101
|
Schepis A, Stauber T, Krijnse Locker J. Kinesin-1 plays multiple roles during the vaccinia virus life cycle. Cell Microbiol 2007; 9:1960-73. [PMID: 17394562 DOI: 10.1111/j.1462-5822.2007.00927.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cytoplasmic distribution of cellular structures is known to depend on the balance between plus- and minus-end-directed motor complexes. Among the plus-end-directed kinesins, kinesin-1 and -2 have been implicated in the outward movement of many organelles. To test for a role of kinesin-1 previous studies mostly relied on the overexpression of dominant-negative kinesin-1 constructs. The latter are often cytotoxic, modify the microtubule network and indirect effects related to altered microtubule dynamics should be excluded. In the present study we present a novel kinesin-1 construct, encompassing the first 330 amino acids of kinesin heavy chain fused to GFP (kin330-GFP) that does not alter microtubules upon its overexpression. Kin330-GFP functionally inhibits kinesin-1 because it induces the peri-nuclear accumulation of mitochondria and intermediate filaments. Using this construct and previously established siRNA-mediated knock-down of kinesin-2 function, we assess the role of both motors in the subcellular distribution of distinct steps of the vaccinia virus (VV) life cycle. We show that kinesin-1, but not kinesin-2, contributes to the specific cytoplasmic distribution of three of the four steps of VV morphogenesis tested. These results are discussed with respect to the possible regulation of kinesin-1 during VV infection.
Collapse
Affiliation(s)
- Antonino Schepis
- European Molecular Biology Laboratory, Cell Biology and Biophysics Program, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
102
|
Hart EK, Jinnin M, Hou B, Fukai N, Olsen BR. Kinesin-2 controls development and patterning of the vertebrate skeleton by Hedgehog- and Gli3-dependent mechanisms. Dev Biol 2007; 309:273-84. [PMID: 17698054 PMCID: PMC2062520 DOI: 10.1016/j.ydbio.2007.07.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/10/2007] [Accepted: 07/14/2007] [Indexed: 10/23/2022]
Abstract
Hedgehog signaling plays an essential role in patterning of the vertebrate skeleton. Here we demonstrate that conditional inactivation of the Kif3a subunit of the kinesin-2 intraflagellar transport motor in mesenchymal skeletal progenitor cells results in severe patterning defects in the craniofacial area, the formation of split sternum and the development of polydactyly. These deformities are reminiscent of those previously described in mice with deregulated hedgehog signaling. We show that in Kif3a-deficient mesenchymal tissues both the repressor function of Gli3 transcription factor and the activation of the Shh transcriptional targets Ptch and Gli1 are compromised. Quantitative analysis of gene expression demonstrates that the Gli1 transcript level is dramatically reduced, whereas Gli3 expression is not significantly affected by kinesin-2 depletion. However, the motor appears to be required for the efficient cleavage of the full-length Gli3 transcription factor into a repressor form.
Collapse
Affiliation(s)
- Elona Kolpakova Hart
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Masatoshi Jinnin
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Bo Hou
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Naomi Fukai
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Bjorn R. Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
- Corresponding author. Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115, USA, Fax: +1-617-432-0638, Phone: +1-617-432-1874, E-mail address:
| |
Collapse
|
103
|
Gerald NJ, Coppens I, Dwyer DM. Molecular dissection and expression of the LdK39 kinesin in the human pathogen, Leishmania donovani. Mol Microbiol 2007; 63:962-79. [PMID: 17257310 DOI: 10.1111/j.1365-2958.2006.05487.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study we show for the first time the intracellular distribution of a K39 kinesin homologue in Leishmania donovani, a medically important parasite of humans. Further, we demonstrated that this motor protein is expressed in both the insect and mammalian developmental forms (i.e. promastigote and amastigotes) of this organism. Moreover, in both of these parasite developmental stages, immunofluorescence indicated that the LdK39 kinesin accumulated at anterior and posterior cell poles and that it displayed a peripheral localization consistent with the cortical cytoskeleton. Using a molecular approach, we identified, cloned and characterized the first complete open reading frame for the gene (LdK39) encoding this large (> 358 kDa) motor protein in L. donovani. Based on these observations, we subsequently used a homologous episomal expression system to dissect and express the functional domains that constitute the native molecule. Cell fractionation experiments demonstrated that LdK39 was soluble and that it bound to detergent-extracted cytoskeletons of these parasites in an ATP-dependent manner. The cumulative results of these experiments are consistent with LdK39 functioning as an ATP-dependent kinesin which binds to and travels along the cortical cytoskeleton of this important human pathogen.
Collapse
Affiliation(s)
- Noel J Gerald
- Cell Biology Section, Laboratory of Parasitic Diseases, NIAID/NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
104
|
Pantelidou M, Zographos SE, Lederer CW, Kyriakides T, Pfaffl MW, Santama N. Differential expression of molecular motors in the motor cortex of sporadic ALS. Neurobiol Dis 2007; 26:577-89. [PMID: 17418584 DOI: 10.1016/j.nbd.2007.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 01/31/2007] [Accepted: 02/04/2007] [Indexed: 12/13/2022] Open
Abstract
The molecular mechanisms underlying the selective neurodegeneration of motor neurons in amyotrophic lateral sclerosis (ALS) are inadequately understood. Recent breakthroughs have implicated impaired axonal transport, mediated by molecular motors, as a key element for disease onset and progression. The current work identifies the expression of 15 kinesin-like motors in healthy human motor cortex, including three novel isoforms. Our comprehensive quantitative mRNA analysis in control and sporadic ALS (SALS) motor cortex specimens detects SALS-specific down-regulation of KIF1Bbeta and novel KIF3Abeta, two isoforms we show to be enriched in the brain, and also of SOD1, a key enzyme linked to familial ALS. This is accompanied by a marked reduction of KIF3Abeta protein levels. In the motor cortex KIF3Abeta localizes in cholinergic neurons, including upper motor neurons. No mutations causing splicing defects or altering protein-coding sequences were identified in the genes of the three proteins. The present study implicates two motor proteins as possible candidates in SALS pathology.
Collapse
Affiliation(s)
- Maria Pantelidou
- Department of Biological Sciences, University of Cyprus and Cyprus Institute of Neurology and Genetics, P.O. Box 20537, 1678 Nicosia, Cyprus
| | | | | | | | | | | |
Collapse
|
105
|
Abstract
Kinesins are a superfamily of microtubule-based motors that power intracellular traffic and play important roles in many fundamental cellular and developmental processes. Kinesins move on microtubules from their minus to plus end (conventional kinesin) or from plus to minus end (C-terminal kinesins), carrying cargoes to different destinations. A variety of cargoes such as vesicles, proteins, lipid drops, pigments, and the nucleus are moved by kinesins along cytoplasmic microtubules. Multiple mitotic kinesins and microtubule-associated proteins (MAPs) also have direct functions in spindle formation, chromosome segregation, and cytokinesis. Spermatogenesis provides an excellent model system to study the role of kinesin motor proteins during the dramatic cytoskeletal rearrangements that take place during male germ cell development. This chapter describes how to identify the multiple functions of kinesin motors during spermatogenesis by using ultrastructural analysis. Testis perfusion is described in detail, including how to anesthetize animals and how to select seminiferous tubules under transilluminated microscopy. Practical immunocytochemical staining is also described in detail in this chapter, especially methods to enhance staining and avoid contamination.
Collapse
Affiliation(s)
- Wan-Xi Yang
- Department of Biology, College of Life Sciences, Zhejiang University, Zhejiang, China
| |
Collapse
|
106
|
Abstract
Kinesin-2 is a major microtubule-based motor in most cell types. Its in vitro motile properties have been analyzed extensively and been found to differ considerably from kinesin-1. Although recombinant kinesin-2 heterodimers exhibit processive movement, the processivity of the native kinesin-2 holoenzyme has never been evaluated. Kinesin-2 can interact with dynactin, a 'processivity factor' for cytoplasmic dynein, which may alter its motile properties. In this study, we analyze the in vitro motility of single native kinesin-2 molecules and determine the effects of dynactin on motor processivity. We find that individual native kinesin-2 molecules travel processively. Dynactin has no effect on velocity but significantly increases the run length of kinesin-2 movements. These results show that the interaction with dynactin has important functional consequences on the activity of the kinesin-2 motor.
Collapse
Affiliation(s)
- Matthew A Berezuk
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
107
|
Abstract
Early in evolution, the diversification of membrane-bound compartments that characterize eukaryotic cells was accompanied by the elaboration of molecular machineries that mediate intercompartmental communication and deliver materials to specific destinations. Molecular motors that move on tracks of actin filaments or microtubules mediate the movement of organelles and transport between compartments. The subjects of this review are the motors that power the transport steps along the endocytic and recycling pathways, their modes of attachment to cargo and their regulation.
Collapse
Affiliation(s)
- Thierry Soldati
- Départment de Biochimie, Faculté des Sciences, Université de Genève, 30 quai Ernest Ansermet, Sciences II, CH-1211-Genève-4, Switzerland.
| | | |
Collapse
|
108
|
Stauber T, Simpson JC, Pepperkok R, Vernos I. A Role for Kinesin-2 in COPI-Dependent Recycling between the ER and the Golgi Complex. Curr Biol 2006; 16:2245-51. [PMID: 17113389 DOI: 10.1016/j.cub.2006.09.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 09/18/2006] [Accepted: 09/19/2006] [Indexed: 01/16/2023]
Abstract
Transport carriers operating between early compartments in the mammalian secretory pathway have to travel long distances in the cell by mostly relying on the microtubule network and its associated motor proteins. Although anterograde transport from the endoplasmic reticulum (ER) to the Golgi complex is mediated by cytoplasmic dynein, the identity of the motor(s) mediating transport in the retrograde direction is presently unclear. Some studies have suggested that the heterotrimeric kinesin-2 complex plays a role in transport between the ER and the Golgi. Here, we have examined kinesin-2 function by using an RNA-interference approach to downregulate the expression of KAP3, the nonmotor subunit of kinesin-2, in HeLa cells. KAP3 silencing results in the fragmentation of the Golgi apparatus and a change in the steady-state localization of the KDEL-receptor (KDEL-R). Using specific transport assays, we show that the rate of anterograde secretory traffic is unaffected in these cells but that KDEL-R-dependent retrograde transport is strongly abrogated. Our data strongly support a role for kinesin-2 in the KDEL-R-/COPI-dependent retrograde transport pathway from the Golgi complex to the ER.
Collapse
Affiliation(s)
- Tobias Stauber
- Cell Biology and Biophysics Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
109
|
Caviston JP, Holzbaur ELF. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol 2006; 16:530-7. [PMID: 16938456 DOI: 10.1016/j.tcb.2006.08.002] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/25/2006] [Accepted: 08/17/2006] [Indexed: 12/19/2022]
Abstract
Molecular motors drive the transport of vesicles and organelles within the cell. Traditionally, these transport processes have been considered separately from membrane trafficking events, such as regulated budding and fusion. However, recent progress has revealed mechanistic links that integrate these processes within the cell. Rab proteins, which function as key regulators of intracellular trafficking, have now been shown to recruit specific motors to organelle membranes. Rab-independent recruitment of motors by adaptor or scaffolding proteins is also a key mechanism. Once recruited to vesicles and organelles, these motors can then drive directed transport; this directed transport could in turn affect the efficiency of trafficking events. Here, we discuss this coordinated regulation of trafficking and transport, which provides a powerful mechanism for temporal and spatial control of cellular dynamics.
Collapse
Affiliation(s)
- Juliane P Caviston
- Department of Physiology, University of Pennsylvania School of Medicine, D400 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA
| | | |
Collapse
|
110
|
Bae YK, Qin H, Knobel KM, Hu J, Rosenbaum JL, Barr MM. General and cell-type specific mechanisms target TRPP2/PKD-2 to cilia. Development 2006; 133:3859-70. [PMID: 16943275 DOI: 10.1242/dev.02555] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ciliary localization of the transient receptor potential polycystin 2 channel (TRPP2/PKD-2) is evolutionarily conserved, but how TRPP2 is targeted to cilia is not known. In this study, we characterize the motility and localization of PKD-2, a TRPP2 homolog, in C. elegans sensory neurons. We demonstrate that GFP-tagged PKD-2 moves bidirectionally in the dendritic compartment. Furthermore, we show a requirement for different molecules in regulating the ciliary localization of PKD-2. PKD-2 is directed to moving dendritic particles by the UNC-101/adaptor protein 1 (AP-1) complex. When expressed in non-native neurons, PKD-2 remains in cell bodies and is not observed in dendrites or cilia, indicating that cell-type specific factors are required for directing PKD-2 to the dendrite. PKD-2 stabilization in cilia and cell bodies requires LOV-1, a functional partner and a TRPP1 homolog. In lov-1 mutants, PKD-2 is greatly reduced in cilia and forms abnormal aggregates in neuronal cell bodies. Intraflagellar transport (IFT) is not essential for PKD-2 dendritic motility or access to the cilium, but may regulate PKD-2 ciliary abundance. We propose that both general and cell-type-specific factors govern TRPP2/PKD-2 subcellular distribution by forming at least two steps involving somatodendritic and ciliary sorting decisions.
Collapse
Affiliation(s)
- Young-Kyung Bae
- Laboratory of Genetics, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | | | | | | | | | | |
Collapse
|
111
|
Hehnly H, Sheff D, Stamnes M. Shiga toxin facilitates its retrograde transport by modifying microtubule dynamics. Mol Biol Cell 2006; 17:4379-89. [PMID: 16885418 PMCID: PMC1635369 DOI: 10.1091/mbc.e06-04-0310] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The bacterial exotoxin Shiga toxin is endocytosed by mammalian host cells and transported retrogradely through the secretory pathway before entering the cytosol. Shiga toxin also increases the levels of microfilaments and microtubules (MTs) upon binding to the cell surface. The purpose for this alteration in cytoskeletal dynamics is unknown. We have investigated whether Shiga toxin-induced changes in MT levels facilitate its intracellular transport. We have tested the effects of the Shiga toxin B subunit (STB) on MT-dependent and -independent transport steps. STB increases the rate of MT-dependent Golgi stack repositioning after nocodazole treatment. It also enhances the MT-dependent accumulation of transferrin in a perinuclear recycling compartment. By contrast, the rate of MT-independent transferrin recycling is not significantly different when STB is present. We found that STB normally requires MTs and dynein for its retrograde transport to the juxtanuclear Golgi complex and that STB increases MT assembly. Furthermore, we find that MT polymerization is limiting for STB transport in cells. These results show that STB-induced changes in cytoskeletal dynamics influence intracellular transport. We conclude that the increased rate of MT assembly upon Shiga toxin binding facilitates the retrograde transport of the toxin through the secretory pathway.
Collapse
Affiliation(s)
| | - David Sheff
- Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | | |
Collapse
|