101
|
Biswas A, Mani S, Redinbo MR, Krasowski MD, Li H, Ekins S. Elucidating the 'Jekyll and Hyde' nature of PXR: the case for discovering antagonists or allosteric antagonists. Pharm Res 2009; 26:1807-15. [PMID: 19415465 PMCID: PMC2846309 DOI: 10.1007/s11095-009-9901-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 04/16/2009] [Indexed: 12/15/2022]
Abstract
The pregnane X receptor belongs to the nuclear hormone receptor superfamily and is involved in the transcriptional control of numerous genes. It was originally thought that it was a xenobiotic sensor controlling detoxification pathways. Recent studies have shown an increasingly important role in inflammation and cancer, supporting its function in abrogating tissue damage. PXR orthologs and PXR-like pathways have been identified in several non-mammalian species which corroborate a conserved role for PXR in cellular detoxification. In summary, PXR has a multiplicity of roles in vivo and is being revealed as behaving like a "Jekyll and Hyde" nuclear hormone receptor. The importance of this review is to elucidate the need for discovery of antagonists of PXR to further probe its biology and therapeutic applications. Although several PXR agonists are already reported, virtually nothing is known about PXR antagonists. Here, we propose the development of PXR antagonists through chemical, genetic and molecular modeling approaches. Based on this review it will be clear that antagonists of PXR and PXR-like pathways will have widespread utility in PXR biology and therapeutics.
Collapse
Affiliation(s)
- Arunima Biswas
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
102
|
Chu V, Einolf HJ, Evers R, Kumar G, Moore D, Ripp S, Silva J, Sinha V, Sinz M, Skerjanec A. In vitro and in vivo induction of cytochrome p450: a survey of the current practices and recommendations: a pharmaceutical research and manufacturers of america perspective. Drug Metab Dispos 2009; 37:1339-54. [PMID: 19389860 DOI: 10.1124/dmd.109.027029] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Cytochrome P450 (P450) induction is one of the factors that can affect the pharmacokinetics of a drug molecule upon multiple dosing, and it can result in pharmacokinetic drug-drug interactions with coadministered drugs causing potential therapeutic failures. In recent years, various in vitro assays have been developed and used routinely to assess the potential for drug-drug interactions due to P450 induction. There is a desire from the pharmaceutical industry and regulatory agencies to harmonize assay methodologies, data interpretation, and the design of clinical drug-drug interaction studies. In this article, a team of 10 scientists from nine Pharmaceutical Research and Manufacturers of America (PhRMA) member companies conducted an anonymous survey among PhRMA companies to query current practices with regards to the conduct of in vitro induction assays, data interpretation, and clinical induction study practices. The results of the survey are presented in this article, along with reviews of current methodologies of in vitro assays and in vivo studies, including modeling efforts in this area. A consensus recommendation regarding common practices for the conduct of P450 induction studies is included.
Collapse
Affiliation(s)
- Valeria Chu
- Sanofi-aventis United States, Bridgewater, New Jersey, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Ai N, Krasowski MD, Welsh WJ, Ekins S. Understanding nuclear receptors using computational methods. Drug Discov Today 2009; 14:486-94. [PMID: 19429508 PMCID: PMC2846174 DOI: 10.1016/j.drudis.2009.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs) are important targets for therapeutic drugs. NRs regulate transcriptional activities through binding to ligands and interacting with several regulating proteins. Computational methods can provide insights into essential ligand-receptor and protein-protein interactions. These in turn have facilitated the discovery of novel agonists and antagonists with high affinity and specificity as well as have aided in the prediction of toxic side effects of drugs by identifying possible off-target interactions. Here, we review the application of computational methods toward several clinically important NRs (with special emphasis on PXR) and discuss their use for screening and predicting the toxic side effects of xenobiotics.
Collapse
Affiliation(s)
- Ni Ai
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | - Matthew D. Krasowski
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213 USA
- Department of Pathology, Division of Clinical Chemistry, Toxicology and Therapeutic Drug Monitoring Laboratory, University of Pittsburgh Medical Center Presbyterian/Shadyside, Pittsburgh, PA, 15261, USA
| | - William J Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | - Sean Ekins
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
- Collaborations in Chemistry, Jenkintown, PA 19046, USA
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
104
|
Kortagere S, Chekmarev D, Welsh WJ, Ekins S. Hybrid scoring and classification approaches to predict human pregnane X receptor activators. Pharm Res 2009; 26:1001-11. [PMID: 19115096 PMCID: PMC2836910 DOI: 10.1007/s11095-008-9809-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/10/2008] [Indexed: 02/07/2023]
Abstract
PURPOSE The human pregnane X receptor (PXR) is a transcriptional regulator of many genes involved in xenobiotic metabolism and excretion. Reliable prediction of high affinity binders with this receptor would be valuable for pharmaceutical drug discovery to predict potential toxicological responses MATERIALS AND METHODS Computational models were developed and validated for a dataset consisting of human PXR (PXR) activators and non-activators. We used support vector machine (SVM) algorithms with molecular descriptors derived from two sources, Shape Signatures and the Molecular Operating Environment (MOE) application software. We also employed the molecular docking program GOLD in which the GoldScore method was supplemented with other scoring functions to improve docking results. RESULTS The overall test set prediction accuracy for PXR activators with SVM was 72% to 81%. This indicates that molecular shape descriptors are useful in classification of compounds binding to this receptor. The best docking prediction accuracy (61%) was obtained using 1D Shape Signature descriptors as a weighting factor to the GoldScore. By pooling the available human PXR data sets we revealed those molecular features that are associated with human PXR activators. CONCLUSIONS These combined computational approaches using molecular shape information may assist scientists to more confidently identify PXR activators.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Department of Pharmacology and Environmental Bioinformatics and Computational Toxicology Center (ebCTC), University of Medicine and Dentistry of New Jersey (UMDNJ)-Robert Wood Johnson Medical School, 675 Hoes lane, Piscataway, NJ 08854, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Dmitriy Chekmarev
- Department of Pharmacology and Environmental Bioinformatics and Computational Toxicology Center (ebCTC), University of Medicine and Dentistry of New Jersey (UMDNJ)-Robert Wood Johnson Medical School, 675 Hoes lane, Piscataway, NJ 08854, USA
| | - William J. Welsh
- Department of Pharmacology and Environmental Bioinformatics and Computational Toxicology Center (ebCTC), University of Medicine and Dentistry of New Jersey (UMDNJ)-Robert Wood Johnson Medical School, 675 Hoes lane, Piscataway, NJ 08854, USA
| | - Sean Ekins
- Department of Pharmacology and Environmental Bioinformatics and Computational Toxicology Center (ebCTC), University of Medicine and Dentistry of New Jersey (UMDNJ)-Robert Wood Johnson Medical School, 675 Hoes lane, Piscataway, NJ 08854, USA
- Collaborations in Chemistry, 601 Runnymede Avenue, Jenkintown, PA 19046, USA
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
105
|
Abstract
The pregnane X receptor (PXR; NR1I2), a member of the nuclear receptor superfamily, regulates the expression of drug-metabolic enzymes and transporters involved in the responses of mammals to their chemical environment. The same enzyme and transporter systems are also involved in the homeostasis of numerous endogenous chemicals. The regulatory function of PXR is implicated in normal physiology and diseases, such as drug-drug interactions, hepatic steatosis, vitamin D homeostasis, bile acids homeostasis, steroid hormones homeostasis and inflammatory bowel diseases. As such, any genetic variations of this receptor could potentially have widespread effects on the disposition of xenobiotics and endobiotics. Knowledge concerning the genetic polymorphisms of PXR may help to understand the variations in human drug response and ensure safe drug use. The correlation of PXR genetic polymorphisms with several disease conditions also suggests that this receptor may represent a valid therapeutic for hepato-intestinal disorders such as inflammatory bowel disease and primary sclerosing cholangitis.
Collapse
Affiliation(s)
| | - Wen Xie
- Author for correspondence: Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA, 15261 USA Tel.: +1 412 648 9941 Fax: +1 412 648 1664
| | | |
Collapse
|
106
|
Ekins S, Kholodovych V, Ai N, Sinz M, Gal J, Gera L, Welsh WJ, Bachmann K, Mani S. Computational discovery of novel low micromolar human pregnane X receptor antagonists. Mol Pharmacol 2008; 74:662-72. [PMID: 18579710 DOI: 10.1124/mol.108.049437] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Very few antagonists have been identified for the human pregnane X receptor (PXR). These molecules may be of use for modulating the effects of therapeutic drugs, which are potent agonists for this receptor (e.g., some anticancer compounds and macrolide antibiotics), with subsequent effects on transcriptional regulation of xenobiotic metabolism and transporter genes. A recent novel pharmacophore for PXR antagonists was developed using three azoles and consisted of two hydrogen bond acceptor regions and two hydrophobic features. This pharmacophore also suggested an overall small binding site that was identified on the outer surface of the receptor at the AF-2 site and validated by docking studies. Using computational approaches to search libraries of known drugs or commercially available molecules is preferred over random screening. We have now described several new smaller antagonists of PXR discovered with the antagonist pharmacophore with in vitro activity in the low micromolar range [S-p-tolyl 3',5-dimethyl-3,5'-biisoxazole-4'-carbothioate (SPB03255) (IC(50), 6.3 microM) and 4-(3-chlorophenyl)-5-(2,4-dichlorobenzylthio)-4H-1,2,4-triazol-3-ol (SPB00574) (IC(50), 24.8 microM)]. We have also used our computational pharmacophore and docking tools to suggest that most of the known PXR antagonists, such as coumestrol and sulforaphane, could also interact on the outer surface of PXR at the AF-2 domain. The involvement of this domain was also suggested by further site-directed mutagenesis work. We have additionally described an FDA approved prodrug, leflunomide (IC(50), 6.8 microM), that seems to be a PXR antagonist in vitro. These observations are important for predicting whether further molecules may interact with PXR as antagonists in vivo with potential therapeutic applications.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Jenkintown, PA 19046, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Yasuda K, Ranade A, Venkataramanan R, Strom S, Chupka J, Ekins S, Schuetz E, Bachmann K. A comprehensive in vitro and in silico analysis of antibiotics that activate pregnane X receptor and induce CYP3A4 in liver and intestine. Drug Metab Dispos 2008; 36:1689-97. [PMID: 18505790 PMCID: PMC4664062 DOI: 10.1124/dmd.108.020701] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have investigated several in silico and in vitro methods to improve our ability to predict potential drug interactions of antibiotics. Our focus was to identify those antibiotics that activate pregnane X receptor (PXR) and induce CYP3A4 in human hepatocytes and intestinal cells. Human PXR activation was screened using reporter assays in HepG2 cells, kinetic measurements of PXR activation were made in DPX-2 cells, and induction of CYP3A4 expression and activity was verified by quantitative polymerase chain reaction, immunoblotting, and testosterone 6beta-hydroxylation in primary human hepatocytes and LS180 cells. We found that in HepG2 cells CYP3A4 transcription was activated strongly (> 10-fold) by rifampin and troleandomycin; moderately (> or = 7-fold) by dicloxacillin, tetracycline, clindamycin, griseofulvin, and (> or = 4-fold) erythromycin; and weakly (> 2.4-fold) by nafcillin, cefaclor, sulfisoxazole, and (> 2-fold) cefadroxil and penicillin V. Similar although not identical results were obtained in DPX-2 cells. CYP3A4 mRNA and protein expression were induced by these antibiotics to differing extents in both liver and intestinal cells. CYP3A4 activity was significantly increased by rifampin (9.7-fold), nafcillin and dicloxacillin (5.9-fold), and weakly induced (2-fold) by tetracycline, sufisoxazole, troleandomycin, and clindamycin. Multiple pharmacophore models and docking indicated a good fit for dicloxacillin and nafcillin in PXR. These results suggest that in vitro and in silico methods can help to prioritize and identify antibiotics that are most likely to reduce exposures of medications (such as oral contraceptive agents) which interact with enzymes and transporters regulated by PXR. In summary, nafcillin, dicloxacillin, cephradine, tetracycline, sulfixoxazole, erythromycin, clindamycin, and griseofulvin exhibit a clear propensity to induce CYP3A4 and warrant further clinical investigation.
Collapse
Affiliation(s)
- Kazuto Yasuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Chen T. Nuclear receptor drug discovery. Curr Opin Chem Biol 2008; 12:418-26. [PMID: 18662801 DOI: 10.1016/j.cbpa.2008.07.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 12/13/2022]
Abstract
Nuclear receptors (NR) are ligand-activated transcription factors that regulate the activation of a variety of important target genes. There are 48 genes that encode NRs in the human genome, and these receptors now represent one of the most important targets for therapeutic drug development. Successful identification of selective NR modulators has transformed the NR drug discovery strategy from the designing of synthetic compounds that mimic the full function of cognate ligands to developing compounds that selectively modulate the functional activity of an NR in a manner that is distinct from the cognate ligands. Current efforts regarding NR drug development continue to focus on improving the function and tissue selectivity of drug candidates to reduce undesirable side effects. This review focuses on modulators of the glucocorticoid receptor (GR), androgen receptor (AR), and pregnane X receptor (PXR).
Collapse
MESH Headings
- Androgen Receptor Antagonists
- Androgens
- Animals
- Drug Evaluation, Preclinical/methods
- Humans
- Pharmacology/trends
- Pregnane X Receptor
- Receptors, Androgen/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/metabolism
- Receptors, Steroid/agonists
- Receptors, Steroid/antagonists & inhibitors
- Receptors, Steroid/metabolism
Collapse
Affiliation(s)
- Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
109
|
Pelkonen O, Turpeinen M, Hakkola J, Honkakoski P, Hukkanen J, Raunio H. Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol 2008; 82:667-715. [PMID: 18618097 DOI: 10.1007/s00204-008-0332-8] [Citation(s) in RCA: 391] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 06/16/2008] [Indexed: 02/07/2023]
Abstract
Variability of drug metabolism, especially that of the most important phase I enzymes or cytochrome P450 (CYP) enzymes, is an important complicating factor in many areas of pharmacology and toxicology, in drug development, preclinical toxicity studies, clinical trials, drug therapy, environmental exposures and risk assessment. These frequently enormous consequences in mind, predictive and pre-emptying measures have been a top priority in both pharmacology and toxicology. This means the development of predictive in vitro approaches. The sound prediction is always based on the firm background of basic research on the phenomena of inhibition and induction and their underlying mechanisms; consequently the description of these aspects is the purpose of this review. We cover both inhibition and induction of CYP enzymes, always keeping in mind the basic mechanisms on which to build predictive and preventive in vitro approaches. Just because validation is an essential part of any in vitro-in vivo extrapolation scenario, we cover also necessary in vivo research and findings in order to provide a proper view to justify in vitro approaches and observations.
Collapse
Affiliation(s)
- Olavi Pelkonen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, PO Box 5000 (Aapistie 5 B), 90014 Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
110
|
Khandelwal A, Krasowski MD, Reschly EJ, Sinz MW, Swaan PW, Ekins S. Machine learning methods and docking for predicting human pregnane X receptor activation. Chem Res Toxicol 2008; 21:1457-67. [PMID: 18547065 PMCID: PMC2574557 DOI: 10.1021/tx800102e] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pregnane X receptor (PXR) regulates the expression of genes involved in xenobiotic metabolism and transport. In vitro methods to screen for PXR agonists are used widely. In the current study, computational models for human PXR activators and PXR nonactivators were developed using recursive partitioning (RP), random forest (RF), and support vector machine (SVM) algorithms with VolSurf descriptors. Following 10-fold randomization, the models correctly predicted 82.6-98.9% of activators and 62.0-88.6% of nonactivators. The models were validated using separate test sets. The overall ( n = 15) test set prediction accuracy for PXR activators with RP, RF, and SVM PXR models is 80-93.3%, representing an improvement over models previously reported. All models were tested with a second test set ( n = 145), and the prediction accuracy ranged from 63 to 67% overall. These test set molecules were found to cover the same area in a principal component analysis plot as the training set, suggesting that the predictions were within the applicability domain. The FlexX docking method combined with logistic regression performed poorly in classifying this PXR test set as compared with RP, RF, and SVM but may be useful for qualitative interpretion of interactions within the LBD. From this analysis, VolSurf descriptors and machine learning methods had good classification accuracy and made reliable predictions within the model applicability domain. These methods could be used for high throughput virtual screening to assess for PXR activation, prior to in vitro testing to predict potential drug-drug interactions.
Collapse
Affiliation(s)
- Akash Khandelwal
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | | | - Erica J. Reschly
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael W. Sinz
- Bristol-Myers Squibb Company, Research Parkway, Wallingford, CT 06492, USA
| | - Peter W. Swaan
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | - Sean Ekins
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
- Collaborations in Chemistry, 601 Runnymede Ave, Jenkintown, PA 19046, USA
| |
Collapse
|
111
|
Das BC, Madhukumar AV, Anguiano J, Kim S, Sinz M, Zvyaga TA, Power EC, Ganellin CR, Mani S. Synthesis of novel ketoconazole derivatives as inhibitors of the human Pregnane X Receptor (PXR; NR1I2; also termed SXR, PAR). Bioorg Med Chem Lett 2008; 18:3974-7. [PMID: 18583127 DOI: 10.1016/j.bmcl.2008.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/02/2008] [Accepted: 06/04/2008] [Indexed: 10/22/2022]
Abstract
PXR, pregnane X receptor, in its activated state, is a validated target for controlling certain drug-drug interactions in humans. In this context, there is a paucity of inhibitors directed toward activated PXR. Using prior observations with ketoconazole as a PXR inhibitor, the target compound 3 was synthesized from (s)-glycidol with overall 56% yield. (+)-Glycidol was reacted with 4-bromophenol and potassium carbonate in DMF to yield the ring opened compound 6. This was then heated to reflux in benzene along with 2', 4'-difluoroacetophenone and catalytic amount of para-toluene sulfonic acid to yield 8. The resultant acetal 8 was then functionalized using Palladium chemistry to yield the target compound 3. The activity of the compound was compared with ketoconazole and UCL2158H. However, in contrast with ketoconazole (IC(50) approximately 0.020 microM; approximately 100% inhibition), 3 has negligible effects on inhibition of microsomal CYP450 (maximum approximately 20% inhibition) at concentrations >40 microM. In vitro, micromolar concentration of ketoconazole is toxic to passaged human cell lines, while 3 does not exhibit cytotoxicity up to concentrations approximately 100 microM (viability >85%). This is the first demonstration of a chemical analog of a PXR inhibitor that retains activity against activated PXR. Furthermore, in contrast with ketoconazole, 3 is less toxic in human cell lines and has negligible CYP450 activity.
Collapse
Affiliation(s)
- Bhaskar C Das
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY 10463, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Sinz M, Wallace G, Sahi J. Current industrial practices in assessing CYP450 enzyme induction: preclinical and clinical. AAPS J 2008; 10:391-400. [PMID: 18686044 PMCID: PMC2751387 DOI: 10.1208/s12248-008-9037-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 04/08/2008] [Indexed: 11/30/2022] Open
Abstract
Induction of drug metabolizing enzymes, such as the cytochromes P450 (CYP) is known to cause drug-drug interactions due to increased elimination of co-administered drugs. This increased elimination may lead to significant reduction or complete loss of efficacy of the co-administered drug. Due to the significance of such drug interactions, many pharmaceutical companies employ screening and characterization models which predict CYP enzyme induction to avoid or attenuate the potential for drug interactions with new drug candidates. The most common mechanism of CYP induction is transcriptional gene activation. Activation is mediated by nuclear receptors, such as AhR, CAR, and PXR that function as transcription factors. Early high throughput screening models utilize these nuclear hormone receptors in ligand binding or cell-based transactivation/reporter assays. In addition, immortalized hepatocyte cell lines can be used to assess enzyme induction of specific drug metabolizing enzymes. Cultured primary human hepatocytes, the best established in vitro model for predicting enzyme induction and most accepted by regulatory agencies, is the predominant assay used to evaluate induction of a wide variety of drug metabolizing enzymes. These in vitro models are able to appropriately predict enzyme induction in patients when compared to clinical drug-drug interactions. Finally, transgenic animal models and the cynomolgus monkey have also been shown to recapitulate human enzyme induction and may be appropriate in vivo animal models for predicting human drug interactions.
Collapse
Affiliation(s)
- Michael Sinz
- Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, USA.
| | | | | |
Collapse
|
113
|
Reschly EJ, Ai N, Welsh WJ, Ekins S, Hagey LR, Krasowski MD. Ligand specificity and evolution of liver X receptors. J Steroid Biochem Mol Biol 2008; 110:83-94. [PMID: 18395439 PMCID: PMC2519238 DOI: 10.1016/j.jsbmb.2008.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
Abstract
Liver X receptors (LXRs) are key regulators of lipid and cholesterol metabolism in mammals. Little is known, however, about the function and evolution of LXRs in non-mammalian species. The present study reports the cloning of LXRs from African clawed frog (Xenopus laevis), Western clawed frog (Xenopus tropicalis), and zebrafish (Danio rerio), and their functional characterization and comparison with human and mouse LXRs. Additionally, an ortholog of LXR in the chordate invertebrate Ciona intestinalis was cloned and functionally characterized. Ligand specificities of the frog and zebrafish LXRs were very similar to LXRalpha and LXRbeta from human and mouse. All vertebrate LXRs studied were activated robustly by the synthetic ligands T-0901317 and GW3965 and by a variety of oxysterols. In contrast, Ciona LXR was not activated by T-0901317 or GW3965 but was activated by a limited number of oxysterols, as well as some androstane and pregnane steroids. Pharmacophore analysis, homology modeling, and docking studies of Ciona LXR predict a receptor with a more restricted ligand-binding pocket and less intrinsic disorder in the ligand-binding domain compared to vertebrate LXRs. The results suggest that LXRs have a long evolutionary history, with vertebrate LXRs diverging from invertebrate LXRs in ligand specificity.
Collapse
Affiliation(s)
- Erica J. Reschly
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ni Ai
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - William J. Welsh
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Sean Ekins
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, United States
- Collaborations in Chemistry, Inc., Jenkintown, PA, United States
| | - Lee R. Hagey
- Department of Medicine, University of California, San Diego, CA, United States
| | - Matthew D. Krasowski
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
114
|
Ekins S, Reschly EJ, Hagey LR, Krasowski MD. Evolution of pharmacologic specificity in the pregnane X receptor. BMC Evol Biol 2008; 8:103. [PMID: 18384689 PMCID: PMC2358886 DOI: 10.1186/1471-2148-8-103] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 04/02/2008] [Indexed: 12/25/2022] Open
Abstract
Background The pregnane X receptor (PXR) shows the highest degree of cross-species sequence diversity of any of the vertebrate nuclear hormone receptors. In this study, we determined the pharmacophores for activation of human, mouse, rat, rabbit, chicken, and zebrafish PXRs, using a common set of sixteen ligands. In addition, we compared in detail the selectivity of human and zebrafish PXRs for steroidal compounds and xenobiotics. The ligand activation properties of the Western clawed frog (Xenopus tropicalis) PXR and that of a putative vitamin D receptor (VDR)/PXR cloned in this study from the chordate invertebrate sea squirt (Ciona intestinalis) were also investigated. Results Using a common set of ligands, human, mouse, and rat PXRs share structurally similar pharmacophores consisting of hydrophobic features and widely spaced excluded volumes indicative of large binding pockets. Zebrafish PXR has the most sterically constrained pharmacophore of the PXRs analyzed, suggesting a smaller ligand-binding pocket than the other PXRs. Chicken PXR possesses a symmetrical pharmacophore with four hydrophobes, a hydrogen bond acceptor, as well as excluded volumes. Comparison of human and zebrafish PXRs for a wide range of possible activators revealed that zebrafish PXR is activated by a subset of human PXR agonists. The Ciona VDR/PXR showed low sequence identity to vertebrate VDRs and PXRs in the ligand-binding domain and was preferentially activated by planar xenobiotics including 6-formylindolo-[3,2-b]carbazole. Lastly, the Western clawed frog (Xenopus tropicalis) PXR was insensitive to vitamins and steroidal compounds and was activated only by benzoates. Conclusion In contrast to other nuclear hormone receptors, PXRs show significant differences in ligand specificity across species. By pharmacophore analysis, certain PXRs share similar features such as human, mouse, and rat PXRs, suggesting overlap of function and perhaps common evolutionary forces. The Western clawed frog PXR, like that described for African clawed frog PXRs, has diverged considerably in ligand selectivity from fish, bird, and mammalian PXRs.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Inc., Jenkintown, PA, USA.
| | | | | | | |
Collapse
|
115
|
Rapid clinical induction of hepatic cytochrome P4502B6 activity by ritonavir. Antimicrob Agents Chemother 2008; 52:1663-9. [PMID: 18285471 DOI: 10.1128/aac.01600-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ritonavir is the most potent and efficacious inhibitor of cytochrome P4503A (CYP3A), and it is used accordingly for the pharmacoenhancement of other antiretrovirals. Paradoxically, ritonavir induces the clinical metabolism and clearance of many drugs. The mechanism by which ritonavir inhibits and induces clinical drug metabolism is unknown. Ritonavir induces CYP2B6 in human hepatocytes. This investigation tested the hypothesis that ritonavir induces human CYP2B6 in vivo. Thirteen healthy human immunodeficiency virus-negative volunteers underwent a three-way sequential crossover protocol, receiving racemic bupropion after nothing (control), 3 days of treatment with ritonavir, and 2.5 weeks of treatment with ritonavir (400 mg twice a day). Stereoselective bupropion hydroxylation was used as an in vivo probe for CYP2B6 activity. Plasma and urine (R)- and (S)-bupropion and (R,R)- and (S,S)-hydroxybupropion concentrations were measured by liquid chromatography-mass spectrometry. Racemic, (R)-, and (S)-bupropion plasma ratios of the area under the concentration-time curve from 0 h to infinity (AUC(0-infinity)) (ritonavir/control) were significantly reduced to 0.84, 0.86, and 0.80, respectively, after 3 days of ritonavir treatment and to 0.67, 0.69, and 0.60 after steady-state ritonavir treatment. Apparent oral clearances for racemic, (R)-, and (S)-bupropion all were significantly increased by 1.2-fold after 3 days of ritonavir treatment and by 1.4-, 1.7-, and 1.5-fold after steady-state ritonavir treatment. The plasma (S,S)-hydroxybupropion/(S)-bupropion AUC(0-72) ratio was significantly increased by ritonavir. Formation clearances of both (R,R)- and (S,S)-hydroxybupropion were increased 1.8-fold after 3 days of ritonavir treatment and 2.1-fold after steady-state ritonavir treatment. These results show that ritonavir induces human CYP2B6 activity. Induction is rapid, occurring after only 3 days of ritonavir, and is sustained for at least 2 weeks. The ritonavir induction of CYP2B6 activity may have significant implications for drug interactions and clarify previously unexplained interactions.
Collapse
|
116
|
Svecova L, Vrzal R, Burysek L, Anzenbacherova E, Cerveny L, Grim J, Trejtnar F, Kunes J, Pour M, Staud F, Anzenbacher P, Dvorak Z, Pavek P. Azole antimycotics differentially affect rifampicin-induced pregnane X receptor-mediated CYP3A4 gene expression. Drug Metab Dispos 2008; 36:339-48. [PMID: 17998298 DOI: 10.1124/dmd.107.018341] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Azole antifungal drug ketoconazole has recently been demonstrated as an inhibitor of a ligand-induced pregnane X receptor (PXR)-mediated transcriptional regulation of the CYP3A4 gene through disruption of PXR interaction with steroid receptor coactivator (SRC)-1. In contrast, other clotrimazole-derived antifungal agents are known as potent inducers of CYP3A4 through PXR. In the present study, we examined effects of azole antimycotics clotrimazole, ketoconazole, econazole, oxiconazole, miconazole, fluconazole, and itraconazole on PXR-mediated expression of CYP3A4. We investigated individual effects of the tested azoles as well as their action on rifampicin-induced PXR-mediated transactivation and expression of CYP3A4 in LS174T cell line and primary human hepatocytes, their interactions with PXR ligand-binding domain, and azole-mediated recruitment of SRC-1 to PXR. In addition, applying the pharmacodynamic approach and dose-response analysis, we aimed to describe the nature of potential interactions of tested azole antimycotics coadministered with a prototypical PXR ligand rifampicin in transactivation of CYP3A4 gene. We describe additive and antagonistic interactions of partial and full agonists of PXR nuclear receptor in the therapeutic group of azole antimycotics in rifampicin-mediated transactivation of CYP3A4. We show that oxiconazole is a highly efficacious activator of CYP3A4 transactivation, which could be antagonized by rifampicin in a competitive manner. In addition, we show that activation of the CYP3A4 promoter is a complex process, which is not exclusively determined by azole-PXR interactions, and we suggest that the ability of some azoles to affect recruitment of SRC-1 to PXR modulates their net effects in transactivation of CYP3A4 both in the absence or presence of rifampicin.
Collapse
Affiliation(s)
- Lucie Svecova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Sinz MW. Pregnane X Receptor: Prediction and Attenuation of Human CYP3A4 Enzyme Induction and Drug–Drug Interactions. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1016/s0065-7743(08)00023-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|