101
|
Zhao Q, Wu Y, Gao L, Ma J, Li CY, Xiang CB. Sulfur nutrient availability regulates root elongation by affecting root indole-3-acetic acid levels and the stem cell niche. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:1151-63. [PMID: 24831283 DOI: 10.1111/jipb.12217] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/14/2014] [Indexed: 05/20/2023]
Abstract
Sulfur is an essential macronutrient for plants with numerous biological functions. However, the influence of sulfur nutrient availability on the regulation of root development remains largely unknown. Here, we report the response of Arabidopsis thaliana L. root development and growth to different levels of sulfate, demonstrating that low sulfate levels promote the primary root elongation. By using various reporter lines, we examined in vivo IAA level and distribution, cell division, and root meristem in response to different sulfate levels. Meanwhile the dynamic changes of in vivo cysteine, glutathione, and IAA levels were measured. Root cysteine, glutathione, and IAA levels are positively correlated with external sulfate levels in the physiological range, which eventually affect root system architecture. Low sulfate levels also downregulate the genes involved in auxin biosynthesis and transport, and elevate the accumulation of PLT1 and PLT2. This study suggests that sulfate level affects the primary root elongation by regulating the endogenous auxin level and root stem cell niche maintenance.
Collapse
Affiliation(s)
- Qing Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | | | | | | | | | | |
Collapse
|
102
|
Cheng S, Huang Y, Zhu N, Zhao Y. The rice WUSCHEL-related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response. Gene 2014; 549:266-74. [PMID: 25106855 DOI: 10.1016/j.gene.2014.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/21/2014] [Accepted: 08/01/2014] [Indexed: 12/21/2022]
Abstract
The WUSCHEL-related homeobox (WOX) genes are important transcription regulators participated in plant development processes. Rice (Oryza sativa L.) genome encodes at least 13 WOX members. In this study, a systematic microarray-based gene expression profiling of eleven WOX genes was performed for the whole life cycle of rice at 16 different tissues/organs of MH63 (rice indica cultivar), which included eight reproductive organs and eight vegetative tissues. The results demonstrated that four genes (OsWUS, OsNS1/OsNS2, OsWOX3 and OsWOX9A) were specifically expressed in panicle and endosperm development, and six genes (OsWOX5, OsWOX9B, OsWOX9D, OsWOX11, OsWOX12A and OsWOX12B) were preferentially expressed in seeds (72h after imbibitions) during root emergence or growth. In situ hybridization analysis revealed differential transcript levels of OsWOX4, OsWOX5, OsWOX9A and OsWOX12B during panicle development and embryogenesis. Results of qRT-PCR showed that expression of four rice WOX genes (OsWOX5, OsWOX11, OsWOX12B and OsWOX12A) was up- or down-regulated by plant hormones (auxin, cytokinin and gibberellin). More interestingly, most WOX genes were responsive to abiotic stress stimuli of drought, salt and cold. The molecular studies presented here will further provide insight in understanding the functions of rice WOX gene family in rice development, hormone signaling, and abiotic stress response.
Collapse
Affiliation(s)
- Saifeng Cheng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Yulan Huang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Ning Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
103
|
Liu B, Wang L, Zhang J, Li J, Zheng H, Chen J, Lu M. WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation. BMC Genomics 2014; 15:296. [PMID: 24750781 PMCID: PMC4023605 DOI: 10.1186/1471-2164-15-296] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 04/15/2014] [Indexed: 11/11/2022] Open
Abstract
Background WUSCHEL (WUS)-related homeobox (WOX) protein family members play important roles in the maintenance and proliferation of the stem cell niche in the shoot apical meristem (SAM), root apical meristem (RAM), and cambium (CAM). Although the roles of some WOXs in meristematic cell regulation have been well studied in annual plants such as Arabidopsis and rice, the expression and function of WOX members in woody plant poplars has not been systematically investigated. Here, we present the identification and comprehensive analysis of the expression and function of WOXs in Populus tomentosa. Results A genome-wide survey identified 18 WOX encoding sequences in the sequenced genome of Populus trichocarpa (PtrWOXs). Phylogenetic and gene structure analysis revealed that these 18 PtrWOXs fall into modern/WUS, intermediate, and ancient clades, but that the WOX genes in P. trichocarpa may have expanded differently from the WOX genes in Arabidopsis. In the P. trichocarpa genome, no WOX members could be closely classified as AtWOX3, AtWOX6, AtWOX7, AtWOX10, and AtWOX14, but there were two copies of WOX genes that could be classified as PtrWUS, PtrWOX2, PtrWOX4, PtrWOX5, PtrWOX8/9, and PtrWOX11/12, and three copies of WOX genes that could be classified as PtrWOX1 and PtrWOX13. The use of primers specific for each PtrWOX gene allowed the identification and cloning of 18 WOX genes from P. tomentosa (PtoWOXs), a poplar species physiologically close to P. trichocarpa. It was found that PtoWOXs and PtrWOXs shared very high amino acid sequence identity, and that PtoWOXs could be classified identically to PtrWOXs. We revealed that the expression patterns of some PtoWOXs were different to their Arabidopsis counterparts. When PtoWOX5a and PtoWOX11/12a, as well as PtoWUSa and PtoWOX4a were ectopically expressed in transgenic hybrid poplars, the regeneration of adventitious root (AR) was promoted, indicating a functional similarity of these four WOXs in AR regeneration. Conclusions This is the first attempt towards a systematical analysis of the function of WOXs in P. tomentosa. A diversified expression, yet functional similarity of PtoWOXs in AR regeneration is revealed. Our findings provide useful information for further elucidation of the functions and mechanisms of WOXs in the development of poplars.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210 037, China.
| | | |
Collapse
|
104
|
Wang W, Li G, Zhao J, Chu H, Lin W, Zhang D, Wang Z, Liang W. Dwarf Tiller1, a Wuschel-related homeobox transcription factor, is required for tiller growth in rice. PLoS Genet 2014; 10:e1004154. [PMID: 24625559 PMCID: PMC3952828 DOI: 10.1371/journal.pgen.1004154] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/16/2013] [Indexed: 11/19/2022] Open
Abstract
Unlike many wild grasses, domesticated rice cultivars have uniform culm height and panicle size among tillers and the main shoot, which is an important trait for grain yield. However, the genetic basis of this trait remains unknown. Here, we report that DWARF TILLER1 (DWT1) controls the developmental uniformity of the main shoot and tillers in rice (Oryza sativa). Most dwt1 mutant plants develop main shoots with normal height and larger panicles, but dwarf tillers bearing smaller panicles compared with those of the wild type. In addition, dwt1 tillers have shorter internodes with fewer and un-elongated cells compared with the wild type, indicating that DWT1 affects cell division and cell elongation. Map-based cloning revealed that DWT1 encodes a WUSCHEL-related homeobox (WOX) transcription factor homologous to the Arabidopsis WOX8 and WOX9. The DWT1 gene is highly expressed in young panicles, but undetectable in the internodes, suggesting that DWT1 expression is spatially or temporally separated from its effect on the internode growth. Transcriptomic analysis revealed altered expression of genes involved in cell division and cell elongation, cytokinin/gibberellin homeostasis and signaling in dwt1 shorter internodes. Moreover, the non-elongating internodes of dwt1 are insensitive to exogenous gibberellin (GA) treatment, and some of the slender rice1 (slr1) dwt1 double mutant exhibits defective internodes similar to the dwt1 single mutant, suggesting that the DWT1 activity in the internode elongation is directly or indirectly associated with GA signaling. This study reveals a genetic pathway synchronizing the development of tillers and the main shoot, and a new function of WOX genes in balancing branch growth in rice. Plant architecture is important for crop yield. In most plants, branches grow smaller than the main shoot, largely due to the ‘apical dominance’. However, in several cereal crops, including rice, wheat, and barley, the branches (tillers) have a height and size indistinguishable from the main shoot. The genetic basis of uniform tiller growth has remained elusive. We identified DWARF TILLER1, a WUSCHEL-related homeobox (WOX) transcription factor, as a positive regulator of tiller growth. Most dwt1 mutant plants show normal main shoot but dwarf tillers and reduced panicle size. Tiller growth in dwt1 appears to be inhibited by the main shoot, as removal of the main shoot releases the first tiller. The non-elongating internodes in dwt1 show reduced cell number and cell size, while DWT1 was mainly expressed in the panicles but not internodes, suggesting that DWT1 plays a long distance regulatory role in promoting internode elongation. Genome-wide expression analysis revealed that the expression of genes related to cell division and elongation, as well as to homeostasis and signaling of cytokinin and gibberellin were affected in dwt1 un-elongated internodes. This study reveals that a WOX transcription factor controls the growth uniformity of tillers and the main shoot in rice.
Collapse
Affiliation(s)
- Wenfei Wang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Gang Li
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zhao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Huangwei Chu
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhui Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
105
|
Valmonte GR, Arthur K, Higgins CM, MacDiarmid RM. Calcium-dependent protein kinases in plants: evolution, expression and function. PLANT & CELL PHYSIOLOGY 2014; 55:551-69. [PMID: 24363288 DOI: 10.1093/pcp/pct200] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in metabolism, osmosis, hormone response and stress signaling pathways. CPKs are a large multigene family of proteins that are present in all plants studied to date, as well as in protists, oomycetes and green algae, but are not found in animals and fungi. Despite the increasing evidence of the importance of CPKs in developmental and stress responses from various plants, a comprehensive genome-wide analysis of CPKs from algae to higher plants has not been undertaken. This paper describes the evolution of CPKs from green algae to plants using a broadly sampled phylogenetic analysis and demonstrates the functional diversification of CPKs based on expression and functional studies in different plant species. Our findings reveal that CPK sequence diversification into four major groups occurred in parallel with the terrestrial transition of plants. Despite significant expansion of the CPK gene family during evolution from green algae to higher plants, there is a high level of sequence conservation among CPKs in all plant species. This sequence conservation results in very little correlation between CPK evolutionary groupings and functional diversity, making the search for CPK functional orthologs a challenge.
Collapse
Affiliation(s)
- Gardette R Valmonte
- Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, New Zealand
| | | | | | | |
Collapse
|
106
|
Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom. ScientificWorldJournal 2014; 2014:534140. [PMID: 24511289 PMCID: PMC3913392 DOI: 10.1155/2014/534140] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/19/2013] [Indexed: 12/24/2022] Open
Abstract
WUSCHEL-related homeobox (WOX) is a large group of transcription factors specifically found in plants. WOX members contain the conserved homeodomain essential for plant development by regulating cell division and differentiation. However, the evolutionary relationship of WOX members in plant kingdom remains to be elucidated. In this study, we searched 350 WOX members from 50 species in plant kingdom. Linkage analysis of WOX protein sequences demonstrated that amino acid residues 141-145 and 153-160 located in the homeodomain are possibly associated with the function of WOXs during the evolution. These 350 members were grouped into 3 clades: the first clade represents the conservative WOXs from the lower plant algae to higher plants; the second clade has the members from vascular plant species; the third clade has the members only from spermatophyte species. Furthermore, among the members of Arabidopsis thaliana and Oryza sativa, we observed ubiquitous expression of genes in the first clade and the diversified expression pattern of WOX genes in distinct organs in the second clade and the third clade. This work provides insight into the origin and evolutionary process of WOXs, facilitating their functional investigations in the future.
Collapse
|
107
|
Fukushima K, Hasebe M. Adaxial-abaxial polarity: the developmental basis of leaf shape diversity. Genesis 2013; 52:1-18. [PMID: 24281766 DOI: 10.1002/dvg.22728] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/15/2013] [Accepted: 11/22/2013] [Indexed: 02/05/2023]
Abstract
Leaves of flowering plants are diverse in shape. Part of this morphological diversity can be attributed to differences in spatiotemporal regulation of polarity in the upper (adaxial) and lower (abaxial) sides of developing leaves. In a leaf primordium, antagonistic interactions between polarity determinants specify the adaxial and abaxial domains in a mutually exclusive manner. The patterning of those domains is critical for leaf morphogenesis. In this review, we first summarize the gene networks regulating adaxial-abaxial polarity in conventional bifacial leaves and then discuss how patterning is modified in different leaf type categories.
Collapse
Affiliation(s)
- Kenji Fukushima
- Department of Basic Biology, School of Life Science, Graduate University for Advance Studies (SOKENDAI), Okazaki, 444-8585, Japan; National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | | |
Collapse
|
108
|
Wang Z, Chen J, Liu W, Luo Z, Wang P, Zhang Y, Zheng R, Shi J. Transcriptome characteristics and six alternative expressed genes positively correlated with the phase transition of annual cambial activities in Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook). PLoS One 2013; 8:e71562. [PMID: 23951189 PMCID: PMC3741379 DOI: 10.1371/journal.pone.0071562] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 07/01/2013] [Indexed: 11/24/2022] Open
Abstract
Background The molecular mechanisms that govern cambial activity in angiosperms are well established, but little is known about these molecular mechanisms in gymnosperms. Chinese fir (Cunninghamia lanceolata (Lamb.) Hook), a diploid (2n = 2x = 22) gymnosperm, is one of the most important industrial and commercial timber species in China. Here, we performed transcriptome sequencing to identify the repertoire of genes expressed in cambium tissue of Chinese fir. Methodology/Principal Findings Based on previous studies, the four stage-specific cambial tissues of Chinese fir were defined using transmission electron microscopy (TEM). In total, 20 million sequencing reads (3.6 Gb) were obtained using Illumina sequencing from Chinese fir cambium tissue collected at active growth stage, with a mean length of 131 bp and a N50 of 90 bp. SOAPdenovo software was used to assemble 62,895 unigenes. These unigenes were further functionally annotated by comparing their sequences to public protein databases. Expression analysis revealed that the altered expression of six homologous genes (ClWOX1, ClWOX4, ClCLV1-like, ClCLV-like, ClCLE12, and ClPIN1-like) correlated positively with changes in cambial activities; moreover, these six genes might be directly involved in cambial function in Chinese fir. Further, the full-length cDNAs and DNAs for ClWOX1 and ClWOX4 were cloned and analyzed. Conclusions In this study, a large number of tissue/stage-specific unigene sequences were generated from the active growth stage of Chinese fir cambium. Transcriptome sequencing of Chinese fir not only provides extensive genetic resources for understanding the molecular mechanisms underlying cambial activities in Chinese fir, but also is expected to be an important foundation for future genetic studies of Chinese fir. This study indicates that ClWOX1 and ClWOX4 could be possible reverse genetic target genes for revealing the molecular mechanisms of cambial activities in Chinese fir.
Collapse
Affiliation(s)
- Zhanjun Wang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Weidong Liu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Zhanshou Luo
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Pengkai Wang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Yanjuan Zhang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Renhua Zheng
- Fujian Academies of Forestry, Southern Mountain Timber Forest Cultivation Lab, the Ministry of Forestry, Fuzhou, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
- * E-mail:
| |
Collapse
|
109
|
Zhang J, Arro J, Chen Y, Ming R. Haplotype analysis of sucrose synthase gene family in three Saccharum species. BMC Genomics 2013; 14:314. [PMID: 23663250 PMCID: PMC3668173 DOI: 10.1186/1471-2164-14-314] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 04/29/2013] [Indexed: 11/10/2022] Open
Abstract
Background Sugarcane is an economically important crop contributing about 80% and 40% to the world sugar and ethanol production, respectively. The complicated genetics consequential to its complex polyploid genome, however, have impeded efforts to improve sugar yield and related important agronomic traits. Modern sugarcane cultivars are complex hybrids derived mainly from crosses among its progenitor species, S. officinarum and S. spontanuem, and to a lesser degree, S. robustom. Atypical of higher plants, sugarcane stores its photoassimilates as sucrose rather than as starch in its parenchymous stalk cells. In the sugar biosynthesis pathway, sucrose synthase (SuSy, UDP-glucose: D-fructose 2-a-D-glucosyltransferase, EC 2.4.1.13) is a key enzyme in the regulation of sucrose accumulation and partitioning by catalyzing the reversible conversion of sucrose and UDP into UDP-glucose and fructose. However, little is known about the sugarcane SuSy gene family members and hence no definitive studies have been reported regarding allelic diversity of SuSy gene families in Saccharum species. Results We identified and characterized a total of five sucrose synthase genes in the three sugarcane progenitor species through gene annotation and PCR haplotype analysis by analyzing 70 to 119 PCR fragments amplified from intron-containing target regions. We detected all but one (i.e. ScSuSy5) of ScSuSy transcripts in five tissue types of three Saccharum species. The average SNP frequency was one SNP per 108 bp, 81 bp, and 72 bp in S. officinarum, S. robustom, and S. spontanuem respectively. The average shared SNP is 15 between S. officinarum and S. robustom, 7 between S. officinarum and S. spontanuem , and 11 between S. robustom and S. spontanuem. We identified 27, 35, and 32 haplotypes from the five ScSuSy genes in S. officinarum, S. robustom, and S. spontanuem respectively. Also, 12, 11, and 9 protein sequences were translated from the haplotypes in S. officinarum, S. robustom, S. spontanuem, respectively. Phylogenetic analysis showed three separate clusters composed of SbSuSy1 and SbSuSy2, SbSuSy3 and SbSuSy5, and SbSuSy4. Conclusions The five members of the SuSy gene family evolved before the divergence of the genera in the tribe Andropogoneae at least 12 MYA. Each ScSuSy gene showed at least one non-synonymous substitution in SNP haplotypes. The SNP frequency is the lowest in S. officinarum, intermediate in S. robustum, and the highest in S. spontaneum, which may reflect the timing of the two rounds of whole genome duplication in these octoploids. The higher rate of shared SNP frequency between S. officinarum and S. robustum than between S. officinarum and in S. spontaneum confirmed that the speciation event separating S. officinarum and S. robustum occurred after their common ancestor diverged from S. spontaneum. The SNP and haplotype frequencies in three Saccharum species provide fundamental information for designing strategies to sequence these autopolyploid genomes.
Collapse
Affiliation(s)
- Jisen Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| | | | | | | |
Collapse
|
110
|
Zhu L, Zhang J, Chen Y, Pan H, Ming R. Identification and genes expression analysis of ATP-dependent phosphofructokinase family members among three Saccharum species. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:369-378. [PMID: 32481114 DOI: 10.1071/fp12182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 10/27/2012] [Indexed: 06/11/2023]
Abstract
Sugarcane contributes ~80% of sugar production in the world and is an established biofuel crop. In working towards understanding the molecular basis of high sucrose accumulation, we have annotated and analysed the ATP-dependent phosphofructokinase (PFK) gene family that catalyses the phosphorylation of D-fructose 6-phosphate to D-fructose 1,6-bisphosphate. PFKs play an essential role in sucrose metabolism in plants and their expression patterns are unknown in sugarcane. In this study, based on the sorghum genome and sugarcane EST database, 10 PFK gene members were annotated and further verified by PCR using sugarcane genomic DNA. An unrooted phylogenetic tree was constructed with the deduced protein sequences of PFKs that were from the assembly of cDNA library of sugarcane and other plants. The results showed that gene duplication events and the retention rate after genome wide or segmental duplications occurred in higher frequency in monocots than in dicots and the genes in subgroup II of group III were likely originated from recent duplication events. Quantitative RT-PCR was performed to investigate the gene expression of 10 PFK genes in five tissues of three Saccharum species, including two developmental stages in leaves and three in culms. Of the PFK family members in sugarcane, ScPFK6, 7 and 8 appeared to be the primary isoforms based on the highly abundant expression of these three genes. ScPFK7 showed high expression level in the leaves, suggesting a potential role in sucrose metabolism. ScPFK8 had lower expression level in Saccharum officinarum L. than in the other two species, suggesting negative regulation of sucrose metabolism, which might have contributed to the high sugar content of S. officinarum. The genes in monocot specific subgroup II of group III, PFK7, 8 and 9, showed variation among the three Saccharum species, suggesting potential functional redundancy. Our results provide detailed annotation and analysis of the PFK gene family in sugarcane. Further elucidation of the role of ScPFK8 in the domestication process of sugarcane would be useful.
Collapse
Affiliation(s)
- Lin Zhu
- College of Plant Science, Jilin University, Changchun, Jilin, 130062, China
| | - Jisen Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Youqiang Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun, Jilin, 130062, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
111
|
Zhang H, Wu K, Wang Y, Peng Y, Hu F, Wen L, Han B, Qian Q, Teng S. A WUSCHEL-like homeobox gene, OsWOX3B responses to NUDA/GL-1 locus in rice. RICE (NEW YORK, N.Y.) 2012; 5:30. [PMID: 27234248 PMCID: PMC5520835 DOI: 10.1186/1939-8433-5-30] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/27/2012] [Indexed: 05/12/2023]
Abstract
BACKGROUND Most of the rice varieties are pubescent. However, the presence of trichomes is an undesirable characteristic in rice production because trichomes can cause atmospheric pollution. The use of glabrous rice varieties represents a solution to this problem. Yunnan Nuda Rice, a glabrous cultivar that constitutes approximately 20% of rice germplasms in Yunnan can provide important recourse for breeding of glabrous rice varieties. RESULTS The "Nuda" phenotype in Yunnan Nuda Rice was found to be controlled by a single recessive allelic gene within the well-characterized GL-1 locus. A high-resolution genetic and physical map was constructed using 1,192 Nuda individuals from the F2 population that was delivered from the cross between the Yunnan Nuda variety HMK and the pubescent TN1 variety. The NUDA/GL-1 gene was mapped to a 28.5 kb region containing six annotated genes based on the Nipponbare genomic sequence. By comparing the sequences and expression patterns of different pubescent and glabrous varieties, LOC_Os05g02730, a WUSCHEL-like homeobox gene (OsWOX3B) was identified as the candidate gene. This hypothesis was confirmed by RNA interference (RNAi) and transgenic complementation. Trichome deficiency in RNAi lines was associated with increased efficiency of grain packaging but did not affect the main agronomic traits. CONCLUSION NUDA/GL-1 locus encodes OsWOX3B gene.
Collapse
Affiliation(s)
- Honglei Zhang
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, The Chinese Academy of Sciences, Shanghai, 200032 China
| | - Kun Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Yufeng Wang
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, The Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yu Peng
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, The Chinese Academy of Sciences, Shanghai, 200032 China
| | - Fengyi Hu
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Lu Wen
- Puer Agricultural Research Institute, Puer, 66500 China
| | - Bin Han
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, The Chinese Academy of Sciences, Shanghai, 200032 China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Sheng Teng
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, The Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
112
|
Jiang Y, Zeng B, Zhao H, Zhang M, Xie S, Lai J. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:616-30. [PMID: 22862992 DOI: 10.1111/j.1744-7909.2012.01149.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transcription factors (TFs) are important regulators of gene expression. To better understand TF-encoding genes in maize (Zea mays L.), a genome-wide TF prediction was performed using the updated B73 reference genome. A total of 2298 TF genes were identified, which can be classified into 56 families. The largest family, known as the MYB superfamily, comprises 322 MYB and MYB-related TF genes. The expression patterns of 2 014 (87.64%) TF genes were examined using RNA-seq data, which resulted in the identification of a subset of TFs that are specifically expressed in particular tissues (including root, shoot, leaf, ear, tassel and kernel). Similarly, 98 kernel-specific TF genes were further analyzed, and it was observed that 29 of the kernel-specific genes were preferentially expressed in the early kernel developmental stage, while 69 of the genes were expressed in the late kernel developmental stage. Identification of these TFs, particularly the tissue-specific ones, provides important information for the understanding of development and transcriptional regulation of maize.
Collapse
Affiliation(s)
- Yi Jiang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
113
|
Tadege M, Lin H, Niu L, Mysore KS. Control of dicot leaf blade expansion by a WOX gene, STF. PLANT SIGNALING & BEHAVIOR 2011; 6:1861-4. [PMID: 22057334 PMCID: PMC3329370 DOI: 10.4161/psb.6.11.17761] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
WUSCHEL-RELATED HOMEOBOX (WOX) genes are plant specific transcription factors that serve as master switches controlling key developmental programs from embryo apical-basal asymmetric patterning to organizing stem cells and development of lateral organs. Recently, we reported the requirement of a WOX1/MAW-like gene, STENOFOLIA (STF), for blade outgrowth and leaf vascular patterning in Medicago truncatula and Nicotiana sylvestris. The stf mutant in Medicago produces narrow leaves where mediolateral outgrowth of the blade is severely curtailed while proximodistal growth and trifoliate identity remain unaffected. The lam1 mutant in N. sylvestris produces leaves devoid of blade tissue with just 1-2 layers of rudimentary strips and lacks stem elongation. stf and lam1 mutants have narrow petals and are female sterile due to defective ovule development. Morphological analysis of mutants and STF expression patterns suggest that STF regulates blade outgrowth mainly by controlling cell division in the margins of leaf primordium. Both the blade and flower phenotypes of lam1 can be complemented with WUS expressed under the STF promoter suggesting a conserved mechanism in stem cell maintenance and lateral organ development.
Collapse
Affiliation(s)
- Million Tadege
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, USA.
| | | | | | | |
Collapse
|
114
|
Zhang Y, Wu R, Qin G, Chen Z, Gu H, Qu LJ. Over-expression of WOX1 leads to defects in meristem development and polyamine homeostasis in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:493-506. [PMID: 21658178 DOI: 10.1111/j.1744-7909.2011.01054.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In plants, the meristem has to maintain a separate population of pluripotent cells that serve two main tasks, i.e., self-maintenance and organ initiation, which are separated spatially in meristem. Prior to our study, WUS and WUS-like WOX genes had been reported as essential for the development of the SAM. In this study, the consequences of gain of WOX1 function are described. Here we report the identification of an Arabidopsis gain-of-function mutant wox1-D, in which the expression level of the WOX1 (WUSCHEL HOMEOBOX 1) was elevated and subtle defects in meristem development were observed. The wox1-D mutant phenotype is dwarfed and slightly bushy, with a smaller shoot apex. The wox1-D mutant also produced small and dark green leaves, and exhibited a failure in anther dehiscence and male sterility. Molecular evidences showed that the transcription of the stem cell marker gene CLV3 was down-regulated in the meristem of wox1-D but accumulated in the other regions, i.e., in the root-hypocotyl junction and at the sites for lateral root initiation. The fact that the organ size and cell size in leaves of wox1-D are smaller than those in wild type suggests that cell expansion is possibly affected in order to have partially retarded the development of lateral organs, possibly through alteration of CLV3 expression pattern in the meristem. An S-adenosylmethionine decarboxylase (SAMDC) protein, SAMDC1, was found able to interact with WOX1 by yeast two-hybrid and pull-down assays in vitro. HPLC analysis revealed a significant reduction of polyamine content in wox1-D. Our results suggest that WOX1 plays an important role in meristem development in Arabidopsis, possibly via regulation of SAMDC activity and polyamine homeostasis, and/or by regulating CLV3 expression.
Collapse
Affiliation(s)
- Yanxia Zhang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
115
|
Tadege M, Lin H, Bedair M, Berbel A, Wen J, Rojas CM, Niu L, Tang Y, Sumner L, Ratet P, McHale NA, Madueño F, Mysore KS. STENOFOLIA regulates blade outgrowth and leaf vascular patterning in Medicago truncatula and Nicotiana sylvestris. THE PLANT CELL 2011; 23:2125-42. [PMID: 21719692 PMCID: PMC3160033 DOI: 10.1105/tpc.111.085340] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/06/2011] [Accepted: 06/14/2011] [Indexed: 05/18/2023]
Abstract
Dicot leaf primordia initiate at the flanks of the shoot apical meristem and extend laterally by cell division and cell expansion to form the flat lamina, but the molecular mechanism of lamina outgrowth remains unclear. Here, we report the identification of STENOFOLIA (STF), a WUSCHEL-like homeobox transcriptional regulator, in Medicago truncatula, which is required for blade outgrowth and leaf vascular patterning. STF belongs to the MAEWEST clade and its inactivation by the transposable element of Nicotiana tabacum cell type1 (Tnt1) retrotransposon insertion leads to abortion of blade expansion in the mediolateral axis and disruption of vein patterning. We also show that the classical lam1 mutant of Nicotiana sylvestris, which is blocked in lamina formation and stem elongation, is caused by deletion of the STF ortholog. STF is expressed at the adaxial-abaxial boundary layer of leaf primordia and governs organization and outgrowth of lamina, conferring morphogenetic competence. STF does not affect formation of lateral leaflets but is critical to their ability to generate a leaf blade. Our data suggest that STF functions by modulating phytohormone homeostasis and crosstalk directly linked to sugar metabolism, highlighting the importance of coordinating metabolic and developmental signals for leaf elaboration.
Collapse
Affiliation(s)
- Million Tadege
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Li H, Liang W, Yin C, Zhu L, Zhang D. Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy. PLANT PHYSIOLOGY 2011; 156:263-74. [PMID: 21444646 PMCID: PMC3091067 DOI: 10.1104/pp.111.172080] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Grass plants develop unique floral patterns that determine grain production. However, the molecular mechanism underlying the specification of floral organ identities and meristem determinacy, including the interaction among floral homeotic genes, remains largely unknown in grasses. Here, we report the interactions of rice (Oryza sativa) floral homeotic genes, OsMADS3 (a C-class gene), OsMADS13 (a D-class gene), and DROOPING LEAF (DL), in specifying floral organ identities and floral meristem determinacy. The interaction among these genes was revealed through the analysis of double mutants. osmads13-3 osmads3-4 displayed a loss of floral meristem determinacy and generated abundant carpelloid structures containing severe defective ovules in the flower center, which were not detectable in the single mutant. In addition, in situ hybridization and yeast two-hybrid analyses revealed that OsMADS13 and OsMADS3 did not regulate each other's transcription or interact at the protein level. This indicates that OsMADS3 plays a synergistic role with OsMADS13 in both ovule development and floral meristem termination. Strikingly, osmads3-4 dl-sup6 displayed a severe loss of floral meristem determinacy and produced supernumerary whorls of lodicule-like organs at the forth whorl, suggesting that OsMADS3 and DL synergistically terminate the floral meristem. Furthermore, the defects of osmads13-3 dl-sup6 flowers appeared identical to those of dl-sup6, and the OsMADS13 expression was undetectable in dl-sup6 flowers. These observations suggest that DL and OsMADS13 may function in the same pathway specifying the identity of carpel/ovule and floral meristem. Collectively, we propose a model to illustrate the role of OsMADS3, DL, and OsMADS13 in the specification of flower organ identity and meristem determinacy in rice.
Collapse
|