairo M. Cordeiro
- Department of Prosthodontics and Periodontology; Piracicaba Dental School; University of Campinas (UNICAMP); Piracicaba, São Paulo Brazil
| | - Carolina V. Lima
- Department of Physiological Science; Piracicaba Dental School; University of Campinas (UNICAMP); Piracicaba, São Paulo Brazil
| | - Valentim A. R. Barão
- Department of Prosthodontics and Periodontology; Piracicaba Dental School; University of Campinas (UNICAMP); Piracicaba, São Paulo Brazil
| |
Collapse
|
110
|
Souza JGS, Cury JA, Ricomini Filho AP, Feres M, Faveri MD, Barão VAR. Effect of sucrose on biofilm formed in situ on titanium material. J Periodontol 2018; 90:141-148. [PMID: 30070706 DOI: 10.1002/jper.18-0219] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/24/2018] [Accepted: 06/24/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Because sucrose may change the composition of biofilms formed on dental surfaces, the aim of this study was to evaluate in situ the effect of this dietary sugar on biofilm formation on titanium surface. METHODS In this blind, crossover, in situ study, 10 volunteers wore, in 3 phases of 7 days each, a palatal appliance containing titanium specimens. In each phase, the specimens were treated extraorally with 20% sucrose solution at a frequency of 4 or 8 times per day. As control, no treatment was rendered (0×). At the end of each phase, the biofilms were collected for biochemical analysis of biofilm wet weight (biomass), protein concentration, soluble (S-EPS), and insoluble (I-EPS) extracellular polysaccharides and intracellular polysaccharides (IPS), and for microbiologic analysis by checkerboard DNA-DNA hybridization (for levels and proportions of 40 bacterial species). Biochemical data were analyzed by linear regression and microbiological findings by Friedman and Dunn tests (α = .05). RESULTS A positive significant linear relationship was found among sucrose exposure (0×, 4×, and 8×) and biomass, S-EPS, I-EPS and IPS (p < 0.05). The biofilms treated with sucrose (4× and/or 8×) presented higher mean total levels of the 40 bacterial species evaluated, higher proportions of red complex species and lower proportions of the host-compatible green complex species, in comparison with the control group (p < 0.05). CONCLUSION The findings of the present study suggest that daily sucrose exposure has a harmful effect on the composition of biofilms formed on titanium surfaces.
Collapse
Affiliation(s)
- João G S Souza
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Jaime A Cury
- Department of Physiological Science, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Antônio P Ricomini Filho
- Department of Physiological Science, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, São Paulo, Brazil
| | - Marcelo de Faveri
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, São Paulo, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
111
|
Choi H, Kim E, Kang J, Kim HJ, Lee JY, Choi J, Joo JY. Real-time PCR quantification of 9 periodontal pathogens in saliva samples from periodontally healthy Korean young adults. J Periodontal Implant Sci 2018; 48:261-271. [PMID: 30202609 PMCID: PMC6125667 DOI: 10.5051/jpis.2018.48.4.261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/20/2018] [Indexed: 11/29/2022] Open
Abstract
Purpose Few studies have examined periodontal pathogens from saliva samples in periodontally healthy young adults. The purposes of this study were to determine the prevalence of periodontopathic bacteria and to quantify periodontal pathogens in saliva samples using real-time polymerase chain reaction (PCR) assays in periodontally healthy Korean young adults under 35 years of age. Methods Nine major periodontal pathogens were analyzed by real-time PCR in saliva from 94 periodontally healthy young adults. Quantification of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Prevotella intermedia, Fusobacterium nucleatum, Campylobacter rectus, Peptostreptococcus anaerobius, and Eikenella corrodens was performed by DNA copy number measurement. Results F. nucleatum and E. corrodens were detected in all subjects; the numbers of positive samples were 87 (92.6%), 91 (96.8%), and 90 (95.7%) for P. gingivalis, P. anaerobius, and C. rectus, respectively. Other pathogens were also detected in periodontally healthy subjects. Analysis of DNA copy numbers revealed that the most abundant periodontal pathogen was F. nucleatum, which was significantly more prevalent than all other bacteria (P<0.001), followed by P. anaerobius, P. gingivalis, E. corrodens, C. rectus, and T. denticola. There was no significant difference in the prevalence of each bacterium between men and women. The DNA copy number of total bacteria was significantly higher in men than in women. Conclusions Major periodontal pathogens were prevalent in the saliva of periodontally healthy Korean young adults. Therefore, we suggest that the development of periodontal disease should not be overlooked in periodontally healthy young people, as it can arise due to periodontal pathogen imbalance and host susceptibility.
Collapse
Affiliation(s)
- Heeyoung Choi
- Department of Periodontology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, Korea
| | | | | | - Hyun-Joo Kim
- Department of Periodontology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, Korea
| | - Ju-Youn Lee
- Department of Periodontology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
| | - Jeomil Choi
- Department of Periodontology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
| | - Ji-Young Joo
- Department of Periodontology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
| |
Collapse
|
112
|
Terra Garcia M, Correia Pereira AH, Figueiredo-Godoi LMA, Jorge AOC, Strixino JF, Junqueira JC. Photodynamic therapy mediated by chlorin-type photosensitizers against Streptococcus mutans biofilms. Photodiagnosis Photodyn Ther 2018; 24:256-261. [PMID: 30157462 DOI: 10.1016/j.pdpdt.2018.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
Abstract
Photodynamic therapy (PDT) can be used for the control of oral pathogens and different photosensitizers (PS) have been investigated. This study evaluated the efficacy of PDT against Streptococcus mutans biofilms using two second-generation PS derived from chlorin: Photoditazine® (PDZ) and Fotoenticine® (FTC). These PS were compared to methylene blue (MB), a dye with proven antimicrobial activity against S. mutans. Suspensions of S. mutans were cultured in contact with bovine tooth disks for biofilm formation. After 48 h, the biofilms were treated with PDZ (0.6 mg/mL), FTC (0.6 mg/mL) or MB (1 mg/mL) and submitted to laser irradiation (660 nm, 50 mW/cm2). The biofilms were quantified by the determination of CFU/mL count and analyzed by scanning electron microscopy (SEM). All PS used for PDT reduced the number of S. mutans, with a statistically significant difference compared to the untreated groups. PDT achieved microbial reductions of 4 log with MB and 6 log with PDZ, while the use of FTC resulted in the complete elimination of S. mutans biofilms. SEM analysis confirmed the CFU/mL results, showing that all PS, particularly FTC, were able to detach the biofilms and to eliminate the bacteria. In conclusion, PDT mediated by chlorin-type PS exhibited greater antimicrobial activity against S. mutans than MB-mediated PDT, indicating that these PS can be useful for the control of dental caries.
Collapse
Affiliation(s)
- Maíra Terra Garcia
- Institute of Science and Technology, Univ Estadual Paulista/UNESP, São José dos Campos, SP, Brazil.
| | - André Henrique Correia Pereira
- Laboratório de Terapia Fotodinâmica, Instituto de Pesquisa e Desenvolvimento (IP&D), Universidade do Vale do Paraíba/UNIVAP, São José dos Campos, SP, Brazil
| | | | | | - Juliana Ferreira Strixino
- Laboratório de Terapia Fotodinâmica, Instituto de Pesquisa e Desenvolvimento (IP&D), Universidade do Vale do Paraíba/UNIVAP, São José dos Campos, SP, Brazil
| | - Juliana Campos Junqueira
- Institute of Science and Technology, Univ Estadual Paulista/UNESP, São José dos Campos, SP, Brazil
| |
Collapse
|
113
|
Synthetic antigen-binding fragments (Fabs) against S. mutans and S. sobrinus inhibit caries formation. Sci Rep 2018; 8:10173. [PMID: 29976956 PMCID: PMC6033933 DOI: 10.1038/s41598-018-28240-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/13/2018] [Indexed: 01/29/2023] Open
Abstract
Streptococcus mutans and Streptococcus sobrinus are the main causative agents of human dental caries. Current strategies for treating caries are costly and do not completely eradicate them completely. Passive immunization using nonhuman antibodies against Streptococcal surface antigens has shown success in human trials, however they often invoke immune reactions. We used phage display to generate human antigen-binding fragments (Fabs) against S. mutans and S. sobrinus. These Fabs were readily expressed in E. coli and bound to the surface S. mutans and S. sobrinus. Fabs inhibited sucrose-induced S. mutans and S. sobrinus biofilm formation in vitro and a combination of S. mutans and S. sobrinus Fabs prevented dental caries formation in a rat caries model. These results demonstrated that S. mutans and S. sobrinus Fabs could be used in passive immunization strategies to prevent dental caries. In the future, this strategy may be applied towards a caries therapy, whereby Fabs are topically applied to the tooth surface.
Collapse
|
114
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
115
|
Cieplik F, Deng D, Crielaard W, Buchalla W, Hellwig E, Al-Ahmad A, Maisch T. Antimicrobial photodynamic therapy - what we know and what we don't. Crit Rev Microbiol 2018; 44:571-589. [PMID: 29749263 DOI: 10.1080/1040841x.2018.1467876] [Citation(s) in RCA: 509] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Considering increasing number of pathogens resistant towards commonly used antibiotics as well as antiseptics, there is a pressing need for antimicrobial approaches that are capable of inactivating pathogens efficiently without the risk of inducing resistances. In this regard, an alternative approach is the antimicrobial photodynamic therapy (aPDT). The antimicrobial effect of aPDT is based on the principle that visible light activates a per se non-toxic molecule, the so-called photosensitizer (PS), resulting in generation of reactive oxygen species that kill bacteria unselectively via an oxidative burst. During the last 10-20 years, there has been extensive in vitro research on novel PS as well as light sources, which is now to be translated into clinics. In this review, we aim to provide an overview about the history of aPDT, its fundamental photochemical and photophysical mechanisms as well as photosensitizers and light sources that are currently applied for aPDT in vitro. Furthermore, the potential of resistances towards aPDT is extensively discussed and implications for proper comparison of in vitro studies regarding aPDT as well as for potential application fields in clinical practice are given. Overall, this review shall provide an outlook on future research directions needed for successful translation of promising in vitro results in aPDT towards clinical practice.
Collapse
Affiliation(s)
- Fabian Cieplik
- a Department of Conservative Dentistry and Periodontology , University Medical Center Regensburg , Regensburg , Germany.,b Department of Preventive Dentistry , Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Dongmei Deng
- b Department of Preventive Dentistry , Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Wim Crielaard
- b Department of Preventive Dentistry , Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Wolfgang Buchalla
- a Department of Conservative Dentistry and Periodontology , University Medical Center Regensburg , Regensburg , Germany
| | - Elmar Hellwig
- c Department of Operative Dentistry and Periodontology, Faculty of Medicine , Center for Dental Medicine, University of Freiburg , Freiburg , Germany
| | - Ali Al-Ahmad
- c Department of Operative Dentistry and Periodontology, Faculty of Medicine , Center for Dental Medicine, University of Freiburg , Freiburg , Germany
| | - Tim Maisch
- d Department of Dermatology , University Medical Center Regensburg , Regensburg , Germany
| |
Collapse
|
116
|
Boyer CJ, Ambrose J, Das S, Humayun A, Chappidi D, Giorno R, Mills DK. Antibacterial and antibiofouling clay nanotube-silicone composite. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2018; 11:123-137. [PMID: 29713206 PMCID: PMC5907789 DOI: 10.2147/mder.s146248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Invasive medical devices are used in treating millions of patients each day. Bacterial adherence to their surface is an early step in biofilm formation that may lead to infection, health complications, longer hospital stays, and death. Prevention of bacterial adherence and biofilm development continues to be a major healthcare challenge. Accordingly, there is a pressing need to improve the anti-microbial properties of medical devices. Materials and Methods Polydimethylsiloxane (PDMS) was doped with halloysite nanotubes (HNTs), and the PDMS-HNT composite surfaces were coated with PDMS-b-polyethylene oxide (PEO) and antibacterials. The composite material properties were examined using SEM, energy dispersive spectroscopy, water contact angle measurements, tensile testing, UV-Vis spectroscopy, and thermal gravimetric analysis. The antibacterial potential of the PDMS-HNT composites was compared to commercial urinary catheters using cultures of E. coli and S. aureus. Fibrinogen adsorption studies were also performed on the PDMS-HNT-PEO composites. Results HNT addition increased drug load during solvent swelling without reducing material strength. The hydrophilic properties provided by PEO were maintained after HNT addition, and the composites displayed protein-repelling properties. Additionally, composites showed superiority over commercial catheters at inhibiting bacterial growth. Conclusion PDMS-HNT composites showed superiority regarding their efficacy at inhibiting bacterial growth, in comparison to commercial antibacterial catheters. Our data suggest that PDMS-HNT composites have potential as a coating material for anti-bacterial invasive devices and in the prevention of institutional-acquired infections.
Collapse
Affiliation(s)
- C J Boyer
- Molecular Science and Nanotechnology, College of Engineering & Science, Louisiana Tech University, Ruston, LA, USA
| | - J Ambrose
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, USA
| | - S Das
- Molecular Science and Nanotechnology, College of Engineering & Science, Louisiana Tech University, Ruston, LA, USA
| | - A Humayun
- Molecular Science and Nanotechnology, College of Engineering & Science, Louisiana Tech University, Ruston, LA, USA
| | - D Chappidi
- Molecular Science and Nanotechnology, College of Engineering & Science, Louisiana Tech University, Ruston, LA, USA
| | - R Giorno
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA
| | - D K Mills
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, USA.,School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA
| |
Collapse
|
117
|
Secondary caries formation with a two-species biofilm artificial mouth. Dent Mater 2018; 34:786-796. [DOI: 10.1016/j.dental.2018.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/31/2018] [Accepted: 02/11/2018] [Indexed: 12/28/2022]
|
118
|
Schmalz G, Berisha L, Wendorff H, Widmer F, Marcinkowski A, Teschler H, Sommerwerck U, Haak R, Kollmar O, Ziebolz D. Association of time under immunosuppression and different immunosuppressive medication on periodontal parameters and selected bacteria of patients after solid organ transplantation. Med Oral Patol Oral Cir Bucal 2018; 23:e326-e334. [PMID: 29680846 PMCID: PMC5945244 DOI: 10.4317/medoral.22238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/18/2017] [Indexed: 02/03/2023] Open
Abstract
Background Aim of this study was to investigate the association of the time under immunosuppression and different immunosuppressive medication on periodontal parameters and selected periodontal pathogenic bacteria of immunosuppressed patients after solid organ transplantation (SOT). Material and Methods 169 Patients after SOT (lung, liver or kidney) were included and divided into subgroups according their time under (0-1, 1-3, 3-6, 6-10 and >10 years) and form of immunosuppression (Tacrolimus, Cyclosporine, Mycophenolate, Glucocorticoids, Sirolimus and monotherapy vs. combination). Periodontal probing depth (PPD) and clinical attachment loss (CAL) were assessed. Periodontal disease severity was classified as healthy/mild, moderate or severe periodontitis. Subgingival biofilm samples were investigated for eleven selected potentially periodontal pathogenic bacteria using polymerasechainreaction. Results The mean PPD and CAL as well as prevalence of Treponema denticola and Capnocytophaga species was shown to be different but heterogeneous depending on time under immunosuppression (p<0.05). Furthermore, only the medication with Cyclosporine was found to show worse periodontal condition compared to patients without Cyclosporine (p<0.05). Prevalence of Porphyromonas gingivalis, Tannerella forsythia and Fusobacterium nucleatum was reduced and prevalence of Parvimonas micra and Capnocytophaga species was increased in patients under immunosuppression with Glucocorticoids, Mycophenolate as well as combination therapy. Conclusions Time under and form of immunosuppression might have an impact on the clinical periodontal and microbiological parameters of patients after SOT. Patients under Cyclosporine medication should receive increased attention. Differences in subgingival biofilm, but not in clinical parameters were found for Glucocorticoids, Mycophenolate and combination therapy, making the clinical relevance of this finding unclear. Key words:Immunosuppression, organ transplantation, periodontitis, periodontal bacteria.
Collapse
Affiliation(s)
- G Schmalz
- University Leipzig, Dept. of Cariology, Endodontology and Periodontology, Liebigstr. 12, D 04103 Leipzig, Germany,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Sudhakara P, Gupta A, Bhardwaj A, Wilson A. Oral Dysbiotic Communities and Their Implications in Systemic Diseases. Dent J (Basel) 2018; 6:E10. [PMID: 29659479 PMCID: PMC6023521 DOI: 10.3390/dj6020010] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
The human body supports the growth of a wide array of microbial communities in various niches such as the oral cavity, gastro-intestinal and urogenital tracts, and on the surface of the skin. These host associated microbial communities include yet-un-cultivable bacteria and are influenced by various factors. Together, these communities of bacteria are referred to as the human microbiome. Human oral microbiome consists of both symbionts and pathobionts. Deviation from symbiosis among the bacterial community leads to “dysbiosis”, a state of community disturbance. Dysbiosis occurs due to many confounding factors that predispose a shift in the composition and relative abundance of microbial communities. Dysbiotic communities have been a major cause for many microbiome related systemic infections. Such dysbiosis is directed by certain important pathogens called the “keystone pathogens”, which can modulate community microbiome variations. One such persistent infection is oral infection, mainly periodontitis, where a wide array of causal organisms have been implied to systemic infections such as cardio vascular disease, diabetes mellitus, rheumatoid arthritis, and Alzheimer’s disease. The keystone pathogens co-occur with many yet-cultivable bacteria and their interactions lead to dysbiosis. This has been the focus of recent research. While immune evasion is one of the major modes that leads to dysbiosis, new processes and new virulence factors of bacteria have been shown to be involved in this important process that determines a disease or health state. This review focuses on such dysbiotic communities, their interactions, and their virulence factors that predispose the host to other systemic implications.
Collapse
Affiliation(s)
- Preethi Sudhakara
- Department of Genetic Engineering, SRM University, Chennai 603203, India.
| | - Abishek Gupta
- Department of Genetic Engineering, SRM University, Chennai 603203, India.
| | | | - Aruni Wilson
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
- Musculoskeletal Diseases Center, VA Loma Linda, Department of Veterans Affairs, Loma Linda, CA 92350, USA.
| |
Collapse
|
120
|
Abstract
The three main oral diseases of humans, that is, caries, periodontal diseases, and oral candidiasis, are associated with microbiome shifts initiated by changes in the oral environment and/or decreased effectiveness of mucosal immune surveillance. In this review, we discuss the role that microbial-based therapies may have in the control of these conditions. Most investigations on the use of microorganisms for management of oral disease have been conducted with probiotic strains with some positive but very discrete clinical outcomes. Other strategies such as whole oral microbiome transplantation or modification of community function by enrichment with health-promoting indigenous oral strains may offer more promise, but research in this field is still in its infancy. Any microbial-based therapeutics for oral conditions, however, are likely to be only one component within a holistic preventive strategy that should also aim at modification of the environmental influences responsible for the initiation and perpetuation of microbiome shifts associated with oral dysbiosis.
Collapse
|
121
|
Periodontal Status of Patients with Hepatitis B Viruses and B and C Virus (Comparative Study). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.1.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
122
|
Feres M, Retamal-Valdes B, Mestnik MJ, de Figueiredo LC, Faveri M, Duarte PM, Fritoli A, Faustino E, Souto MLS, de Franco Rodrigues M, Giudicissi M, Nogueira BCL, Saraiva L, Romito GA, Pannuti CM. The ideal time of systemic metronidazole and amoxicillin administration in the treatment of severe periodontitis: study protocol for a randomized controlled trial. Trials 2018; 19:201. [PMID: 29587808 PMCID: PMC5869787 DOI: 10.1186/s13063-018-2540-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Background The combination of systemic metronidazole (MTZ) and amoxicillin (AMX) with scaling and root planing (SRP) has shown to be an effective periodontal treatment. However, some essential issues associated with the use of these antibiotics remain unanswered, such as the ideal time of administration during the course of periodontal treatment. Although these agents are often prescribed after the healing phase of the SRP procedure, there is biological plausibility to support its use in conjunction with the mechanical treatment. However, to date, no placebo controlled randomized clinical trial (RCT) has directly compared these two protocols. Therefore, the aim of this RCT is to compare the clinical, microbiological and immunological effects of the adjunctive systemic MTZ + AMX administered in different phases of the treatment of severe periodontitis. Methods Subjects with severe periodontitis (n = 180) are being randomly assigned into three groups (n = 60/group): (i) SRP-only (control group), SRP in combination with 400 mg MTZ + 500 mg AMX, starting (ii) at the first SRP session (active phase group), or (iii) after 3 months of its completion (healing phase group). All volunteers are receiving clinical and microbiological evaluation at baseline, 3, 6 and 12 months, and immunological assessment at baseline and 12 months post-therapy. Nine subgingival biofilm samples are being collected per subject and analyzed for counts and proportions of 40 bacterial species by checkerboard DNA-DNA hybridization, and six gingival crevicular fluid samples are being collected and analyzed for the levels of 20 chemokines by multiplex immunoassay. The primary outcome variable is the number of volunteers reaching the clinical endpoint for treatment (≤ 4 sites with probing depth ≥5 mm) at 1 year post-therapy. Differences in clinical, microbiological and immunological parameters among groups and over time will be evaluated using analysis of variance, analysis of covariance and the Chi-square and Tukey tests. Microbiological and immunological analyses will be performed using adjustments for multiple comparisons. Statistical significance will be set at 5%. Trial registration ClinicalTrials.gov, NCT02954393. Registered on 3 November 2016. Electronic supplementary material The online version of this article (10.1186/s13063-018-2540-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil.
| | - Belén Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Maria Josefa Mestnik
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | | | - Marcelo Faveri
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Poliana M Duarte
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Aretuza Fritoli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Elisangela Faustino
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Maria Luisa Silveira Souto
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo, Brazil
| | - Michelle de Franco Rodrigues
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo, Brazil
| | - Marcela Giudicissi
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo, Brazil
| | - Bárbara Campos Lara Nogueira
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo, Brazil
| | - Luciana Saraiva
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo, Brazil
| | - Giuseppe Alexandre Romito
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo, Brazil
| | - Cláudio Mendes Pannuti
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
123
|
Robb AJ, Vinogradov S, Danell AS, Anderson E, Blackledge MS, Melander C, Hvastkovs EG. Electrochemical Detection of Small Molecule Induced Pseudomonas aeruginosa Biofilm Dispersion. Electrochim Acta 2018; 268:276-282. [PMID: 30504968 DOI: 10.1016/j.electacta.2018.02.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A simple electrochemical assay to monitor the dispersion of Pseudomonas aeruginosa PA01 biofilm is described. Pyrolytic graphite (PG) electrodes were modified with P. aeruginosa PA01 using layer-by-layer (LbL) methods. The presence of the bacteria on the electrodes was directly monitored using square wave voltammetry (SWV) via the electrochemical reduction of electroactive phenazine compounds expressed by the bacteria, which indicate the presence of biofilm. Upon treatment of bacteria-modified electrodes with a 2-aminoimidazole (2-AI) derivative with known Pseudomonas anti-biofilm properties, the bacteria-related electrochemical reduction peaks decreased in a concentration dependent manner, indicating dispersal of the biofilm on the electrode surface. A similar 2-AI compound with negligible anti-biofilm activity was used as a comparative control and produced muted electrochemical results. Electrochemical responses mirrored previously established bioassay-derived half maximal inhibition concentration (IC50) and half maximal effective concentration (EC50) values.. Biofilm dispersal detection via the electrochemical response was validated by monitoring crystal violet absorbance after its release from electrode confined P. aeruginosa biofilm. Mass spectrometry data showing multiple redox active phenazine compounds are presented to provide insight into the surface reaction complexity. Overall, we present a very simple assay to monitor the anti-biofilm activity of compounds of interest.
Collapse
Affiliation(s)
- Alex J Robb
- East Carolina University, Department of Chemistry
| | | | | | | | | | | | | |
Collapse
|
124
|
Martini D, Galli C, Guareschi C, Angelino D, Bedogni G, Biasini B, Zavaroni I, Pruneti C, Ventura M, Galli D, Mirandola P, Vitale M, Dei Cas A, Bonadonna RC, Passeri G, Del Rio D. Claimed effects, outcome variables and methods of measurement for health claims on foods proposed under Regulation (EC) 1924/2006 in the area of oral health. NFS JOURNAL 2018. [DOI: 10.1016/j.nfs.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
125
|
Sawhney R, Sharma R, Sharma K. Microbial Colonization on Elastomeric Ligatures during Orthodontic Therapeutics: An Overview. Turk J Orthod 2018; 31:21-25. [PMID: 30112509 PMCID: PMC6007688 DOI: 10.5152/turkjorthod.2018.17050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/03/2018] [Indexed: 11/22/2022]
Abstract
The current review focuses on the studies conducted on the colonization of microorganisms on orthodontic ligatures during orthodontic treatment. The fixed orthodontic appliances have long been associated with an increase in plaque accumulation, bacterial colonization, and resultant enamel decalcification. Voluminous research has been carried out on the microbial colonization of even newer orthodontic materials such as elastomeric ligatures with an evidence of variably increased microbial counts during orthodontic treatment. However, conclusive material-based data for minimal microbial colonization to establish acceptance criteria for the use of elastomeric ligatures are hardly available. Thus, there is a need for further studies with dual emphasis on exploring microbial associations based on surface chemistries of different elastomers and their requisite modifications for hampering microbial biofilms to evolve efficacious oral health friendly orthodontic ligatures.
Collapse
Affiliation(s)
- Rajesh Sawhney
- Department of Microbiology, Rayat-Bahra Dental College & Hospital, Sahauran, India
| | - Ravish Sharma
- Department of Orthodontics, MICH Government Hospital, Yamuna Nagar (Haryana), India
| | | |
Collapse
|
126
|
Petrović MS, Kannosh IY, Milašin JM, Mihailović DS, Obradović RR, Bubanj SR, Kesić LG. Clinical, microbiological and cytomorphometric evaluation of low-level laser therapy as an adjunct to periodontal therapy in patients with chronic periodontitis. Int J Dent Hyg 2018; 16:e120-e127. [DOI: 10.1111/idh.12328] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2017] [Indexed: 01/01/2023]
Affiliation(s)
- MS Petrović
- Department of Oral Medicine and Periodontology, Dental Clinic; Faculty of medicine; University of Niš; Niš Serbia
| | - IY Kannosh
- Department of Human Genetics; School of Dental medicine; University of Belgrade; Belgrade Serbia
| | - JM Milašin
- Department of Human Genetics; School of Dental medicine; University of Belgrade; Belgrade Serbia
| | - DS Mihailović
- Institute of Pathological Anatomy; Medical Faculty Nis; University of Niš; Niš Serbia
| | - RR Obradović
- Department of Oral Medicine and Periodontology, Dental Clinic; Faculty of medicine; University of Niš; Niš Serbia
| | - SR Bubanj
- Faculty of Sport and Physical Education; Department of applied kinesiology; University of Niš; Niš Serbia
| | - LG Kesić
- Department of Oral Medicine and Periodontology, Dental Clinic; Faculty of medicine; University of Niš; Niš Serbia
| |
Collapse
|
127
|
McGowan T, McGowan K, Ivanovski S. A Novel Evidence-Based Periodontal Prognosis Model. J Evid Based Dent Pract 2017; 17:350-360. [DOI: 10.1016/j.jebdp.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 11/28/2022]
|
128
|
|
129
|
Azaripour A, Dittrich S, Van Noorden CJF, Willershausen B. Efficacy of photodynamic therapy as adjunct treatment of chronic periodontitis: a systematic review and meta-analysis. Lasers Med Sci 2017; 33:407-423. [DOI: 10.1007/s10103-017-2383-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/06/2017] [Indexed: 01/19/2023]
|
130
|
Preus HR, Gjermo P, Baelum V. A double-masked Randomized Clinical Trial (RCT) comparing four periodontitis treatment strategies: 5-year clinical results. J Clin Periodontol 2017; 44:1029-1038. [DOI: 10.1111/jcpe.12793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Hans R. Preus
- Department of Periodontology; Institute of Clinical Odontology; Faculty of Dentistry; University of Oslo; Oslo Norway
| | - Per Gjermo
- Department of Periodontology; Institute of Clinical Odontology; Faculty of Dentistry; University of Oslo; Oslo Norway
| | - Vibeke Baelum
- Department of Dentistry and Oral Health; Aarhus University; Aarhus Denmark
| |
Collapse
|
131
|
Antibacterial effect on mature biofilms of oral streptococci and antioxidant activity of 3β,6β,16β-trihydroxylup-20(29)-ene from Combretum leprosum. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2022-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
132
|
Mackie M, Hendy J, Lowe AD, Sperduti A, Holst M, Collins MJ, Speller CF. Preservation of the metaproteome: variability of protein preservation in ancient dental calculus. SCIENCE AND TECHNOLOGY OF ARCHAEOLOGICAL RESEARCH 2017; 3:74-86. [PMID: 29098079 PMCID: PMC5633013 DOI: 10.1080/20548923.2017.1361629] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/16/2017] [Indexed: 05/25/2023]
Abstract
Proteomic analysis of dental calculus is emerging as a powerful tool for disease and dietary characterisation of archaeological populations. To better understand the variability in protein results from dental calculus, we analysed 21 samples from three Roman-period populations to compare: 1) the quantity of extracted protein; 2) the number of mass spectral queries; and 3) the number of peptide spectral matches and protein identifications. We found little correlation between the quantity of calculus analysed and total protein identifications, as well as no systematic trends between site location and protein preservation. We identified a wide range of individual variability, which may be associated with the mechanisms of calculus formation and/or post-depositional contamination, in addition to taphonomic factors. Our results suggest dental calculus is indeed a stable, long-term reservoir of proteins as previously reported, but further systematic studies are needed to identify mechanisms associated with protein entrapment and survival in dental calculus.
Collapse
Affiliation(s)
- Meaghan Mackie
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Jessica Hendy
- BioArCh, Department of Archaeology, University of York, York, UK
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Abigail D. Lowe
- BioArCh, Department of Archaeology, University of York, York, UK
- Department of Earth Sciences, Natural History Museum, London, UK
| | | | - Malin Holst
- BioArCh, Department of Archaeology, University of York, York, UK
- York Osteoarchaeology Ltd
| | - Matthew J. Collins
- BioArCh, Department of Archaeology, University of York, York, UK
- EvoGenomics Section, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
133
|
Keller MK, Kressirer CA, Belstrøm D, Twetman S, Tanner ACR. Oral microbial profiles of individuals with different levels of sugar intake. J Oral Microbiol 2017; 9:1355207. [PMID: 28839520 PMCID: PMC5560414 DOI: 10.1080/20002297.2017.1355207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/07/2017] [Indexed: 11/11/2022] Open
Abstract
The aim was to compare the oral microbial profiles in young adults with an intake of free sugars above or below the current recommendations by the WHO for sugar consumption. Seventy subjects completed a Quantitative Food Frequency Questionnaire to establish the proportion of free sugars in relation to the total energy intake (% E). Subjects with <5% E (n = 30) formed the low-sugar group, while those with ≥5% E (n = 40) were regarded as reference group. Saliva and plaque samples were analyzed by qPCR, and 52 of the plaque samples were assayed by HOMINGS. The HOMINGS analysis revealed a comparable core microbiota in plaque samples with Streptococcus, Leptotrichia, Actinobaculum, and Veillonella as predominant. No major differences between groups were revealed by α-diversity testing (p = 0.83), principal component analysis, or correspondence analysis. Higher relative abundance of Streptococcus sobrinus and Prevotella melaninogenica was observed in plaque samples in the reference group. By qPCR, Scardovia wiggsiae was associated with elevated sugar intake. The findings suggests that the amount of ingested sugars had a marginal influence on microbial profiles in dental plaque and saliva. However, some caries-associated species were less abundant in the dental plaque of the low sugar group.
Collapse
Affiliation(s)
- Mette K Keller
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine A Kressirer
- Department of Microbiology, The Forsyth Institute, Cambridge, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, USA
| | - Daniel Belstrøm
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Svante Twetman
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne C R Tanner
- Department of Microbiology, The Forsyth Institute, Cambridge, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, USA
| |
Collapse
|
134
|
Bartold PM, Van Dyke TE. Host modulation: controlling the inflammation to control the infection. Periodontol 2000 2017; 75:317-329. [DOI: 10.1111/prd.12169] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
135
|
Ionescu AC, Hahnel S, Cazzaniga G, Ottobelli M, Braga RR, Rodrigues MC, Brambilla E. Streptococcus mutans adherence and biofilm formation on experimental composites containing dicalcium phosphate dihydrate nanoparticles. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:108. [PMID: 28540581 DOI: 10.1007/s10856-017-5914-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED This study aimed at evaluating bacterial adhesion and biofilm formation on resin-based composites (RBC) including dicalcium phosphate dihydrate nanoparticles (nDCPD). METHODS Specimens were prepared from experimental RBCs with BisGMA/TEGDMA resin matrix including 20 vol% of either nDCPD (nDCPD-RBC), TEGDMA-functionalized nDPCD (F-nDCPD-RBC) or silanized silica (SiO2-RBC). Neat resin blend (control-Resin), conventional nanohybrid RBC (control-RBC) and human enamel were used for reference. Characterization of the specimens included surface roughness (SR), surface free energy (SFE), chemical surface composition (EDS, XPS), and buffering ability of a pH = 4.00 solution. Streptococcus mutans adherence was assessed after 2 h; biofilm formation was simulated for 48 h using a bioreactor. Adherent, viable biomass was determined using tetrazolium salt assay (MTT). RESULTS nDCPD-RBC yielded highest roughness and showed higher polar and lower disperse component to total SFE. EDS and XPS indicated higher amounts of calcium and phosphate on the surface of nDCPD-RBC than on F-nDCPD-RBC. nDCPD buffered the acidic solution to 5.74, while functionalization almost prevented buffering (pH = 4.26). F-nDCPD-RBC reduced adherence and biofilm formation in comparison to nDCPD-RBC. Regardless of functionalization, biofilm formation on nDCPD-containing RBCs was not significantly different from SiO2-RBC. Control-Resin, control-RBC, and enamel surfaces showed similar adherence values as F-nDCPD-RBC, but lower biofilm formation compared to both nDCPD-containing RBCs. In conclusion, the incorporation of nDCPD did not minimize S. mutans adherence and biofilm formation as a function of the materials´ surface properties. However, results observed for the buffering capacity indicated that optimized formulations of biomimetic RBCs may be useful for modulating their interaction with microorganisms.
Collapse
Affiliation(s)
- Andrei C Ionescu
- Department of Biomedical, Surgical and Dental Sciences, IRCCS Galeazzi Orthopedic Institute, University of Milan, Via R. Galeazzi, 4, Milan, 20133, Italy.
| | - Sebastian Hahnel
- Department of Prosthetic Dentistry, Regensburg University Medical Center, Regensburg, 93042, Germany
| | - Gloria Cazzaniga
- Department of Biomedical, Surgical and Dental Sciences, IRCCS Galeazzi Orthopedic Institute, University of Milan, Via R. Galeazzi, 4, Milan, 20133, Italy
| | - Marco Ottobelli
- Department of Biomedical, Surgical and Dental Sciences, IRCCS Galeazzi Orthopedic Institute, University of Milan, Via R. Galeazzi, 4, Milan, 20133, Italy
| | - Roberto Ruggiero Braga
- Department of Biomaterials and Oral Biology, Dental Faculty, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, 05508-000, Brazil
| | - Marcela Charantola Rodrigues
- Department of Biomaterials and Oral Biology, Dental Faculty, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, 05508-000, Brazil
| | - Eugenio Brambilla
- Department of Biomedical, Surgical and Dental Sciences, IRCCS Galeazzi Orthopedic Institute, University of Milan, Via R. Galeazzi, 4, Milan, 20133, Italy
| |
Collapse
|
136
|
Jepsen K, Jepsen S. Antibiotics/antimicrobials: systemic and local administration in the therapy of mild to moderately advanced periodontitis. Periodontol 2000 2017; 71:82-112. [PMID: 27045432 DOI: 10.1111/prd.12121] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 02/06/2023]
Abstract
This review gives an update of the current scientific evidence on the efficacy of the adjunctive use of systemic and local antibiotics/antimicrobials in the treatment of periodontitis. In particular, it addresses whether their use can improve the results of nonsurgical mechanical therapy in mild-to-moderate forms of the disease. Large numbers of randomized clinical trials and systematic reviews with meta-analyses have clearly established that adjunctive systemic antibiotics, combined with mechanical debridement, offer clinical improvements additional to those obtained with scaling and root planing alone. These effects are more pronounced in aggressive periodontitis and in initially deep pockets, whereas more limited additional improvements, of 0.3 mm for additional pocket reduction and 0.2 mm for additional clinical attachment gain, have been documented for moderately deep sites (4-6 mm) in patients with chronic periodontitis. The marginal clinical benefit in patients with moderate disease has to be balanced against possible side effects. Notably, it has to be realized that an increasing number of warnings have been articulated against the unrestricted use of antibiotics in treating periodontal diseases because of the emerging global public health issue of bacterial resistance. The effects of the adjunctive local administration of antimicrobials have also been very well documented in several systematic reviews. Overall, in persistent or recurrent localized deep sites, the application of antimicrobials by sustained-delivery devices may offer a benefit of an additional 0.4 mm in pocket depth reduction and 0.3 mm in clinical attachment level gain. In conclusion, the slight additional benefits of adjunctive antimicrobials, which were shown for moderate forms of periodontitis, have to be balanced against their side effects and therefore their prescription should be limited as much as possible.
Collapse
|
137
|
He J, Kim D, Zhou X, Ahn SJ, Burne RA, Richards VP, Koo H. RNA-Seq Reveals Enhanced Sugar Metabolism in Streptococcus mutans Co-cultured with Candida albicans within Mixed-Species Biofilms. Front Microbiol 2017. [PMID: 28642749 PMCID: PMC5462986 DOI: 10.3389/fmicb.2017.01036] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Early childhood caries (ECC), which can lead to rampant tooth-decay that is painful and costly to treat, is one of the most prevalent infectious diseases affecting children worldwide. Previous studies support that interactions between Streptococcus mutans and Candida albicans are associated with the pathogenesis of ECC. The presence of Candida enhances S. mutans growth, fitness and accumulation within biofilms in vitro, although the molecular basis for these behaviors is undefined. Using an established co-cultivation biofilm model and RNA-Seq, we investigated how C. albicans influences the transcriptome of S. mutans. The presence of C. albicans dramatically altered gene expression in S. mutans in the dual-species biofilm, resulting in 393 genes differentially expressed, compared to mono-species biofilms of S. mutans. By Gene Ontology analysis, the majority of up-regulated genes were related to carbohydrate transport and metabolic/catabolic processes. KEGG pathway impact analysis showed elevated pyruvate and galactose metabolism, suggesting that co-cultivation with C. albicans influences carbohydrate utilization by S. mutans. Analysis of metabolites confirmed the increases in carbohydrate metabolism, with elevated amounts of formate in the culture medium of co-cultured biofilms. Moreover, co-cultivation with C. albicans altered transcription of S. mutans signal transduction (comC and ciaRH) genes associated with fitness and virulence. Interestingly, the expression of genes for mutacins (bacteriocins) and CRISPR were down-regulated. Collectively, the data provide a comprehensive insight into S. mutans transcriptomic changes induced by C. albicans, and offer novel insights into how bacterial–fungal interactions may enhance the severity of dental caries.
Collapse
Affiliation(s)
- Jinzhi He
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, PhiladelphiaPA, United States
| | - Dongyeop Kim
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, PhiladelphiaPA, United States
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, GainesvilleFL, United States
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, GainesvilleFL, United States
| | - Vincent P Richards
- Department of Biological Sciences, Clemson University, ClemsonSC, United States
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, PhiladelphiaPA, United States
| |
Collapse
|
138
|
Formulation of thermoreversible gel of cranberry juice concentrate: Evaluation, biocompatibility studies and its antimicrobial activity against periodontal pathogens. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1506-1514. [DOI: 10.1016/j.msec.2017.03.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/08/2023]
|
139
|
Angst PDM, Stadler AF, Oppermann RV, Gomes SC. Microbiological outcomes from different periodontal maintenance interventions: a systematic review. Braz Oral Res 2017; 31:e33. [PMID: 28513785 DOI: 10.1590/1807-3107bor-2017vol310033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/27/2017] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate the differences in the subgingival microbiological outcomes between periodontal patients submitted to a supragingival control (SPG) regimen as compared to subgingival scaling and root planing performed combined with supragingival debridement (SPG + SBG) intervention during the periodontal maintenance period (PMP). A systematic literature search using electronic databases (MEDLINE and EMBASE) was conducted looking for articles published up to August 2016 and independent of language. Two independent reviewers performed the study selection, quality assessment and data collection. Only human randomized or non-randomized clinical trials with at least 6-months-follow-up after periodontal treatment and presenting subgingival microbiological outcomes related to SPG and/or SPG+SBG therapies were included. Search strategy found 2,250 titles. Among these, 148 (after title analysis) and 39 (after abstract analysis) papers were considered to be relevant. Finally, 19 studies were selected after full-text analysis. No article had a direct comparison between the therapies. Five SPG and 14 SPG+SBG studies presented experimental groups with these respective regimens and were descriptively analyzed while most of the results were only presented graphically. The results showed that both SPG and SPG+SBG protocols of PMP determined stability in the microbiological results along time. Nevertheless, new studies comparing these interventions in PMP are needed, especially if the limitations herein discussed could be better controlled.
Collapse
Affiliation(s)
| | - Amanda Finger Stadler
- Augusta University, The Dental College of Georgia, Department of Periodontics, Augusta, GA, United States of America
| | - Rui Vicente Oppermann
- Universidade Federal do Rio Grande do Sul - UFRGS, Dental School, Department of Conservative Dentistry, Porto Alegre, RS, Brazil
| | - Sabrina Carvalho Gomes
- Universidade Federal do Rio Grande do Sul - UFRGS, Dental School, Department of Conservative Dentistry, Porto Alegre, RS, Brazil
| |
Collapse
|
140
|
Rodriguez Herrero E, Boon N, Pauwels M, Bernaerts K, Slomka V, Quirynen M, Teughels W. Necrotrophic growth of periodontopathogens is a novel virulence factor in oral biofilms. Sci Rep 2017; 7:1107. [PMID: 28439126 PMCID: PMC5430626 DOI: 10.1038/s41598-017-01239-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/28/2017] [Indexed: 01/05/2023] Open
Abstract
The oral use of antimicrobial agents embedded in toothpastes and mouth rinses results in an oral microbial massacre with high amounts of dead bacteria in close proximity to few surviving bacteria. It was hypothesized that this provides the surviving pathogenic bacteria a large amount of dead microbial biomass as a nutritional source for growth (necrotrophy). This study demonstrated the necrotrophic growth of periodontal pathogens in the presence of different dead oral species. In addition, the presence of dead bacteria resulted in an outgrowth of several periodontal pathogens in complex multi-species biofilms. Additionally, upon contact with dead oral bacteria, virulence genes of P. intermedia and P. gingivalis were up-regulated (necrovirulence). This resulted in a more pronounced epithelial cytotoxicity (necrotoxicity). These findings indicate that presence of dead bacteria induce necrotrophy, necrovirulence and necrotoxicity in several oral pathogens.
Collapse
Affiliation(s)
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure links 653, 9000, Gent, Belgium
| | - Martine Pauwels
- Department of Oral Health Sciences, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, KU Leuven (University of Leuven), Leuven Chem&Tech, Celestijnenlaan 200F (bus 2424), 3001, Leuven, Belgium
| | - Vera Slomka
- Department of Oral Health Sciences, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Marc Quirynen
- Department of Oral Health Sciences, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium.,Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium. .,Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium.
| |
Collapse
|
141
|
Lee HS, Myers C, Zaidel L, Nalam PC, Caporizzo MA, A Daep C, Eckmann DM, Masters JG, Composto RJ. Competitive Adsorption of Polyelectrolytes onto and into Pellicle-Coated Hydroxyapatite Investigated by QCM-D and Force Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13079-13091. [PMID: 28332813 DOI: 10.1021/acsami.7b02774] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A current effort in preventive dentistry is to inhibit surface attachment of bacteria using antibacterial polymer coatings on the tooth surface. For the antibacterial coatings, the physisorption of anionic and cationic polymers directly onto hydroxyapatite (HA) and saliva-treated HA surfaces was studied using quartz crystal microbalance, force spectroscopy, and atomic force microscopy. First, single species adsorption is shown to be stronger on HA surfaces than on silicon oxide surfaces for all polymers (i.e., Gantrez, sodium hyaluronate (NaHa), and poly(allylamine-co-allylguanidinium) (PAA-G75)). It is observed through pH dependence of Gantrez, NaHa, and PAA-G75 adsorption on HA surfaces that anionic polymers swell at high pH and collapse at low pH, whereas cationic polymers behave in the opposite fashion. Thicknesses of Gantrez, NaHa, and PAA-G75 are 52 nm (46 nm), 35 nm (11 nm), and 6 nm (54 nm) at pH 7 (3.5), respectively. Second, absorption of charged polymer is followed by absorption of the oppositely charged polymer. Upon exposure of the anionic polymer layers, Gantrez and NaHa, to the cationic polymer, PAA-G75, films collapse from 52 to 8 nm and 35 to 11 nm, respectively. This decrease in film thickness is attributed to the electrostatic cross-linking between anionic and cationic polymers. Third, for HA surfaces pretreated with artificial saliva (AS), the total thickness decreases from 25 to 16 nm upon exposure to PAA-G75. Force spectroscopy is used to further investigate the PAA-G75/AS coating. The results show that the interaction between a negatively charged colloidal bead and the AS surface is strongly repulsive, whereas PAA-G75/AS is attractive but varies across the surface. Additionally, AFM studies show that AS/HA is smooth with a RMS roughness of 1.7 nm, and PAA-G75-treated AS/HA is rough (RMS roughness of 5.4 nm) with patches of polymer distributed across the surface with an underlying coating. The high roughness of PAA-G75 treated AS/HA is attributed to the strong adsorption of the relatively small PAA-G75 onto the heterogeneously distributed negatively charged AS surface. In addition, uptake of PAA-G75 by pellicle layer (saliva-treated HA surface) is observed, and the adsorbed amount of PAA-G75 on/into pellicle layer is ∼2 times more than that on/into AS layer. These studies show that polymer adsorption onto HA and saliva-coated HA depends strongly on the polymer type and size and that there is an electrostatic interaction between polymer and saliva and/or oppositely charged polymers that stabilizes the coatings on HA. Lastly, assessing the viability of the adherent bacteria collected from the PAA-G75-coated surfaces showed a significant reduction (∼93%) in bacterial viability when compared to bacteria collected from untreated and Gantrez-coated HA. These results suggest the potential antimicrobial activity of PAA-G75.
Collapse
Affiliation(s)
| | - Carl Myers
- Colgate-Palmolive Company, Piscataway, New Jersey 08855, United States
| | - Lynette Zaidel
- Colgate-Palmolive Company, Piscataway, New Jersey 08855, United States
| | | | | | - Carlo A Daep
- Colgate-Palmolive Company, Piscataway, New Jersey 08855, United States
| | | | - James G Masters
- Colgate-Palmolive Company, Piscataway, New Jersey 08855, United States
| | | |
Collapse
|
142
|
|
143
|
Kim D, Sengupta A, Niepa THR, Lee BH, Weljie A, Freitas-Blanco VS, Murata RM, Stebe KJ, Lee D, Koo H. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Sci Rep 2017; 7:41332. [PMID: 28134351 PMCID: PMC5278416 DOI: 10.1038/srep41332] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is frequently detected with heavy infection of Streptococcus mutans in plaque-biofilms from children affected with early-childhood caries, a prevalent and costly oral disease. The presence of C. albicans enhances S. mutans growth within biofilms, yet the chemical interactions associated with bacterial accumulation remain unclear. Thus, this study was conducted to investigate how microbial products from this cross-kingdom association modulate S. mutans build-up in biofilms. Our data revealed that bacterial-fungal derived conditioned medium (BF-CM) significantly increased the growth of S. mutans and altered biofilm 3D-architecture in a dose-dependent manner, resulting in enlarged and densely packed bacterial cell-clusters (microcolonies). Intriguingly, BF-CM induced S. mutans gtfBC expression (responsible for Gtf exoenzymes production), enhancing Gtf activity essential for microcolony development. Using a recently developed nanoculture system, the data demonstrated simultaneous microcolony growth and gtfB activation in situ by BF-CM. Further metabolites/chromatographic analyses of BF-CM revealed elevated amounts of formate and the presence of Candida-derived farnesol, which is commonly known to exhibit antibacterial activity. Unexpectedly, at the levels detected (25-50 μM), farnesol enhanced S. mutans-biofilm cell growth, microcolony development, and Gtf activity akin to BF-CM bioactivity. Altogether, the data provide new insights on how extracellular microbial products from cross-kingdom interactions stimulate the accumulation of a bacterial pathogen within biofilms.
Collapse
Affiliation(s)
- Dongyeop Kim
- Biofilm Research Laboratory, Department of Orthodontics and Divisions of Pediatric Dentistry &Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arjun Sengupta
- Department of Systems Pharmacology &Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Tagbo H R Niepa
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Byung-Hoo Lee
- Department of Food Science, Gachon University, Seongnam, South Korea
| | - Aalim Weljie
- Department of Systems Pharmacology &Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ramiro M Murata
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyun Koo
- Biofilm Research Laboratory, Department of Orthodontics and Divisions of Pediatric Dentistry &Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
144
|
Mohamed Ali H, Berggreen E, Nguyen D, Wahab Ali R, Van Dyke TE, Hasturk H, Mustafa M. Dental plaque microbial profiles of children from Khartoum, Sudan, with congenital heart defects. J Oral Microbiol 2017; 9:1281556. [PMID: 28326155 PMCID: PMC5328311 DOI: 10.1080/20002297.2017.1281556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/06/2017] [Accepted: 01/08/2017] [Indexed: 12/17/2022] Open
Abstract
Few studies have focused on the bacterial species associated with the deterioration of the dental and gingival health of children with congenital heart defects (CHD). The aims of this study were (1) to examine the dental plaque of children with CHD in order to quantify bacterial load and altered bacterial composition compared with children without CHD; and (2) to investigate the correlation between the level of caries and gingivitis and dental biofilm bacteria among those children. In this cross-sectional study, participants were children (3-12 years) recruited in Khartoum State, Sudan. A total of 80 CHD cases from the Ahmed Gasim Cardiac Centre and 80 healthy controls from randomly selected schools and kindergartens were included. Participants underwent clinical oral examinations for caries (decayed, missing, and filled teeth indices [DMFT] for primary dentition, and DMFT for permanent dentition), and gingivitis (simplified gingival index [GI]). Pooled dental biofilm samples were obtained from four posterior teeth using paper points. Real-time quantitative polymerase chain reaction was used for the detection and quantification of Streptococcus mutans, Streptococcussanguinis, and Lactobacillus acidophilus. Checkerboard DNA-DNA hybridization was used for the detection of 40 additional bacterial species. CHD cases had a significantly higher caries experience (DMFT = 4.1 vs. 2.3, p < 0.05; DMFT = 1.4 vs. 0.7, p < 0.05) and a higher mean number of examined teeth with gingivitis (4.2 vs. 2.0; p < 0.05) compared with controls. S. mutans counts were significantly higher among the CHD cases (p < 0.05). Checkerboard results revealed that 18/40 bacterial species exhibited significantly higher mean counts among CHD cases (p < 0.01). Correlation analyses revealed that among CHD cases, the detection levels of Tannerella forsythia, Campylobacter rectus, Fusobacterium nucleatum subsp. vincentii, F. nucleatum subsp. nucleatum, and F. nucleatum subsp. polymorphum were highly positively correlated with GI. CHD cases harbor more cariogenic and periodontopathogenic bacterial species in their dental plaque, which correlated with higher levels of caries and gingivitis.
Collapse
Affiliation(s)
| | - Ellen Berggreen
- Biomedicine, Faculty of Medicine and Dentistry, University of Bergen , Bergen , Norway
| | - Daniel Nguyen
- Department of Periodontology, The Forsyth Institute , Cambridge , MA , USA
| | - Raouf Wahab Ali
- Department of Periodontics, University of Science and Technology , Khartoum , Sudan
| | - Thomas E Van Dyke
- Department of Periodontology, The Forsyth Institute, Cambridge, MA, USA; Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Hatice Hasturk
- Department of Periodontology, The Forsyth Institute , Cambridge , MA , USA
| | - Manal Mustafa
- Oral Health Centre of Expertise in Western Norway , Hordaland , Bergen , Norway
| |
Collapse
|
145
|
On the ecosystemic network of saliva in healthy young adults. ISME JOURNAL 2017; 11:1218-1231. [PMID: 28072421 PMCID: PMC5475835 DOI: 10.1038/ismej.2016.199] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/16/2016] [Accepted: 11/25/2016] [Indexed: 01/20/2023]
Abstract
A dysbiotic state is believed to be a key factor in the onset of oral disease. Although oral diseases have been studied for decades, our understanding of oral health, the boundaries of a healthy oral ecosystem and ecological shift toward dysbiosis is still limited. Here, we present the ecobiological heterogeneity of the salivary ecosystem and relations between the salivary microbiome, salivary metabolome and host-related biochemical salivary parameters in 268 healthy adults after overnight fasting. Gender-specific differences in the microbiome and metabolome were observed and were associated with salivary pH and dietary protein intake. Our analysis grouped the individuals into five microbiome and four metabolome-based clusters that significantly related to biochemical parameters of saliva. Low salivary pH and high lysozyme activity were associated with high proportions of streptococcal phylotypes and increased membrane-lipid degradation products. Samples with high salivary pH displayed increased chitinase activity, higher abundance of Veillonella and Prevotella species and higher levels of amino acid fermentation products, suggesting proteolytic adaptation. An over-specialization toward either a proteolytic or a saccharolytic ecotype may indicate a shift toward a dysbiotic state. Their prognostic value and the degree to which these ecotypes are related to increased disease risk remains to be determined.
Collapse
|
146
|
|
147
|
Li YH, Huang X, Tian XL. Recent advances in dental biofilm: impacts of microbial interactions
on the biofilm ecology and pathogenesis. AIMS BIOENGINEERING 2017. [DOI: 10.3934/bioeng.2017.3.335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
148
|
Fyrestam J, Bjurshammar N, Paulsson E, Mansouri N, Johannsen A, Östman C. Influence of culture conditions on porphyrin production in Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Photodiagnosis Photodyn Ther 2016; 17:115-123. [PMID: 27825899 DOI: 10.1016/j.pdpdt.2016.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/12/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Increasing antibiotic resistance among pathogens has raised the demands for new treatment methods such as antimicrobial photodynamic therapy (aPDT) and phototherapy (PT). Experiments for investigating the effects of these methods are often performed in vitro, but the procedures for cultivation of microbes vary between different studies. The aim of this study has been to elucidate how the profile of endogenously produced porphyrins differs by changing the variables of bacteria culturing conditions. METHODS Two oral pathogens, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis, were selected as model organisms. The contents of porphyrins and heme in the bacteria were analysed with liquid chromatography-tandem mass spectrometry when bacteria was cultivated for different lengths of time (3-9 days), upon passaging as well as when growth medium were supplemented with or without horse blood. RESULTS Both porphyrin and heme content in A. actinomycetemcomitans are highly affected by the age of the culture, and that the porphyrin profiles changes during cultivation. When cultivated colonies of A. actinomycetemcomitans were passaged onto a new, fresh growth medium a large change in porphyrin content occurred. Additional porphyrins were detected; uroporphyrin and 7-carboxylporphyrin, and the total porphyrin content increased up to 28 times. When P. gingivalis was grown on blood containing medium higher concentrations of protoporphyrin IX (2.5 times) and heme (5.4 times) were quantified compared to bacteria grown without blood. CONCLUSIONS This study demonstrate that there is a need for more standardized culturing protocols when performing aPDT and PT experiments in vitro to avoid large variations in porphyrin profiles and concentrations, the aPDT/PT target compounds, depending on the culturing conditions.
Collapse
Affiliation(s)
- Jonas Fyrestam
- Department of Environmental Science and Analytical Chemistry, Division of Analytical and Toxicological Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | - Nadja Bjurshammar
- Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden
| | - Elin Paulsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
| | - Nesrine Mansouri
- Department of Environmental Science and Analytical Chemistry, Division of Analytical and Toxicological Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | - Annsofi Johannsen
- Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden
| | - Conny Östman
- Department of Environmental Science and Analytical Chemistry, Division of Analytical and Toxicological Chemistry, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
149
|
Assessment of Photodynamic Inactivation against Periodontal Bacteria Mediated by a Chitosan Hydrogel in a 3D Gingival Model. Int J Mol Sci 2016; 17:ijms17111821. [PMID: 27809278 PMCID: PMC5133822 DOI: 10.3390/ijms17111821] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 11/20/2022] Open
Abstract
Chitosan hydrogels containing hydroxypropyl methylcellulose (HPMC) and toluidine blue O were prepared and assessed for their mucoadhesive property and antimicrobial efficacy of photodynamic inactivation (PDI). Increased HPMC content in the hydrogels resulted in increased mucoadhesiveness. Furthermore, we developed a simple In Vitro 3D gingival model resembling the oral periodontal pocket to culture the biofilms of Staphylococcus aureus (S. aureus), Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), and Porphyromonas gingivalis (P. gingivalis). The PDI efficacy of chitosan hydrogel was examined against periodontal biofilms cultured in this 3D gingival model. We found that the PDI effectiveness was limited due to leaving some of the innermost bacteria alive at the non-illuminated site. Using this 3D gingival model, we further optimized PDI procedures with various adjustments of light energy and irradiation sites. The PDI efficacy of the chitosan hydrogel against periodontal biofilms can significantly improve via four sides of irradiation. In conclusion, this study not only showed the clinical applicability of this chitosan hydrogel but also the importance of the light irradiation pattern in performing PDI for periodontal disease.
Collapse
|
150
|
Kim K, Jung WS, Cho S, Ahn SJ. Changes in salivary periodontal pathogens after orthodontic treatment: An in vivo prospective study. Angle Orthod 2016; 86:998-1003. [PMID: 26606331 PMCID: PMC8597347 DOI: 10.2319/070615-450.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/01/2015] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To analyze the initial changes in salivary levels of periodontal pathogens after orthodontic treatment with fixed appliances. MATERIALS AND METHODS The subjects consisted of 54 adult patients. The Simplified Oral Hygiene Index, Plaque Index, and Gingival Index were measured as periodontal parameters. Both the plaque and gingival indexes were obtained from the central and lateral incisors and first molars of both arches. Whole saliva and periodontal parameters were obtained at the following four time points: immediately before debonding (T1), 1 week after debonding (T2), 5 weeks after debonding (T3), and 13 weeks after debonding (T4). Repeated measures analysis of variance was used to determine salivary bacterial levels and periodontal parameters among the four time points after quantifying salivary levels of Aggregatibacter actinomycetemcomitans (Aa), Fusobacterium nucleatum (Fn), Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Tannerella forsythia (Tf), and total bacteria using the real-time polymerase chain reaction. RESULTS All periodontal parameters were significantly decreased immediately after debonding (T2). The salivary levels of total bacteria and Pg were decreased at T3, while Pi and Tf levels were decreased at T4. However, the amount of Aa and Fn remained at similar levels in saliva during the experimental period. Interestingly, Aa and Fn were present in saliva at higher levels than were Pg, Pi, and Tf. CONCLUSION The higher salivary levels of Aa and Fn after debonding suggests that the risk of periodontal problems cannot be completely eliminated by the removal of fixed orthodontic appliances during the initial retention period, despite improved oral hygiene.
Collapse
Affiliation(s)
- Kyungsun Kim
- Graduate Student, Dental Research Institute and Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea
| | - Woo-Sun Jung
- Clinical Lecturer, Department of Orthodontics, Seoul National University Gwanak Dental Hospital, Seoul, Korea
| | - Soha Cho
- Research Assistant, Dental Research Institute, Seoul National University, Seoul, Korea
| | - Sug-Joon Ahn
- Professor, Dental Research Institute and Department of Orthodontics, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|