101
|
Xu P, Wu F, Ma T, Yan Q, Zong X, Li J, Zhao Y, Kanzana G, Zhang J. Analysis of Six Transcription Factor Families Explores Transcript Divergence of Cleistogamous and Chasmogamous Flowers in Cleistogenes songorica. DNA Cell Biol 2020; 39:273-288. [DOI: 10.1089/dna.2019.5047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Pan Xu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fan Wu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - TianTian Ma
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qi Yan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xifang Zong
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jie Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yufeng Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Gisele Kanzana
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jiyu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
102
|
An JP, Zhang XW, Bi SQ, You CX, Wang XF, Hao YJ. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:573-589. [PMID: 31571281 DOI: 10.1111/tpj.14555] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 05/04/2023]
Abstract
Drought stress induces anthocyanin biosynthesis in many plant species, but the underlying molecular mechanism remains unclear. Ethylene response factors (ERFs) play key roles in plant growth and various stress responses, including affecting anthocyanin biosynthesis. Here, we characterized an ERF protein, MdERF38, which is involved in drought stress-induced anthocyanin biosynthesis. Biochemical and molecular analyses showed that MdERF38 interacted with MdMYB1, a positive modulator of anthocyanin biosynthesis, and facilitated the binding of MdMYB1 to its target genes. Therefore, MdERF38 promoted anthocyanin biosynthesis in response to drought stress. Furthermore, we found that MdBT2, a negative modulator of anthocyanin biosynthesis, decreased MdERF38-promoted anthocyanin biosynthesis by accelerating the degradation of the MdERF38 protein. In summary, our data provide a mechanism for drought stress-induced anthocyanin biosynthesis that involves dynamic modulation of MdERF38 at both transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Si-Qi Bi
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| |
Collapse
|
103
|
Liu M, Li Y, Ma Y, Zhao Q, Stiller J, Feng Q, Tian Q, Liu D, Han B, Liu C. The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:443-456. [PMID: 31314154 PMCID: PMC6953193 DOI: 10.1111/pbi.13210] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/13/2019] [Indexed: 05/06/2023]
Abstract
Wild barley (Hordeum spontaneum) is the progenitor of cultivated barley (Hordeum vulgare) and provides a rich source of genetic variations for barley improvement. Currently, the genome sequences of wild barley and its differences with cultivated barley remain unclear. In this study, we report a high-quality draft assembly of wild barley accession (AWCS276; henceforth named as WB1), which consists of 4.28 Gb genome and 36 395 high-confidence protein-coding genes. BUSCO analysis revealed that the assembly included full lengths of 95.3% of the 956 single-copy plant genes, illustrating that the gene-containing regions have been well assembled. By comparing with the genome of the cultivated genotype Morex, it is inferred that the WB1 genome contains more genes involved in resistance and tolerance to biotic and abiotic stresses. The presence of the numerous WB1-specific genes indicates that, in addition to enhance allele diversity for genes already existing in the cultigen, exploiting the wild barley taxon in breeding should also allow the incorporation of novel genes. Furthermore, high levels of genetic variation in the pericentromeric regions were detected in chromosomes 3H and 5H between the wild and cultivated genotypes, which may be the results of domestication. This H. spontaneum draft genome assembly will help to accelerate wild barley research and be an invaluable resource for barley improvement and comparative genomics research.
Collapse
Affiliation(s)
- Miao Liu
- CSIRO Agriculture and FoodSt LuciaQldAustralia
- Crop Research InstituteSichuan Academy of Agricultural SciencesJinjiang District, ChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityWenjiang, ChengduChina
| | - Yan Li
- National Center for Gene ResearchChinese Academy of SciencesShanghaiChina
| | - Yanling Ma
- CSIRO Agriculture and FoodSt LuciaQldAustralia
- Institute of Crop SciencesChinese Academy of Agricultural SciencesHaidian District, BeijingChina
| | - Qiang Zhao
- National Center for Gene ResearchChinese Academy of SciencesShanghaiChina
| | | | - Qi Feng
- National Center for Gene ResearchChinese Academy of SciencesShanghaiChina
| | - Qilin Tian
- National Center for Gene ResearchChinese Academy of SciencesShanghaiChina
| | - Dengcai Liu
- Triticeae Research InstituteSichuan Agricultural UniversityWenjiang, ChengduChina
| | - Bin Han
- National Center for Gene ResearchChinese Academy of SciencesShanghaiChina
| | - Chunji Liu
- CSIRO Agriculture and FoodSt LuciaQldAustralia
| |
Collapse
|
104
|
Yang Y, Yu TF, Ma J, Chen J, Zhou YB, Chen M, Ma YZ, Wei WL, Xu ZS. The Soybean bZIP Transcription Factor Gene GmbZIP2 Confers Drought and Salt Resistances in Transgenic Plants. Int J Mol Sci 2020; 21:E670. [PMID: 31968543 PMCID: PMC7013997 DOI: 10.3390/ijms21020670] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/16/2022] Open
Abstract
Abiotic stresses, such as drought and salt, are major environmental stresses, affecting plant growth and crop productivity. Plant bZIP transcription factors (bZIPs) confer stress resistances in harsh environments and play important roles in each phase of plant growth processes. In this research, 15 soybean bZIP family members were identified from drought-induced de novo transcriptomic sequences of soybean, which were unevenly distributed across 12 soybean chromosomes. Promoter analysis showed that these 15 genes were rich in ABRE, MYB and MYC cis-acting elements which were reported to be involved in abiotic stress responses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that 15 GmbZIP genes could be induced by drought and salt stress. GmbZIP2 was significantly upregulated under stress conditions and thus was selected for further study. Subcellular localization analysis revealed that the GmbZIP2 protein was located in the cell nucleus. qRT-PCR results show that GmbZIP2 can be induced by multiple stresses. The overexpression of GmbZIP2 in Arabidopsis and soybean hairy roots could improve plant resistance to drought and salt stresses. The result of differential expression gene analysis shows that the overexpression of GmbZIP2 in soybean hairy roots could enhance the expression of the stress responsive genes GmMYB48, GmWD40, GmDHN15, GmGST1 and GmLEA. These results indicate that soybean bZIPs played pivotal roles in plant resistance to abiotic stresses.
Collapse
Affiliation(s)
- Yan Yang
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434025, China;
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (T.-F.Y.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (T.-F.Y.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China;
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (T.-F.Y.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (T.-F.Y.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (T.-F.Y.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (T.-F.Y.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Wen-Liang Wei
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434025, China;
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (T.-F.Y.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| |
Collapse
|
105
|
Li H, Dong Q, Zhao Q, Shi S, Ran K. Isolation, sequencing, and expression analysis of 30 AP2/ERF transcription factors in apple. PeerJ 2020; 8:e8391. [PMID: 31988809 PMCID: PMC6970539 DOI: 10.7717/peerj.8391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AP2/ERF transcription factors are involved in the regulation of plant growth, development, and stress responses. Our research objective was to characterize novel apple (Malus × domestica Borkh.) genes encoding AP2/ERF transcription factors involved in regulation of plant growth, development, and stress response. The transcriptional level of apple AP2/ERF genes in different tissues and under various biotic and abiotic stress was determined to provide valuable insights into the function of AP2/ERF transcription factors in apple. METHODS Thirty full-length cDNA sequences of apple AP2/ERF genes were isolated from 'Zihong Fuji' apple (Malus × domestica cv. Zihong Fuji) via homologous comparison and RT-PCR confirmation, and the obtained cDNA sequences and the deduced amino acid sequences were analyzed with bioinformatics methods. Expression levels of apple AP2/ERF genes were detected in 16 different tissues using a known array. Expression patterns of apple AP2/ERF genes were detected in response to Alternaria alternata apple pathotype (AAAP) infection using RNA-seq with existing data, and the expression of apple AP2/ERF genes was analyzed under NaCl and mannitol treatments using qRT-PCR. RESULTS The sequencing results produced 30 cDNAs (designated as MdERF3-8, MdERF11, MdERF16-19, MdERF22-28, MdERF31-35, MdERF39, MdAP2D60, MdAP2D62-65, and MdRAV2). Phylogenetic analysis revealed that MdERF11/16, MdERF33/35, MdERF34/39, and MdERF18/23 belonged to groups A-2, A-4, A-5, and A-6 of the DREB subfamily, respectively; MdERF31, MdERF19, MdERF4/25/28/32, MdERF24, MdERF5/6/27, and MdERF3/7/8/17/22/26 belonged to groups B-1, B-2, B-3, B-4, B-5, and B-6 of the ERF subfamily, respectively; MdAP2D60 and MdAP2D62/63/64/65 belonged to the AP2 subfamily; and MdRAV2 belonged to the RAV subfamily. Array results indicated that 30 apple AP2/ERF genes were expressed in all examined tissues to different degrees. RNA-seq results using previously reported data showed that many members of the apple ERF and DREB subfamilies were induced by Alternaria alternate apple pathotype (AAAP) infection. Under salt treatment, many members in the apple ERF and DREB subfamilies were transcriptionally up or down-regulated. Under mannitol treatment, many members of the apple ERF, DREB, and AP2 subfamilies were induced at the transcriptional level. Taken together, the results indicated that the cloned apple AP2/ERF genes were expressed in all examined tissues. These genes were up-regulated or down-regulated in response to AAAP infection and to salt or mannitol treatment, which suggested they may be involved in regulating growth, development, and stress response in apple.
Collapse
Affiliation(s)
- Huifeng Li
- Shandong Institute of Pomology, Tai’an, China
| | - Qinglong Dong
- College of Horticulture, Northwest A and F University, Yangling, China
| | - Qiang Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Song Shi
- Nanjing Agricultural University, Nanjing, China
| | - Kun Ran
- Shandong Institute of Pomology, Tai’an, China
| |
Collapse
|
106
|
Cao L, Zhang P, Lu X, Wang G, Wang Z, Zhang Q, Zhang X, Wei X, Mei F, Wei L, Wang T. Systematic Analysis of the Maize OSCA Genes Revealing ZmOSCA Family Members Involved in Osmotic Stress and ZmOSCA2.4 Confers Enhanced Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2020; 21:ijms21010351. [PMID: 31948071 PMCID: PMC6982122 DOI: 10.3390/ijms21010351] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
OSCAs are hyperosmolality-gated calcium-permeable channel proteins. In this study, two co-expression modules, which are strongly associated with maize proline content, were screened by weighted correlation network analysis, including three ZmOSCA family members. Phylogenetic and protein domain analyses revealed that 12 ZmOSCA members were classified into four classes, which all contained DUF221 domain. The promoter region contained multiple core elements responsive to abiotic stresses and hormones. Colinear analysis revealed that ZmOSCAs had diversified prior to maize divergence. Most ZmOSCAs responded positively to ABA, PEG, and NaCl treatments. ZmOSCA2.3 and ZmOSCA2.4 were up-regulated by more than 200-fold under the three stresses, and showed significant positive correlations with proline content. Yeast two-hybrid and bimolecular fluorescence complementation indicated that ZmOSCA2.3 and ZmOSCA2.4 proteins interacted with ZmEREB198. Over-expression of ZmOSCA2.4 in Arabidopsis remarkably improved drought resistance. Moreover, over-expression of ZmOSCA2.4 enhanced the expression of drought tolerance-associated genes and reduced the expression of senescence-associated genes. We also found that perhaps ZmOSCA2.4 was regulated by miR5054.The results provide a high-quality molecular resource for selecting resistant breeding, and lay a foundation for elucidating regulatory mechanism of ZmOSCA under abiotic stresses.
Collapse
Affiliation(s)
- Liru Cao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (L.C.); (P.Z.); (G.W.); (F.M.)
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.L.); (Z.W.); (Q.Z.); (X.Z.); (X.W.)
| | - Pengyu Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (L.C.); (P.Z.); (G.W.); (F.M.)
| | - Xiaomin Lu
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.L.); (Z.W.); (Q.Z.); (X.Z.); (X.W.)
| | - Guorui Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (L.C.); (P.Z.); (G.W.); (F.M.)
| | - Zhenhua Wang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.L.); (Z.W.); (Q.Z.); (X.Z.); (X.W.)
| | - Qianjin Zhang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.L.); (Z.W.); (Q.Z.); (X.Z.); (X.W.)
| | - Xin Zhang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.L.); (Z.W.); (Q.Z.); (X.Z.); (X.W.)
| | - Xin Wei
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.L.); (Z.W.); (Q.Z.); (X.Z.); (X.W.)
| | - Fujian Mei
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (L.C.); (P.Z.); (G.W.); (F.M.)
| | - Li Wei
- National Engineering Research Centre for Wheat, Zhengzhou 450002, China
- Correspondence: (L.W.); (T.W.)
| | - Tongchao Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (L.C.); (P.Z.); (G.W.); (F.M.)
- Correspondence: (L.W.); (T.W.)
| |
Collapse
|
107
|
Zhao P, Hou S, Guo X, Jia J, Yang W, Liu Z, Chen S, Li X, Qi D, Liu G, Cheng L. A MYB-related transcription factor from sheepgrass, LcMYB2, promotes seed germination and root growth under drought stress. BMC PLANT BIOLOGY 2019; 19:564. [PMID: 31852429 PMCID: PMC6921572 DOI: 10.1186/s12870-019-2159-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/25/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Drought is one of the most serious factors limiting plant growth and production. Sheepgrass can adapt well to various adverse conditions, including drought. However, during germination, sheepgrass young seedlings are sensitive to these adverse conditions. Therefore, the adaptability of seedlings is very important for plant survival, especially in plants that inhabit grasslands or the construction of artificial grassland. RESULTS In this study, we found a sheepgrass MYB-related transcription factor, LcMYB2 that is up-regulated by drought stress and returns to a basal level after rewatering. The expression of LcMYB2 was mainly induced by osmotic stress and was localized to the nucleus. Furthermore, we demonstrate that LcMYB2 promoted seed germination and root growth under drought and ABA treatments. Additionally, we confirmed that LcMYB2 can regulate LcDREB2 expression in sheepgrass by binding to its promoter, and it activates the expression of the osmotic stress marker genes AtDREB2A, AtLEA14 and AtP5CS1 by directly binding to their promoters in transgenic Arabidopsis. CONCLUSIONS Based on these results, we propose that LcMYB2 improves plant drought stress tolerance by increasing the accumulation of osmoprotectants and promoting root growth. Therefore, LcMYB2 plays pivotal roles in plant responses to drought stress and is an important candidate for genetic manipulation to create drought-resistant crops, especially during seed germination.
Collapse
Affiliation(s)
- Pincang Zhao
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Management Science And Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Shenglin Hou
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- Institute of Millet Crops, Hebei Academy of Agricultural & Forestry Sciences, Shijiazhuang, China
| | - Xiufang Guo
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Junting Jia
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weiguang Yang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Zhujiang Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Shuangyan Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Xiaoxia Li
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Dongmei Qi
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Gongshe Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Liqin Cheng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
108
|
Wang D, Liu YX, Yu Q, Zhao SP, Zhao JY, Ru JN, Cao XY, Fang ZW, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Lan JH. Functional Analysis of the Soybean GmCDPK3 Gene Responding to Drought and Salt Stresses. Int J Mol Sci 2019; 20:E5909. [PMID: 31775269 PMCID: PMC6928923 DOI: 10.3390/ijms20235909] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
Plants have a series of response mechanisms to adapt when they are subjected to external stress. Calcium-dependent protein kinases (CDPKs) in plants function against a variety of abiotic stresses. We screened 17 CDPKs from drought- and salt-induced soybean transcriptome sequences. The phylogenetic tree divided CDPKs of rice, Arabidopsis and soybean into five groups (I-V). Cis-acting element analysis showed that the 17 CDPKs contained some elements associated with drought and salt stresses. Quantitative real-time PCR (qRT-PCR) analysis indicated that the 17 CDPKs were responsive after different degrees of induction under drought and salt stresses. GmCDPK3 was selected as a further research target due to its high relative expression. The subcellular localization experiment showed that GmCDPK3 was located on the membrane of Arabidopsis mesophyll protoplasts. Overexpression of GmCDPK3 improved drought and salt resistance in Arabidopsis. In the soybean hairy roots experiment, the leaves of GmCDPK3 hairy roots with RNA interference (GmCDPK3-RNAi) soybean lines were more wilted than those of GmCDPK3 overexpression (GmCDPK3-OE) soybean lines after drought and salt stresses. The trypan blue staining experiment further confirmed that cell membrane damage of GmCDPK3-RNAi soybean leaves was more severe than in GmCDPK3-OE soybean lines. In addition, proline (Pro) and chlorophyll contents were increased and malondialdehyde (MDA) content was decreased in GmCDPK3-OE soybean lines. On the contrary, GmCDPK3-RNAi soybean lines had decreased Pro and chlorophyll content and increased MDA. The results indicate that GmCDPK3 is essential in resisting drought and salt stresses.
Collapse
Affiliation(s)
- Dan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (D.W.); (Y.-X.L.); (Q.Y.)
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Yuan-Xia Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (D.W.); (Y.-X.L.); (Q.Y.)
| | - Qian Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (D.W.); (Y.-X.L.); (Q.Y.)
| | - Shu-Ping Zhao
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Juan-Ying Zhao
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Jing-Na Ru
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Xin-You Cao
- National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Zheng-Wu Fang
- College of Agronomy, College of Agriculture, Yangtze University, Jingzhou 434025, China;
| | - Jun Chen
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Yong-Bin Zhou
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Ming Chen
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - You-Zhi Ma
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Zhao-Shi Xu
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Jin-Hao Lan
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (D.W.); (Y.-X.L.); (Q.Y.)
| |
Collapse
|
109
|
Testone G, Baldoni E, Iannelli MA, Nicolodi C, Di Giacomo E, Pietrini F, Mele G, Giannino D, Frugis G. Transcription Factor Networks in Leaves of Cichorium endivia: New Insights into the Relationship Between Photosynthesis and Leaf Development. PLANTS (BASEL, SWITZERLAND) 2019; 8:E531. [PMID: 31766484 PMCID: PMC6963412 DOI: 10.3390/plants8120531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/18/2022]
Abstract
Cichorium endivia is a leafy crop closely related to Lactuca sativa that comprises two major botanical varieties characterized by a high degree of intraspecific morphological variation: var. latifolium with broad leaves (escarole) and var. crispum with narrow crisp curly leaves (endive). To investigate the relationship between leaf morphology and photosynthetic activity, escaroles and endives were used as a crop model due to the striking morphological diversity of their leaves. We constructed a leaf database for transcription factors (TFs) and photosynthesis-related genes from a refined C. endivia transcriptome and used RNA-seq transcriptomic data from leaves of four commercial endive and escarole cultivars to explore transcription factor regulatory networks. Cluster and gene co-expression network (GCN) analyses identified two main anticorrelated modules that control photosynthesis. Analysis of the GCN network topological properties identified known and novel hub genes controlling photosynthesis, and candidate developmental genes at the boundaries between shape and function. Differential expression analysis between broad and curly leaves suggested three novel TFs putatively involved in leaf shape diversity. Physiological analysis of the photosynthesis properties and gene expression studies on broad and curly leaves provided new insights into the relationship between leaf shape and function.
Collapse
Affiliation(s)
- Giulio Testone
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Elena Baldoni
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche (CNR), Via Bassini 15, 20133 Milano, Italy
| | - Maria Adelaide Iannelli
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Chiara Nicolodi
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Elisabetta Di Giacomo
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Fabrizio Pietrini
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29,300, 00015 Monterotondo Scalo (Roma), Italy;
| | - Giovanni Mele
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Donato Giannino
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| |
Collapse
|
110
|
Zhao MJ, Yin LJ, Liu Y, Ma J, Zheng JC, Lan JH, Fu JD, Chen M, Xu ZS, Ma YZ. The ABA-induced soybean ERF transcription factor gene GmERF75 plays a role in enhancing osmotic stress tolerance in Arabidopsis and soybean. BMC PLANT BIOLOGY 2019; 19:506. [PMID: 31747904 PMCID: PMC6865046 DOI: 10.1186/s12870-019-2066-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/02/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Ethylene-responsive factors (ERFs) play important roles in plant growth and development and the response to adverse environmental factors, including abiotic and biotic stresses. RESULTS In the present study, we identified 160 soybean ERF genes distributed across 20 chromosomes that could be clustered into eight groups based on phylogenetic relationships. A highly ABA-responsive ERF gene, GmERF75, belonging to Group VII was further characterized. Subcellular localization analysis showed that the GmERF75 protein is localized in the nucleus, and qRT-PCR results showed that GmERF75 is responsive to multiple abiotic stresses and exogenous hormones. GmERF75-overexpressing Arabidopsis lines showed higher chlorophyll content compared to WT and mutants under osmotic stress. Two independent Arabidopsis mutations of AtERF71, a gene homologous to GmERF75, displayed shorter hypocotyls, and overexpression of GmERF75 in these mutants could rescue the short hypocotyl phenotypes. Overexpressing GmERF75 in soybean hairy roots improved root growth under exogenous ABA and salt stress. CONCLUSIONS These results suggested that GmERF75 is an important plant transcription factor that plays a critical role in enhancing osmotic tolerance in both Arabidopsis and soybean.
Collapse
Affiliation(s)
- Meng-Jie Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Li-Juan Yin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Ying Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118 China
| | - Jia-Cheng Zheng
- Anhui Science and Technology University, Fengyang, 233100 China
| | - Jin-Hao Lan
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109 China
| | - Jin-Dong Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118 China
- Anhui Science and Technology University, Fengyang, 233100 China
| | - You-Zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| |
Collapse
|
111
|
Zhou S, Zheng WJ, Liu BH, Zheng JC, Dong FS, Liu ZF, Wen ZY, Yang F, Wang HB, Xu ZS, Zhao H, Liu YW. Characterizing the Role of TaWRKY13 in Salt Tolerance. Int J Mol Sci 2019; 20:ijms20225712. [PMID: 31739570 PMCID: PMC6888956 DOI: 10.3390/ijms20225712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 01/09/2023] Open
Abstract
The WRKY transcription factor superfamily is known to participate in plant growth and stress response. However, the role of this family in wheat (Triticum aestivum L.) is largely unknown. Here, a salt-induced gene TaWRKY13 was identified in an RNA-Seq data set from salt-treated wheat. The results of RT-qPCR analysis showed that TaWRKY13 was significantly induced in NaCl-treated wheat and reached an expression level of about 22-fold of the untreated wheat. Then, a further functional identification was performed in both Arabidopsis thaliana and Oryza sativa L. Subcellular localization analysis indicated that TaWRKY13 is a nuclear-localized protein. Moreover, various stress-related regulatory elements were predicted in the promoter. Expression pattern analysis revealed that TaWRKY13 can also be induced by polyethylene glycol (PEG), exogenous abscisic acid (ABA), and cold stress. After NaCl treatment, overexpressed Arabidopsis lines of TaWRKY13 have a longer root and a larger root surface area than the control (Columbia-0). Furthermore, TaWRKY13 overexpression rice lines exhibited salt tolerance compared with the control, as evidenced by increased proline (Pro) and decreased malondialdehyde (MDA) contents under salt treatment. The roots of overexpression lines were also more developed. These results demonstrate that TaWRKY13 plays a positive role in salt stress.
Collapse
Affiliation(s)
- Shuo Zhou
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F University, Yangling 712100, China;
| | - Bao-Hua Liu
- Handan Academy of Agricultural Sciences, Handan 056001, China;
| | - Jia-Cheng Zheng
- College of Agronomy, Anhui Science and Technology University, Fengyang, Chuzhou 239000, China;
| | - Fu-Shuang Dong
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | | | - Zhi-Yu Wen
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | - Fan Yang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | - Hai-Bo Wang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China;
| | - He Zhao
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
- Correspondence: (H.Z.); (Y.-W.L.)
| | - Yong-Wei Liu
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
- Correspondence: (H.Z.); (Y.-W.L.)
| |
Collapse
|
112
|
Su HG, Li B, Song XY, Ma J, Chen J, Zhou YB, Chen M, Min DH, Xu ZS, Ma YZ. Genome-Wide Analysis of the DYW Subgroup PPR Gene Family and Identification of GmPPR4 Responses to Drought Stress. Int J Mol Sci 2019; 20:E5667. [PMID: 31726763 PMCID: PMC6888332 DOI: 10.3390/ijms20225667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Pentatricopeptide-repeat (PPR) proteins were identified as a type of nucleus coding protein that is composed of multiple tandem repeats. It has been reported that PPR genes play an important role in RNA editing, plant growth and development, and abiotic stresses in plants. However, the functions of PPR proteins remain largely unknown in soybean. In this study, 179 DYW subgroup PPR genes were identified in soybean genome (Glycine max Wm82.a2.v1). Chromosomal location analysis indicated that DYW subgroup PPR genes were mapped to all 20 chromosomes. Phylogenetic relationship analysis revealed that DYW subgroup PPR genes were categorized into three distinct Clusters (I to III). Gene structure analysis showed that most PPR genes were featured by a lack of intron. Gene duplication analysis demonstrated 30 PPR genes (15 pairs; ~35.7%) were segmentally duplicated among Cluster I PPR genes. Furthermore, we validated the mRNA expression of three genes that were highly up-regulated in soybean drought- and salt-induced transcriptome database and found that the expression levels of GmPPR4 were induced under salt and drought stresses. Under drought stress condition, GmPPR4-overexpressing (GmPPR4-OE) plants showed delayed leaf rolling; higher content of proline (Pro); and lower contents of H2O2, O2- and malondialdehyde (MDA) compared with the empty vector (EV)-control plants. GmPPR4-OE plants exhibited increased transcripts of several drought-inducible genes compared with EV-control plants. Our results provided a comprehensive analysis of the DYW subgroup PPR genes and an insight for improving the drought tolerance in soybean.
Collapse
Affiliation(s)
- Hong-Gang Su
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (H.-G.S.); (B.L.); (J.C.); (Y.-B.Z.); (M.C.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China;
| | - Bo Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (H.-G.S.); (B.L.); (J.C.); (Y.-B.Z.); (M.C.)
| | - Xin-Yuan Song
- Agro-Biotechnology Research Institute, Jilin Academy of Agriculture Sciences, Changchun 130033, China;
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China;
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (H.-G.S.); (B.L.); (J.C.); (Y.-B.Z.); (M.C.)
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (H.-G.S.); (B.L.); (J.C.); (Y.-B.Z.); (M.C.)
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (H.-G.S.); (B.L.); (J.C.); (Y.-B.Z.); (M.C.)
| | - Dong-Hong Min
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China;
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (H.-G.S.); (B.L.); (J.C.); (Y.-B.Z.); (M.C.)
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (H.-G.S.); (B.L.); (J.C.); (Y.-B.Z.); (M.C.)
| |
Collapse
|
113
|
Genome-wide characterization of the AP2/ERF gene family in radish (Raphanus sativus L.): Unveiling evolution and patterns in response to abiotic stresses. Gene 2019; 718:144048. [DOI: 10.1016/j.gene.2019.144048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022]
|
114
|
Srivastava R, Kumar R. The expanding roles of APETALA2/Ethylene Responsive Factors and their potential applications in crop improvement. Brief Funct Genomics 2019; 18:240-254. [PMID: 30783669 DOI: 10.1093/bfgp/elz001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 11/29/2018] [Accepted: 01/23/2019] [Indexed: 01/10/2023] Open
Abstract
Understanding the molecular basis of the gene-regulatory networks underlying agronomic traits or plant responses to abiotic/biotic stresses is very important for crop improvement. In this context, transcription factors, which either singularly or in conjugation directly control the expression of many target genes, are suitable candidates for improving agronomic traits via genetic engineering. In this regard, members of one of the largest class of plant-specific APETALA2/Ethylene Response Factor (AP2/ERF) superfamily, which is implicated in various aspects of development and plant stress adaptation responses, are considered high-value targets for crop improvement. Besides their long-known regulatory roles in mediating plant responses to abiotic stresses such as drought and submergence, the novel roles of AP2/ERFs during fruit ripening or secondary metabolites production have also recently emerged. The astounding functional plasticity of AP2/ERF members is considered to be achieved by their interplay with other regulatory networks and signalling pathways. In this review, we have integrated the recently accumulated evidence from functional genomics studies and described their newly emerged functions in plants. The key structural features of AP2/ERF proteins and the modes of their action are briefly summarized. The importance of AP2/ERFs in plant development and stress responses and a summary of the event of their successful applications in crop improvement programs are also provided. Altogether, we envisage that the synthesized information presented in this review will be useful to design effective strategies for improving agronomic traits in crop plants.
Collapse
Affiliation(s)
- Rajat Srivastava
- Plant Translational Research Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rahul Kumar
- Plant Translational Research Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
115
|
Zhao Y, Ma R, Xu D, Bi H, Xia Z, Peng H. Genome-Wide Identification and Analysis of the AP2 Transcription Factor Gene Family in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2019; 10:1286. [PMID: 31681381 PMCID: PMC6797823 DOI: 10.3389/fpls.2019.01286] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/13/2019] [Indexed: 05/23/2023]
Abstract
The AP2 transcription factors play important roles in regulating plant growth and development. However, limited data are available on the contributions of AP2 transcription factors in wheat (Triticum aestivum L.). In the present study, a total of 62 AP2 genes were identified in wheat from a genome-wide search against the latest wheat genome data. Phylogenetic and sequence alignment analyses divided the wheat AP2 genes into 3 clusters, euAP2, euANT, and basalANT. Chromosomal distribution, gene structure and duplication, and motif composition were subsequently investigated. The 62 TaAP2 genes were unevenly distributed on 21 chromosomes. Twenty-four homologous gene sets among A, B, and D sub-genomes were detected, which contributed to the expansion of the wheat AP2 gene family. The expression levels of TaAP2 genes were examined using the WheatExp database; most detected genes exhibited tissue-specific expression patterns. The transcript levels of 9 randomly selected TaAP2 genes were validated through qPCR analyses. Overexpression of TaAP2-10-5D, the most likely homolog of Arabidopsis ANT gene, increased organ sizes in Arabidopsis. Our results extend our knowledge of the AP2 gene family in wheat, and contribute to further functional characterization of AP2s during wheat development with the ultimate goal of improving crop production.
Collapse
Affiliation(s)
- Yue Zhao
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Renyi Ma
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Dongliang Xu
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Huihui Bi
- College of Agronomy/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
116
|
Li MY, Liu JX, Hao JN, Feng K, Duan AQ, Yang QQ, Xu ZS, Xiong AS. Genomic identification of AP2/ERF transcription factors and functional characterization of two cold resistance-related AP2/ERF genes in celery (Apium graveolens L.). PLANTA 2019; 250:1265-1280. [PMID: 31236696 DOI: 10.1007/s00425-019-03222-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/20/2019] [Indexed: 05/09/2023]
Abstract
This study analyzed the AP2/ERF transcription factors in celery and showed that two dehydration-responsive-element-binding (DREB) transcription factors, AgDREB1 and AgDREB2, contribute to the enhanced resistance to abiotic stress in transgenic Arabidopsis. The AP2/ERF family is a large family of transcription factors (TFs) in higher plants that plays a central role in plant growth, development, and response to environmental stress. Here, 209 AP2/ERF family members were identified in celery based on genomic and transcriptomic data. The TFs were classified into four subfamilies (i.e., DREB, ERF, RAV, and AP2) and Soloist. Evolution analysis indicated that the AP2/ERF TFs are ancient molecules and have expanded in the long-term evolution process of plants and whole-genome duplication events. AgAP2/ERF proteins may be associated with multiple biological processes as predicted by the interaction network. The expression profiles and sequence alignment analysis of the TFs in the DREB-A1 group showed that eight genes could be divided into four branches. Two genes, AgDREB1 and AgDREB2, from the DREB-A1 group were selected for further analysis. Subcellular localization assay suggested that the two proteins are nuclear proteins. Yeast one hybrid assay demonstrated that the two proteins could bind to the dehydration-responsive element (DRE). The overexpression of AgDREB1 and AgDREB2 in Arabidopsis induced the increased tolerance to cold treatment and the up-regulation of the COR genes expression. AgDREB1 and AgDREB2 might function as transcriptional activators in regulating the downstream genes by binding to corresponding DRE to enhance stress tolerance in celery.
Collapse
Affiliation(s)
- Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Jian-Nan Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Qing-Qing Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
117
|
Zhao MJ, Yin LJ, Ma J, Zheng JC, Wang YX, Lan JH, Fu JD, Chen M, Xu ZS, Ma YZ. The Roles of GmERF135 in Improving Salt Tolerance and Decreasing ABA Sensitivity in Soybean. FRONTIERS IN PLANT SCIENCE 2019; 10:940. [PMID: 31396249 PMCID: PMC6664033 DOI: 10.3389/fpls.2019.00940] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/04/2019] [Indexed: 05/24/2023]
Abstract
Abscisic acid (ABA) mediates various abiotic stress responses, and ethylene responsive factors (ERFs) play vital role in resisting stresses, but the interaction of these molecular mechanisms remains elusive. In this study, we identified an ABA-induced soybean ERF gene GmERF135 that was highly up-regulated by ethylene (ET), drought, salt, and low temperature treatments. Subcellular localization assay showed that the GmERF135 protein was targeted to the nucleus. Promoter cis-acting elements analysis suggested that numerous potential stress responsive cis-elements were distributed in the promoter region of GmERF135, including ABA-, light-, ET-, gibberellin (GA)-, and methyl jasmonate (MeJA)-responsive elements. Overexpression of GmERF135 in Arabidopsis enhanced tolerance to drought and salt conditions. In addition, GmERF135 promoted the growth of transgenic hairy roots under salt and exogenous ABA conditions. These results suggest that soybean GmERF135 may participate in both ABA and ET signaling pathways to regulate the responses to multiple stresses.
Collapse
Affiliation(s)
- Meng-Jie Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Li-Juan Yin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jian Ma
- Department of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jia-Cheng Zheng
- College of Agriculture, Anhui University of Science and Technology, Fengyang County, China
| | - Yan-Xia Wang
- Hebei Academy of Agriculture and Forestry Sciences, Research Center of Wheat Engineering Technology of Hebei, Shijiazhuang, China
| | - Jin-Hao Lan
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, China
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- Department of Agronomy, Jilin Agricultural University, Changchun, China
- College of Agriculture, Anhui University of Science and Technology, Fengyang County, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
118
|
Gao Y, Ma J, Zheng JC, Chen J, Chen M, Zhou YB, Fu JD, Xu ZS, Ma YZ. The Elongation Factor GmEF4 Is Involved in the Response to Drought and Salt Tolerance in Soybean. Int J Mol Sci 2019; 20:E3001. [PMID: 31248195 PMCID: PMC6627591 DOI: 10.3390/ijms20123001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 11/23/2022] Open
Abstract
Growing evidence indicates that elongation factor 1α (EF1α) is involved in responses to various abiotic stresses in several plant species. Soybean EF1α proteins include three structural domains: one GTP-binding domain and two oligonucleotide binding domains that are also called as domain 2 and domain 3. In this study, 10 EF1α genes were identified in the soybean genome. We predicted structures of different domains and analyzed gene locations, gene structures, phylogenetic relationships, various cis-elements, and conserved domains of soybean EF1αs. The expression patterns of 10 EF1α genes were analyzed by quantitative real-time PCR (qRT-PCR). Under drought stress, soybean EF1α genes were upregulated in varying degrees. In particular, GmEF4 was upregulated under drought and salt treatments. Compared to the drought- and salt-treated empty vector (EV)-control plants, drought- and salt-treated GmEF4-overexpressing (OE) plants had significantly delayed leaf wilting, longer root, higher biomass, higher proline (Pro) content, and lower H2O2, O2-, and malondialdehyde (MDA) contents. Thus, this study provides a foundation for further functional genomics research about this important family under abiotic stress.
Collapse
Affiliation(s)
- Yuan Gao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China.
| | - Jia-Cheng Zheng
- Anhui Science and Technology University, Fengyang 233100, Anhui, China.
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
119
|
Mooney S, Al-Saharin R, Choi CM, Tucker K, Beathard C, Hellmann HA. Characterization of Brassica rapa RAP2.4-Related Proteins in Stress Response and as CUL3-Dependent E3 Ligase Substrates. Cells 2019; 8:cells8040336. [PMID: 30974760 PMCID: PMC6523098 DOI: 10.3390/cells8040336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/03/2019] [Accepted: 04/06/2019] [Indexed: 01/07/2023] Open
Abstract
The turnip Brassica rapa has important economic value and represents a good model system to study gene function in crop plants. ERF/AP2 transcription factors are a major group of proteins that are often involved in regulating stress-responses and developmental programs. Some ERF/AP2 proteins are targets of CULLIN3-based E3 ligases that use BTB/POZ-MATH proteins as substrate receptors. These receptors bind the transcription factor and facilitate their ubiquitylation and subsequent degradation via the 26S proteasome. Here, we show tissue and stress-dependent expression patterns for three Brassica rapa ERF/AP2 proteins that are closely related to Arabidopsis thaliana AtRAP2.4. Cloning of the Brassica genes showed that the corresponding proteins can assemble with a BPM protein and CULLIN3, and that they are instable in a 26S proteasome dependent manner. This work demonstrates the conserved nature of the ERF/AP2-CULLIN3-based E3 ligase interplay, and represents a first step to analyze their function in a commercially relevant crop plant.
Collapse
Affiliation(s)
- Sutton Mooney
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Raed Al-Saharin
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Christina M Choi
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Kyle Tucker
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Chase Beathard
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Hanjo A Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
120
|
Li Y, Zhang H, Zhang Q, Liu Q, Zhai H, Zhao N, He S. An AP2/ERF gene, IbRAP2-12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:19-30. [PMID: 30824052 DOI: 10.1016/j.plantsci.2019.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
The manipulation of APETALA2/ethylene responsive factor (AP2/ERF) genes in plants makes great contributions on resistance to abiotic stresses. Here, we cloned an AP2/ERF gene from the salt-tolerant sweetpotato line ND98 and named IbRAP2-12. IbRAP2-12 protein expressed in nuclear revealed by transient expression in tobacco epidermal cells, and IbRAP2-12 exhibited transcriptional activation using heterologous expression assays in yeast. IbRAP2-12 was induced by NaCl (200 mM), 20% polyethylene glycol (PEG) 6000, 100 μM abscisic acid (ABA), 100 μM ethephon and 100 μM methyl jasmonate (MeJA). IbRAP2-12-overexpressing Arabidopsis lines were more tolerant to salt and drought stresses than wild type plants. Transcriptome analysis showed that genes involved in the ABA signalling, JA signalling, proline biosynthesis and reactive oxygen species (ROS) scavenging processes were up-regulated in IbRAP2-12 overexpression lines under salt and drought stresses. In comparing with WT, the contents of ABA, JA and proline were significantly increased, while hydrogen peroxide (H2O2) and the rate of water loss were significantly reduced in transgenic lines under salt and drought stresses. All these results demonstrated the roles of IbRAP2-12 in enhancing salt and drought tolerance in transgenic Arabidopsis lines. Thus, this IbRAP2-12 gene can be used to increase the tolerance ability during abiotic stresses in plants.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Huan Zhang
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Qian Zhang
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
121
|
Li M, Yang S, Xu W, Pu Z, Feng J, Wang Z, Zhang C, Peng M, Du C, Lin F, Wei C, Qiao S, Zou H, Zhang L, Li Y, Yang H, Liao A, Song W, Zhang Z, Li J, Wang K, Zhang Y, Lin H, Zhang J, Tan W. The wild sweetpotato (Ipomoea trifida) genome provides insights into storage root development. BMC PLANT BIOLOGY 2019; 19:119. [PMID: 30935381 PMCID: PMC6444543 DOI: 10.1186/s12870-019-1708-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/11/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Sweetpotato (Ipomoea batatas (L.) Lam.) is the seventh most important crop in the world and is mainly cultivated for its underground storage root (SR). The genetic studies of this species have been hindered by a lack of high-quality reference sequence due to its complex genome structure. Diploid Ipomoea trifida is the closest relative and putative progenitor of sweetpotato, which is considered a model species for sweetpotato, including genetic, cytological, and physiological analyses. RESULTS Here, we generated the chromosome-scale genome sequence of SR-forming diploid I. trifida var. Y22 with high heterozygosity (2.20%). Although the chromosome-based synteny analysis revealed that the I. trifida shared conserved karyotype with Ipomoea nil after the separation, I. trifida had a much smaller genome than I. nil due to more efficient eliminations of LTR-retrotransposons and lack of species-specific amplification bursts of LTR-RTs. A comparison with four non-SR-forming species showed that the evolution of the beta-amylase gene family may be related to SR formation. We further investigated the relationship of the key gene BMY11 (with identity 47.12% to beta-amylase 1) with this important agronomic trait by both gene expression profiling and quantitative trait locus (QTL) mapping. And combining SR morphology and structure, gene expression profiling and qPCR results, we deduced that the products of the activity of BMY11 in splitting starch granules and be recycled to synthesize larger granules, contributing to starch accumulation and SR swelling. Moreover, we found the expression pattern of BMY11, sporamin proteins and the key genes involved in carbohydrate metabolism and stele lignification were similar to that of sweetpotato during the SR development. CONCLUSIONS We constructed the high-quality genome reference of the highly heterozygous I. trifida through a combined approach and this genome enables a better resolution of the genomics feature and genome evolutions of this species. Sweetpotato SR development genes can be identified in I. trifida and these genes perform similar functions and patterns, showed that the diploid I. trifida var. Y22 with typical SR could be considered an ideal model for the studies of sweetpotato SR development.
Collapse
Affiliation(s)
- Ming Li
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061 Sichuan People’s Republic of China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Songtao Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan People’s Republic of China
| | - Wei Xu
- Novogene Bioinformatics Institute, Beijing, 100083 People’s Republic of China
| | - Zhigang Pu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061 Sichuan People’s Republic of China
| | - Junyan Feng
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061 Sichuan People’s Republic of China
| | - Zhangying Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong People’s Republic of China
| | - Cong Zhang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061 Sichuan People’s Republic of China
| | - Meifang Peng
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061 Sichuan People’s Republic of China
| | - Chunguang Du
- Department of Biology, Montclair State University, Montclair, NJ 07043 USA
| | - Feng Lin
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061 Sichuan People’s Republic of China
| | - Changhe Wei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Shuai Qiao
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan People’s Republic of China
| | - Hongda Zou
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong People’s Republic of China
| | - Lei Zhang
- Novogene Bioinformatics Institute, Beijing, 100083 People’s Republic of China
| | - Yan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Huan Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Anzhong Liao
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan People’s Republic of China
| | - Wei Song
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan People’s Republic of China
| | - Zhongren Zhang
- Novogene Bioinformatics Institute, Beijing, 100083 People’s Republic of China
| | - Ji Li
- Novogene Bioinformatics Institute, Beijing, 100083 People’s Republic of China
| | - Kai Wang
- Novogene Bioinformatics Institute, Beijing, 100083 People’s Republic of China
| | - Yizheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Jinbo Zhang
- Novogene Bioinformatics Institute, Beijing, 100083 People’s Republic of China
| | - Wenfang Tan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan People’s Republic of China
| |
Collapse
|
122
|
Jan S, Abbas N, Ashraf M, Ahmad P. Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance. PROTOPLASMA 2019; 256:313-329. [PMID: 30311054 DOI: 10.1007/s00709-018-1310-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Plant leaves offer an exclusive windowpane to uncover the changes in organs, tissues, and cells as they advance towards the process of senescence and death. Drought-induced leaf senescence is an intricate process with remarkably coordinated phases of onset, progression, and completion implicated in an extensive reprogramming of gene expression. Advancing leaf senescence remobilizes nutrients to younger leaves thereby contributing to plant fitness. However, numerous mysteries remain unraveled concerning leaf senescence. We are not still able to correlate leaf senescence and drought stress to endogenous and exogenous environments. Furthermore, we need to decipher how molecular mechanisms of the leaf senescence and levels of drought tolerance are advanced and how is the involvement of SAGs in drought tolerance and plant fitness. This review provides the perspicacity indispensable for facilitating our coordinated point of view pertaining to leaf senescence together with inferences on progression of whole plant aging. The main segments discussed in the review include coordination between hormonal signaling, leaf senescence, drought tolerance, and crosstalk between hormones in leaf senescence regulation.
Collapse
Affiliation(s)
- Sumira Jan
- ICAR- Central Institute of Temperate Horticulture, Rangreth, Air Field, Srinagar, Jammu and Kashmir, India
| | - Nazia Abbas
- Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, Jammu and Kashmir, India
| | | | - Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, 190001, India.
| |
Collapse
|
123
|
Zhang XZ, Zheng WJ, Cao XY, Cui XY, Zhao SP, Yu TF, Chen J, Zhou YB, Chen M, Chai SC, Xu ZS, Ma YZ. Genomic Analysis of Stress Associated Proteins in Soybean and the Role of GmSAP16 in Abiotic Stress Responses in Arabidopsis and Soybean. FRONTIERS IN PLANT SCIENCE 2019; 10:1453. [PMID: 31803204 PMCID: PMC6876671 DOI: 10.3389/fpls.2019.01453] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/18/2019] [Indexed: 05/22/2023]
Abstract
Stress associated proteins (SAPs) containing A20/AN1 zinc finger domains have emerged as novel regulators of stress responses. In this study, 27 SAP genes were identified in soybean. The phylogenetic relationships, exon-intron structure, domain structure, chromosomal localization, putative cis-acting elements, and expression patterns of SAPs in various tissues under abiotic stresses were analyzed. Among the soybean SAP genes, GmSAP16 was significantly induced by water deficit stress, salt, and abscisic acid (ABA) and selected for further analysis. GmSAP16 was located in the nucleus and cytoplasm. The overexpression of GmSAP16 in Arabidopsis improved drought and salt tolerance at different developmental stages and increased ABA sensitivity, as indicated by delayed seed germination and stomatal closure. The GmSAP16 transgenic Arabidopsis plants had a higher proline content and a lower water loss rate and malondialdehyde (MDA) content than wild type (WT) plants in response to stresses. The overexpression of GmSAP16 in soybean hairy roots enhanced drought and salt tolerance of soybean seedlings, with higher proline and chlorophyll contents and a lower MDA content than WT. RNA inference (RNAi) of GmSAP16 increased stress sensitivity. Stress-related genes, including GmDREB1B;1, GmNCED3, GmRD22, GmDREB2, GmNHX1, and GmSOS1, showed significant expression alterations in GmSAP16-overexpressing and RNAi plants under stress treatments. These results indicate that soybean SAP genes play important roles in abiotic stress responses.
Collapse
Affiliation(s)
- Xiang-Zhan Zhang
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Xin-You Cao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement, Jinan, China
| | - Xi-Yan Cui
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Shu-Ping Zhao
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Tai-Fei Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jun Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Shou-Cheng Chai
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- *Correspondence: Shou-Cheng Chai ; Zhao-Shi Xu,
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- *Correspondence: Shou-Cheng Chai ; Zhao-Shi Xu,
| | - You-Zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
124
|
Luo D, Wu Y, Liu J, Zhou Q, Liu W, Wang Y, Yang Q, Wang Z, Liu Z. Comparative Transcriptomic and Physiological Analyses of Medicago sativa L. Indicates that Multiple Regulatory Networks Are Activated during Continuous ABA Treatment. Int J Mol Sci 2018; 20:E47. [PMID: 30583536 PMCID: PMC6337461 DOI: 10.3390/ijms20010047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022] Open
Abstract
Alfalfa is the most extensively cultivated forage legume worldwide. However, the molecular mechanisms underlying alfalfa responses to exogenous abscisic acid (ABA) are still unknown. In this study, the first global transcriptome profiles of alfalfa roots under ABA treatments for 1, 3 and 12 h (three biological replicates for each time point, including the control group) were constructed using a BGISEQ-500 sequencing platform. A total of 50,742 isoforms with a mean length of 2541 bp were generated, and 4944 differentially expressed isoforms (DEIs) were identified after ABA deposition. Metabolic analyses revealed that these DEIs were involved in plant hormone signal transduction, transcriptional regulation, antioxidative defense and pathogen immunity. Notably, several well characterized hormone signaling pathways, for example, the core ABA signaling pathway, was activated, while salicylic acid, jasmonate and ethylene signaling pathways were mainly suppressed by exogenous ABA. Moreover, the physiological work showed that catalase and peroxidase activity and glutathione and proline content were increased after ABA deposition, which is in accordance with the dynamic transcript profiles of the relevant genes in antioxidative defense system. These results indicate that ABA has the potential to improve abiotic stress tolerance, but that it may negatively regulate pathogen resistance in alfalfa.
Collapse
Affiliation(s)
- Dong Luo
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Yuguo Wu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Jie Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Qiang Zhou
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Wenxian Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Yanrong Wang
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100000, China.
| | - Zengyu Wang
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
- Core Research & Transformation, Noble Research Institute, Ardmore, OK 73401, USA.
| | - Zhipeng Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
125
|
Zhang HX, Ali M, Feng XH, Jin JH, Huang LJ, Khan A, Lv JG, Gao SY, Luo DX, Gong ZH. A Novel Transcription Factor CaSBP12 Gene Negatively Regulates the Defense Response against Phytophthora capsici in Pepper ( Capsicum annuum L.). Int J Mol Sci 2018; 20:E48. [PMID: 30583543 PMCID: PMC6337521 DOI: 10.3390/ijms20010048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/16/2018] [Accepted: 12/20/2018] [Indexed: 01/24/2023] Open
Abstract
SBP-box (Squamosa-promoter binding protein) genes are a type of plant-specific transcription factor and play important roles in plant growth, signal transduction and stress response. However, little is known about the SBP-box genes in pepper (CaSBP), especially in the process of Phytophthora capsici infection. In this study, a novel gene (CaSBP12) was selected from the CaSBP gene family, which was isolated from the pepper genome database in our previous study. The CaSBP12 gene was located in the nucleus of the cell and its silencing in the pepper plant enhanced the defense response against Phytophthora capsici infection. After inoculation with Phytophthora capsici, the root activity of the CaSBP12-silenced plants is compared to control plants, while malondialdehyde (MDA) content is compared viceversa. Additionally, the expression of defense related genes (CaPO1, CaSAR8.2, CaBPR1, and CaDEF1) in the silenced plants were induced to different degrees and the peak of CaSAR8.2 and CaBPR1 were higher than that of CaDEF1. The CaSBP12 over-expressed Nicotiana benthamiana plants were more susceptible to Phytophthora capsici infection with higher EC (electrical conductivity) and MDA contents as compared to the wild-type. The relative expression of defense related genes (NbDEF, NbNPR1, NbPR1a, and NbPR1b) in transgenic and wild-type Nicotiana benthamiana plants were induced, especially the NbPR1a and NbPR1b. In conclusion, these results indicate that CaSBP12 gene negative regulates the defense response against Phytophthora capsici infection which suggests their potentially significant role in plant defense. To our knowledge, this is the first report on CaSBP gene which negative regulate defense response.
Collapse
Affiliation(s)
- Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Xiao-Hui Feng
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Jing-Hao Jin
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Liu-Jun Huang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Jing-Gang Lv
- Tianjin Vegetable Research Center, Tianjin 300192, China.
| | - Su-Yan Gao
- Tianjin Vegetable Research Center, Tianjin 300192, China.
| | - De-Xu Luo
- Xuhuai Region Huaiyin Institute of Agricultural Sciences, Jiangsu 223001, China.
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
126
|
Shi WY, Du YT, Ma J, Min DH, Jin LG, Chen J, Chen M, Zhou YB, Ma YZ, Xu ZS, Zhang XH. The WRKY Transcription Factor GmWRKY12 Confers Drought and Salt Tolerance in Soybean. Int J Mol Sci 2018; 19:E4087. [PMID: 30562982 PMCID: PMC6320995 DOI: 10.3390/ijms19124087] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/17/2022] Open
Abstract
WRKYs are important regulators in plant development and stress responses. However, knowledge of this superfamily in soybean is limited. In this study, we characterized the drought- and salt-induced gene GmWRKY12 based on RNA-Seq and qRT-PCR. GmWRKY12, which is 714 bp in length, encoded 237 amino acids and grouped into WRKY II. The promoter region of GmWRKY12 included ABER4, MYB, MYC, GT-1, W-box and DPBF cis-elements, which possibly participate in abscisic acid (ABA), drought and salt stress responses. GmWRKY12 was minimally expressed in different tissues under normal conditions but highly expressed under drought and salt treatments. As a nucleus protein, GmWRKY12 was responsive to drought, salt, ABA and salicylic acid (SA) stresses. Using a transgenic hairy root assay, we further characterized the roles of GmWRKY12 in abiotic stress tolerance. Compared with control (Williams 82), overexpression of GmWRKY12 enhanced drought and salt tolerance, increased proline (Pro) content and decreased malondialdehyde (MDA) content under drought and salt treatment in transgenic soybean seedlings. These results may provide a basis to understand the functions of GmWRKY12 in abiotic stress responses in soybean.
Collapse
Affiliation(s)
- Wen-Yan Shi
- College of Life Sciences, College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China.
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yong-Tao Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China.
| | - Dong-Hong Min
- College of Life Sciences, College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China.
| | - Long-Guo Jin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Xiao-Hong Zhang
- College of Life Sciences, College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China.
| |
Collapse
|
127
|
Du YT, Zhao MJ, Wang CT, Gao Y, Wang YX, Liu YW, Chen M, Chen J, Zhou YB, Xu ZS, Ma YZ. Identification and characterization of GmMYB118 responses to drought and salt stress. BMC PLANT BIOLOGY 2018; 18:320. [PMID: 30509166 PMCID: PMC6276260 DOI: 10.1186/s12870-018-1551-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/21/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Abiotic stress severely influences plant growth and development. MYB transcription factors (TFs), which compose one of the largest TF families, play an important role in abiotic stress responses. RESULT We identified 139 soybean MYB-related genes; these genes were divided into six groups based on their conserved domain and were distributed among 20 chromosomes (Chrs). Quantitative real-time PCR (qRT-PCR) indicated that GmMYB118 highly responsive to drought, salt and high temperature stress; thus, this gene was selected for further analysis. Subcellular localization revealed that the GmMYB118 protein located in the nucleus. Ectopic expression (EX) of GmMYB118 increased tolerance to drought and salt stress and regulated the expression of several stress-associated genes in transgenic Arabidopsis plants. Similarly, GmMYB118-overexpressing (OE) soybean plants generated via Agrobacterium rhizogenes (A. rhizogenes)-mediated transformation of the hairy roots showed improved drought and salt tolerance. Furthermore, compared with the control (CK) plants, the clustered, regularly interspaced, short palindromic repeat (CRISPR)-transformed plants exhibited reduced drought and salt tolerance. The contents of proline and chlorophyll in the OE plants were significantly greater than those in the CK plants, whose contents were greater than those in the CRISPR plants under drought and salt stress conditions. In contrast, the reactive oxygen species (ROS) and malondialdehyde (MDA) contents were significantly lower in the OE plants than in the CK plants, whose contents were lower than those in the CRISPR plants under stress conditions. CONCLUSIONS These results indicated that GmMYB118 could improve tolerance to drought and salt stress by promoting expression of stress-associated genes and regulating osmotic and oxidizing substances to maintain cell homeostasis.
Collapse
Affiliation(s)
- Yong-Tao Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Meng-Jie Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Chang-Tao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health/Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048 China
| | - Yuan Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Yan-Xia Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Research Center of Wheat Engineering Technology of Hebei, Shijiazhuang, 050041 Hebei China
| | - Yong-Wei Liu
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051 Hebei China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Jun Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Yong-Bin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - You-Zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| |
Collapse
|
128
|
Identification, Classification, and Functional Analysis of AP2/ERF Family Genes in the Desert Moss Bryum argenteum. Int J Mol Sci 2018; 19:ijms19113637. [PMID: 30463185 PMCID: PMC6275083 DOI: 10.3390/ijms19113637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 11/17/2022] Open
Abstract
Bryum argenteum is a desert moss which shows tolerance to the desert environment and is emerging as a good plant material for identification of stress-related genes. AP2/ERF transcription factor family plays important roles in plant responses to biotic and abiotic stresses. AP2/ERF genes have been identified and extensively studied in many plants, while they are rarely studied in moss. In the present study, we identified 83 AP2/ERF genes based on the comprehensive dehydrationrehydration transcriptomic atlas of B. argenteum. BaAP2/ERF genes can be classified into five families, including 11 AP2s, 43 DREBs, 26 ERFs, 1 RAV, and 2 Soloists. RNA-seq data showed that 83 BaAP2/ERFs exhibited elevated transcript abundances during dehydration⁻rehydration process. We used RT-qPCR to validate the expression profiles of 12 representative BaAP2/ERFs and confirmed the expression trends using RNA-seq data. Eight out of 12 BaAP2/ERFs demonstrated transactivation activities. Seven BaAP2/ERFs enhanced salt and osmotic stress tolerances of yeast. This is the first study to provide detailed information on the identification, classification, and functional analysis of the AP2/ERFs in B. argenteum. This study will lay the foundation for the further functional analysis of these genes in plants, as well as provide greater insights into the molecular mechanisms of abiotic stress tolerance of B. argenteum.
Collapse
|
129
|
Zhang Z, Li X. Genome-wide identification of AP2/ERF superfamily genes and their expression during fruit ripening of Chinese jujube. Sci Rep 2018; 8:15612. [PMID: 30353116 PMCID: PMC6199273 DOI: 10.1038/s41598-018-33744-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023] Open
Abstract
The Ethylene response factor (ERF) belongs to the APETALA2/ethylene response factor (AP2/ERF) superfamily, located at the end of the ethylene signalling pathway, and has important roles in regulating the ethylene-related response genes. Thus, identifying and charactering this transcription factor would be helpful to elucidate ethylene related fruit ripening regulation in Chinese jujube (Ziziphus jujuba Mill.). In the present study, 119 AP2/ERF genes, including 5 Related to ABI3/VPs (RAV), 17 AP2s, 57 ERFs, 39 dehydration-responsive element-binding (DREB) factors and 1 soloist gene, were identified from the jujube genome sequences. Genome localization, gene duplication, phylogenetic relationships and conserved motifs were simultaneously analysed. Using available transcriptomic data, 85 genes with differential transcripts in the flower, leaf and fruit were detected, suggesting a broad regulation of AP2/ERF genes in the growth and development of jujube. Among them, 44 genes were expressed in the fruit. As assessed by quantitative PCR, 15 up- and 23 downregulated genes corresponding to fruit full maturity were found, while in response to 100 μl l-1 ethylene, 6 up- and 16 downregulated genes were generated. By comparing the output, ZjERF54 and DREB39 were found to be the best candidate genes that positively participated in jujube fruit ripening, while ZjERF25 and ZjERF36, which had an ERF-associated amphiphilic repression (EAR) motif, were ripening repressors. These findings help to gain insights into AP2/ERF gene evolution and provide a useful resource to further understand the ethylene regulatory mechanisms underlying Chinese jujube fruit ripening.
Collapse
Affiliation(s)
- Zhong Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Research Centre for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Research Centre for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
130
|
Klay I, Gouia S, Liu M, Mila I, Khoudi H, Bernadac A, Bouzayen M, Pirrello J. Ethylene Response Factors (ERF) are differentially regulated by different abiotic stress types in tomato plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:137-145. [PMID: 30080597 DOI: 10.1016/j.plantsci.2018.05.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/01/2018] [Accepted: 05/22/2018] [Indexed: 05/02/2023]
Abstract
Plants are sessile organisms, hence to face environmental constrains they developed strategies that rely on the activation of stress-response genes under the control of specific transcription factors. The plant hormone ethylene mediates physiological, developmental and stress responses through the activation of Ethylene Response Factors (ERFs) which belong to a large multigene family of transcription factors. While an increasing number of studies supports the involvement of ERFs in abiotic stress responses, so far the specific role of ERF family members in different abiotic stress conditions remains unexplored. The present work investigates the expression profile of a set of ERFs, representative of different ERF types, in tomato plants subjected to cold, heat, salt, drought and flooding conditions. The study revealed that a group of ERFs is preferentially associated with cold and heat stress responses while another set is expressed in response to salt, water and flooding stresses. Transactivation assays indicated that ERFs can regulate the expression of abiotic stress genes regardless of whether or not they harbor conserved GCC or DRE cis-elements in their promoter region. The outcome of the study provides clue on which ERFs should be targeted when aiming to improve adaptation to a particular stress type.
Collapse
Affiliation(s)
- Imen Klay
- GBF, University of Toulouse, INRA, Castanet-Tolosan, France
| | - Sandra Gouia
- GBF, University of Toulouse, INRA, Castanet-Tolosan, France; Laboratory of Plant Protection and Improvement, University of Sfax, Center of Biotechnology of Sfax, Route Sidi Mansour Km 6, B.P 1177, 3018, Sfax, Tunisia
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610014, China
| | - Isabelle Mila
- GBF, University of Toulouse, INRA, Castanet-Tolosan, France
| | - Habib Khoudi
- Laboratory of Plant Protection and Improvement, University of Sfax, Center of Biotechnology of Sfax, Route Sidi Mansour Km 6, B.P 1177, 3018, Sfax, Tunisia
| | - Anne Bernadac
- GBF, University of Toulouse, INRA, Castanet-Tolosan, France
| | | | - Julien Pirrello
- GBF, University of Toulouse, INRA, Castanet-Tolosan, France.
| |
Collapse
|
131
|
The Maize WRKY Transcription Factor ZmWRKY40 Confers Drought Resistance in Transgenic Arabidopsis. Int J Mol Sci 2018; 19:ijms19092580. [PMID: 30200246 PMCID: PMC6164628 DOI: 10.3390/ijms19092580] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 11/17/2022] Open
Abstract
Abiotic stresses restrict the growth and yield of crops. Plants have developed a number of regulatory mechanisms to respond to these stresses. WRKY transcription factors (TFs) are plant-specific transcription factors that play essential roles in multiple plant processes, including abiotic stress response. At present, little information regarding drought-related WRKY genes in maize is available. In this study, we identified a WRKY transcription factor gene from maize, named ZmWRKY40. ZmWRKY40 is a member of WRKY group II, localized in the nucleus of mesophyll protoplasts. Several stress-related transcriptional regulatory elements existed in the promoter region of ZmWRKY40. ZmWRKY40 was induced by drought, high salinity, high temperature, and abscisic acid (ABA). ZmWRKY40 could rapidly respond to drought with peak levels (more than 10-fold) at 1 h after treatment. Overexpression of ZmWRKY40 improved drought tolerance in transgenic Arabidopsis by regulating stress-related genes, and the reactive oxygen species (ROS) content in transgenic lines was reduced by enhancing the activities of peroxide dismutase (POD) and catalase (CAT) under drought stress. According to the results, the present study may provide a candidate gene involved in the drought stress response and a theoretical basis to understand the mechanisms of ZmWRKY40 in response to abiotic stresses in maize.
Collapse
|
132
|
Normal and Abortive Buds Transcriptomic Profiling of Broccoli ogu Cytoplasmic Male Sterile Line and Its Maintainer. Int J Mol Sci 2018; 19:ijms19092501. [PMID: 30149512 PMCID: PMC6165216 DOI: 10.3390/ijms19092501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022] Open
Abstract
Bud abortion is the main factor affecting hybrid seeds’ yield during broccoli cross breeding when using ogura cytoplasmic male sterile (ogu CMS) lines. However, the genes associated with bud abortion are poorly understood. We applied RNA sequencing to analyze the transcriptomes of normal and abortive buds of broccoli maintainer and ogu CMS lines. Functional analysis showed that among the 54,753 annotated unigenes obtained, 74 and 21 differentially expressed genes in common were upregulated and downregulated in ogu CMS abortive buds compared with ogu CMS normal buds, maintainer normal, and abortive buds, respectively. Nineteen of the common differentially expressed genes were enriched by GO terms associated with glycosyl hydrolases, reactive oxygen species scavenging, inhibitor, and protein degradation. Ethylene-responsive transcription factor 115 and transcriptional factor basic helix-loop-helix 137 were significantly upregulated; transcription factors DUO1 and PosF21/RF2a/BZIP34 were downregulated in ogu CMS abortive buds compared with the other groups. Genes related to polygalacturonase metabolism, glycosyl hydrolases, oxidation reduction process, phenylalanine metabolism, and phenylpropanoid biosynthesis were significantly changed in ogu CMS abortive buds. Our results increase our understanding of bud abortion, provide a valuable resource for further functional characterization of ogu CMS during bud abortion, and will aid in future cross breeding of Brassica crops.
Collapse
|
133
|
Najafi S, Sorkheh K, Nasernakhaei F. Characterization of the APETALA2/Ethylene-responsive factor (AP2/ERF) transcription factor family in sunflower. Sci Rep 2018; 8:11576. [PMID: 30068961 PMCID: PMC6070487 DOI: 10.1038/s41598-018-29526-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/12/2018] [Indexed: 01/09/2023] Open
Abstract
One of the most prominent families of genes in plants is the AP2/ERF which play an important role in regulating plant growth and responses to various stresses. In this research, a genome-wide survey was conducted to recognize the AP2/ERF genes in sunflower (Helianthus annuus L.), and a total of 288 HaAP2/ERF was obtained. Phylogenetic analysis divided them into four sub-families, including 248 ERF, 4 RAV and 35 AP2, and one subgroup of the Soloist family. Localization of chromosome, gene structure, the conserved motif, gene ontology, interaction networks, homology modeling, the modeling of cis-regulatory elements and the analysis of events in the duplication of genes were carried out for HaAP2/ERF genes. Finally, 9AP2/ERF genes were chosen to confirm the gene expression of the selected genes in leaf and root tissues in various abiotic stress conditions by qPCR. The results confirmed that AP2/ERFs genes could effectively resist abiotic stress. Also, proline content was studied under drought, salinity, cold and heat stress. The results indicated that proline was increased under abiotic stress. This research has been done for the first time to determine the HaAP2/ERF family, which prepared valuable data for the evolutionary and practical research regarding AP2/ERF in sunflower.
Collapse
Affiliation(s)
- Somayeh Najafi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, P. O. Box 61355/144, Ahvaz, Iran
| | - Karim Sorkheh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, P. O. Box 61355/144, Ahvaz, Iran.
| | - Fatemeh Nasernakhaei
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, P. O. Box 61355/144, Ahvaz, Iran
| |
Collapse
|
134
|
Mahdavi Mashaki K, Garg V, Nasrollahnezhad Ghomi AA, Kudapa H, Chitikineni A, Zaynali Nezhad K, Yamchi A, Soltanloo H, Varshney RK, Thudi M. RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLoS One 2018; 13:e0199774. [PMID: 29953498 PMCID: PMC6023194 DOI: 10.1371/journal.pone.0199774] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/13/2018] [Indexed: 11/24/2022] Open
Abstract
Drought is the most important constraint that effects chickpea production globally. RNA-Seq has great potential to dissect the molecular mechanisms of tolerance to environmental stresses. Transcriptome profiles in roots and shoots of two contrasting Iranian kabuli chickpea genotypes (Bivanij and Hashem) were investigated under water-limited conditions at early flowering stage using RNA-Seq approach. A total of 4,572 differentially expressed genes (DEGs) were identified. Of these, 261 and 169 drought stress responsive genes were identified in the shoots and the roots, respectively, and 17 genes were common in the shoots and the roots. Gene Ontology (GO) analysis revealed several sub-categories related to the stress, including response to stress, defense response and response to stimulus in the tolerant genotype Bivanij as compared to the sensitive genotype Hashem under drought stress. In addition, several Transcription factors (TFs) were identified in major metabolic pathways such as, ABA, proline and flavonoid biosynthesis. Furthermore, a number of the DEGs were observed in "QTL-hotspot" regions which were reported earlier in chickpea. Drought tolerance dissection in the genotypes revealed that the genes and the pathways involved in shoots of Bivanij were the most important factor to make a difference between the genotypes for drought tolerance. The identified TFs in the experiment, particularly those which were up-regulated in shoots of Bivanij during drought stress, were potential candidates for enhancing tolerance to drought.
Collapse
Affiliation(s)
- Keyvan Mahdavi Mashaki
- Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Vanika Garg
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | | | - Himabindu Kudapa
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Khalil Zaynali Nezhad
- Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ahad Yamchi
- Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hasan Soltanloo
- Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Rajeev Kumar Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| |
Collapse
|
135
|
Cui XY, Du YT, Fu JD, Yu TF, Wang CT, Chen M, Chen J, Ma YZ, Xu ZS. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC PLANT BIOLOGY 2018; 18:93. [PMID: 29801463 PMCID: PMC5970481 DOI: 10.1186/s12870-018-1306-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/08/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND The calcineurin B-like protein (CBL)-interacting protein kinase (CIPK) signaling pathway responds to various abiotic stresses in plants. RESULTS Wheat CIPK23, isolated from wheat drought transcriptome data set, was induced by multiple abiotic stresses, including drought, salt, and abscisic acid (ABA). Compared with wild-type plants, TaCIPK23-overexpression wheat and Arabidopsis showed an higher survival rate under drought conditions with enhanced germination rate, developed root system, increased accumulation of osmolytes, and reduced water loss rate. Over-expression of TaCIPK23 rendered transgenic plants ABA sensitivity, as evidenced by delayed seed germination and the induction of stomatal closure. Consistent with the ABA-sensitive phenotype, the expression level of drought- and ABA-responsive genes were increased under drought conditions in the transgenic plants. In addition, using yeast two-hybrid system, pull-down and bimolecular fluorescence complementation (BiFc) assays, TaCIPK23 was found to interact with TaCBL1 on the plasma membrane. CONCLUSIONS These results suggest that TaCIPK23 plays important roles in ABA and drought stress responses, and mediates crosstalk between the ABA signaling pathway and drought stress responses in wheat.
Collapse
Affiliation(s)
- Xiao-Yu Cui
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Yong-Tao Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Jin-dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Chang-Tao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health/Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048 China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| |
Collapse
|
136
|
Cui XY, Du YT, Fu JD, Yu TF, Wang CT, Chen M, Chen J, Ma YZ, Xu ZS. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC PLANT BIOLOGY 2018. [PMID: 29801463 DOI: 10.1186/s12870-018-1306-5research] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND The calcineurin B-like protein (CBL)-interacting protein kinase (CIPK) signaling pathway responds to various abiotic stresses in plants. RESULTS Wheat CIPK23, isolated from wheat drought transcriptome data set, was induced by multiple abiotic stresses, including drought, salt, and abscisic acid (ABA). Compared with wild-type plants, TaCIPK23-overexpression wheat and Arabidopsis showed an higher survival rate under drought conditions with enhanced germination rate, developed root system, increased accumulation of osmolytes, and reduced water loss rate. Over-expression of TaCIPK23 rendered transgenic plants ABA sensitivity, as evidenced by delayed seed germination and the induction of stomatal closure. Consistent with the ABA-sensitive phenotype, the expression level of drought- and ABA-responsive genes were increased under drought conditions in the transgenic plants. In addition, using yeast two-hybrid system, pull-down and bimolecular fluorescence complementation (BiFc) assays, TaCIPK23 was found to interact with TaCBL1 on the plasma membrane. CONCLUSIONS These results suggest that TaCIPK23 plays important roles in ABA and drought stress responses, and mediates crosstalk between the ABA signaling pathway and drought stress responses in wheat.
Collapse
Affiliation(s)
- Xiao-Yu Cui
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Yong-Tao Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Chang-Tao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health/Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
137
|
|
138
|
Du XM, Ni XL, Ren XL, Xin GL, Jia GL, Liu HD, Liu WZ. De novo transcriptomic analysis to identify differentially expressed genes during the process of aerenchyma formation in Typha angustifolia leaves. Gene 2018; 662:66-75. [PMID: 29625266 DOI: 10.1016/j.gene.2018.03.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/13/2018] [Accepted: 03/29/2018] [Indexed: 11/16/2022]
Abstract
Lysigenous aerenchyma is formed through programmed cell death (PCD) in Typha angustifolia leaves. However, the genome and transcriptome data for this species are unknown. To further elucidate the molecular basis of PCD during aerenchyma formation in T. angustifolia leaves, transcriptomic analysis of T. angustifolia leaves was performed using Illumina sequencing technology, revealing 73,821 unigenes that were produced by assembly of the reads in T1, T2 and T3 samples. The important pathways, such as programmed cell death (PCD), aerenchyma formation, and ethylene responsiveness were regulated by these unigenes. 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO) were highly up-regulated as key enzymes for ethylene synthesis, along with respiratory burst oxidase homolog (RBOH), metallothionein, calmodulin-like protein (CML), and polygalacturonase (PG), may collectively explain the PCD involved in T. angustifolia aerenchyma formation. We hypothesize that fermentation, metabolism and glycolysis generate ATP for PCD. We searched the 73,821 unigenes against protein databases, and 24,712 were annotated. Based on sequence homology, 16,012 of the 73,821 annotated unigenes were assigned to one or more Gene Ontology (GO) terms. Meanwhile, a total of 9537 unigenes were assigned to 126 pathways in the KEGG database. In summary, this investigation provides important guidelines for exploring the molecular mechanisms of aerenchyma formation in aquatic plants.
Collapse
Affiliation(s)
- Xiao-Min Du
- School of Life Science, Northwest University, Xi'an 710069, China
| | - Xi-Lu Ni
- State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan, 750004, China
| | - Xiao-Long Ren
- School of Life Science, Northwest University, Xi'an 710069, China
| | - Gui-Liang Xin
- School of Life Science, Northwest University, Xi'an 710069, China
| | - Guo-Lun Jia
- School of Life Science, Northwest University, Xi'an 710069, China
| | - Hui-Dong Liu
- School of Life Science, Northwest University, Xi'an 710069, China
| | - Wen-Zhe Liu
- School of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
139
|
Kaashyap M, Ford R, Kudapa H, Jain M, Edwards D, Varshney R, Mantri N. Differential Regulation of Genes Involved in Root Morphogenesis and Cell Wall Modification is Associated with Salinity Tolerance in Chickpea. Sci Rep 2018; 8:4855. [PMID: 29555923 PMCID: PMC5859185 DOI: 10.1038/s41598-018-23116-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
Salinity is a major constraint for intrinsically salt sensitive grain legume chickpea. Chickpea exhibits large genetic variation amongst cultivars, which show better yields in saline conditions but still need to be improved further for sustainable crop production. Based on previous multi-location physiological screening, JG 11 (salt tolerant) and ICCV 2 (salt sensitive) were subjected to salt stress to evaluate their physiological and transcriptional responses. A total of ~480 million RNA-Seq reads were sequenced from root tissues which resulted in identification of 3,053 differentially expressed genes (DEGs) in response to salt stress. Reproductive stage shows high number of DEGs suggesting major transcriptional reorganization in response to salt to enable tolerance. Importantly, cationic peroxidase, Aspartic ase, NRT1/PTR, phosphatidylinositol phosphate kinase, DREB1E and ERF genes were significantly up-regulated in tolerant genotype. In addition, we identified a suite of important genes involved in cell wall modification and root morphogenesis such as dirigent proteins, expansin and casparian strip membrane proteins that could potentially confer salt tolerance. Further, phytohormonal cross-talk between ERF and PIN-FORMED genes which modulate the root growth was observed. The gene set enrichment analysis and functional annotation of these genes suggests they may be utilised as potential candidates for improving chickpea salt tolerance.
Collapse
Affiliation(s)
- Mayank Kaashyap
- School of Science, The Pangenomics Group, RMIT University, Melbourne, Australia
| | - Rebecca Ford
- School of Natural Sciences, Environmental Futures Research Institute, Griffith University, Queensland, Australia
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Mukesh Jain
- National Institute of Plant Genome Research, New Delhi, India
| | - Dave Edwards
- School of Plant Biology, The University of Western Australia, Perth, Australia
| | - Rajeev Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| | - Nitin Mantri
- School of Science, The Pangenomics Group, RMIT University, Melbourne, Australia.
| |
Collapse
|
140
|
Chandler JW. Class VIIIb APETALA2 Ethylene Response Factors in Plant Development. TRENDS IN PLANT SCIENCE 2018; 23:151-162. [PMID: 29074232 DOI: 10.1016/j.tplants.2017.09.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 05/21/2023]
Abstract
The APETALA2 (AP2) transcription factor superfamily in many plant species is extremely large. In addition to well-documented roles in stress responses, some AP2 members in arabidopsis, such as those of subgroup VIIIb, which includes DORNRÖSCHEN, DORNRÖSCHEN-LIKE, PUCHI, and LEAFY PETIOLE, are also important developmental regulators throughout the plant life cycle. Information is accumulating from orthologs of these proteins in important crop species that they influence key agronomic traits, such as the release of bud-burst in woody perennials and floral meristem identity and branching in cereals, and thereby represent potential for agronomic improvement. Given the increasing recognition of their developmental significance, this review highlights the function of these proteins and addresses their phylogenetic and evolutionary relationships.
Collapse
Affiliation(s)
- John W Chandler
- Institute for Developmental Biology, Cologne Biocenter, University of Cologne, Zuelpicher Strasse 47b, D-50674 Cologne, Germany.
| |
Collapse
|
141
|
Zhang L, Xu B, Wu T, Wen MX, Fan LX, Feng ZZ, Paoletti E. Transcriptomic analysis of Pak Choi under acute ozone exposure revealed regulatory mechanism against ozone stress. BMC PLANT BIOLOGY 2017; 17:236. [PMID: 29216819 PMCID: PMC5721698 DOI: 10.1186/s12870-017-1202-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 12/01/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Ground-level ozone (O3) is one of the major air pollutants, which cause oxidative injury to plants. The physiological and biochemical mechanisms underlying the responses of plants to O3 stress have been well investigated. However, there are limited reports about the molecular basis of plant responses to O3. In this study, a comparative transcriptomic analysis of Pak Choi (Brassica campestris ssp. chinensis) exposed to different O3 concentrations was conducted for the first time. RESULTS Seedlings of Pak Choi with five leaves were exposed to non-filtered air (NF, 31 ppb) or elevated O3 (E-O3, 252 ppb) for 2 days (8 h per day, from 9:00-17:00). Compared with plants in the NF, a total of 675 differentially expressed genes (DEGs) were identified in plants under E-O3, including 219 DEGs with decreased expressions and 456 DEGs with increased expressions. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that O3 stress invoked multiple cellular defense pathways to mitigate the impaired cellular integrity and metabolism, including 'glutathione metabolism', 'phenylpropanoid biosynthesis', 'sulfur metabolism', 'glucosinolate biosynthesis', 'cutin, suberine and wax biosynthesis' and others. Transcription factors potentially involved in this cellular regulation were also found, such as AP2-ERF, WRKY, JAZ, MYB etc. Based on the RNA-Seq data and previous studies, a working model was proposed integrating O3 caused reactive oxygen burst, oxidation-reduction regulation, jasmonic acid and downstream functional genes for the regulation of cellular homeostasis after acute O3 stress. CONCLUSION The present results provide a valuable insight into the molecular responses of Pak Choi to acute O3 stress and the specific DEGs revealed in this study could be used for further functional identification of key allelic genes determining the O3 sensitivity of Pak Choi.
Collapse
Affiliation(s)
- Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Bin Xu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Tao Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Mu-xuan Wen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Lian-xue Fan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Zhao-zhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Elena Paoletti
- Institute of Sustainable Plant Protection, National Research Council, Florence, Italy
| |
Collapse
|
142
|
Mou S, Liu Z, Gao F, Yang S, Su M, Shen L, Wu Y, He S. CaHDZ27, a Homeodomain-Leucine Zipper I Protein, Positively Regulates the Resistance to Ralstonia solanacearum Infection in Pepper. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:960-973. [PMID: 28840788 DOI: 10.1094/mpmi-06-17-0130-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Homeodomain-leucine zipper class I (HD-Zip I) transcription factors have been functionally characterized in plant responses to abiotic stresses, but their roles in plant immunity are poorly understood. Here, a HD-Zip I gene, CaHZ27, was isolated from pepper (Capsicum annum) and characterized for its role in pepper immunity. Quantitative real-time polymerase chain reaction showed that CaHDZ27 was transcriptionally induced by Ralstonia solanacearum inoculation and exogenous application of methyl jasmonate, salicylic acid, or ethephon. The CaHDZ27-green fluorescent protein fused protein was targeted exclusively to the nucleus. Chromatin immunoprecipitation demonstrated that CaHDZ27 bound to the 9-bp pseudopalindromic element (CAATAATTG) and triggered β-glucuronidase expression in a CAATAATTG-dependent manner. Virus-induced gene silencing of CaHDZ27 significantly attenuated the resistance of pepper plants against R. solanacearum and downregulated defense-related marker genes, including CaHIR1, CaACO1, CaPR1, CaPR4, CaPO2, and CaBPR1. By contrast, transient overexpression of CaHDZ27 triggered strong cell death mediated by the hypersensitive response and upregulated the tested immunity-associated marker genes. Ectopic CaHDZ27 expression in tobacco enhances its resistance against R. solanacearum. These results collectively suggest that CaHDZ27 functions as a positive regulator in pepper resistance against R. solanacearum. Bimolecular fluorescence complementation and coimmunoprecipitation assays indicate that CaHDZ27 monomers bind with each other, and this binding is enhanced significantly by R. solanacearum inoculation. We speculate that homodimerization of CaHZ27 might play a role in pepper response to R. solanacearum, further direct evidence is required to confirm it.
Collapse
Affiliation(s)
- Shaoliang Mou
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 2 College of Life Science, Fujian Agriculture and Forestry University
| | - Zhiqin Liu
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 3 College of Crop Science, Fujian Agriculture and Forestry University; and
| | - Feng Gao
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 2 College of Life Science, Fujian Agriculture and Forestry University
| | - Sheng Yang
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 3 College of Crop Science, Fujian Agriculture and Forestry University; and
| | - Meixia Su
- 2 College of Life Science, Fujian Agriculture and Forestry University
| | - Lei Shen
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 3 College of Crop Science, Fujian Agriculture and Forestry University; and
| | - Yang Wu
- 4 College of Life Science, Jinggang Shan University, Ji'an, Jiangxi 343000, PR China
| | - Shuilin He
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 3 College of Crop Science, Fujian Agriculture and Forestry University; and
| |
Collapse
|
143
|
Xing L, Di Z, Yang W, Liu J, Li M, Wang X, Cui C, Wang X, Wang X, Zhang R, Xiao J, Cao A. Overexpression of ERF1-V from Haynaldia villosa Can Enhance the Resistance of Wheat to Powdery Mildew and Increase the Tolerance to Salt and Drought Stresses. FRONTIERS IN PLANT SCIENCE 2017; 8:1948. [PMID: 29238352 PMCID: PMC5712803 DOI: 10.3389/fpls.2017.01948] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/30/2017] [Indexed: 05/04/2023]
Abstract
The APETALA 2/Ethylene-responsive element binding factor (AP2/ERF) transcription factor gene family is widely involved in the biotic and abiotic stress regulation. Haynaldia villosa (VV, 2n = 14), a wild species of wheat, is a potential gene pool for wheat improvement. H. villosa confers high resistance to several wheat diseases and high tolerance to some abiotic stress. In this study, ERF1-V, an ethylene-responsive element-binding factor gene of the AP2/ERF transcription factor gene family from wild H. villosa, was cloned and characterized. Sequence and phylogenetic analysis showed that ERF1-V is a deduced B2 type ERF gene. ERF1-V was first identified as a Blumeria graminis f. sp. tritici (Bgt) up-regulated gene, and later found to be induced by drought, salt and cold stresses. In responses to hormones, ERF1-V was up-regulated by ethylene and abscisic acid, but down-regulated by salicylic acid and jasmonic acid. Over expression of ERF1-V in wheat could improve resistance to powdery mildew, salt and drought stress. Chlorophyll content, malondialdehyde content, superoxide dismutase and peroxidase activity were significantly differences between the recipient Yangmai158 and the transgenic plants following salt treatment. Furthermore, the expression levels of some stress responsive genes were differences after drought or salt treatments. Although ERF1-V was activated by the constitutive promoter, the agronomic traits, including flowering time, plant height, effective tiller number, spikelet number per spike and grain size, did not changed significantly. ERF1-V is a valuable gene for wheat improvement by genetic engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Aizhong Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
144
|
Misra VA, Wang Y, Timko MP. A compendium of transcription factor and Transcriptionally active protein coding gene families in cowpea (Vigna unguiculata L.). BMC Genomics 2017; 18:898. [PMID: 29166879 PMCID: PMC5700742 DOI: 10.1186/s12864-017-4306-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/14/2017] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Cowpea (Vigna unguiculata (L.) Walp.) is the most important food and forage legume in the semi-arid tropics of sub-Saharan Africa where approximately 80% of worldwide production takes place primarily on low-input, subsistence farm sites. Among the major goals of cowpea breeding and improvement programs are the rapid manipulation of agronomic traits for seed size and quality and improved resistance to abiotic and biotic stresses to enhance productivity. Knowing the suite of transcription factors (TFs) and transcriptionally active proteins (TAPs) that control various critical plant cellular processes would contribute tremendously to these improvement aims. RESULTS We used a computational approach that employed three different predictive pipelines to data mine the cowpea genome and identified over 4400 genes representing 136 different TF and TAP families. We compare the information content of cowpea to two evolutionarily close species common bean (Phaseolus vulgaris), and soybean (Glycine max) to gauge the relative informational content. Our data indicate that correcting for genome size cowpea has fewer TF and TAP genes than common bean (4408 / 5291) and soybean (4408/ 11,065). Members of the GROWTH-REGULATING FACTOR (GRF) and Auxin/indole-3-acetic acid (Aux/IAA) gene families appear to be over-represented in the genome relative to common bean and soybean, whereas members of the MADS (Minichromosome maintenance deficient 1 (MCM1), AGAMOUS, DEFICIENS, and serum response factor (SRF)) and C2C2-YABBY appear to be under-represented. Analysis of the AP2-EREBP APETALA2-Ethylene Responsive Element Binding Protein (AP2-EREBP), NAC (NAM (no apical meristem), ATAF1, 2 (Arabidopsis transcription activation factor), CUC (cup-shaped cotyledon)), and WRKY families, known to be important in defense signaling, revealed changes and phylogenetic rearrangements relative to common bean and soybean that suggest these groups may have evolved different functions. CONCLUSIONS The availability of detailed information on the coding capacity of the cowpea genome and in particular the various TF and TAP gene families will facilitate future comparative analysis and development of strategies for controlling growth, differentiation, and abiotic and biotic stress resistances of cowpea.
Collapse
Affiliation(s)
- Vikram A. Misra
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
| | - Yu Wang
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
- Center for Quantitative Sciences, Vanderbilt University, Nashville, TN 37232-6848 USA
| | - Michael P. Timko
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
| |
Collapse
|
145
|
Rudnik R, Bulcha JT, Reifschneider E, Ellersiek U, Baier M. Specificity versus redundancy in the RAP2.4 transcription factor family of Arabidopsis thaliana: transcriptional regulation of genes for chloroplast peroxidases. BMC PLANT BIOLOGY 2017; 17:144. [PMID: 28835225 PMCID: PMC5569508 DOI: 10.1186/s12870-017-1092-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 08/14/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND The Arabidopsis ERFIb / RAP2.4 transcription factor family consists of eight members with highly conserved DNA binding domains. Selected members have been characterized individually, but a systematic comparison is pending. The redox-sensitive transcription factor RAP2.4a mediates chloroplast-to-nucleus redox signaling and controls induction of the three most prominent chloroplast peroxidases, namely 2-Cys peroxiredoxin A (2CPA) and thylakoid- and stromal ascorbate peroxidase (tAPx and sAPx). To test the specificity and redundancy of RAP2.4 transcription factors in the regulation of genes for chloroplast peroxidases, we compared the DNA-binding sites of the transcription factors in tertiary structure models, analyzed transcription factor and target gene regulation by qRT-PCR in RAP2.4, 2-Cys peroxiredoxin and ascorbate peroxidase T-DNA insertion lines and RAP2.4 overexpressing lines of Arabidopsis thaliana and performed promoter binding studies. RESULTS All RAP2.4 proteins bound the tAPx promoter, but only the four RAP2.4 proteins with identical DNA contact sites, namely RAP2.4a, RAP2.4b, RAP2.4d and RAP2.4h, interacted stably with the redox-sensitive part of the 2CPA promoter. Gene expression analysis in RAP2.4 knockout lines revealed that RAP2.4a is the only one supporting 2CPA and chloroplast APx expression. Rap2.4h binds to the same promoter region as Rap2.4a and antagonizes 2CPA expression. Like the other six RAP2.4 proteins, Rap2.4 h promotes APx mRNA accumulation. Chloroplast ROS signals induced RAP2.4b and RAP2.4d expression, but these two transcription factor genes are (in contrast to RAP2.4a) insensitive to low 2CP availability, and their expression decreased in APx knockout lines. RAP2.4e and RAP2.4f gradually responded to chloroplast APx availability and activated specifically APx expression. These transcription factors bound, like RAP2.4c and RAP2.4g, the tAPx promoter, but hardly the 2CPA promoter. CONCLUSIONS The RAP2.4 transcription factors form an environmentally and developmentally regulated transcription factor network, in which the various members affect the expression intensity of the others. Within the transcription factor family, RAP2.4a has a unique function as a general transcriptional activator of chloroplast peroxidase activity. The other RAP2.4 proteins mediate the fine-control and adjust the relative availability of 2CPA, sAPx and tAPx.
Collapse
Affiliation(s)
- Radoslaw Rudnik
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195, Berlin, Germany
| | - Jote Tafese Bulcha
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195, Berlin, Germany
| | - Elena Reifschneider
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195, Berlin, Germany
| | - Ulrike Ellersiek
- Heinrich-Heine-Universität Düsseldorf, Plant Sciences, Universitätsstraße 25, 40225, Düsseldorf, Germany
| | - Margarete Baier
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195, Berlin, Germany.
| |
Collapse
|
146
|
Expression analysis of genes encoding double B-box zinc finger proteins in maize. Funct Integr Genomics 2017; 17:653-666. [PMID: 28480497 DOI: 10.1007/s10142-017-0562-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/16/2017] [Accepted: 04/24/2017] [Indexed: 10/24/2022]
Abstract
The B-box proteins play key roles in plant development. The double B-box (DBB) family is one of the subfamily of the B-box family, with two B-box domains and without a CCT domain. In this study, 12 maize double B-box genes (ZmDBBs) were identified through a genome-wide survey. Phylogenetic analysis of DBB proteins from maize, rice, Sorghum bicolor, Arabidopsis, and poplar classified them into five major clades. Gene duplication analysis indicated that segmental duplications made a large contribution to the expansion of ZmDBBs. Furthermore, a large number of cis-acting regulatory elements related to plant development, response to light and phytohormone were identified in the promoter regions of the ZmDBB genes. The expression patterns of the ZmDBB genes in various tissues and different developmental stages demonstrated that ZmDBBs might play essential roles in plant development, and some ZmDBB genes might have unique function in specific developmental stages. In addition, several ZmDBB genes showed diurnal expression pattern. The expression levels of some ZmDBB genes changed significantly under light/dark treatment conditions and phytohormone treatments, implying that they might participate in light signaling pathway and hormone signaling. Our results will provide new information to better understand the complexity of the DBB gene family in maize.
Collapse
|
147
|
Yu TF, Xu ZS, Guo JK, Wang YX, Abernathy B, Fu JD, Chen X, Zhou YB, Chen M, Ye XG, Ma YZ. Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Sci Rep 2017; 7:44050. [PMID: 28281578 PMCID: PMC5345034 DOI: 10.1038/srep44050] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/02/2017] [Indexed: 11/28/2022] Open
Abstract
Cold shock proteins (CSPs) enhance acclimatization of bacteria to adverse environmental circumstances. The Escherichia coli CSP genes CspA and CspB were modified to plant-preferred codon sequences and named as SeCspA and SeCspB. Overexpression of exogenous SeCspA and SeCspB in transgenic Arabidopsis lines increased germination rates, survival rates, and increased primary root length compared to control plants under drought and salt stress. Investigation of several stress-related parameters in SeCspA and SeCspB transgenic wheat lines indicated that these lines possessed stress tolerance characteristics, including lower malondialdehyde (MDA) content, lower water loss rates, lower relative Na+ content, and higher chlorophyll content and proline content than the control wheat plants under drought and salt stresses. RNA-seq and qRT-PCR expression analysis showed that overexpression of SeCsp could enhance the expression of stress-responsive genes. The field experiments showed that the SeCspA transgenic wheat lines had great increases in the 1000-grain weight and grain yield compared to the control genotype under drought stress conditions. Significant differences in the stress indices revealed that the SeCspA transgenic wheat lines possessed significant and stable improvements in drought tolerance over the control plants. No such improvement was observed for the SeCspB transgenic lines under field conditions. Our results indicated that SeCspA conferred drought tolerance and improved physiological traits in wheat plants.
Collapse
Affiliation(s)
- Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Jin-Kao Guo
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Research Center of Wheat Engineering Technology of Hebei, Shijiazhuang, Hebei 050041, China
| | - Yan-Xia Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Research Center of Wheat Engineering Technology of Hebei, Shijiazhuang, Hebei 050041, China
| | - Brian Abernathy
- Center for Applied Genetic Technologies, Department of Plant Sciences, University of Georgia, 30602, Athens, GA, United States
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Xiao Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Xing-Guo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
148
|
Kumar M, Choi J, An G, Kim SR. Ectopic Expression of OsSta2 Enhances Salt Stress Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:316. [PMID: 28344585 PMCID: PMC5344931 DOI: 10.3389/fpls.2017.00316] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/21/2017] [Indexed: 05/27/2023]
Abstract
Salt stress can severely reduce crop yields. To understand how rice (Oryza sativa) plants respond to this environmental challenge, we investigated the genes involved in conferring salt tolerance by screening T-DNA tagging lines and identified OsSta2-D (Oryza sativa Salt tolerance activation 2-Dominant). In that line, expression of OsSta2 was enhanced by approximately eightfold when compared with the non-transformed wild type (WT). This gene was highly expressed in the callus, roots, and panicles. To confirm its role in stress tolerance, we generated transgenic rice that over-expresses OsSta2 under a maize ubiquitin promoter. The OsSta2-Ox plants were salt-tolerant at the vegetative stage, based on our calculations of chlorophyll fluorescence (Fv/Fm), fresh and dry weights, chlorophyll concentrations, and survival rates. Under normal paddy field conditions, the Ox plants were somewhat shorter than the WT control but had improved agronomic traits such as higher total grain yield. They were also more tolerant to osmotic stress and hypersensitive to abscisic acid. Based on all of these results, we suggest that OsSta2 has important roles in determining yields as well as in conferring tolerance to salt stresses.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Life Science, Sogang UniversitySeoul, South Korea
| | - Juyoung Choi
- Department of Life Science, Sogang UniversitySeoul, South Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology, Kyung Hee UniversityYongin, South Korea
| | - Seong-Ryong Kim
- Department of Life Science, Sogang UniversitySeoul, South Korea
| |
Collapse
|
149
|
Zhao Y, Chang X, Qi D, Dong L, Wang G, Fan S, Jiang L, Cheng Q, Chen X, Han D, Xu P, Zhang S. A Novel Soybean ERF Transcription Factor, GmERF113, Increases Resistance to Phytophthora sojae Infection in Soybean. FRONTIERS IN PLANT SCIENCE 2017; 8:299. [PMID: 28326092 PMCID: PMC5339286 DOI: 10.3389/fpls.2017.00299] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/20/2017] [Indexed: 05/18/2023]
Abstract
Phytophthora root and stem rot of soybean caused by the oomycete Phytophthora sojae, is a destructive disease worldwide. Ethylene response factors (ERFs) play important roles in regulating plant biotic and abiotic stress tolerance. In this study, a new ERF gene, GmERF113, was isolated from the highly resistant soybean 'Suinong 10.' Sequence analysis suggested that the protein encoded by GmERF113 contained a conserved AP2/ERF domain of 58 amino acid and belonged to the B-4 subgroup of the ERF subfamily. Expression of GmERF113 was significantly induced by P. sojae, ethylene, and methyl jasmonate. GmERF113 protein localized to the nucleus when transiently expressed in Arabidopsis protoplasts, could bind to the GCC-box, and acted as a transcription activator. In addition, a region of the full-length GmERF113, GmERF113-II, interacted with a basic helix-loop-helix transcription factor (GmbHLH) in yeast cells. Full-length GmERF113 also interacted with GmbHLH in planta. GmERF113-overexpressing transgenic plants in susceptible cultivar 'Dongnong 50' soybean exhibited increased resistance to P. sojae and positively regulated the expression of the pathogenesis-related genes, PR1 and PR10-1. These results indicate that GmERF113 may play a crucial role in the defense of soybean against P. sojae infection.
Collapse
Affiliation(s)
- Yuanling Zhao
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Xin Chang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Dongyue Qi
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Lidong Dong
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Guangjin Wang
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Sujie Fan
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Liangyu Jiang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Qun Cheng
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Xi Chen
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Dan Han
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Pengfei Xu
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| |
Collapse
|
150
|
Li X, Zhang D, Gao B, Liang Y, Yang H, Wang Y, Wood AJ. Transcriptome-Wide Identification, Classification, and Characterization of AP2/ERF Family Genes in the Desert Moss Syntrichia caninervis. FRONTIERS IN PLANT SCIENCE 2017; 8:262. [PMID: 28289426 PMCID: PMC5326779 DOI: 10.3389/fpls.2017.00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/13/2017] [Indexed: 05/21/2023]
Abstract
APETALA2/Ethylene Responsive Factor (AP2/ERF) is a large family of plant transcription factors which play important roles in the control of plant metabolism and development as well as responses to various biotic and abiotic stresses. The desert moss Syntrichia caninervis, due to its robust and comprehensive stress tolerance, is a promising organism for the identification of stress-related genes. Using S. caninervis transcriptome data, 80 AP2/ERF unigenes were identified by HMM modeling and BLASTP searching. Based on the number of AP2 domains, multiple sequence alignment, motif analysis, and gene tree construction, ScAP2/ERF genes were classified into three main subfamilies (including 5 AP2 gene members, 72 ERF gene members, and 1 RAV member) and two Soloist members. We found that the ratio for each subfamily was constant between S. caninervis and the model moss Physcomitrella patens, however, as compared to the angiosperm Arabidopsis, the percentage of ERF subfamily members in both moss species were greatly expanded, while the members of the AP2 and RAV subfamilies were reduced accordingly. The amino acid composition of the AP2 domain of ScAP2/ERFs was conserved as compared with Arabidopsis. Interestingly, most of the identified DREB genes in S. caninervis belonged to the A-5 group which play important roles in stress responses and are rarely reported in the literature. Expression profile analysis of ScDREB genes showed different gene expression patterns under dehydration and rehydration; the majority of ScDREB genes demonstrated a stronger response to dehydration relative to rehydration indicating that ScDREB may play an important role in dehydrated moss tissues. To our knowledge, this is the first study to detail the identification and characterization of the AP2/ERF gene family in a desert moss. Further, this study will lay the foundation for further functional analysis of these genes, provide greater insight to the stress tolerance mechanisms in S. caninervis and provide a reference for AP2/ERF gene family classification in other moss species.
Collapse
Affiliation(s)
- Xiaoshuang Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
| | - Daoyuan Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
| | - Bei Gao
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, China
| | - Yuqing Liang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
- University of Chinese Academy of SciencesBeijing, China
| | - Honglan Yang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
| | - Yucheng Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
| | - Andrew J. Wood
- Department of Plant Biology, Southern Illinois University, CarbondaleIL, USA
| |
Collapse
|