101
|
Choi BBR, Choi JH, Ji J, Song KW, Lee HJ, Kim GC. Increment of growth factors in mouse skin treated with non-thermal plasma. Int J Med Sci 2018; 15:1203-1209. [PMID: 30123058 PMCID: PMC6097260 DOI: 10.7150/ijms.26342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/30/2018] [Indexed: 11/05/2022] Open
Abstract
Non-thermal plasma (NTP) has several beneficial effects, and can be applied as a novel instrument for skin treatment. Recently, many types of NTP have been developed for potential medical or clinical applications, but their direct effects on skin activation remain unclear. In this study, the effect of NTP on the alteration of mouse skin tissue was analyzed. After NTP treatment, there were no signs of tissue damage in mouse skin, whereas significant increases in epidermal thickness and dermal collagen density were detected. Furthermore, treatment with NTP increased the expression of various growth factors, including TGF-α, TGF-β, VEGF, GM-CSF, and EGF, in skin tissue. Therefore, NTP treatment on skin induces the expression of growth factors without causing damage, a phenomenon that might be directly linked to epidermal expansion and dermal tissue remodeling.
Collapse
Affiliation(s)
- Byul Bo Ra Choi
- Feagle Co., Ltd., Yangsan 50614, Republic of Korea.,Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jeong Hae Choi
- Feagle Co., Ltd., Yangsan 50614, Republic of Korea.,Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jeong Ji
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ki Won Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hae June Lee
- Department of Electrical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Gyoo Cheon Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
102
|
Zanoni TB, Pedrosa TN, Catarino CM, Spiekstra SW, de Oliveira DP, Den Hartog G, Bast A, Hagemann G, Gibbs S, de Moraes Barros SB, Maria-Engler SS. Allergens of permanent hair dyes induces epidermal damage, skin barrier loss and IL-1 α increase in epidermal in vitro model. Food Chem Toxicol 2017; 112:265-272. [PMID: 29273420 DOI: 10.1016/j.fct.2017.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/08/2017] [Accepted: 12/17/2017] [Indexed: 01/31/2023]
Abstract
Allergic and irritant skin reactions caused by topical exposure to permanent hair dyes are a common problem. For regulatory and ethnical purposes, it is required to perform chemical safety assessment following the replacement, reduction, and refinement of animal testing (3Rs). Permanent hair dyes are formed by a mixture of ingredients that vary from low to extreme skin sensitizing potency and that inter-react to form unknown by-products. Because of the complex reaction, this cytotoxic mechanism has not yet been elucidated and is the subject of this study. Here, we topically exposed p-phenylenediamine (PPD), Resorcinol (RES), Hydrogen Peroxide (H2O2) alone or as a mixture to RhE and evaluated parameters related to skin irritation such as epidermal viability, keratinocytes damage, barrier loss and IL-1 α. Our data indicates that ingredients tested alone did not lead to an increase of cytotoxic parameters related to skin irritation. However, when the mixture of PPD/H2O2/RES and PPD/H2O2 was applied to the RhE, some of the parameters such as morphological changes including the presence of apoptotic cells, barrier loss and increased IL- 1 α release were observed. The results indicate that the mixture of ingredients used in permanent hair dyes have an irritant effect in RhE while the ingredients alone not.
Collapse
Affiliation(s)
- Thalita Boldrin Zanoni
- Skin Biology Group, Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, (FCF/USP), Av. Lineu Prestes, 580, CEP 05508-900 São Paulo, Brazil.
| | - Tatiana Nascimento Pedrosa
- Skin Biology Group, Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, (FCF/USP), Av. Lineu Prestes, 580, CEP 05508-900 São Paulo, Brazil
| | - Carolina Motter Catarino
- Skin Biology Group, Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, (FCF/USP), Av. Lineu Prestes, 580, CEP 05508-900 São Paulo, Brazil
| | - Sander W Spiekstra
- Department of Dermatology, VU University Medical Centre, O/2 Building, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Danielle Palma de Oliveira
- Department of Environmental Toxicology, School of Pharmaceutical Sciences, University of São Paulo, Ribeirao Preto, Brazil
| | - Gertjan Den Hartog
- Toxicology, Research Institute NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Aalt Bast
- Toxicology, Research Institute NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Geja Hagemann
- Toxicology, Research Institute NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Susan Gibbs
- Department of Dermatology, VU University Medical Centre, O/2 Building, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrij Universiteit, Amsterdam, The Netherlands
| | - Silvia Berlanga de Moraes Barros
- Skin Biology Group, Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, (FCF/USP), Av. Lineu Prestes, 580, CEP 05508-900 São Paulo, Brazil
| | - Silvya Stuchi Maria-Engler
- Skin Biology Group, Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, (FCF/USP), Av. Lineu Prestes, 580, CEP 05508-900 São Paulo, Brazil.
| |
Collapse
|
103
|
Klicks J, von Molitor E, Ertongur-Fauth T, Rudolf R, Hafner M. In vitro skin three-dimensional models and their applications. ACTA ACUST UNITED AC 2017. [DOI: 10.3233/jcb-179004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Julia Klicks
- Mannheim University of Applied Sciences, Institute of Molecular and Cell Biology, Mannheim, Germany
| | - Elena von Molitor
- Mannheim University of Applied Sciences, Institute of Molecular and Cell Biology, Mannheim, Germany
| | | | - Rüdiger Rudolf
- Mannheim University of Applied Sciences, Institute of Molecular and Cell Biology, Mannheim, Germany
- Institute of Medical Technology, Heidelberg University, Heidelberg, Germany
| | - Mathias Hafner
- Mannheim University of Applied Sciences, Institute of Molecular and Cell Biology, Mannheim, Germany
- Institute of Medical Technology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
104
|
Liu Y, Lu T, Zhou Z, Lu Y, Zhang Y. [Study on feasibility of HaCaT epidermal model as an alternative to skin irritation in vitro]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1262-1266. [PMID: 29806332 DOI: 10.7507/1002-1892.201705031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To construct the epidermal model with HaCaT cells and evaluate the feasibility of this model as an in vitro skin irritation test tool. Methods The HaCaT model was reconstructed with HaCaT cells by adoption gas-liquid surface culture technique, and the EpiKutis ® model was reconstructed with human epidermal keratinocytes by the same techinique as control. Morphology changes of HaCaT and EpiKutis ® models were observed by HE staining. Barrier function assessment was performed with penetration test. According to Organization for Economic Cooperation and Development (OECD) Test Guideline 439, the surface of the HaCaT and the EpiKutis ® models were treated with 20 chemicals for 30 minutes, incubated for 42 hours, and determined tissue viability by MTT assay, to evaluate the irritation of chemicals. Then the results were compared with the irritation of chemicals with the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (UN GHS) system and validated reference method (VRM) for the classification of chemical, and evaluated the feasibility of this model as an in vitro skin irritation test tool. Results The results of HE staining showed that there was no complete stratified structure in the HaCaT model. The results of barrier function showed that the ET 50 was 0.99 hours. The results of skin irritation of chemicals showed that the sensitivity was 100% and 100%, the specificity was 50% and 70%, and the accuracy rate was 75% and 85% for HaCaT model and EpiKutis ® model respectively. Conclusion The epidermal model of HaCaT cells does not possess the complete epidermal physiological structure, the barrier function as ET 50 of the HaCaT model is lower than EpiKutis ® model, the chemicals in vitro skin irritation test results do not meet the OECD criteria for the determination of stimulants, so the HaCaT model is not suitable as a replacement tool in vitro to determine the chemicals skin irritation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Dermatology, Affiliated Hospital of Logistics College of Chinese Peolpe's Armed Police Force, Tianjin, 300162, P.R.China
| | - Tao Lu
- Department of Dermatology, Affiliated Hospital of Logistics College of Chinese Peolpe's Armed Police Force, Tianjin, 300162,
| | - Zhoulin Zhou
- Department of Dermatology, Affiliated Hospital of Logistics College of Chinese Peolpe's Armed Police Force, Tianjin, 300162, P.R.China
| | - Yongbo Lu
- Guangdong Biocell Biotechnology Co. Ltd, Dongguan Guangdong, 523808, P.R.China
| | - Yanyun Zhang
- Guangdong Biocell Biotechnology Co. Ltd, Dongguan Guangdong, 523808, P.R.China
| |
Collapse
|
105
|
Ng WY, Migotto A, Ferreira TS, Lopes LB. Monoolein-alginate beads as a platform to promote adenosine cutaneous localization and wound healing. Int J Biol Macromol 2017; 102:1104-1111. [DOI: 10.1016/j.ijbiomac.2017.04.094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 01/16/2023]
|
106
|
Carvalho VFM, Migotto A, Giacone DV, de Lemos DP, Zanoni TB, Maria-Engler SS, Costa-Lotufo LV, Lopes LB. Co-encapsulation of paclitaxel and C6 ceramide in tributyrin-containing nanocarriers improve co-localization in the skin and potentiate cytotoxic effects in 2D and 3D models. Eur J Pharm Sci 2017; 109:131-143. [PMID: 28735040 DOI: 10.1016/j.ejps.2017.07.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 12/31/2022]
Abstract
Considering that tumor development is generally multifactorial, therapy with a combination of agents capable of potentiating cytotoxic effects is promising. In this study, we co-encapsulated C6 ceramide (0.35%) and paclitaxel (0.50%) in micro and nanoemulsions containing tributyrin (a butyric acid pro-drug included for potentiation of cytotoxicity), and compared their ability to co-localize the drugs in viable skin layers. The nanoemulsion delivered 2- and 2.4-fold more paclitaxel into viable skin layers of porcine skin in vitro at 4 and 8h post-application than the microemulsion, and 1.9-fold more C6 ceramide at 8h. The drugs were co-localized mainly in the epidermis, suggesting the nanoemulsion ability for a targeted delivery. Based on this result, the nanoemulsion was selected for evaluation of the nanocarrier-mediated cytotoxicity against cells in culture (2D model) and histological changes in a 3D melanoma model. Encapsulation of the drugs individually decreased the concentration necessary to reduce melanoma cells viability to 50% (EC50) by approximately 4- (paclitaxel) and 13-fold (ceramide), demonstrating an improved nanoemulsion-mediated drug delivery. Co-encapsulation of paclitaxel and ceramide further decreased EC50 by 2.5-4.5-fold, and calculation of the combination index indicated a synergistic effect. Nanoemulsion topical administration on 3D bioengineered melanoma models for 48h promoted marked epidermis destruction, with only few cells remaining in this layer. This result demonstrates the efficacy of the nanoemulsion, but also suggests non-selective cytotoxic effects, which highlights the importance of localizing the drugs within cutaneous layers where the lesions develop to avoid adverse effects.
Collapse
Affiliation(s)
| | - Amanda Migotto
- Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | | | - Thalita B Zanoni
- School of Pharmaceutical Sciences, University of São Paulo, Brazil
| | | | | | - Luciana B Lopes
- Institute of Biomedical Sciences, University of São Paulo, Brazil.
| |
Collapse
|
107
|
Kim JW, Kim MJ, Ki CS, Kim HJ, Park YH. Fabrication of bi-layer scaffold of keratin nanofiber and gelatin-methacrylate hydrogel: Implications for skin graft. Int J Biol Macromol 2017; 105:541-548. [PMID: 28711618 DOI: 10.1016/j.ijbiomac.2017.07.067] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 11/30/2022]
Abstract
Bi-layer scaffold composed of human hair keratin/chitosan nanofiber mat and gelatin methacrylate (GelMA) hydrogel was fabricated by using electrospinning and photopolymerization techniques. To prepare the nanofiber layer, the blend solution of human hair keratin and chitosan (mixture ratio: 5/5) was electrospun using formic acid as a solvent in the presence of poly(ethylene glycol), followed by cross-linking with glutaraldehyde. The tensile strength of the human hair keratin/chitosan nanofiber mat was much higher than that of pure human hair keratin nanofiber mat. Meanwhile, the blend nanofiber mat was relatively more compatible with HaCaT cell proliferation and keratinocyte differentiation than the pure chitosan nanofiber mat. The bi-layer scaffold was prepared by photopolymerization of GelMA under the cross-linked nanofiber mat. To evaluate the feasibility as a skin graft, human fibroblast was encapsulated in the hydrogel layer and HaCaT cells were cultured on the nanofiber layer and they were co-cultured for 10days. As a result, the encapsulated fibroblasts proliferated in the hydrogel matrix and HaCaT cells formed a cell layer on the top of scaffold, mimicking dermis and epidermis of skin tissue.
Collapse
Affiliation(s)
- Jong Wook Kim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Jin Kim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Seok Ki
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Jeong Kim
- Department of Dental Anesthesiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Young Hwan Park
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
108
|
Chen D, Aw WY, Devenport D, Torquato S. Structural Characterization and Statistical-Mechanical Model of Epidermal Patterns. Biophys J 2017; 111:2534-2545. [PMID: 27926854 DOI: 10.1016/j.bpj.2016.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
In proliferating epithelia of mammalian skin, cells of irregular polygon-like shapes pack into complex, nearly flat two-dimensional structures that are pliable to deformations. In this work, we employ various sensitive correlation functions to quantitatively characterize structural features of evolving packings of epithelial cells across length scales in mouse skin. We find that the pair statistics in direct space (correlation function) and Fourier space (structure factor) of the cell centroids in the early stages of embryonic development show structural directional dependence (statistical anisotropy), which is a reflection of the fact that cells are stretched, which promotes uniaxial growth along the epithelial plane. In the late stages, the patterns tend toward statistically isotropic states, as cells attain global polarization and epidermal growth shifts to produce the skin's outer stratified layers. We construct a minimalist four-component statistical-mechanical model involving effective isotropic pair interactions consisting of hard-core repulsion and extra short-range soft-core repulsion beyond the hard core, whose length scale is roughly the same as the hard core. The model parameters are optimized to match the sample pair statistics in both direct and Fourier spaces. By doing this, the parameters are biologically constrained. In contrast with many vertex-based models, our statistical-mechanical model does not explicitly incorporate information about the cell shapes and interfacial energy between cells; nonetheless, our model predicts essentially the same polygonal shape distribution and size disparity of cells found in experiments, as measured by Voronoi statistics. Moreover, our simulated equilibrium liquid-like configurations are able to match other nontrivial unconstrained statistics, which is a testament to the power and novelty of the model. The array of structural descriptors that we deploy enable us to distinguish between normal, mechanically deformed, and pathological skin tissues. Our statistical-mechanical model enables one to generate tissue microstructure at will for further analysis. We also discuss ways in which our model might be extended to better understand morphogenesis (in particular the emergence of planar cell polarity), wound healing, and disease-progression processes in skin, and how it could be applied to the design of synthetic tissues.
Collapse
Affiliation(s)
- Duyu Chen
- Department of Chemistry, Princeton University, Princeton, New Jersey
| | - Wen Yih Aw
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey; Department of Physics, Princeton University, Princeton, New Jersey; Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey; Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey.
| |
Collapse
|
109
|
Carvalho VF, de Lemos DP, Vieira CS, Migotto A, Lopes LB. Potential of Non-aqueous Microemulsions to Improve the Delivery of Lipophilic Drugs to the Skin. AAPS PharmSciTech 2017; 18:1739-1749. [PMID: 27757922 DOI: 10.1208/s12249-016-0643-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022] Open
Abstract
In this study, non-aqueous microemulsions were developed because of the challenges associated with finding pharmaceutically acceptable solvents for topical delivery of drugs sparingly soluble in water. The formulation irritation potential and ability to modulate the penetration of lipophilic compounds (progesterone, α-tocopherol, and lycopene) of interest for topical treatment/prevention of skin disorders were evaluated and compared to solutions and aqueous microemulsions of similar composition. The microemulsions (ME) were developed with BRIJ, vitamin E-TPGS, and ethanol as surfactant-co-surfactant blend and tributyrin, isopropyl myristate, and oleic acid as oil phase. As polar phase, propylene glycol (MEPG) or water (MEW) was used (26% w/w). The microemulsions were isotropic and based on viscosity and conductivity assessment, bicontinuous. Compared to drug solutions in lipophilic vehicles, MEPG improved drug delivery into viable skin layers by 2.5-38-fold; the magnitude of penetration enhancement mediated by MEPG into viable skin increased with drug lipophilicity, even though the absolute amount of drug delivered decreased. Delivery of progesterone and tocopherol, but not lycopene (the most lipophilic compound), increased up to 2.5-fold with MEW, and higher amounts of these two drugs were released from MEW (2-2.5-fold). Both microemulsions were considered safe for topical application, but MEPG-mediated decrease in the viability of reconstructed epidermis was more pronounced, suggesting its higher potential for irritation. We conclude that MEPG is a safe and suitable nanocarrier to deliver a variety of lipophilic drugs into viable skin layers, but the use of MEW might be more advantageous for drugs in the lower range of lipophilicity.
Collapse
|
110
|
Improved tympanic membrane regeneration after myringoplastic surgery using an artificial biograft. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:48-58. [DOI: 10.1016/j.msec.2016.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 10/24/2016] [Accepted: 12/04/2016] [Indexed: 01/17/2023]
|
111
|
Massaro RR, Faião-Flores F, Rebecca VW, Sandri S, Alves-Fernandes DK, Pennacchi PC, Smalley KSM, Maria-Engler SS. Inhibition of proliferation and invasion in 2D and 3D models by 2-methoxyestradiol in human melanoma cells. Pharmacol Res 2017; 119:242-250. [PMID: 28212889 DOI: 10.1016/j.phrs.2017.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/12/2022]
Abstract
Despite the recent advances in the clinical management of melanoma, there remains a need for new pharmacological approaches to treat this cancer. 2-methoxyestradiol (2ME) is a metabolite of estrogen that has shown anti-tumor effects in many cancer types. In this study we show that 2ME treatment leads to growth inhibition in melanoma cells, an effect associated with entry into senescence, decreased pRb and Cyclin B1 expression, increased p21/Cip1 expression and G2/M cell cycle arrest. 2ME treatment also inhibits melanoma cell growth in colony formation assay, including cell lines with acquired resistance to BRAF and BRAF+MEK inhibitors. We further show that 2ME is effective against melanoma with different BRAF and NRAS mutational status. Moreover, 2ME induced the retraction of cytoplasmic projections in a 3D spheroid model and significantly decreased cell proliferation in a 3D skin reconstruct model. Together our studies bring new insights into the mechanism of action of 2ME allowing melanoma targeted therapy to be further refined. Continued progress in this area is expected to lead to improved anti-cancer treatments and the development of new and more effective clinical analogues.
Collapse
Affiliation(s)
- R R Massaro
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - F Faião-Flores
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - V W Rebecca
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, USA
| | - S Sandri
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - D K Alves-Fernandes
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - P C Pennacchi
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - K S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, USA
| | - S S Maria-Engler
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
112
|
Eberhardt K, Matthäus C, Winter D, Wiegand C, Hipler UC, Diekmann S, Popp J. Raman and infrared spectroscopy differentiate senescent from proliferating cells in a human dermal fibroblast 3D skin model. Analyst 2017; 142:4405-4414. [DOI: 10.1039/c7an00592j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Senescence-associated alterations were detected in biomolecules of 3D cultured cells and these cells were distinguished from 2D cultured cells.
Collapse
Affiliation(s)
- Katharina Eberhardt
- Leibniz Institute of Photonic Technology Jena
- 07745 Jena
- Germany
- Institute for Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
| | - Christian Matthäus
- Leibniz Institute of Photonic Technology Jena
- 07745 Jena
- Germany
- Institute for Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
| | - Doreen Winter
- University Hospital Jena
- Department of Dermatology
- 07740 Jena
- Germany
| | - Cornelia Wiegand
- University Hospital Jena
- Department of Dermatology
- 07740 Jena
- Germany
| | | | - Stephan Diekmann
- Leibniz Institute on Aging – Fritz Lipmann Institute
- Department of Molecular Biology
- 07745 Jena
- Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology Jena
- 07745 Jena
- Germany
- Institute for Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
| |
Collapse
|
113
|
Abstract
In vitro test systems are a promising alternative to animal models. Due to the use of human cells in a three-dimensional arrangement that allows cell-cell or cell-matrix interactions these models may be more predictive for the human situation compared to animal models or two-dimensional cell culture systems. Especially for dermatological research, skin models such as epidermal or full-thickness skin equivalents (FTSE) are used for different applications. Although epidermal models provide highly standardized conditions for risk assessment, FTSE facilitate a cellular crosstalk between the dermal and epidermal layer and thus can be used as more complex models for the investigation of processes such as wound healing, skin development, or infectious diseases. In this chapter, we describe the generation and culture of an FTSE, based on a collagen type I matrix and provide troubleshooting tips for commonly encountered technical problems.
Collapse
|
114
|
Faião-Flores F, Alves-Fernandes DK, Pennacchi PC, Sandri S, Vicente ALSA, Scapulatempo-Neto C, Vazquez VL, Reis RM, Chauhan J, Goding CR, Smalley KS, Maria-Engler SS. Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells. Oncogene 2016; 36:1849-1861. [PMID: 27748762 PMCID: PMC5378933 DOI: 10.1038/onc.2016.348] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 07/25/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022]
Abstract
BRAF inhibitor (BRAFi) therapy for melanoma patients harboring the V600E mutation is initially highly effective, but almost all patients relapse within a few months. Understanding the molecular mechanisms underpinning BRAFi-based therapy is therefore an important issue. Here we identified a previously unsuspected mechanism of BRAFi resistance driven by elevated Hedgehog (Hh) pathway activation that is observed in a cohort of melanoma patients after vemurafenib treatment. Specifically, we demonstrate that melanoma cell lines, with acquired in vitro-induced vemurafenib resistance, show increased levels of glioma-associated oncogene homolog 1 and 2 (GLI1/GLI2) compared with naïve cells. We also observed these findings in clinical melanoma specimens. Moreover, the increased expression of the transcription factors GLI1/GLI2 was independent of canonical Hh signaling and was instead correlated with the noncanonical Hh pathway, involving TGFβ/SMAD (transforming growth factor-β/Sma- and Mad-related family) signaling. Knockdown of GLI1 and GLI2 restored sensitivity to vemurafenib-resistant cells, an effect associated with both growth arrest and senescence. Treatment of vemurafenib-resistant cells with the GLI1/GLI2 inhibitor Gant61 led to decreased invasion of the melanoma cells in a three-dimensional skin reconstruct model and was associated with a decrease in metalloproteinase (MMP2/MMP9) expression and microphthalmia transcription factor upregulation. Gant61 monotherapy did not alter the drug sensitivity of naïve cells, but could reverse the resistance of melanoma cells chronically treated with vemurafenib. We further noted that alternating dosing schedules of Gant61 and vemurafenib prevented the onset of BRAFi resistance, suggesting that this could be a potential therapeutic strategy for the prevention of therapeutic escape. Our results suggest that targeting the Hh pathway in BRAFi-resistant melanoma may represent a viable therapeutic strategy to restore vemurafenib sensitivity, reducing or even inhibiting the acquired chemoresistance in melanoma patients.
Collapse
Affiliation(s)
- F Faião-Flores
- Department of Clinical Chemistry and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - D K Alves-Fernandes
- Department of Clinical Chemistry and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - P C Pennacchi
- Department of Clinical Chemistry and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - S Sandri
- Department of Clinical Chemistry and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - A L S A Vicente
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - C Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Department of Pathology, Barretos Cancer Hospital, Barretos, Brazil
| | - V L Vazquez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Department of Surgery Melanoma/Sarcoma, Barretos Cancer Hospital, Barretos, Brazil
| | - R M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,3B's - PT Government Associate Laboratory, Braga/Guimarães, Guimarães, Portugal
| | - J Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
| | - C R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
| | - K S Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - S S Maria-Engler
- Department of Clinical Chemistry and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
115
|
Co-stimulation of HaCaT keratinization with mechanical stress and air-exposure using a novel 3D culture device. Sci Rep 2016; 6:33889. [PMID: 27670754 PMCID: PMC5037429 DOI: 10.1038/srep33889] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/05/2016] [Indexed: 11/23/2022] Open
Abstract
Artificial skin or skin equivalents have been used for clinical purpose to skin graft and as substitutes for animal experiments. The culture of cell lines such as HaCaT has the potential to produce large amounts of artificial skin at a low cost. However, there is a limit to keratinization due to the restriction of differentiation in HaCaT. In this study, a culture device that mimics the in vivo keratinization mechanism, co-stimulated by air-exposure and mechanical stimulation, was developed to construct skin equivalents. The device can reconstruct the epidermal morphology, including the cornified layer, similar to its formation in vivo. Under the condition, epidermis was differentiated in the spinous and granular layers. Formation of the stratum corneum is consistent with the mRNA and protein expressions of differentiation markers. The device is the first of its kind to combine air-exposure with mechanical stress to co-stimulate keratinization, which can facilitate the economically viable production of HaCaT-based artificial skin substitutes.
Collapse
|
116
|
Spriggs S, Sheffield D, Olayanju A, Kitteringham NR, Naisbitt DJ, Aleksic M. Effect of Repeated Daily Dosing with 2,4-Dinitrochlorobenzene on Glutathione Biosynthesis and Nrf2 Activation in Reconstructed Human Epidermis. Toxicol Sci 2016; 154:5-15. [PMID: 27492222 DOI: 10.1093/toxsci/kfw140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Glutathione (GSH) plays a major role in skin detoxification processes due to its ability to conjugate electrophilic exogenous compounds with, and sometimes without, catalysis by glutathione-s-transferase (GST). GST activity has been demonstrated both in skin and in most in vitro skin equivalents but so far studies have focussed on chemical clearance (conjugate identification and rate of conjugation) and did not consider the GSH lifecycle (conjugation, recycling, synthesis). We used the model skin sensitizer 2,4-dinitrochlorobenzene (DNCB) to investigate the effects of chemical exposure on GSH lifecycle in reconstructed human epidermis (RHE). We demonstrated that the RHE model is suitable to carry out repeated cycles of 2-h exposure to DNCB over a 3-day period. After each exposure to DNCB, the level of GSH is diminished in a dose dependent manner. After a 22-h recovery period, GSH is replenished back to initial levels. Accumulation of the nuclear factor E2-related factor 2 (Nrf2) in the cytosol also occurs within the 2 h of exposure to DNCB but returns to baseline during each recovery period, demonstrating that activation of the Nrf2 signaling pathway offers a rapid response to chemical stress. The amount of dinitrophenyl-glutathione (DNP-SG) formed with DNCB (1) increased between the first and second exposure and (2) reached a plateau between the second and third exposure. Collectively, these data suggest that the metabolic capacity of skin may not be fixed in time but defence mechanisms might be activated in response to exposure to exogenous compounds, resulting in their accelerated clearance.
Collapse
Affiliation(s)
- Sandrine Spriggs
- *Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK;
| | - David Sheffield
- *Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Adedamola Olayanju
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, the University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Neil R Kitteringham
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, the University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, the University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Maja Aleksic
- *Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| |
Collapse
|
117
|
Vemurafenib resistance increases melanoma invasiveness and modulates the tumor microenvironment by MMP-2 upregulation. Pharmacol Res 2016; 111:523-533. [PMID: 27436149 DOI: 10.1016/j.phrs.2016.07.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/14/2022]
Abstract
The BRAF(V600E) mutation confers constitutive kinase activity and accounts for >90% of BRAF mutations in melanoma. This genetic alteration is a current therapeutic target; however, the antitumorigenic effects of the BRAF(V600E) inhibitor vemurafenib are short-lived and the majority of patients present tumor relapse in a short period after treatment. Characterization of vemurafenib resistance has been essential to the efficacy of next generation therapeutic strategies. Herein, we found that acute BRAF inhibition induced a decrease in active MMP-2, MT1-MMP and MMP-9, but did not modulate the metalloproteinase inhibitors TIMP-2 or RECK in naïve melanoma cells. In vemurafenib-resistant melanoma cells, we observed a lower growth rate and an increase in EGFR phosphorylation followed by the recovery of active MMP-2 expression, a mediator of cancer metastasis. Furthermore, we found a different profile of MMP inhibitor expression, characterized by TIMP-2 downregulation and RECK upregulation. In a 3D spheroid model, the invasion index of vemurafenib-resistant melanoma cells was more evident than in its non-resistant counterpart. We confirmed this pattern in a matrigel invasion assay and demonstrated that use of a matrix metalloproteinase inhibitor reduced the invasion of vemurafenib resistant melanoma cells but not drug naïve cells. Moreover, we did not observe a delimited group of cells invading the dermis in vemurafenib-resistant melanoma cells present in a reconstructed skin model. The same MMP-2 and RECK upregulation profile was found in this 3D skin model containing vemurafenib-resistant melanoma cells. Acute vemurafenib treatment induces the disorganization of collagen fibers and consequently, extracellular matrix remodeling, with this pattern observed even after the acquisition of resistance. Altogether, our data suggest that resistance to vemurafenib induces significant changes in the tumor microenvironment mainly by MMP-2 upregulation, with a corresponding increase in cell invasiveness.
Collapse
|
118
|
Coffee Silverskin Extract Protects against Accelerated Aging Caused by Oxidative Agents. Molecules 2016; 21:molecules21060721. [PMID: 27258247 PMCID: PMC6274150 DOI: 10.3390/molecules21060721] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 01/12/2023] Open
Abstract
Nowadays, coffee beans are almost exclusively used for the preparation of the beverage. The sustainability of coffee production can be achieved introducing new applications for the valorization of coffee by-products. Coffee silverskin is the by-product generated during roasting, and because of its powerful antioxidant capacity, coffee silverskin aqueous extract (CSE) may be used for other applications, such as antiaging cosmetics and dermaceutics. This study aims to contribute to the coffee sector’s sustainability through the application of CSE to preserve skin health. Preclinical data regarding the antiaging properties of CSE employing human keratinocytes and Caenorhabditis elegans are collected during the present study. Accelerated aging was induced by tert-butyl hydroperoxide (t-BOOH) in HaCaT cells and by ultraviolet radiation C (UVC) in C. elegans. Results suggest that the tested concentrations of coffee extracts were not cytotoxic, and CSE 1 mg/mL gave resistance to skin cells when oxidative damage was induced by t-BOOH. On the other hand, nematodes treated with CSE (1 mg/mL) showed a significant increased longevity compared to those cultured on a standard diet. In conclusion, our results support the antiaging properties of the CSE and its great potential for improving skin health due to its antioxidant character associated with phenols among other bioactive compounds present in the botanical material.
Collapse
|
119
|
Pramio DT, Pennacchi PC, Maria-Engler SS, Campos AHJFM, Duprat JP, Carraro DM, Krepischi ACV. LINE-1 hypomethylation and mutational status in cutaneous melanomas. J Investig Med 2016; 64:899-904. [PMID: 26965315 DOI: 10.1136/jim-2016-000066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 11/04/2022]
Abstract
Epigenetic dysregulation is an important emerging hallmark of cutaneous melanoma development. The global loss of DNA methylation in gene-poor regions and transposable DNA elements of cancer cells contributes to increased genomic instability. Long interspersed element-1 (LINE-1) sequences are the most abundant repetitive sequence of the genome and can be evaluated as a surrogate marker of the global level of DNA methylation. In this work, LINE-1 methylation levels were evaluated in cutaneous melanomas and normal melanocyte primary cell cultures to investigate their possible association with both distinct clinicopathological characteristics and tumor mutational profile. A set of driver mutations frequently identified in cutaneous melanoma was assessed by sequencing (actionable mutations in BRAF, NRAS, and KIT genes, and mutations affecting the TER T promoter) or multiplex ligation-dependent probe amplification (MLPA) (CDKN2A deletions). Pyrosequencing was performed to investigate the methylation level of LINE-1 and CDKN2A promoter sequences. The qualitative analysis showed a trend toward an association between LINE-1 hypomethylation and CDKN2A inactivation (p=0.05). In a quantitative approach, primary tumors, mainly the thicker ones (>4 mm), exhibited a trend toward LINE-1 hypomethylation when compared with control melanocytes. To date, this is the first study reporting in cutaneous melanomas a possible link between the dysregulation of LINE-1 methylation and the presence of driver mutations.
Collapse
Affiliation(s)
- Dimitrius T Pramio
- International Research Center, AC Camargo Cancer Center, São Paulo, Brazil
| | - Paula C Pennacchi
- Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Silvya S Maria-Engler
- Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - João P Duprat
- Skin Cancer Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - Dirce M Carraro
- International Research Center, AC Camargo Cancer Center, São Paulo, Brazil
| | - Ana C V Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
120
|
Działo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders. Int J Mol Sci 2016; 17:160. [PMID: 26901191 PMCID: PMC4783894 DOI: 10.3390/ijms17020160] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/05/2016] [Accepted: 01/14/2016] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds constitute a group of secondary metabolites which have important functions in plants. Besides the beneficial effects on the plant host, phenolic metabolites (polyphenols) exhibit a series of biological properties that influence the human in a health-promoting manner. Evidence suggests that people can benefit from plant phenolics obtained either by the diet or through skin application, because they can alleviate symptoms and inhibit the development of various skin disorders. Due to their natural origin and low toxicity, phenolic compounds are a promising tool in eliminating the causes and effects of skin aging, skin diseases, and skin damage, including wounds and burns. Polyphenols also act protectively and help prevent or attenuate the progression of certain skin disorders, both embarrassing minor problems (e.g., wrinkles, acne) or serious, potentially life-threatening diseases such as cancer. This paper reviews the latest reports on the potential therapy of skin disorders through treatment with phenolic compounds, considering mostly a single specific compound or a combination of compounds in a plant extract.
Collapse
Affiliation(s)
- Magdalena Działo
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Justyna Mierziak
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Urszula Korzun
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Marta Preisner
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Jan Szopa
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
- Department of Genetics, Plant Breeding and Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Plant Sciences, Plac Grunwaldzki 24A, 53-363 Wroclaw, Poland.
| | - Anna Kulma
- Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| |
Collapse
|
121
|
Pilarczyk G, Raulf A, Gunkel M, Fleischmann BK, Lemor R, Hausmann M. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes. J Funct Biomater 2016; 7:E1. [PMID: 26751484 PMCID: PMC4810060 DOI: 10.3390/jfb7010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022] Open
Abstract
The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC)-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds.
Collapse
Affiliation(s)
- Götz Pilarczyk
- Kirchhoff Institute für Physik, Im Neuenheimer Feld INF 270, Heidelberg D-69120, Germany.
| | - Alexandra Raulf
- Institut für Physiologie der Unversität Bonn, Life & Brain Center, Sigmund Freud Strasse 25, Bonn D-53127, Germany.
| | - Manuel Gunkel
- ViroQuant Cell Networks RNAi Screening Facility, BioQuant Center, Im Neuenheimer Feld INF 267, Heidelberg D-69120, Germany.
| | - Bernd K Fleischmann
- Institut für Physiologie der Unversität Bonn, Life & Brain Center, Sigmund Freud Strasse 25, Bonn D-53127, Germany.
| | - Robert Lemor
- Luxembourg Institute for Science and Technology, 5 avenue des Hauts-Fourneaux, Esch-Belval L-4362, Luxembourg.
| | - Michael Hausmann
- Kirchhoff Institute für Physik, Im Neuenheimer Feld INF 270, Heidelberg D-69120, Germany.
| |
Collapse
|
122
|
Tsai PC, Zhang Z, Florek C, Michniak-Kohn BB. Constructing Human Skin Equivalents on Porcine Acellular Peritoneum Extracellular Matrix forIn VitroIrritation Testing. Tissue Eng Part A 2016; 22:111-22. [DOI: 10.1089/ten.tea.2015.0209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Pei-Chin Tsai
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey
| | - Zheng Zhang
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, Piscataway, New Jersey
| | | | - Bozena B. Michniak-Kohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
123
|
Abdallah MAE, Pawar G, Harrad S. Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants. ENVIRONMENT INTERNATIONAL 2015; 84:64-70. [PMID: 26232142 DOI: 10.1016/j.envint.2015.07.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/07/2015] [Accepted: 07/14/2015] [Indexed: 06/04/2023]
Abstract
Ethical and technical difficulties inherent to studies in human tissues are impeding assessment of the dermal bioavailability of brominated flame retardants (BFRs). This is further complicated by increasing restrictions on the use of animals in toxicity testing, and the uncertainties associated with extrapolating data from animal studies to humans due to inter-species variations. To overcome these difficulties, we evaluate 3D-human skin equivalents (3D-HSE) as a novel in vitro alternative to human and animal testing for assessment of dermal absorption of BFRs. The percutaneous penetration of hexabromocyclododecanes (HBCD) and tetrabromobisphenol-A (TBBP-A) through two commercially available 3D-HSE models was studied and compared to data obtained for human ex vivo skin according to a standard protocol. No statistically significant differences were observed between the results obtained using 3D-HSE and human ex vivo skin at two exposure levels. The absorbed dose was low (less than 7%) and was significantly correlated with log Kow of the tested BFR. Permeability coefficient values showed increasing dermal resistance to the penetration of γ-HBCD>β-HBCD>α-HBCD>TBBPA. The estimated long lag times (>30 min) suggests that frequent hand washing may reduce human exposure to HBCDs and TBBPA via dermal contact.
Collapse
Affiliation(s)
- Mohamed Abou-Elwafa Abdallah
- Division of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt.
| | - Gopal Pawar
- Division of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Stuart Harrad
- Division of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
124
|
Pennacchi PC, de Almeida MES, Gomes OLA, Faião-Flores F, de Araújo Crepaldi MC, dos Santos MF, de Moraes Barros SB, Maria-Engler SS. Glycated Reconstructed Human Skin as a Platform to Study the Pathogenesis of Skin Aging. Tissue Eng Part A 2015; 21:2417-25. [PMID: 26132636 DOI: 10.1089/ten.tea.2015.0009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Paula Comune Pennacchi
- Department of Clinical Chemistry and Toxicology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Octávio Luís Alves Gomes
- Department of Clinical Chemistry and Toxicology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda Faião-Flores
- Department of Clinical Chemistry and Toxicology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Clara de Araújo Crepaldi
- Department of Clinical Chemistry and Toxicology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Silvya Stuchi Maria-Engler
- Department of Clinical Chemistry and Toxicology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
125
|
Mendoza-Garcia J, Sebastian A, Alonso-Rasgado T, Bayat A. Ex vivo evaluation of the effect of photodynamic therapy on skin scars and striae distensae. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2015; 31:239-51. [PMID: 25847252 DOI: 10.1111/phpp.12180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Skin scars and striae distensae (SD) are common dermal disorders with ill-defined treatment options. There is emerging clinical evidence for use of photodynamic therapy (PDT) in treating skin fibrosis. Therefore, the aim here was to investigate the effect of PDT on skin scars and SD in an ex vivo model of human skin scarring. METHODS Photodynamic therapy, with 5ALA or MALA in addition to illumination with 40 J/cm(2) of red light, was applied to striae alba, fine line, hypertrophic and keloid scars ex vivo (n = 18). General morphology was assessed by H&E, Herovici's and Weigert's differential staining. Apoptosis, proliferation, metalloproteinase 3 and tropoelastin expression were quantified immunohistochemically, and differential gene expression of proliferating cell nuclear antigen (PCNA), collagen (COL) type I and type III, matrix metalloproteinase 3 (MMP3) and tropoelastin (ELN) was assessed by real-time quantitative reverse transcription polymerase chain reaction. RESULTS Apoptosis increased, which correlated with decreased proliferation and PCNA gene expression. Post-PDT, matrix components were found to be re-organised in both hypertrophic and keloid scars. COLI and COLIII gene expression levels decreased, whilst MMP3 and ELN increased significantly post-PDT compared to normal skin and untreated controls (P < 0.05). However, no significant difference between 5ALA and MALA-PDT treatments was observed. CONCLUSION Using our unique ex vivo model, we show for the first time morphological and cellular effect of application of PDT, which correlates with the degree and severity of dermal fibrosis. In view of this, PDT may be ideal in targeting treatment of abnormal skin scarring.
Collapse
Affiliation(s)
- Jenifer Mendoza-Garcia
- Bioengineering Group, School of Materials, The University of Manchester, Manchester, UK.,Plastic & Reconstructive Surgery Research Group, Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, UK
| | - Anil Sebastian
- Plastic & Reconstructive Surgery Research Group, Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, UK
| | - Teresa Alonso-Rasgado
- Bioengineering Group, School of Materials, The University of Manchester, Manchester, UK
| | - Ardeshir Bayat
- Bioengineering Group, School of Materials, The University of Manchester, Manchester, UK.,Plastic & Reconstructive Surgery Research Group, Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, UK.,University Hospital of South Manchester NHS Foundation Trust, Centre for Dermatology, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
126
|
Gerlee P, Kim E, Anderson ARA. Bridging scales in cancer progression: mapping genotype to phenotype using neural networks. Semin Cancer Biol 2015; 30:30-41. [PMID: 24830623 PMCID: PMC4533881 DOI: 10.1016/j.semcancer.2014.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 12/22/2022]
Abstract
In this review we summarise our recent efforts in trying to understand the role of heterogeneity in cancer progression by using neural networks to characterise different aspects of the mapping from a cancer cells genotype and environment to its phenotype. Our central premise is that cancer is an evolving system subject to mutation and selection, and the primary conduit for these processes to occur is the cancer cell whose behaviour is regulated on multiple biological scales. The selection pressure is mainly driven by the microenvironment that the tumour is growing in and this acts directly upon the cell phenotype. In turn, the phenotype is driven by the intracellular pathways that are regulated by the genotype. Integrating all of these processes is a massive undertaking and requires bridging many biological scales (i.e. genotype, pathway, phenotype and environment) that we will only scratch the surface of in this review. We will focus on models that use neural networks as a means of connecting these different biological scales, since they allow us to easily create heterogeneity for selection to act upon and importantly this heterogeneity can be implemented at different biological scales. More specifically, we consider three different neural networks that bridge different aspects of these scales and the dialogue with the micro-environment, (i) the impact of the micro-environment on evolutionary dynamics, (ii) the mapping from genotype to phenotype under drug-induced perturbations and (iii) pathway activity in both normal and cancer cells under different micro-environmental conditions.
Collapse
Affiliation(s)
- Philip Gerlee
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive Tampa, FL 33612, USA.
| | - Eunjung Kim
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive Tampa, FL 33612, USA
| | - Alexander R A Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive Tampa, FL 33612, USA.
| |
Collapse
|
127
|
Taghiabadi E, Nasri S, Shafieyan S, Jalili Firoozinezhad S, Aghdami N. Fabrication and characterization of spongy denuded amniotic membrane based scaffold for tissue engineering. CELL JOURNAL 2015; 16:476-87. [PMID: 25685738 PMCID: PMC4297486 DOI: 10.22074/cellj.2015.493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/29/2014] [Indexed: 12/11/2022]
Abstract
Objective As a biological tissue material, amniotic membrane (AM) has low immunogenicity and to date has been widely adopted in clinical practice. However, some features
such as low biomechanical consistency and rapid biodegradation is limited the application
of AM. Therefore, in this study, we fabricated a novel three-dimensional (3D) spongy scaffold made of the extracellular matrix (ECM) of denuded AM. Due to their unique characteristics which are similar to the skin, these scaffolds can be considered as an alternative
option in skin tissue engineering.
Materials and Methods In this experimental study, cellular components of human amniotic
membrane (HAM) were removed with 0.03% (w/v) sodium dodecyl sulphate (SDS). Quantitative analysis was performed to determine levels of Glycosaminoglycans (GAGs), collagen, and
deoxyribonucleic acid (DNA). To increase the low efficiency and purity of the ECM component,
especially collagen and GAG, we applied an acid solubilization procedure hydrochloridric acid
(HCl 0.1 M) with pepsin (1 mg/ml). In the present experiment 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) cross linker agent was
used to improve the mechanical properties of 3D lyophilized AM scaffold. The spongy 3D AM
scaffolds were specified, by scanning electron microscopy, hematoxylin and eosin (H&E) staining, a swelling test, and mechanical strength and in vitro biodegradation tests. Human fetal
fibroblast culture systems were used to establish that the scaffolds were cytocompatible.
Results Histological analysis of treated human AM showed impressive removal of cellular components. DNA content was diminished after treatment (39 ± 4.06 μg/ml vs. 341 ±
29.60 μg/ml). Differences were observed between cellular and denude AM in matrix collagen (478 ± 18.06 μg/mg vs. 361 ± 27.47 μg/mg).With the optimum concentration of 1 mM
NHS/EDC ratio1:4, chemical cross-linker agent could significantly increase the mechanical property, and resistance to collagenase digestion. The results of 2, 4, 6-Trinitrobenzenesulfonic acid (TNBS) test showed that cross-linking efficiency of AM derived ECM scaffolds was about 65% ± 10.53. Scaffolds treated with NHS/EDC cross-linker agent by 100
μg/ml collagenase, lost 75% of their dry weight after 14 days. The average pore size of
3D spongy scaffold was 160 µm measured from scanning electron microscope (SEM) images that it is suitable for cell penetration, nutrients and gas change. In addition, the NHS/
EDC cross-linked AM scaffolds were able to support human fetal fibroblast cell proliferation in vitro. Extracts and contact prepared from the 3D spongy scaffold of AM showed a
significant increase in the attachment and proliferation of the human fetal fibroblasts cells. Conclusion The extra-cellular matrix of denuded AM-based scaffold displays the main
properties required for substitute skin including natural in vitro biodegradation, similar
physical and mechanical characterization, nontoxic biomaterial and no toxic effect on cell
attachment and cell proliferation.
Collapse
Affiliation(s)
- Ehsan Taghiabadi
- Department of Biology, Faculty of Science, Payame NOOR University, Tehran, Iran ; Department of Regenerative Biomedicine at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sima Nasri
- Department of Biology, Faculty of Science, Payame NOOR University, Tehran, Iran
| | - Saeed Shafieyan
- Department of Regenerative Biomedicine at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sasan Jalili Firoozinezhad
- Department of Regenerative Biomedicine at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Biomedicine at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
128
|
Bhardwaj N, Sow WT, Devi D, Ng KW, Mandal BB, Cho NJ. Silk fibroin–keratin based 3D scaffolds as a dermal substitute for skin tissue engineering. Integr Biol (Camb) 2015; 7:53-63. [DOI: 10.1039/c4ib00208c] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Development of highly vascular dermal tissue-engineered skin substitutes with appropriate mechanical properties and cellular cues is in need for significant advancement in the field of dermal reconstruction.
Collapse
Affiliation(s)
- Nandana Bhardwaj
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore-639798
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Wan Ting Sow
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore-639798
| | - Dipali Devi
- Seri-Biotechnology Unit
- Life Science Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035
- India
| | - Kee Woei Ng
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore-639798
| | - Biman B. Mandal
- Department of Biotechnology
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Nam-Joon Cho
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore-639798
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| |
Collapse
|
129
|
Leme DM, Primo FL, Gobo GG, da Costa CRV, Tedesco AC, de Oliveira DP. Genotoxicity assessment of reactive and disperse textile dyes using human dermal equivalent (3D cell culture system). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:466-480. [PMID: 25785560 DOI: 10.1080/15287394.2014.999296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Thousands of dyes are marketed daily for different purposes, including textile dyeing. However, there are several studies reporting attributing to dyes deleterious human effects such as DNA damage. Humans may be exposed to toxic dyes through either ingestion of contaminated waters or dermal contact with colored garments. With respect to dermal exposure, human skin equivalents are promising tools to assess in vitro genotoxicity of dermally applied chemicals using a three-dimensional (3D) model to mimic tissue behavior. This study investigated the sensitivity of an in-house human dermal equivalent (DE) for detecting genotoxicity of textile dyes. Two azo (reactive green 19 [RG19] and disperse red 1[DR1]) dyes and one anthraquinone (reactive blue 2 [RB2]) dye were analyzed. RG19 was genotoxic for DE in a dose-responsive manner, whereas RB2 and DR1 were nongenotoxic under the conditions tested. These findings are not in agreement with previous genotoxicological assessment of these dyes carried out using two-dimensional (2D) cell cultures, which showed that DR1 was genotoxic in human hepatoma cells (HepG2) and RG19 was nongenotoxic for normal human dermal fibroblasts (NHDF). These discrepant results probably may be due to differences between metabolic activities of each cell type (organ-specific genotoxicity, HepG2 and fibroblasts) and the test setup systems used in each study (fibroblasts cultured at 2D and three-dimensional [3D] culture systems). Genotoxicological assessment of textile dyes in context of organ-specific genotoxicity and using in vitro models that more closely resemble in vivo tissue architecture and physiology may provide more reliable estimates of genotoxic potential of these chemicals.
Collapse
Affiliation(s)
- Daniela Morais Leme
- a Departamento de Biologia Celular , Universidade Federal do Paraná (UFPR) , Curitiba , Paraná , Brazil
| | | | | | | | | | | |
Collapse
|
130
|
Wu Z, Tang Y, Fang H, Su Z, Xu B, Lin Y, Zhang P, Wei X. Decellularized scaffolds containing hyaluronic acid and EGF for promoting the recovery of skin wounds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5322. [PMID: 25604697 DOI: 10.1007/s10856-014-5322-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 05/04/2014] [Indexed: 06/04/2023]
Abstract
There is no effective therapy for the treatment of deep and large area skin wounds. Decellularized scaffolds can be prepared from animal tissues and represent a promising biomaterial for investigation in tissue regeneration studies. In this study, MTT assay showed that epidermal growth factor (EGF) increased NIH3T3 cell proliferation in a bell-shaped dose response, and the maximum cell proliferation was achieved at a concentration of 25 ng/ml. Decellularized scaffolds were prepared from pig peritoneum by a series of physical and chemical treatments. Hyaluronic acid (HA) increased EGF adsorption to the scaffolds. Decellularized scaffolds containing HA sustained the release of EGF compared to no HA. Rabbits contain relatively large skin surface and are less expensive and easy to be taken care, so that a rabbit wound healing model was use in this study. Four full-thickness skin wounds were created in each rabbit for evaluation of the effects of the scaffolds on the skin regeneration. Wounds covered with scaffolds containing either 1 or 3 μg/ml EGF were significantly smaller than with vaseline oil gauzes or with scaffolds alone, and the wounds covered with scaffolds containing 1 μg/ml EGF recovered best among all four wounds. Hematoxylin-Eosin staining confirmed these results by demonstrating that significantly thicker dermis layers were also observed in the wounds covered by the decellularized scaffolds containing HA and either 1 or 3 μg/ml EGF than with vaseline oil gauzes or with scaffolds alone. In addition, the scaffolds containing HA and 1 μg/ml EGF gave thicker dermis layers than HA and 3 μg/ml EGF and showed the regeneration of skin appendages on day 28 post-transplantation. These results demonstrated that decellularized scaffolds containing HA and EGF could provide a promising way for the treatment of human skin injuries.
Collapse
Affiliation(s)
- Zhengzheng Wu
- Key Lab for Genetic Medicine of Guangdong Province, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Rosenberger S, Dick A, Latzko S, Hausser I, Stark HJ, Rauh M, Schneider H, Krieg P. A mouse organotypic tissue culture model for autosomal recessive congenital ichthyosis. Br J Dermatol 2014; 171:1347-57. [PMID: 25078898 DOI: 10.1111/bjd.13308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Autosomal recessive congenital ichthyoses (ARCIs) are keratinization disorders caused by impaired skin barrier function. Mutations in the genes encoding the lipoxygenases 12R-LOX and eLOX-3 are the second most common cause of ARCIs. In recent years, human skin equivalents recapitulating the ARCI phenotype have been established. OBJECTIVES To develop a murine organotypic tissue culture model for ARCI. METHODS Epidermal keratinocytes were isolated from newborn 12R-LOX-deficient mice and cocultivated with mouse dermal fibroblasts embedded in a scaffold of native collagen type I. RESULTS With this experimental set-up the keratinocytes formed a well-organized multilayered stratified epithelium resembling skin architecture in vivo. All epidermal layers were present and the keratinocytes within showed the characteristic morphological features. Markers for differentiation and maturation indicated regular epidermal morphogenesis. The major components of epidermal structures were expressed, and were obviously processed and assembled properly. In contrast to their wild-type counterparts, 12R-LOX-deficient skin equivalents showed abnormal vesicular structures in the upper epidermal layers correlating with altered lipid composition and increased transepidermal water loss, comparable with 12R-LOX-deficient mice. CONCLUSIONS The mouse skin equivalents faithfully recapitulate the 12R-LOX-deficient phenotype observed in vivo, classifying them as appropriate in vitro models to study molecular mechanisms involved in the development of ARCI and to evaluate novel therapeutic agents. In contrast to existing human three-dimensional skin models, the generation of these murine models is not constrained by a limited supply of material and does not depend on in vitro expansion and/or genetic manipulations that could result in inadvertent genotypic and phenotypic alterations.
Collapse
Affiliation(s)
- S Rosenberger
- Genome Modifications and Carcinogenesis, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Su Z, Ma H, Wu Z, Zeng H, Li Z, Wang Y, Liu G, Xu B, Lin Y, Zhang P, Wei X. Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:440-8. [DOI: 10.1016/j.msec.2014.07.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/31/2014] [Accepted: 07/13/2014] [Indexed: 12/20/2022]
|
133
|
Shon MS, Lee Y, Song JH, Park T, Lee JK, Kim M, Park E, Kim GN. Anti-aging Potential of Extracts Prepared from Fruits and Medicinal Herbs Cultivated in the Gyeongnam Area of Korea. Prev Nutr Food Sci 2014; 19:178-86. [PMID: 25320715 PMCID: PMC4195623 DOI: 10.3746/pnf.2014.19.3.178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/21/2014] [Indexed: 11/07/2022] Open
Abstract
Many recent studies have focused on maintaining a healthy life by preventing and/or postponing the aging process. Numerous studies have reported that continuous exposure to reactive oxygen species can stimulate skin aging and that excessive accumulation of fat can cause an impaired skin barrier and tissue structure alterations. Thus, the maintenance of antioxidant homeostasis and the suppression of adipose accumulation are important strategies for skin anti-aging. Here, we prepared three types of extracts [whole juice, acetone-perchloric acid (PCA), and ethanol] from 20 fruits and medicinal herbs native to the Gyeongnam area of Korea. The total phenolic content of each extract was analyzed, and we observed higher total phenolic contents in the medicinal herbs. Consistent with this, the results of the oxygen radical absorbance activity capacity assay indicated that the in vitro antioxidant activities of the medicinal herb extracts were stronger than those of the fruit extracts. The fruits and medicinal herbs had strong effects on cell-based systems, including H2O2-induced oxidative stress in human keratinocytes and 3T3-L1 lipid accumulation. Nishimura Wase persimmon, Taishu persimmon, wrinkled giant hyssop, sweet wormwood, Chinese cedar, red perilla, tan shen, hiyodori-jogo, and cramp bark may be natural anti-aging materials with effective antioxidant and anti-adipogenic activities. Taken together, our findings may provide scientific evidence supporting the development of functional foods and nutraceuticals from fruits and medicinal herbs.
Collapse
Affiliation(s)
- Myung-Soo Shon
- Department of Food Science and Biotechnology, Kyungnam University, Gyeongnam 631-701, Korea
| | - Yunjeong Lee
- Department of Food and Nutrition, Kyungnam University, Gyeongnam 631-701, Korea
| | - Ji-Hye Song
- Department of Food Science and Biotechnology, Kyungnam University, Gyeongnam 631-701, Korea
| | - Taehyun Park
- Division of Mechanical Engineering, Kyungnam University, Gyeongnam 631-701, Korea
| | - Jun Kyoung Lee
- Division of Mechanical Engineering, Kyungnam University, Gyeongnam 631-701, Korea
| | - Minju Kim
- R&D Division, Food & Nutrition Analysis Team, Hurom L.S. Co., Ltd., Gyeongnam 621-844, Korea
| | - Eunju Park
- Department of Food and Nutrition, Kyungnam University, Gyeongnam 631-701, Korea
| | - Gyo-Nam Kim
- Department of Food Science and Biotechnology, Kyungnam University, Gyeongnam 631-701, Korea
| |
Collapse
|
134
|
Wu Z, Fan L, Xu B, Lin Y, Zhang P, Wei X. Use of decellularized scaffolds combined with hyaluronic acid and basic fibroblast growth factor for skin tissue engineering. Tissue Eng Part A 2014; 21:390-402. [PMID: 25167809 DOI: 10.1089/ten.tea.2013.0260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Skin damage is one of the common clinical skin diseases, and the main cure is the use of skin graft, especially for large area of skin injury or deep-skin damage. However, skin graft demand is far greater than that currently available. In this study, xenogeneic decellularized scaffold was prepared with pig peritoneum by a series of biochemical treatments to retain normal three-dimensional tissue scaffold and remove cells and antigenic components from the tissue. Scaffold was combined with hyaluronic acid (HA) plus two different concentrations of basic fibroblast growth factor (bFGF) and tested for its use for the repair of skin wounds. HA enhanced bFGF to adsorb to the decellularized scaffolds and slowed the release of bFGF from the scaffolds in vitro. A total of 20 rabbits were sacrificed on day 3, 6, 11, or 14 postsurgery. The wound healing rate and the thickness of dermis layer of each wound were determined for analyzing the wound repair. Statistical analysis was performed by the two-tailed Student's t-test. Wounds covered with scaffolds containing 1 μg/mL bFGF had higher wound healing rates of 47.24%, 74.69%, and 87.54%, respectively, for days 6, 11, and 14 postsurgery than scaffolds alone with wound healing rates of 28.17%, 50.31%, and 61.36% and vaseline oil gauze with wound healing rates of 24.84%, 42.75%, and 57.62%. Wounds covered with scaffolds containing 1 μg/mL bFGF showed more dermis regeneration than the other wounds and had dermis layer of 210.60, 374.40, and 774.20 μm, respectively, for days 6, 11, and 14 postsurgery compared with scaffolds alone with dermis layer of 116.60, 200.00, and 455.40 μm and vaseline oil gauze with dermis layer of 82.60, 186.20, and 384.40 μm. There was no significant difference in wound healing rates and thickness of dermis layer between wounds covered with scaffolds containing 1 and 3 μg/mL bFGF on days 3, 6, 11, and 14 postsurgery. The decellularized scaffolds combined with HA and bFGF can be further tested for skin tissue engineering.
Collapse
Affiliation(s)
- Zhengzheng Wu
- 1 Institute of Biomedicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
135
|
Guiraud B, Hernandez-Pigeon H, Ceruti I, Mas S, Palvadeau Y, Saint-Martory C, Castex-Rizzi N, Duplan H, Bessou-Touya S. Characterization of a human epidermis model reconstructed from hair follicle keratinocytes and comparison with two commercially models and native skin. Int J Cosmet Sci 2014; 36:485-93. [DOI: 10.1111/ics.12150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/28/2014] [Indexed: 12/30/2022]
Affiliation(s)
- B. Guiraud
- Département de Pharmacologie In Vitro; Pierre Fabre Dermo-Cosmétique; 3 Avenue Hubert Curien BP13562 Toulouse CEDEX 31035 France
| | - H. Hernandez-Pigeon
- Département de Pharmacologie In Vitro; Pierre Fabre Dermo-Cosmétique; 3 Avenue Hubert Curien BP13562 Toulouse CEDEX 31035 France
| | - I. Ceruti
- Département de Pharmacologie In Vitro; Pierre Fabre Dermo-Cosmétique; 3 Avenue Hubert Curien BP13562 Toulouse CEDEX 31035 France
| | - S. Mas
- Département de Pharmacologie In Vitro; Pierre Fabre Dermo-Cosmétique; 3 Avenue Hubert Curien BP13562 Toulouse CEDEX 31035 France
| | - Y. Palvadeau
- Département de Pharmacologie In Vitro; Pierre Fabre Dermo-Cosmétique; 3 Avenue Hubert Curien BP13562 Toulouse CEDEX 31035 France
| | - C. Saint-Martory
- Pole Recherche, Exploration, Développement Clinique; Pierre Fabre Dermo-Cosmétique; 2, Rue Viguerie 31025 Toulouse Cedex France
| | - N. Castex-Rizzi
- Département de Pharmacologie In Vitro; Pierre Fabre Dermo-Cosmétique; 3 Avenue Hubert Curien BP13562 Toulouse CEDEX 31035 France
| | - H. Duplan
- Département de Pharmacologie In Vitro; Pierre Fabre Dermo-Cosmétique; 3 Avenue Hubert Curien BP13562 Toulouse CEDEX 31035 France
| | - S. Bessou-Touya
- Département de Pharmacologie In Vitro; Pierre Fabre Dermo-Cosmétique; 3 Avenue Hubert Curien BP13562 Toulouse CEDEX 31035 France
| |
Collapse
|
136
|
Mainzer C, Barrichello C, Debret R, Remoué N, Sigaudo-Roussel D, Sommer P. Insulin-transferrin-selenium as an alternative to foetal serum for epidermal equivalents. Int J Cosmet Sci 2014; 36:427-35. [PMID: 24847782 DOI: 10.1111/ics.12141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/26/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Organotypic skin models are powerful tools for research in development, ageing and diseases. They have become more and more complex with the use of multiple cell types. This requires a culture medium adapted to optimize the development of such in vitro skin. Foetal bovine serum (FBS) is the most complete supplement in existence at the moment, providing at once growth factors, vitamins, hormones and other circulating compounds. However, this cocktail suffers from batch variability and its animal origin is ethically questionable. More importantly, its biological activities may interfere with the study of certain signalling pathways. Here, we present a strategy for constructing an epidermal equivalent using a defined culture medium without serum. METHODS An epidermal equivalent was constructed with primary human keratinocytes cultured using an insulin-transferrin-selenium (ITS) medium. Determination of steady-state gene expression levels and the immunohistological characterization of keratinocyte markers were performed to compare the ITS medium condition with a reference model, where keratinocytes were co-cultured with fibroblasts in the presence of FBS. RESULTS The data show that the ITS medium promoted the expression of keratinocyte proliferation and differentiation markers at the protein and transcript levels in a similar way to that of the reference model. CONCLUSION We show that culture using the ITS medium appears as a viable replacement for FBS in the construction of epidermal equivalents, opening the way to signal transduction studies.
Collapse
Affiliation(s)
- C Mainzer
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, CNRS, UMR5305, Université Lyon 1, 7 passage du Vercors, 69367, Lyon, France
| | | | | | | | | | | |
Collapse
|
137
|
Tfayli A, Bonnier F, Farhane Z, Libong D, Byrne HJ, Baillet-Guffroy A. Comparison of structure and organization of cutaneous lipids in a reconstructed skin model and human skin: spectroscopic imaging and chromatographic profiling. Exp Dermatol 2014; 23:441-3. [DOI: 10.1111/exd.12423] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Ali Tfayli
- Group of Analytical Chemistry of Paris-Sud (GCAPS); Faculty of Pharmacy; University Paris-Sud; Chatenay-Malabry France
| | - Franck Bonnier
- Focas Research Institute; Dublin Institute of Technology; Dublin 8 Ireland
| | - Zeineb Farhane
- Group of Analytical Chemistry of Paris-Sud (GCAPS); Faculty of Pharmacy; University Paris-Sud; Chatenay-Malabry France
| | - Danielle Libong
- Group of Analytical Chemistry of Paris-Sud (GCAPS); Faculty of Pharmacy; University Paris-Sud; Chatenay-Malabry France
| | - Hugh J. Byrne
- Focas Research Institute; Dublin Institute of Technology; Dublin 8 Ireland
| | - Arlette Baillet-Guffroy
- Group of Analytical Chemistry of Paris-Sud (GCAPS); Faculty of Pharmacy; University Paris-Sud; Chatenay-Malabry France
| |
Collapse
|
138
|
Shimabukuro J, Yamaoka A, Murata KI, Kotani E, Hirano T, Nakajima Y, Matsumoto G, Mori H. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:64-9. [PMID: 25063093 DOI: 10.1016/j.msec.2014.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/20/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase-Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6.
Collapse
Affiliation(s)
- Junji Shimabukuro
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Ayako Yamaoka
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Ken-Ichi Murata
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Eiji Kotani
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan
| | - Tomoko Hirano
- Venture Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Yumiko Nakajima
- Functional Genomics Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Goichi Matsumoto
- Division of Oral Surgery, Yokohama Clinical Education Center of Kanagawa Dental University, Yokohama, Japan
| | - Hajime Mori
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan.
| |
Collapse
|
139
|
Lorencini M, Brohem CA, Dieamant GC, Zanchin NI, Maibach HI. Active ingredients against human epidermal aging. Ageing Res Rev 2014; 15:100-15. [PMID: 24675046 DOI: 10.1016/j.arr.2014.03.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
The decisive role of the epidermis in maintaining body homeostasis prompted studies to evaluate the changes in epidermal structure and functionality over the lifetime. This development, along with the identification of molecular mechanisms of epidermal signaling, maintenance, and differentiation, points to a need for new therapeutic alternatives to treat and prevent skin aging. In addition to recovering age- and sun-compromised functions, proper treatment of the epidermis has important esthetic implications. This study reviews active ingredients capable of counteracting symptoms of epidermal aging, organized according to the regulation of specific age-affected epidermal functions: (1) several compounds, other than retinoids and derivatives, act on the proliferation and differentiation of keratinocytes, supporting the protective barrier against mechanical and chemical insults; (2) natural lipidic compounds, as well as glycerol and urea, are described as agents for maintaining water-ion balance; (3) regulation of immunological pathogen defense can be reinforced by natural extracts and compounds, such as resveratrol; and (4) antioxidant exogenous sources enriched with flavonoids and vitamin C, for example, improve solar radiation protection and epidermal antioxidant activity. The main objective is to provide a functional classification of active ingredients as regulatory elements of epidermal homeostasis, with potential cosmetic and/or dermatological applications.
Collapse
|
140
|
Steffens D, Leonardi D, Soster PRDL, Lersch M, Rosa A, Crestani T, Scher C, de Morais MG, Costa JAV, Pranke P. Development of a new nanofiber scaffold for use with stem cells in a third degree burn animal model. Burns 2014; 40:1650-60. [PMID: 24794225 DOI: 10.1016/j.burns.2014.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 02/12/2014] [Accepted: 03/10/2014] [Indexed: 12/11/2022]
Abstract
The combination of mesenchymal stem cells (MSCs) and nanotechnology to promote tissue engineering presents a strategy for the creation of new substitutes for tissues. Aiming at the utilization of the scaffolds of poly-d,l-lactic acid (PDLLA) associated or not with Spirulina biomass (PDLLA/Sp) in skin wounds, MSCs were seeded onto nanofibers produced by electrospinning. These matrices were evaluated for morphology and fiber diameter by scanning electron microscopy and their interaction with the MSCs by confocal microscopy analysis. The biomaterials were implanted in mice with burn imitating skin defects for up to 7 days and five groups were studied for healing characteristics. The scaffolds demonstrated fibrous and porous structures and, when implanted in the animals, they tolerated mechanical stress for up to two weeks. Seven days after the induction of lesions, a similar presence of ulceration, inflammation and fibrosis among all the treatments was observed. No group showed signs of re-epithelization, keratinization or presence of hair follicles on the lesion site. In conclusion, although there was no microscopical difference among all the groups, it is possible that more prolonged analysis would show different results. Moreover, the macroscopic analysis of the groups with the scaffolds showed better cicatrization in comparison with the control group.
Collapse
Affiliation(s)
- Daniela Steffens
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Brazil; Post Graduate Program in Physiology, Federal University of Rio Grande do Sul, Brazil.
| | - Dilmar Leonardi
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Brazil
| | | | - Michelle Lersch
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Brazil
| | - Annelise Rosa
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Brazil; Post Graduate Program in Physiology, Federal University of Rio Grande do Sul, Brazil
| | - Thayane Crestani
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Brazil
| | - Cristiane Scher
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Brazil
| | - Michele Greque de Morais
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Brazil; Post Graduate Program in Physiology, Federal University of Rio Grande do Sul, Brazil; Stem Cell Research Institute, Brazil
| |
Collapse
|
141
|
Mathes SH, Ruffner H, Graf-Hausner U. The use of skin models in drug development. Adv Drug Deliv Rev 2014; 69-70:81-102. [PMID: 24378581 DOI: 10.1016/j.addr.2013.12.006] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/10/2013] [Accepted: 12/17/2013] [Indexed: 12/12/2022]
Abstract
Three dimensional (3D) tissue models of the human skin are probably the most developed and understood in vitro engineered constructs. The motivation to accomplish organotypic structures was driven by the clinics to enable transplantation of in vitro grown tissue substitutes and by the cosmetics industry as alternative test substrates in order to replace animal models. Today a huge variety of 3D human skin models exist, covering a multitude of scientific and/or technical demands. This review summarizes and discusses different approaches of skin model development and sets them into the context of drug development. Although human skin models have become indispensable for the cosmetics industry, they have not yet started their triumphal procession in pharmaceutical research and development. For drug development these tissue models may be of particular interest for a) systemically acting drugs applied on the skin, and b) drugs acting at the site of application in the case of skin diseases or disorders. Although quite a broad spectrum of models covering different aspects of the skin as a biologically acting surface exists, these are most often single stand-alone approaches. In order to enable the comprehensive application into drug development processes, the approaches have to be synchronized to allow a cross-over comparison. Besides the development of biological relevant models, other issues are not less important in the context of drug development: standardized production procedures, process automation, establishment of significant analytical methods, and data correlation. For the successful routine use of engineered human skin models in drug development, major requirements were defined. If these requirements can be accomplished in the next few years, human organotypic skin models will become indispensable for drug development, too.
Collapse
Affiliation(s)
- Stephanie H Mathes
- Institute of Chemistry and Biological Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820 Waedenswil, Switzerland
| | - Heinz Ruffner
- Developmental and Molecular Pathways (DMP), Novartis Institutes for BioMedical Research (NIBR), Fabrikstrasse 22, 4056 Basel, Switzerland
| | - Ursula Graf-Hausner
- Institute of Chemistry and Biological Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820 Waedenswil, Switzerland.
| |
Collapse
|
142
|
Xiao H, Ariyasinghe N, He X, Liang H. Tribological evaluation of porcine skin. Colloids Surf B Biointerfaces 2014; 116:734-8. [DOI: 10.1016/j.colsurfb.2013.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 11/11/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
|
143
|
Paz AC, Soleas J, Poon JC, Trieu D, Waddell TK, McGuigan AP. Challenges and Opportunities for Tissue-Engineering Polarized Epithelium. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:56-72. [DOI: 10.1089/ten.teb.2013.0144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ana C. Paz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - John Soleas
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - James C.H. Poon
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Dennis Trieu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Thomas K. Waddell
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
144
|
Lemper M, Snykers S, Vanhaecke T, De Paepe K, Rogiers V. Current Status of Healthy Human Skin Models: Can Histone Deacetylase Inhibitors Potentially Improve the Present Replacement Models? Skin Pharmacol Physiol 2014; 27:36-46. [DOI: 10.1159/000351363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 03/24/2013] [Indexed: 11/19/2022]
|
145
|
Guo Z, Higgins CA, Gillette BM, Itoh M, Umegaki N, Gledhill K, Sia SK, Christiano AM. Building a microphysiological skin model from induced pluripotent stem cells. Stem Cell Res Ther 2013; 4 Suppl 1:S2. [PMID: 24564920 PMCID: PMC4029476 DOI: 10.1186/scrt363] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The discovery of induced pluripotent stem cells (iPSCs) in 2006 was a major breakthrough for regenerative medicine. The establishment of patient-specific iPSCs has created the opportunity to model diseases in culture systems, with the potential to rapidly advance the drug discovery field. Current methods of drug discovery are inefficient, with a high proportion of drug candidates failing during clinical trials due to low efficacy and/or high toxicity. Many drugs fail toxicity testing during clinical trials, since the cells on which they have been tested do not adequately model three-dimensional tissues or their interaction with other organs in the body. There is a need to develop microphysiological systems that reliably represent both an intact tissue and also the interaction of a particular tissue with other systems throughout the body. As the port of entry for many drugs is via topical delivery, the skin is the first line of exposure, and also one of the first organs to demonstrate a reaction after systemic drug delivery. In this review, we discuss our strategy to develop a microphysiological system using iPSCs that recapitulates human skin for analyzing the interactions of drugs with the skin.
Collapse
|
146
|
Kim E, Rebecca V, Fedorenko IV, Messina JL, Mathew R, Maria-Engler SS, Basanta D, Smalley KSM, Anderson ARA. Senescent fibroblasts in melanoma initiation and progression: an integrated theoretical, experimental, and clinical approach. Cancer Res 2013; 73:6874-85. [PMID: 24080279 DOI: 10.1158/0008-5472.can-13-1720] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present an integrated study to understand the key role of senescent fibroblasts in driving melanoma progression. Based on the hybrid cellular automata paradigm, we developed an in silico model of normal skin. The model focuses on key cellular and microenvironmental variables that regulate interactions among keratinocytes, melanocytes, and fibroblasts, key components of the skin. The model recapitulates normal skin structure and is robust enough to withstand physical as well as biochemical perturbations. Furthermore, the model predicted the important role of the skin microenvironment in melanoma initiation and progression. Our in vitro experiments showed that dermal fibroblasts, which are an important source of growth factors in the skin, adopt a secretory phenotype that facilitates cancer cell growth and invasion when they become senescent. Our coculture experiments showed that the senescent fibroblasts promoted the growth of nontumorigenic melanoma cells and enhanced the invasion of advanced melanoma cells. Motivated by these experimental results, we incorporated senescent fibroblasts into our model and showed that senescent fibroblasts transform the skin microenvironment and subsequently change the skin architecture by enhancing the growth and invasion of normal melanocytes. The interaction between senescent fibroblasts and the early-stage melanoma cells leads to melanoma initiation and progression. Of microenvironmental factors that senescent fibroblasts produce, proteases are shown to be one of the key contributing factors that promoted melanoma development from our simulations. Although not a direct validation, we also observed increased proteolytic activity in stromal fields adjacent to melanoma lesions in human histology. This leads us to the conclusion that senescent fibroblasts may create a prooncogenic skin microenvironment that cooperates with mutant melanocytes to drive melanoma initiation and progression and should therefore be considered as a potential future therapeutic target. Interestingly, our simulations to test the effects of a stroma-targeting therapy that negates the influence of proteolytic activity showed that the treatment could be effective in delaying melanoma initiation and progression.
Collapse
Affiliation(s)
- Eunjung Kim
- Authors' Affiliations: Integrated Mathematical Oncology Department; Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute; College of Medicine Pathology and Cell Biology, University of South Florida, Tampa, Florida; and Department of Clinical Chemistry and Toxicology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Turner NJ, Keane TJ, Badylak SF. Lessons from developmental biology for regenerative medicine. ACTA ACUST UNITED AC 2013; 99:149-59. [DOI: 10.1002/bdrc.21040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 07/27/2013] [Accepted: 07/27/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Neill J. Turner
- McGowan Institute for Regenerative Medicine; University of Pittsburgh, Pittsburgh, Pennsylvania and Department of Surgery, University of Pittsburgh; Pittsburgh Pennsylvania
| | - Timothy J. Keane
- McGowan Institute for Regenerative Medicine; University of Pittsburgh, Pittsburgh, Pennsylvania and Department of Bioengineering, University of Pittsburgh; Pittsburgh Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, and Department of Bioengineering, University of Pittsburgh; Pittsburgh Pennsylvania
| |
Collapse
|
148
|
Nayak S, Dey S, Kundu SC. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons. PLoS One 2013; 8:e74779. [PMID: 24058626 PMCID: PMC3772899 DOI: 10.1371/journal.pone.0074779] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/07/2013] [Indexed: 01/06/2023] Open
Abstract
The development of effective and alternative tissue-engineered skin replacements to autografts, allografts and xenografts has became a clinical requirement due to the problems related to source of donor tissue and the perceived risk of disease transmission. In the present study 3D tissue engineered construct of sericin is developed using co-culture of keratinocytes on the upper surface of the fabricated matrices and with fibroblasts on lower surface. Sericin is obtained from "Sericin Hope" silkworm of Bombyx mori mutant and is extracted from cocoons by autoclave. Porous sericin matrices are prepared by freeze dried method using genipin as crosslinker. The matrices are characterized biochemically and biophysically. The cell proliferation and viability of co-cultured fibroblasts and keratinocytes on matrices for at least 28 days are observed by live/dead assay, Alamar blue assay, and by dual fluorescent staining. The growth of the fibroblasts and keratinocytes in co-culture is correlated with the expression level of TGF-β, b-FGF and IL-8 in the cultured supernatants by enzyme-linked immunosorbent assay. The histological analysis further demonstrates a multi-layered stratified epidermal layer of uninhibited keratinocytes in co-cultured constructs. Presence of involucrin, collagen IV and the fibroblast surface protein in immuno-histochemical stained sections of co-cultured matrices indicates the significance of paracrine signaling between keratinocytes and fibroblasts in the expression of extracellular matrix protein for dermal repair. No significant amount of pro inflammatory cytokines (TNF-α, IL-1β and nitric oxide) production are evidenced when macrophages grown on the sericin matrices. The results all together depict the potentiality of sericin 3D matrices as skin equivalent tissue engineered construct in wound repair.
Collapse
Affiliation(s)
- Sunita Nayak
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Sancharika Dey
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Subhas C. Kundu
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
- * E-mail:
| |
Collapse
|
149
|
Chau DYS, Johnson C, MacNeil S, Haycock JW, Ghaemmaghami AM. The development of a 3D immunocompetent model of human skin. Biofabrication 2013; 5:035011. [PMID: 23880658 DOI: 10.1088/1758-5082/5/3/035011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As the first line of defence, skin is regularly exposed to a variety of biological, physical and chemical insults. Therefore, determining the skin sensitization potential of new chemicals is of paramount importance from the safety assessment and regulatory point of view. Given the questionable biological relevance of animal models to human as well as ethical and regulatory pressure to limit or stop the use of animal models for safety testing, there is a need for developing simple yet physiologically relevant models of human skin. Herein, we describe the construction of a novel immunocompetent 3D human skin model comprising of dendritic cells co-cultured with keratinocytes and fibroblasts. This model culture system is simple to assemble with readily-available components and importantly, can be separated into its constitutive individual layers to allow further insight into cell-cell interactions and detailed studies of the mechanisms of skin sensitization. In this study, using non-degradable microfibre scaffolds and a cell-laden gel, we have engineered a multilayer 3D immunocompetent model comprised of keratinocytes and fibroblasts that are interspersed with dendritic cells. We have characterized this model using a combination of confocal microscopy, immuno-histochemistry and scanning electron microscopy and have shown differentiation of the epidermal layer and formation of an epidermal barrier. Crucially the immune cells in the model are able to migrate and remain responsive to stimulation with skin sensitizers even at low concentrations. We therefore suggest this new biologically relevant skin model will prove valuable in investigating the mechanisms of allergic contact dermatitis and other skin pathologies in human. Once fully optimized, this model can also be used as a platform for testing the allergenic potential of new chemicals and drug leads.
Collapse
Affiliation(s)
- David Y S Chau
- Allergy Research Group, School of Molecular Medical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | | | | | |
Collapse
|
150
|
Epidermal stem cells in orthopaedic regenerative medicine. Int J Mol Sci 2013; 14:11626-42. [PMID: 23727934 PMCID: PMC3709750 DOI: 10.3390/ijms140611626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 01/01/2023] Open
Abstract
In the last decade, great advances have been made in epidermal stem cell studies at the cellular and molecular level. These studies reported various subpopulations and differentiations existing in the epidermal stem cell. Although controversies and unknown issues remain, epidermal stem cells possess an immune-privileged property in transplantation together with easy accessibility, which is favorable for future clinical application. In this review, we will summarize the biological characteristics of epidermal stem cells, and their potential in orthopedic regenerative medicine. Epidermal stem cells play a critical role via cell replacement, and demonstrate significant translational potential in the treatment of orthopedic injuries and diseases, including treatment for wound healing, peripheral nerve and spinal cord injury, and even muscle and bone remodeling.
Collapse
|