101
|
Zheng F, Zhou YT, Zeng YF, Liu T, Yang ZY, Tang T, Luo JK, Wang Y. Proteomics Analysis of Brain Tissue in a Rat Model of Ischemic Stroke in the Acute Phase. Front Mol Neurosci 2020; 13:27. [PMID: 32174813 PMCID: PMC7057045 DOI: 10.3389/fnmol.2020.00027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Stroke is a leading health issue, with high morbidity and mortality rates worldwide. Of all strokes, approximately 80% of cases are ischemic stroke (IS). However, the underlying mechanisms of the occurrence of acute IS remain poorly understood because of heterogeneous and multiple factors. More potential biomarkers are urgently needed to reveal the deeper pathogenesis of IS. Methods: We identified potential biomarkers in rat brain tissues of IS using an iTRAQ labeling approach coupled with LC-MS/MS. Furthermore, bioinformatrics analyses including GO, KEGG, DAVID, and Cytoscape were used to present proteomic profiles and to explore the disease mechanisms. Additionally, Western blotting for target proteins was conducted for further verification. Results: We identified 4,578 proteins using the iTRAQ-based proteomics method. Of these proteins, 282 differentiated proteins, comprising 73 upregulated and 209 downregulated proteins, were observed. Further bioinformatics analysis suggested that the candidate proteins were mainly involved in energy liberation, intracellular protein transport, and synaptic plasticity regulation during the acute period. KEGG pathway enrichment analysis indicated a series of representative pathological pathways, including energy metabolite, long-term potentiation (LTP), and neurodegenerative disease-related pathways. Moreover, Western blotting confirmed the associated candidate proteins, which refer to oxidative responses and synaptic plasticity. Conclusions: Our findings highlight the identification of candidate protein biomarkers and provide insight into the biological processes involved in acute IS.
Collapse
Affiliation(s)
- Fei Zheng
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Yan-Tao Zhou
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Yi-Fu Zeng
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Tao Liu
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Yu Yang
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jie-Kun Luo
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
102
|
Yao Y, Wang X, Li H, Fan J, Qian X, Li H, Xu Y. Phospholipase D as a key modulator of cancer progression. Biol Rev Camb Philos Soc 2020; 95:911-935. [PMID: 32073216 DOI: 10.1111/brv.12592] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
The phospholipase D (PLD) family has a ubiquitous expression in cells. PLD isoforms (PLDs) and their hydrolysate phosphatidic acid (PA) have been demonstrated to engage in multiple stages of cancer progression. Aberrant expression of PLDs, especially PLD1 and PLD2, has been detected in various cancers. Inhibition or elimination of PLDs activity has been shown to reduce tumour growth and metastasis. PLDs and PA also serve as downstream effectors of various cell-surface receptors, to trigger and regulate propagation of intracellular signals in the process of tumourigenesis and metastasis. Here, we discuss recent advances in understanding the functions of PLDs and PA in discrete stages of cancer progression, including cancer cell growth, invasion and migration, and angiogenesis, with special emphasis on the tumour-associated signalling pathways mediated by PLDs and PA and the functional importance of PLDs and PA in cancer therapy.
Collapse
Affiliation(s)
- Yuanfa Yao
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Wang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Clinical Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jiannan Fan
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Xiaohan Qian
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Respiratory Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
103
|
Filkin SY, Lipkin AV, Fedorov AN. Phospholipase Superfamily: Structure, Functions, and Biotechnological Applications. BIOCHEMISTRY (MOSCOW) 2020; 85:S177-S195. [DOI: 10.1134/s0006297920140096] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
104
|
SCD1 activity promotes cell migration via a PLD-mTOR pathway in the MDA-MB-231 triple-negative breast cancer cell line. Breast Cancer 2020; 27:594-606. [PMID: 31993937 DOI: 10.1007/s12282-020-01053-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Breast cancer is the most common cancer in women. Despite high survival rates in Western countries, treatments are less effective in metastatic cases and triple-negative breast cancer (TNBC) patient survival is the shortest across breast cancer subtypes. High expression levels of stearoyl-CoA desaturase-1 (SCD1) have been reported in breast cancer. The SCD1 enzyme catalyzes the formation of oleic acid (OA), a lipid stimulating the migration of metastatic breast cancer cells. Phospholipase activity is also implicated in breast cancer metastasis, notably phospholipase D (PLD). METHODS Kaplan-Meier survival plots generated from gene expression databases were used to analyze the involvement of SCD1 and PLD in several cancer subtypes. SCD1 enzymatic activity was modulated with a pharmaceutical inhibitor or by OA treatment (to mimic SCD1 over-activity) in three breast cancer cell lines: TNBC-derived MDA-MB-231 cells as well as non-TNBC MCF-7 and T47D cells. Cell morphology and migration properties were characterized by various complementary methods. RESULTS Our survival analyses suggest that SCD1 and PLD2 expression in the primary tumor are both associated to metastasis-related morbid outcomes in breast cancer patients. We show that modulation of SCD1 activity is associated with the modification of TNBC cell migration properties, including changes in speed, direction and cell morphology. Cell migration properties are regulated by SCD1 activity through a PLD-mTOR/p70S6K signaling pathway. These effects are not observed in non-TNBC cell lines. CONCLUSION Our results establish a key role for the lipid desaturase SCD1 and delineate an OA-PLD-mTOR/p70S6K signaling pathway in TNBC-derived MDA-MB-231 cell migration.
Collapse
|
105
|
Chen F, Chu L, Li J, Shi Y, Xu B, Gu J, Yao X, Tian M, Yang X, Sun X. Hypoxia induced changes in miRNAs and their target mRNAs in extracellular vesicles of esophageal squamous cancer cells. Thorac Cancer 2020; 11:570-580. [PMID: 31922357 PMCID: PMC7049507 DOI: 10.1111/1759-7714.13295] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Background Extracellular vesicles (EVs) are endogenous membrane vesicles with a diameter of 30–200 nm. It has been reported that hypoxic cancer cells can release numerous EVs to mediate multiple regional and systemic effects in the tumor microenvironment. Methods In this study, we used ultracentrifugation to extract EVs secreted by TE‐13, an esophageal squamous carcinoma (ESCC) cell line during normoxia and hypoxia and performed high‐throughput sequencing to detect exosomal miRNAs. Gene ontology (GO) and KEGG pathway analyses were used to reveal pathways potentially regulated by the miRNAs. Results A total of 10 810 miRNAs were detected; 50 were significantly upregulated and 34 were significantly downregulated under hypoxic environment. GO analysis identified enrichment of protein binding, regulation of transcription (DNA‐templated), and membrane as molecular function, biological process, and cellular component, respectively. KEGG pathway analysis revealed cancer‐associated pathways, phospholipase D signaling pathway, autophagy, focal adhesion and AGE‐RAGE signaling as the key pathways. Further verification experiment from qRT‐PCR indicated that miR‐128‐3p, miR‐140‐3p, miR‐340‐5p, miR‐452‐5p, miR‐769‐5p and miR‐1304‐p5 were significantly upregulated in EVs from hypoxia TE‐13 cells while miR‐340‐5p was significantly upregulated in two other ESCC cells, ECA109 and TE‐1. Conclusion This study, for the first time reveals changes in the expression of exosomal miRNAs in hypoxic ESCC cells and these findings will act as a resource to study the hypoxic tumor microenvironment and ESCC EVs.
Collapse
Affiliation(s)
- Fangyu Chen
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Li
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yu Shi
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, China
| | - Bing Xu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junjie Gu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xijuan Yao
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.,Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Tian
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
106
|
Abstract
Functions for phospholipase D1 and D2 (PLD1 and PLD2), the canonical isoforms of the PLD superfamily in mammals, have been explored using cell biological and animal disease models for two decades. PLD1 and PLD2, which are activated as a consequence of extracellular signaling events and generate the second messenger signaling lipid phosphatidic acid (PA), have been reported to play roles in settings ranging from platelet activation to the response to cardiac ischemia, viral infection, neurodegenerative disease, and cancer. Of these, the most tractable as therapeutic targets may be thrombotic disease and cancer, as will be discussed here in the context of ongoing efforts to develop small molecule PLD inhibitors.
Collapse
Affiliation(s)
- Christian Salazar
- Center for Developmental Genetics and the Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Michael A Frohman
- Center for Developmental Genetics and the Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, USA.
| |
Collapse
|
107
|
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2019; 78:101018. [PMID: 31830503 DOI: 10.1016/j.plipres.2019.101018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- M I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America.
| | - Y Wang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America; Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States of America
| |
Collapse
|
108
|
Yamada H, Mizuno S, Honda S, Takahashi D, Sakane F. Characterization of α-synuclein N-terminal domain as a novel cellular phosphatidic acid sensor. FEBS J 2019; 287:2212-2234. [PMID: 31722116 DOI: 10.1111/febs.15137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/11/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Tracking the localization and dynamics of the intracellular bioactive lipid phosphatidic acid (PA) is important for understanding diverse biological phenomena. Although several PA sensors have been developed, better ones are still needed for comprehensive PA detection in cells. We recently found that α-synuclein (α-Syn) selectively and strongly bound to PA in vitro. Here, we revealed that the N-terminal region of α-Syn (α-Syn-N) specifically bound to PA, with a dissociation constant of 6.6 μm. α-Syn-N colocalized with PA-producing enzymes, diacylglycerol kinase (DGK) β at the plasma membrane (PM), myristoylated DGKζ at the Golgi apparatus, phorbol ester-stimulated DGKγ at the PM, and phospholipase D2 at the PM and Golgi but not with the phosphatidylinositol-4,5-bisphosphate-producing enzyme in COS-7 cells. However, α-Syn-N failed to colocalize with them in the presence of their inhibitors and/or their inactive mutants. These results indicate that α-Syn-N specifically binds to cellular PA and can be applied as an excellent PA sensor.
Collapse
Affiliation(s)
- Haruka Yamada
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Satoru Mizuno
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Shotaro Honda
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| |
Collapse
|
109
|
Shadyro O, Samovich S, Edimecheva I. Free-radical and biochemical reactions involving polar part of glycerophospholipids. Free Radic Biol Med 2019; 144:6-15. [PMID: 30849488 DOI: 10.1016/j.freeradbiomed.2019.02.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
The review summarizes and critically discusses data on biochemical and free-radical transformations of glycerophospholipids. The results presented therein demonstrate that hydroxyl-containing glycerophospholipids, such as cardiolipin, lyso-lipids and others, can undergo fragmentation upon interaction with radical agents forming the biologically active products. Hydrolysis of glycerophospholipids catalyzed by different phospholipases was shown to yield compounds, which can be involved in the free-radical fragmentation leading to significant changes in structures of original lipids.
Collapse
Affiliation(s)
- Oleg Shadyro
- Department of Chemistry of the Belarusian State University, Nezavisimosti av., 4, 220030, Minsk, Belarus; Research Institute for Physical and Chemical Problems of the Belarusian State University, Leningradskaya st., 14, 220050, Minsk, Belarus.
| | - Svetlana Samovich
- Department of Chemistry of the Belarusian State University, Nezavisimosti av., 4, 220030, Minsk, Belarus; Research Institute for Physical and Chemical Problems of the Belarusian State University, Leningradskaya st., 14, 220050, Minsk, Belarus
| | - Irina Edimecheva
- Research Institute for Physical and Chemical Problems of the Belarusian State University, Leningradskaya st., 14, 220050, Minsk, Belarus
| |
Collapse
|
110
|
Noble AR, Hogg K, Suman R, Berney DM, Bourgoin S, Maitland NJ, Rumsby MG. Phospholipase D2 in prostate cancer: protein expression changes with Gleason score. Br J Cancer 2019; 121:1016-1026. [PMID: 31673104 PMCID: PMC6964697 DOI: 10.1038/s41416-019-0610-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Phospholipases D1 and D2 (PLD1/2) are implicated in tumorigenesis through their generation of the signalling lipid phosphatidic acid and its downstream effects. Inhibition of PLD1 blocks prostate cell growth and colony formation. Here a role for PLD2 in prostate cancer (PCa), the major cancer of men in the western world, is examined. METHODS PLD2 expression was analysed by immunohistochemistry and western blotting. The effects of PLD2 inhibition on PCa cell viability and cell motility were measured using MTS, colony forming and wound-healing assays. RESULTS PLD2 protein is expressed about equally in luminal and basal prostate epithelial cells. In cells from different Gleason-scored PCa tissue PLD2 protein expression is generally higher than in non-tumorigenic cells and increases in PCa tissue scored Gleason 6-8. PLD2 protein is detected in the cytosol and nucleus and had a punctate appearance. In BPH tissue stromal cells as well as basal and luminal cells express PLD2. PLD2 protein co-expresses with chromogranin A in castrate-resistant PCa tissue. PLD2 inhibition reduces PCa cell viability, colony forming ability and directional cell movement. CONCLUSIONS PLD2 expression correlates with increasing Gleason score to GS8. PLD2 inhibition has the potential to reduce PCa progression.
Collapse
Affiliation(s)
- Amanda R Noble
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Karen Hogg
- Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Rakesh Suman
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Daniel M Berney
- Department of Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sylvain Bourgoin
- Centre de Recherche du CHU de Québec, Axe des Maladies Infectieuses et Immunitaires, local T1-58, 2705 boulevard Laurier, Québec, G1V 4G2, QC, Canada
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Martin G Rumsby
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
111
|
Crystal structure of plant PLDα1 reveals catalytic and regulatory mechanisms of eukaryotic phospholipase D. Cell Res 2019; 30:61-69. [PMID: 31619765 DOI: 10.1038/s41422-019-0244-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D (PLD) hydrolyzes the phosphodiester bond of glycerophospholipids and produces phosphatidic acid (PA), which acts as a second messenger in many living organisms. A large number of PLDs have been identified in eukaryotes, and are viewed as promising targets for drug design because these enzymes are known to be tightly regulated and to function in the pathophysiology of many human diseases. However, the underlying molecular mechanisms of catalysis and regulation of eukaryotic PLD remain elusive. Here, we determined the crystal structure of full-length plant PLDα1 in the apo state and in complex with PA. The structure shows that the N-terminal C2 domain hydrophobically interacts with the C-terminal catalytic domain that features two HKD motifs. Our analysis reveals the catalytic site, substrate-binding mechanism, and a new Ca2+-binding site that is required for the activation of PLD. In addition, we tested several efficient small-molecule inhibitors against PLDα1, and suggested a possible competitive inhibition mechanism according to structure-based docking analysis. This study explains many long-standing questions about PLDs and provides structural insights into PLD-targeted inhibitor/drug design.
Collapse
|
112
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett 2019; 593:2428-2451. [PMID: 31365767 DOI: 10.1002/1873-3468.13563] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
Phosphatidic acid (PA) is the simplest cellular glycerophospholipid characterized by unique biophysical properties: a small headgroup; negative charge; and a phosphomonoester group. Upon interaction with lysine or arginine, PA charge increases from -1 to -2 and this change stabilizes protein-lipid interactions. The biochemical properties of PA also allow interactions with lipids in several subcellular compartments. Based on this feature, PA is involved in the regulation and amplification of many cellular signalling pathways and functions, as well as in membrane rearrangements. Thereby, PA can influence membrane fusion and fission through four main mechanisms: it is a substrate for enzymes producing lipids (lysophosphatidic acid and diacylglycerol) that are involved in fission or fusion; it contributes to membrane rearrangements by generating negative membrane curvature; it interacts with proteins required for membrane fusion and fission; and it activates enzymes whose products are involved in membrane rearrangements. Here, we discuss the biophysical properties of PA in the context of the above four roles of PA in membrane fusion and fission.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
113
|
Fan L, An G, Wang S, Chen X, Liu Y, Liu Z, Ma Q, Wang J. Circular RNA Expression Profiling and Selection of Key Circular RNAs in the Hypothalamus of Heat-Acclimated Rats. Front Physiol 2019; 10:1112. [PMID: 31555146 PMCID: PMC6722210 DOI: 10.3389/fphys.2019.01112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Circular RNAs (circRNAs) have vital roles in great variety of biological processes. However, expression levels and functions of circRNAs related to heat acclimation (HA) are poorly understood. This study is the first time an in-depth circRNA expression profiling were used to investigate circRNA–miRNA interactions in HA rats in order to further comprehend the mechanisms underlying HA. CircRNA expression profile was performed in rats’ hypothalamus of HA and control group with microarray assays and their functions were predicted by using Bioinformatics analysis. Differential circRNAs and their regulated downstream miRNAs and mRNAs were quantitatively validated by means of quantitative polymerase chain reaction in real-time (RT-qPCR). Enzyme-linked immunosorbent assay (ELISA) was then applied to predict the expression of proteins. In total, 53 circRNAs were expressed distinctively between the HA and Control; up- and down-regulation of circRNAs were 28 and 25, respectively, in HA (fold change > 1.5, P < 0.05). Three circRNAs and two miRNAs and three predicted mRNAs were obviously regulated after validated by RT-qPCR in HA rats. Two proteins expression were proportional to their mRNA changes. Further analysis demonstrates that circRNAs closest to HA can be categorized into three signal pathways: including rno_circRNA_014301-vs-rno-miR-3575-vs-Hif-1α, rno_circRNA_014301-vs-rno-miR-3575-vs-Lppr4, and rno_circRNA_010393-vs-rno-miR-20b-3p-vs-Mfap4 in hypoxia response pathways, substance/energy metabolism, and inflammatory response pathways. Our findings implicate that many circRNAs regulate expressions of genes that interact with each other to exert their functions during HA.
Collapse
Affiliation(s)
- Lijun Fan
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,Department of Human Movement Science, Tianjin University of Sport, Tianjin, China
| | - Gaihong An
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shang Wang
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xuewei Chen
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ying Liu
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhifeng Liu
- Department of Intensive Care Medicine, General Hospital of Southern Theatre Command of People's Liberation Army, Guangzhou, China
| | - Qiang Ma
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jing Wang
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
114
|
Johnson AA. Lipid Hydrolase Enzymes: Pragmatic Prolongevity Targets for Improved Human Healthspan? Rejuvenation Res 2019; 23:107-121. [PMID: 31426688 DOI: 10.1089/rej.2019.2211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Compelling evidence suggests that lipid metabolism, which plays critical roles in fat storage, cell membrane maintenance, and cell signaling, is intricately linked to aging. Lipid hydrolases are important enzymes that catalyze the hydrolysis of more complex lipids into simpler lipids. Diverse interventions targeting lipid hydrolases can prolong or shorten life in model organisms. For example, the genetic removal of or RNAi knockdown against a phospholipase can reduce lifespan in Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus. The removal of lysosomal acid lipase results in premature death in mice, while its overexpression in nematodes generates lean, long-lived individuals. The overexpression or inhibition of diacylglycerol lipase leads to enhanced or reduced longevity, respectively, in both worms and flies. Lifespan can also be extended by knocking down triacylglycerol lipases in yeast, overexpressing fatty acid amide hydrolase in worms, or removing hepatic lipase in a mouse model of coronary disease. Conversely, flies lacking the triacylglycerol lipase Brummer are obese and short lived. Linking sphingolipids and aging, removing the sphingomyelinase inositol phosphosphingolipid phospholipase shortens chronological lifespan in Saccharomyces cerevisiae, while inhibiting an acid sphingomyelinase in worms or inactivating alkaline ceramidase in flies extends lifespan. The clinical potential of manipulating these enzymes is highlighted by the FDA-approved obesity drug orlistat, which is an inhibitor of pancreatic and hepatic lipases that induces weight loss and improves insulin/glucose homeostasis. Additional research is warranted to better understand how these lipid hydrolases impact aging and to determine if clinical interventions targeting them are capable of improving human healthspan.
Collapse
|
115
|
Kopp R, Krautloher A, Ramírez-Fernández A, Nicke A. P2X7 Interactions and Signaling - Making Head or Tail of It. Front Mol Neurosci 2019; 12:183. [PMID: 31440138 PMCID: PMC6693442 DOI: 10.3389/fnmol.2019.00183] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular adenine nucleotides play important roles in cell-cell communication and tissue homeostasis. High concentrations of extracellular ATP released by dying cells are sensed as a danger signal by the P2X7 receptor, a non-specific cation channel. Studies in P2X7 knockout mice and numerous disease models have demonstrated an important role of this receptor in inflammatory processes. P2X7 activation has been shown to induce a variety of cellular responses that are not usually associated with ion channel function, for example changes in the plasma membrane composition and morphology, ectodomain shedding, activation of lipases, kinases, and transcription factors, as well as cytokine release and apoptosis. In contrast to all other P2X family members, the P2X7 receptor contains a long intracellular C-terminus that constitutes 40% of the whole protein and is considered essential for most of these effects. So far, over 50 different proteins have been identified to physically interact with the P2X7 receptor. However, few of these interactions have been confirmed in independent studies and for the majority of these proteins, the interaction domains and the physiological consequences of the interactions are only poorly described. Also, while the structure of the P2X7 extracellular domain has recently been resolved, information about the organization and structure of its C-terminal tail remains elusive. After shortly describing the structure and assembly of the P2X7 receptor, this review gives an update of the identified or proposed interaction domains within the P2X7 C-terminus, describes signaling pathways in which this receptor has been involved, and provides an overlook of the identified interaction partners.
Collapse
Affiliation(s)
- Robin Kopp
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna Krautloher
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Antonio Ramírez-Fernández
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
116
|
Liang D, Wu K, Tei R, Bumpus TW, Ye J, Baskin JM. A real-time, click chemistry imaging approach reveals stimulus-specific subcellular locations of phospholipase D activity. Proc Natl Acad Sci U S A 2019; 116:15453-15462. [PMID: 31311871 PMCID: PMC6681737 DOI: 10.1073/pnas.1903949116] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fidelity of signal transduction requires spatiotemporal control of the production of signaling agents. Phosphatidic acid (PA) is a pleiotropic lipid second messenger whose modes of action differ based on upstream stimulus, biosynthetic source, and site of production. How cells regulate the local production of PA to effect diverse signaling outcomes remains elusive. Unlike other second messengers, sites of PA biosynthesis cannot be accurately visualized with subcellular precision. Here, we describe a rapid, chemoenzymatic approach for imaging physiological PA production by phospholipase D (PLD) enzymes. Our method capitalizes on the remarkable discovery that bulky, hydrophilic trans-cyclooctene-containing primary alcohols can supplant water as the nucleophile in the PLD active site in a transphosphatidylation reaction of PLD's lipid substrate, phosphatidylcholine. The resultant trans-cyclooctene-containing lipids are tagged with a fluorogenic tetrazine reagent via a no-rinse, inverse electron-demand Diels-Alder (IEDDA) reaction, enabling their immediate visualization by confocal microscopy in real time. Strikingly, the fluorescent reporter lipids initially produced at the plasma membrane (PM) induced by phorbol ester stimulation of PLD were rapidly internalized via apparent nonvesicular pathways rather than endocytosis, suggesting applications of this activity-based imaging toolset for probing mechanisms of intracellular phospholipid transport. By instead focusing on the initial 10 s of the IEDDA reaction, we precisely pinpointed the subcellular locations of endogenous PLD activity as elicited by physiological agonists of G protein-coupled receptor and receptor tyrosine kinase signaling. These tools hold promise to shed light on both lipid trafficking pathways and physiological and pathological effects of localized PLD signaling.
Collapse
Affiliation(s)
- Dongjun Liang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Kane Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Reika Tei
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Timothy W Bumpus
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Johnny Ye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853;
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
117
|
Dopey1-Mon2 complex binds to dual-lipids and recruits kinesin-1 for membrane trafficking. Nat Commun 2019; 10:3218. [PMID: 31324769 PMCID: PMC6642134 DOI: 10.1038/s41467-019-11056-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/14/2019] [Indexed: 11/18/2022] Open
Abstract
Proteins are transported among eukaryotic organelles along the cytoskeleton in membrane carriers. The mechanism regarding the motility of carriers and the positioning of organelles is a fundamental question in cell biology that remains incompletely understood. Here, we find that Dopey1 and Mon2 assemble into a complex and localize to the Golgi, endolysosome and endoplasmic reticulum exit site. The Golgi localization of Dopey1 and Mon2 requires their binding to phosphatidylinositol-4-phosphate and phosphatidic acid, respectively, two lipids known for the biogenesis of membrane carriers and the specification of organelle identities. The N-terminus of Dopey1 further interacts with kinesin-1, a plus-end or centrifugal-direction microtubule motor. Dopey1-Mon2 complex functions as a dual-lipid-regulated cargo-adaptor to recruit kinesin-1 to secretory and endocytic organelles or membrane carriers for centrifugally biased bidirectional transport. Dopey1-Mon2 complex therefore provides an important missing link to coordinate the budding of a membrane carrier and subsequent bidirectional transport along the microtubule. Proteins are transported among eukaryotic organelles along the cytoskeleton in membrane carriers. Here authors find that the Dopey1-Mon2 complex functions as a dual-lipid-regulated cargo-adaptor to recruit kinesin-1 to secretory and endocytic organelles or membrane carriers.
Collapse
|
118
|
Shadyro O, Lisovskaya A. ROS-induced lipid transformations without oxygen participation. Chem Phys Lipids 2019; 221:176-183. [DOI: 10.1016/j.chemphyslip.2019.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/18/2019] [Accepted: 03/24/2019] [Indexed: 12/24/2022]
|
119
|
Kouba S, Ouldamer L, Garcia C, Fontaine D, Chantome A, Vandier C, Goupille C, Potier-Cartereau M. Lipid metabolism and Calcium signaling in epithelial ovarian cancer. Cell Calcium 2019; 81:38-50. [PMID: 31200184 DOI: 10.1016/j.ceca.2019.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
Epithelial Ovarian cancer (EOC) is the deadliest gynecologic malignancy and represents the fifth leading cause of all cancer-related deaths in women. The majority of patients are diagnosed at an advanced stage of the disease that has spread beyond the ovaries to the peritoneum or to distant organs (stage FIGO III-IV) with a 5-year overall survival of about 29%. Consequently, it is necessary to understand the pathogenesis of this disease. Among the factors that contribute to cancer development, lipids and ion channels have been described to be associated to cancerous diseases particularly in breast, colorectal and prostate cancers. Here, we reviewed the literature data to determine how lipids or lipid metabolites may influence EOC risk or progression. We also highlighted the role and the expression of the calcium (Ca2+) and calcium-activated potassium (KCa) channels in EOC and how lipids might regulate them. Although lipids and some subclasses of nutritional lipids may be associated to EOC risk, lipid metabolism of LPA (lysophosphatidic acid) and AA (arachidonic acid) emerges as an important signaling network in EOC. Clinical data showed that they are found at high concentrations in EOC patients and in vitro and in vivo studies referred to them as triggers of the Ca2+entry in the cancer cells inducing their proliferation, migration or drug resistance. The cross-talk between lipid mediators and Ca2+ and/or KCa channels needs to be elucidated in EOC in order to facilitate the understanding of its outcomes and potentially suggest novel therapeutic strategies including treatment and prevention.
Collapse
Affiliation(s)
- Sana Kouba
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Lobna Ouldamer
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Université de Tours, INSERM, N2C UMR 1069, CHRU de Tours, Service de gynécologie et d'obstétrique, Tours, France
| | - Céline Garcia
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Delphine Fontaine
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Aurélie Chantome
- Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France; Université de Tours, INSERM, N2C UMR 1069, Faculté de Pharmacie, Tours, France
| | - Christophe Vandier
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Caroline Goupille
- Réseau CASTOR du Cancéropôle Grand Ouest, France; Université de Tours, INSERM, N2C UMR 1069, CHRU de Tours, Faculté de Médecine, Tours, France
| | - Marie Potier-Cartereau
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France.
| |
Collapse
|
120
|
Thakur R, Naik A, Panda A, Raghu P. Regulation of Membrane Turnover by Phosphatidic Acid: Cellular Functions and Disease Implications. Front Cell Dev Biol 2019; 7:83. [PMID: 31231646 PMCID: PMC6559011 DOI: 10.3389/fcell.2019.00083] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/03/2019] [Indexed: 01/23/2023] Open
Abstract
Phosphatidic acid (PA) is a simple glycerophospholipid with a well-established role as an intermediate in phospholipid biosynthesis. In addition to its role in lipid biosynthesis, PA has been proposed to act as a signaling molecule that modulates several aspects of cell biology including membrane transport. PA can be generated in eukaryotic cells by several enzymes whose activity is regulated in the context of signal transduction and enzymes that can metabolize PA thus terminating its signaling activity have also been described. Further, several studies have identified PA binding proteins and changes in their activity are proposed to be mediators of the signaling activity of this lipid. Together these enzymes and proteins constitute a PA signaling toolkit that mediates the signaling functions of PA in cells. Recently, a number of novel genetic models for the analysis of PA function in vivo and analytical methods to quantify PA levels in cells have been developed and promise to enhance our understanding of PA functions. Studies of several elements of the PA signaling toolkit in a single cell type have been performed and are presented to provide a perspective on our understanding of the biochemical and functional organization of pools of PA in a eukaryotic cell. Finally, we also provide a perspective on the potential role of PA in human disease, synthesizing studies from model organisms, human disease genetics and analysis using recently developed PLD inhibitors.
Collapse
Affiliation(s)
- Rajan Thakur
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Amruta Naik
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Aniruddha Panda
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| |
Collapse
|
121
|
Ramenskaia GV, Melnik EV, Petukhov AE. [Phospholipase D: its role in metabolism processes and disease development]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:84-93. [PMID: 29460838 DOI: 10.18097/pbmc20186401084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phospholipase D (PLD) is one of the key enzymes that catalyzes the hydrolysis of cell membrane phospholipids. In this review current knowledge about six human PLD isoforms, their structure and role in physiological and pathological processes is summarized. Comparative analysis of PLD isoforms structure is presented. The mechanism of the hydrolysis and transphosphatidylation performed by PLD is described. The PLD1 and PLD2 role in the pathogenesis of some cancer, infectious, thrombotic and neurodegenerative diseases is analyzed. The prospects of PLD isoform-selective inhibitors development are shown in the context of the clinical usage and the already-existing inhibitors are characterized. Moreover, the formation of phosphatidylethanol (PEth), the alcohol abuse biomarker, as the result of PLD-catalyzed phospholipid transphosphatidylation is considered.
Collapse
Affiliation(s)
- G V Ramenskaia
- Sechenov First Moscow State Medical University (Sechenovskiy University), Moscow, Russia
| | - E V Melnik
- Sechenov First Moscow State Medical University (Sechenovskiy University), Moscow, Russia
| | - A E Petukhov
- Sechenov First Moscow State Medical University (Sechenovskiy University), Moscow, Russia; Moscow Research and Practical Centre for Narcology, Moscow, Russia
| |
Collapse
|
122
|
Arhab Y, Abousalham A, Noiriel A. Plant phospholipase D mining unravels new conserved residues important for catalytic activity. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:688-703. [DOI: 10.1016/j.bbalip.2019.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 01/16/2023]
|
123
|
Samovich SN, Sladkova AA, Sverdlov RL, Edimecheva IP, Shadyro OI. Effects of quinones and nitroazoles on free-radical fragmentation of glycerol-1-phosphate and 1,2-dimyristoyl-glycero-3-phosphatidyl-glycerol. Chem Phys Lipids 2019; 222:8-14. [PMID: 31005671 DOI: 10.1016/j.chemphyslip.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/01/2019] [Accepted: 04/17/2019] [Indexed: 01/22/2023]
Abstract
Effects of quinones and azoles on the formation of steady-state radiolysis products in aqueous solutions of glycerol-1-phosphate and aqueous dispersions of 1,2-dimyristoyl-glycero-3-phosphatidyl-glycerol has been investigated. The data obtained by LC-MS-ESI and spectrophotometric measurements shows that the compounds having quinoid structures, including the antitumor agent doxorubicin, and azoles having nitro groups effectively inhibit free-radical fragmentation of glycerol-1-phosphate and 1,2-dimyristoyl-glycero-3-phosphatidyl-glycerol, decreasing the radiation-chemical yields of either inorganic phosphate or phosphatidic acid respectively. The observed effects of blocking free-radical processes are believed to be related to the ability of the tested compounds to oxidize α-hydroxyl-containing carbon-centered radicals of starting substrates, which give rise to fragmentation reaction. The possibility of using the discovered properties of quinones, doxorubicin and nitroazoles to provide practical solutions in oncological radiotherapy and pathophysiology is discussed.
Collapse
Affiliation(s)
- Svetlana N Samovich
- Department of Chemistry of the Belarusian State University, 4 Nezavisimosti Av., 220030, Minsk, Belarus; Research Institute for Physical and Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220050, Minsk, Belarus
| | - Anastasia A Sladkova
- Department of Chemistry of the Belarusian State University, 4 Nezavisimosti Av., 220030, Minsk, Belarus; Research Institute for Physical and Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220050, Minsk, Belarus
| | - Roman L Sverdlov
- Department of Chemistry of the Belarusian State University, 4 Nezavisimosti Av., 220030, Minsk, Belarus; Research Institute for Physical and Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220050, Minsk, Belarus
| | - Irina P Edimecheva
- Research Institute for Physical and Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220050, Minsk, Belarus
| | - Oleg I Shadyro
- Department of Chemistry of the Belarusian State University, 4 Nezavisimosti Av., 220030, Minsk, Belarus; Research Institute for Physical and Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220050, Minsk, Belarus.
| |
Collapse
|
124
|
Bao Z, Zhu Y, Ge Q, Gu W, Dong X, Bai Y. gwSPIA: Improved Signaling Pathway Impact Analysis With Gene Weights. IEEE ACCESS 2019; 7:69172-69183. [DOI: 10.1109/access.2019.2918150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
125
|
Han H, Vargas R, Seo G, Wang W. Phosphatidic acid: a lipid regulator of the Hippo pathway. Mol Cell Oncol 2018; 6:1558683. [PMID: 30788423 DOI: 10.1080/23723556.2018.1558683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
The Hippo pathway, a signaling pathway highly conserved across species, plays a crucial role in organ size control and cancer suppression. Our recent study shows that phosphatidic acid can regulate the Hippo pathway through a physical lipid-protein interaction, providing additional insights into the Hippo-related tissue homeostasis and cancer development.
Collapse
Affiliation(s)
- Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Rebecca Vargas
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Gayoung Seo
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| |
Collapse
|
126
|
Schröck A, Henzi A, Bütikofer P, König S, Weinmann W. Determination of the formation rate of phosphatidylethanol by phospholipase D (PLD) in blood and test of two selective PLD inhibitors. Alcohol 2018; 73:1-7. [PMID: 30103144 DOI: 10.1016/j.alcohol.2018.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 11/29/2022]
Abstract
Phosphatidylethanol (PEth) is an alcohol biomarker formed from phosphatidylcholine (PC) by the enzyme phospholipase D (PLD) in the presence of ethanol. A drinking study revealed individual differences in maximum PEth levels after drinking to a targeted blood alcohol concentration (BAC) of 0.1%. This seemed to be due to different PLD activities in the tested persons. Furthermore, post-sampling formation of PEth occurred in blood samples, still containing alcohol. Therefore, a standardized in vitro test for measuring individual PEth formation rates was developed. Two PLD inhibitors were tested for their potency to inhibit post-sampling PEth formation. PEth-negative blood samples were collected from a volunteer. Ethanol was added in different concentrations (0.01-0.3% BAC) directly after blood sampling. The specimens were incubated at 37 °C. Aliquots were taken at the start of the incubation, and every hour until 8 h after start of incubation, and one sample was taken on subsequent days over 1 week. PEth 16:0/18:1 and PEth 16:0/18:2 were determined by online SPE-LC-MS/MS. Furthermore, this test system was applied to blood samples of 12 volunteers. For the inhibition tests, fresh blood (spiked with 0.1% ethanol) was spiked with 30, 300, 3000, or 30,000 nM of either halopemide or 5-fluoro-2-indolyl-deschlorohalopemide (FIPI), and incubated at 37 °C. PEth concentrations were determined hourly over 5 h on the first day and once on day 2 and day 3. PEth formation was linear in the first 7 h of incubation and dependent on the alcohol concentration. The formation rates of PEth 16:0/18:1 were 0.002 μmol L-1 h-1 (0.01% BAC), 0.016 μmol L-1 h-1 (0.1% BAC), 0.025 μmol L-1 h-1 (0.2% BAC), and 0.029 μmol L-1 h-1 (0.3% BAC). For PEth 16:0/18:2, the formation rates were 0.002 μmol L-1 h-1 (0.01% BAC), 0.019 μmol L-1 h-1 (0.1% BAC), 0.025 μmol L-1 h-1 (0.2% BAC), and 0.030 μmol L-1 h-1 (0.3% BAC). Maximum concentrations reached 431 ng/mL (PEth 16:0/18:1) and 496 ng/mL (PEth 16:0/18:2) at 0.3% BAC after 3 days. Maximum velocity (vmax) was not reached under these conditions. PEth formation in blood of the 12 volunteers ranged between 0.011 and 0.025 μmol L-1 h-1 for PEth 16:0/18:1 and between 0.014 and 0.021 μmol L-1 h-1 for PEth 16:0/18:2. PEth formation in human blood was inhibited by halopemide in a concentration-dependent manner. However, a complete inhibition was not achieved by the applied maximum concentration of 30,000 nM. FIPI showed a better inhibition of PEth formation. A complete inhibition could be achieved by a concentration of 30,000 nM for the first 24 h (for PEth 16:0/18:1) and for 48 h (for PEth 16:0/18:2). Formation of PEth was found to be dependent on the BAC. As a consequence, it is essential to inhibit PLD activity after blood collection to avoid post-sampling formation of PEth in blood samples with a positive BAC. Inhibition of PEth formation was more effective using FIPI, compared to halopemide.
Collapse
Affiliation(s)
- Alexandra Schröck
- Institute of Forensic Medicine, Forensic Toxicology and Chemistry, University of Bern, Bühlstrasse 20, 3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, c/o Theodor Kocher Institute, Freiestrasse 1, 3012 Bern, Switzerland
| | - Anna Henzi
- Institute of Forensic Medicine, Forensic Toxicology and Chemistry, University of Bern, Bühlstrasse 20, 3012 Bern, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Stefan König
- Institute of Forensic Medicine, Forensic Toxicology and Chemistry, University of Bern, Bühlstrasse 20, 3012 Bern, Switzerland
| | - Wolfgang Weinmann
- Institute of Forensic Medicine, Forensic Toxicology and Chemistry, University of Bern, Bühlstrasse 20, 3012 Bern, Switzerland.
| |
Collapse
|
127
|
Totaro A, Piccolo S. Phosphatidic Acid Enters into the YAP/TAZ Arena. Trends Mol Med 2018; 25:5-7. [PMID: 30497943 DOI: 10.1016/j.molmed.2018.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
Reporting in Molecular Cell, Han et al. (2018;2:328-340) show that phosphatidic acid promotes YAP activity through a double-hit inhibition of the LATS kinases, suggesting a therapeutic opportunity for the treatment of YAP/TAZ-dependent cancers and opening new prospects on the connections between lipid signaling and YAP/TAZ biology.
Collapse
Affiliation(s)
- Antonio Totaro
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua, Padua, Italy; IFOM, The FIRC Institute of Molecular Oncology, Padua, Italy.
| |
Collapse
|
128
|
Waterson AG, Scott SA, Kett NR, Blobaum AL, Alex Brown H, Lindsley CW. Isoform selective PLD inhibition by novel, chiral 2,8-diazaspiro[4.5]decan-1-one derivatives. Bioorg Med Chem Lett 2018; 28:3670-3673. [PMID: 30528979 DOI: 10.1016/j.bmcl.2018.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 01/16/2023]
Abstract
This letter describes the on-going SAR efforts to develop PLD1, PLD2 and dual PLD1/2 inhibitors with improved physiochemical and disposition properties as well as securing intellectual property position. Previous PLD inhibitors, based on a triazaspiro[4.5]decanone core proved to be highly selective PLD2 inhibitors, but with low plasma free fraction (rat, human fu < 0.03), high predicted hepatic clearance (rat CLhep > 65 mL/min/kg) and very short half-lives in vivo (t1/2 < 0.15 h). Removal of a nitrogen atom from this core generated a 2,8-diazaspiro[4.5]decanone core, harboring a new chiral center, as well as increased sp3 character. This new core demonstrated enantioselective inhibition of the individual PLD isoforms, enhanced free fraction (rat, human fu < 0.13), engendered moderate predicted hepatic clearance (rat CLhep ∼ 43 mL/min/kg), improved half-lives in vivo (t1/2 > 3 h), and led to the first issued US patent claiming composition of matter for small molecule PLD inhibitors.
Collapse
Affiliation(s)
- Alex G Waterson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University/Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah A Scott
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nathan R Kett
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - H Alex Brown
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University/Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University/Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
129
|
Han H, Qi R, Zhou JJ, Ta AP, Yang B, Nakaoka HJ, Seo G, Guan KL, Luo R, Wang W. Regulation of the Hippo Pathway by Phosphatidic Acid-Mediated Lipid-Protein Interaction. Mol Cell 2018; 72:328-340.e8. [PMID: 30293781 PMCID: PMC6195446 DOI: 10.1016/j.molcel.2018.08.038] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/04/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
Abstract
The Hippo pathway plays a crucial role in organ size control and tumor suppression, but its precise regulation is not fully understood. In this study, we discovered that phosphatidic acid (PA)-related lipid signaling is a key regulator of the Hippo pathway. Supplementing PA in various Hippo-activating conditions activates YAP. This PA-related lipid signaling is involved in Rho-mediated YAP activation. Mechanistically, PA directly interacts with Hippo components LATS and NF2 to disrupt LATS-MOB1 complex formation and NF2-mediated LATS membrane translocation and activation, respectively. Inhibition of phospholipase D (PLD)-dependent PA production suppresses YAP oncogenic activities. PLD1 is highly expressed in breast cancer and positively correlates with YAP activation, suggesting their pathological relevance in breast cancer development. Taken together, our study not only reveals a role of PLD-PA lipid signaling in regulating the Hippo pathway but also indicates that the PLD-PA-YAP axis is a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Ruxi Qi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jeff Jiajing Zhou
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Albert Paul Ta
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Bing Yang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Hiroki J Nakaoka
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Gayoung Seo
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
130
|
Zhou W, Shi K, Ji L, Wu R, Chen Y, Tu H, Zhou B, Wang Z, Zhang M. Inhibition of Phospholipase D1 mRNA Expression Slows Down the Proliferation Rate of Prostate Cancer Cells That Have Transited to Androgen Independence. J Cancer 2018; 9:3620-3625. [PMID: 30310520 PMCID: PMC6171019 DOI: 10.7150/jca.26689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
To explore the role of phospholipase D1 (PLD1) mRNA in transition of prostate cancer (PCa) cells to androgen independence, we used Arraystar Human LncRNA Microarray V3.0 to detect and compare the differential expression of PLD1 and its signaling pathway-related gene in standard androgen dependence prostate cancer (ADPC) cell line LNCaP before and after the occurrence of androgen independence prostate cancer (AIPC) transition. In addition, we used the shRNA lentiviral vector to inhibit the PLD1 mRNA expression and observed its effect on LNCaP cell proliferation after AIPC transition by using MTS method. The results showed that the expression level of PLD1 mRNA was increased by 373-fold after AIPC transition (P<0.05); the PI3K/AKT signaling pathway-related gene expression was also elevated (P<0.05); the growth rate of LNCaP cells that had transited to androgen independence was reduced by about 30% when the PLD1 mRNA expression was inhibited by the shRNA lentivirus as compared with the negative control group (P<0.05). All these results suggest that PLD1 mRNA and the related PI3K/AKT signaling pathway may play an important role in AIPC. Down-regulating the expression of PLD1 mRNA could to some extent inhibit the proliferation rate of PCa cells after AIPC transition.
Collapse
Affiliation(s)
- Wu Zhou
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000, China
| | - Keqing Shi
- Liver Disease Center, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000,China
| | - Lili Ji
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000, China
| | - Ruihao Wu
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000, China
| | - Yuehui Chen
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000, China
| | - Hongxiang Tu
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000, China
| | - Beibei Zhou
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000, China
| | - Zhongyong Wang
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000, China
| | - Meijuan Zhang
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou, 325000, China
| |
Collapse
|
131
|
Holme M, Rashid MH, Thomas MR, Barriga HMG, Herpoldt K, Heenan RK, Dreiss CA, Bañuelos JL, Xie HN, Yarovsky I, Stevens MM. Fate of Liposomes in the Presence of Phospholipase C and D: From Atomic to Supramolecular Lipid Arrangement. ACS CENTRAL SCIENCE 2018; 4:1023-1030. [PMID: 30159399 PMCID: PMC6107861 DOI: 10.1021/acscentsci.8b00286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Indexed: 05/04/2023]
Abstract
Understanding the origins of lipid membrane bilayer rearrangement in response to external stimuli is an essential component of cell biology and the bottom-up design of liposomes for biomedical applications. The enzymes phospholipase C and D (PLC and PLD) both cleave the phosphorus-oxygen bonds of phosphate esters in phosphatidylcholine (PC) lipids. The atomic position of this hydrolysis reaction has huge implications for the stability of PC-containing self-assembled structures, such as the cell wall and lipid-based vesicle drug delivery vectors. While PLC converts PC to diacylglycerol (DAG), the interaction of PC with PLD produces phosphatidic acid (PA). Here we present a combination of small-angle scattering data and all-atom molecular dynamics simulations, providing insights into the effects of atomic-scale reorganization on the supramolecular assembly of PC membrane bilayers upon enzyme-mediated incorporation of DAG or PA. We observed that PC liposomes completely disintegrate in the presence of PLC, as conversion of PC to DAG progresses. At lower concentrations, DAG molecules within fluid PC bilayers form hydrogen bonds with backbone carbonyl oxygens in neighboring PC molecules and burrow into the hydrophobic region. This leads initially to membrane thinning followed by a swelling of the lamellar phase with increased DAG. At higher DAG concentrations, localized membrane tension causes a change in lipid phase from lamellar to the hexagonal and micellar cubic phases. Molecular dynamics simulations show that this destabilization is also caused in part by the decreased ability of DAG-containing PC membranes to coordinate sodium ions. Conversely, PLD-treated PC liposomes remain stable up to extremely high conversions to PA. Here, the negatively charged PA headgroup attracts significant amounts of sodium ions from the bulk solution to the membrane surface, leading to a swelling of the coordinated water layer. These findings are a vital step toward a fundamental understanding of the degradation behavior of PC lipid membranes in the presence of these clinically relevant enzymes, and toward the rational design of diagnostic and drug delivery technologies for phospholipase-dysregulation-based diseases.
Collapse
Affiliation(s)
- Margaret
N. Holme
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - M. Harunur Rashid
- School
of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Michael R. Thomas
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hanna M. G. Barriga
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Karla−Luise Herpoldt
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard K. Heenan
- STFC ISIS
Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
| | - Cécile A. Dreiss
- School
of Cancer and Pharmaceutical Sciences, King’s
College London, London SE1 9NH, United Kingdom
| | - José Leobardo Bañuelos
- STFC ISIS
Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
- Department
of Physics, The University of Texas at El
Paso, El Paso, Texas 79968, United States
| | - Hai-nan Xie
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Irene Yarovsky
- School
of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- E-mail:
| | - Molly M. Stevens
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- E-mail:
| |
Collapse
|
132
|
Kandori S, Kojima T, Matsuoka T, Yoshino T, Sugiyama A, Nakamura E, Shimazui T, Funakoshi Y, Kanaho Y, Nishiyama H. Phospholipase D2 promotes disease progression of renal cell carcinoma through the induction of angiogenin. Cancer Sci 2018; 109:1865-1875. [PMID: 29660846 PMCID: PMC5989877 DOI: 10.1111/cas.13609] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/01/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
A hallmark of clear cell renal cell carcinoma (ccRCC) is the presence of intracellular lipid droplets (LD) and it is assumed that phosphatidic acid (PA) produced by phospholipase D (PLD) plays some role in the LD formation. However, little is known about the significance of PLD in ccRCC. In this study, we examined the expression levels of PLD in ccRCC. The classical mammalian isoforms of PLD are PLD1 and PLD2, and the levels of both mRNA were higher at the primary tumor sites than in normal kidney tissues. Similarly, both PLD were significantly abundant in tumor cells as determined by analysis using immunohistochemical staining. Importantly, a higher level of PLD was significantly associated with a higher tumor stage and grade. Because PLD2 knockdown effectively suppressed the cell proliferation and invasion of ccRCC as compared with PLD1 in vitro, we examined the effect of PLD2 in vivo. Notably, shRNA-mediated knockdown of PLD2 suppressed the growth and invasion of tumors in nude mouse xenograft models. Moreover, the higher expression of PLD2 was significantly associated with poorer prognosis in 67 patients. As for genes relating to the tumor invasion of PLD2, we found that angiogenin (ANG) was positively regulated by PLD2. In fact, the expression levels of ANG were elevated in tumor tissues as compared with normal kidney and the inhibition of ANG activity with a neutralizing antibody significantly suppressed tumor invasion. Overall, we revealed for the first time that PLD2-produced PA promoted cell invasion through the expression of ANG in ccRCC cells.
Collapse
Affiliation(s)
- Shuya Kandori
- Faculty of MedicineDepartment of UrologyUniversity of TsukubaTsukubaJapan
| | - Takahiro Kojima
- Faculty of MedicineDepartment of UrologyUniversity of TsukubaTsukubaJapan
| | - Taeko Matsuoka
- Faculty of MedicineDepartment of UrologyUniversity of TsukubaTsukubaJapan
| | - Takayuki Yoshino
- Faculty of MedicineDepartment of UrologyUniversity of TsukubaTsukubaJapan
| | - Aiko Sugiyama
- DSK ProjectMedical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Eijiro Nakamura
- DSK ProjectMedical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Toru Shimazui
- Department of UrologyIbaraki Prefectural Central HospitalKasamaJapan
- Faculty of MedicineDepartment of UrologyIbaraki Clinical Education and Training CenterUniversity of TsukubaTsukubaJapan
| | - Yuji Funakoshi
- Department of Physiological ChemistryFaculty of Medicine and Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Yasunori Kanaho
- Department of Physiological ChemistryFaculty of Medicine and Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Hiroyuki Nishiyama
- Faculty of MedicineDepartment of UrologyUniversity of TsukubaTsukubaJapan
| |
Collapse
|
133
|
Hanna VS, Hafez EAA. Synopsis of arachidonic acid metabolism: A review. J Adv Res 2018; 11:23-32. [PMID: 30034873 PMCID: PMC6052663 DOI: 10.1016/j.jare.2018.03.005] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 12/11/2022] Open
Abstract
Arachidonic acid (AA), a 20 carbon chain polyunsaturated fatty acid with 4 double bonds, is an integral constituent of biological cell membrane, conferring it with fluidity and flexibility. The four double bonds of AA predispose it to oxygenation that leads to a plethora of metabolites of considerable importance for the proper function of the immune system, promotion of allergies and inflammation, resolving of inflammation, mood, and appetite. The present review presents an illustrated synopsis of AA metabolism, corroborating the instrumental importance of AA derivatives for health and well-being. It provides a comprehensive outline on AA metabolic pathways, enzymes and signaling cascades, in order to develop new perspectives in disease treatment and diagnosis.
Collapse
Affiliation(s)
- Violette Said Hanna
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | |
Collapse
|
134
|
Ganesan R, Henkels KM, Wrenshall LE, Kanaho Y, Di Paolo G, Frohman MA, Gomez-Cambronero J. Oxidized LDL phagocytosis during foam cell formation in atherosclerotic plaques relies on a PLD2-CD36 functional interdependence. J Leukoc Biol 2018; 103:867-883. [PMID: 29656494 DOI: 10.1002/jlb.2a1017-407rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 12/22/2022] Open
Abstract
The uptake of cholesterol carried by low-density lipoprotein (LDL) is tightly controlled in the body. Macrophages are not well suited to counteract the cellular consequences of excess cholesterol leading to their transformation into "foam cells," an early step in vascular plaque formation. We have uncovered and characterized a novel mechanism involving phospholipase D (PLD) in foam cell formation. Utilizing bone marrow-derived macrophages from genetically PLD deficient mice, we demonstrate that PLD2 (but not PLD1)-null macrophages cannot fully phagocytose aggregated oxidized LDL (Agg-Ox-LDL), which was phenocopied with a PLD2-selective inhibitor. We also report a role for PLD2 in coupling Agg-oxLDL phagocytosis with WASP, Grb2, and Actin. Further, the clearance of LDL particles is mediated by both CD36 and PLD2, via mutual dependence on each other. In the absence of PLD2, CD36 does not engage in Agg-Ox-LDL removal and when CD36 is blocked, PLD2 cannot form protein-protein heterocomplexes with WASP or Actin. These results translated into humans using a GEO database of microarray expression data from atheroma plaques versus normal adjacent carotid tissue and observed higher values for NFkB, PLD2 (but not PLD1), WASP, and Grb2 in the atheroma plaques. Human atherectomy specimens confirmed high presence of PLD2 (mRNA and protein) as well as phospho-WASP in diseased arteries. Thus, PLD2 interacts in macrophages with Actin, Grb2, and WASP during phagocytosis of Agg-Ox-LDL in the presence of CD36 during their transformation into "foam cells." Thus, this study provides new molecular targets to counteract vascular plaque formation and atherogenesis.
Collapse
Affiliation(s)
- Ramya Ganesan
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Karen M Henkels
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Lucile E Wrenshall
- Department of Neuroscience, Cell Biology/Physiology, Wright State University, Dayton, Ohio, USA
| | - Yasunori Kanaho
- Department of Physiology, University of Tsukuba, Tsukuba, Japan
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Denali Therapeutics Inc., South San Francisco, California, USA
| | - Michael A Frohman
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| |
Collapse
|
135
|
Role of phospholipase D in the lifespan of Caenorhabditis elegans. Exp Mol Med 2018; 50:1-10. [PMID: 29622768 PMCID: PMC5938010 DOI: 10.1038/s12276-017-0015-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 11/08/2022] Open
Abstract
We have previously shown that phospholipase D (PLD) downregulation accelerates cellular senescence, which is widely believed to play an important role in aging, by stimulating reactive oxygen species (ROS) accumulation in human cells. In this study, we examined the role of PLD in aging using the nematode Caenorhabditis elegans. The mRNA level of pld-1 was found to be inversely correlated with aging. RNAi-mediated knockdown of pld-1 expression in nematodes enhanced ROS and lipofuscin accumulation and decreased lifespan, motility, and resistance to stress compared to that in nematodes treated with control RNAi. Pld-1 knockdown repressed the long lifespan of age-1 and akt-1 mutants but did not further reduce the short lifespan of daf-16 mutants, suggesting that PLD functions between AKT-1 and DAF-16. The ROS scavenger N-acetyl-L-cysteine, a PLD effector phosphatidic acid and a possible CK2 activator spermidine attenuated the lifespan shortening and age-related biomarkers triggered by pld-1 knockdown. Pld-1 RNAi downregulated the expression of DAF-16 target genes such as sod-3, dod-11, and mtl-1 in nematodes. In human cells, furthermore, PLD2 downregulation decreased the transcription of FoxO3a target genes (Cu/ZnSOD, MnSOD, catalase, thioredoxin-2, and peroxiredoxin-5), whereas ectopic PLD2 expression elevated the mRNA levels of these antioxidant genes. Taken together, these results indicated that PLD downregulation shortens longevity and induces age-related biomarkers through ROS accumulation by inhibiting the DAF-16/FoxO3a pathway in nematodes.
Collapse
|
136
|
Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiol Res 2018; 209:55-69. [DOI: 10.1016/j.micres.2017.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
|
137
|
Mendez-Gomez HR, Singh J, Meyers C, Chen W, Gorbatyuk OS, Muzyczka N. The Lipase Activity of Phospholipase D2 is Responsible for Nigral Neurodegeneration in a Rat Model of Parkinson's Disease. Neuroscience 2018. [PMID: 29526688 DOI: 10.1016/j.neuroscience.2018.02.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Phospholipase D2 (PLD2), an enzyme involved in vesicle trafficking and membrane signaling, interacts with α-synuclein, a protein known to contribute in the development of Parkinson disease (PD). We previously reported that PLD2 overexpression in rat substantia nigra pars compacta (SNc) causes a rapid neurodegeneration of dopamine neurons, and that α-synuclein suppresses PLD2-induced nigral degeneration (Gorbatyuk et al., 2010). Here, we report that PLD2 toxicity is due to its lipase activity. Overexpression of a catalytically inactive mutant (K758R) of PLD2 prevents the loss of dopaminergic neurons in the SNc and does not show signs of toxicity after 10 weeks of overexpression. Further, mutant K758R does not affect dopamine levels in the striatum. In contrast, mutants that prevent PLD2 interaction with dynamin or growth factor receptor bound protein 2 (Grb2) but retained lipase activity, continued to show rapid neurodegeneration. These findings suggest that neither the interaction of PLD2 with dynamin, which has a role in vesicle trafficking, nor the PLD2 interaction with Grb2, which has multiple roles in cell cycle control, chemotaxis and activation of tyrosine kinase complexes, are the primary cause of neurodegeneration. Instead, the synthesis of phosphatidic acid (the product of PLD2), which is a second messenger in multiple cellular pathways, appears to be the key to PLD2 induced neurodegeneration. The fact that α-synuclein is a regulator of PLD2 activity suggests that regulation of PLD2 activity could be important in the progression of PD.
Collapse
Affiliation(s)
- Hector R Mendez-Gomez
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA; UF Genetics Institute and Powell Gene Therapy Center, USA.
| | - Jasbir Singh
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA; UF Genetics Institute and Powell Gene Therapy Center, USA
| | - Craig Meyers
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA; UF Genetics Institute and Powell Gene Therapy Center, USA
| | - Weijun Chen
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA; UF Genetics Institute and Powell Gene Therapy Center, USA
| | - Oleg S Gorbatyuk
- Department of Vision Sciences, Center for Neurodegeneration and Experimental Therapy, University of Alabama at Birmingham, AL, USA
| | - Nicholas Muzyczka
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA; UF Genetics Institute and Powell Gene Therapy Center, USA
| |
Collapse
|
138
|
Park SY, Han JS. Phospholipase D1 Signaling: Essential Roles in Neural Stem Cell Differentiation. J Mol Neurosci 2018; 64:333-340. [PMID: 29478139 PMCID: PMC5874277 DOI: 10.1007/s12031-018-1042-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/06/2018] [Indexed: 12/17/2022]
Abstract
Phospholipase D1 (PLD1) is generally accepted as playing an important role in the regulation of multiple cell functions, such as cell growth, survival, differentiation, membrane trafficking, and cytoskeletal organization. Recent findings suggest that PLD1 also plays an important role in the regulation of neuronal differentiation of neuronal cells. Moreover, PLD1-mediated signaling molecules dynamically regulate the neuronal differentiation of neural stem cells (NSCs). Rho family GTPases and Ca2+-dependent signaling, in particular, are closely involved in PLD1-mediated neuronal differentiation of NSCs. Moreover, PLD1 has a significant effect on the neurogenesis of NSCs via the regulation of SHP-1/STAT3 activation. Therefore, PLD1 has now attracted significant attention as an essential neuronal signaling molecule in the nervous system. In the current review, we summarize recent findings on the regulation of PLD1 in neuronal differentiation and discuss the potential role of PLD1 in the neurogenesis of NSCs.
Collapse
Affiliation(s)
- Shin-Young Park
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Joong-Soo Han
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
139
|
Bumpus TW, Liang FJ, Baskin JM. Ex Uno Plura: Differential Labeling of Phospholipid Biosynthetic Pathways with a Single Bioorthogonal Alcohol. Biochemistry 2018; 57:226-230. [PMID: 29095606 PMCID: PMC5771889 DOI: 10.1021/acs.biochem.7b01021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Imaging approaches that track biological molecules within cells are essential tools in modern biochemistry. Lipids are particularly challenging to visualize, as they are not directly genetically encoded. Phospholipids, the most abundant subgroup of lipids, are structurally diverse and accomplish many cellular functions, acting as major structural components of membranes and as signaling molecules that regulate cell growth, division, apoptosis, cytoskeletal dynamics, and numerous other physiological processes. Cells regulate the abundance, and therefore bioactivity, of phospholipids by modulating the activities of their biosynthetic enzymes. Thus, techniques that enable monitoring of flux through individual lipid biosynthetic pathways can provide key functional information. For example, the choline analogue propargylcholine (ProCho) can report on de novo biosynthesis of phosphatidylcholine by conversion to an alkynyl lipid that can be imaged following click chemistry tagging with an azido fluorophore. We report that ProCho is also a substrate of phospholipase D enzymes-which normally hydrolyze phosphatidylcholine to generate the lipid second messenger phosphatidic acid-in a transphosphatidylation reaction, generating the identical alkynyl lipid. By controlling the activities of phosphatidylcholine biosynthesis and phospholipase D enzymes, we establish labeling conditions that enable this single probe to selectively report on two different biosynthetic pathways. Just as nature exploits the economy of common metabolic intermediates to efficiently diversify biosynthesis, so can biochemists in interrogating such pathways with careful probe design. We envision that ProCho's ability to report on multiple metabolic pathways will enable studies of membrane dynamics and improve our understanding of the myriad roles that lipids play in cellular homeostasis.
Collapse
Affiliation(s)
- Timothy W. Bumpus
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
| | - Felice J. Liang
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
| | | |
Collapse
|
140
|
Abstract
Phospholipases are lipolytic enzymes that hydrolyze phospholipid substrates at specific ester bonds. Phospholipases are widespread in nature and play very diverse roles from aggression in snake venom to signal transduction, lipid mediator production, and metabolite digestion in humans. Phospholipases vary considerably in structure, function, regulation, and mode of action. Tremendous advances in understanding the structure and function of phospholipases have occurred in the last decades. This introductory chapter is aimed at providing a general framework of the current understanding of phospholipases and a discussion of their mechanisms of action and emerging biological functions.
Collapse
|
141
|
The role of N-terminal segment and membrane association in MyD88-mediated signaling. Biochem Biophys Res Commun 2018; 495:878-883. [PMID: 29155181 DOI: 10.1016/j.bbrc.2017.11.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
MyD88 is a central signaling mediator of innate immunity, composed of the N-terminal death (DD) and C-terminal Toll/interleukin-1 receptor (TIR) domain linked by an intermediary (INT) domain. We showed that the N-terminal domain (NTD), composed of apparently unstructured 21 amino-acid residues, is involved in localization and clustering of MyD88 and is required for the efficient signaling, since the deletion mutant is unable to reconstitute MyD88-dependent signaling. Furthermore, we found that the NTD peptide interacts with phosphatidic acid, which potentiates MyD88-mediated signaling through TLRs. Propranolol and expression of lysophosphatidyl acid acyltransferase 1, which increase the level of phosphatidic acid augment cell activation via MyD88. Moreover, anchoring of MyD88 to the cell membrane augments signaling supporting the importance of membrane localization in MyD88-mediated signaling.
Collapse
|
142
|
Patel S, Suleria HA. Ethnic and paleolithic diet: Where do they stand in inflammation alleviation? A discussion. JOURNAL OF ETHNIC FOODS 2017; 4:236-241. [DOI: 10.1016/j.jef.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
143
|
Cho JH, Han JS. Phospholipase D and Its Essential Role in Cancer. Mol Cells 2017; 40:805-813. [PMID: 29145720 PMCID: PMC5712509 DOI: 10.14348/molcells.2017.0241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/16/2017] [Accepted: 11/11/2017] [Indexed: 11/27/2022] Open
Abstract
The role of phospholipase D (PLD) in cancer development and management has been a major area of interest for researchers. The purpose of this mini-review is to explore PLD and its distinct role during chemotherapy including anti-apoptotic function. PLD is an enzyme that belongs to the phospholipase super family and is found in a broad range of organisms such as viruses, yeast, bacteria, animals, and plants. The function and activity of PLD are widely dependent on and regulated by neurotransmitters, hormones, small monomeric GTPases, and lipids. A growing body of research has shown that PLD activity is significantly increased in cancer tissues and cells, indicating that it plays a critical role in signal transduction, cell proliferation, and anti-apoptotic processes. In addition, recent studies show that PLD is a downstream transcriptional target of proteins that contribute to inflammation and carcinogenesis such as Sp1, NFκB, TCF4, ATF-2, NFATc2, and EWS-Fli. Thus, compounds that inhibit expression or activity of PLD in cells can be potentially useful in reducing inflammation and sensitizing resistant cancers during chemotherapy.
Collapse
Affiliation(s)
- Ju Hwan Cho
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 4321,
USA
| | - Joong-Soo Han
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul 04763,
Korea
| |
Collapse
|
144
|
Gadahi JA, Ehsan M, Wang S, Zhang Z, Yan R, Song X, Xu L, Li X. Recombinant protein of Haemonchus contortus small GTPase ADP-ribosylation factor 1 (HcARF1) modulate the cell mediated immune response in vitro. Oncotarget 2017; 8:112211-112221. [PMID: 29348819 PMCID: PMC5762504 DOI: 10.18632/oncotarget.22662] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 11/03/2017] [Indexed: 01/08/2023] Open
Abstract
ADP-ribosylation factors (ARFs) are members of the Ras-related small GTPase family involved in the vesicular trafficking regulation. Immunomodulatory effects of these proteinson host cell arenot being addressed yet. H. contortus small GTPase ADP-ribosylation 1 gene (HcARF1) was cloned and recombinant protein of HcARF1 (rHcARF1) was successfully expressed in Escherichia coli. Binding activity of rHcARF1 to goat PBMCs was confirmed by immunofluorescence assay (IFA) and its immunomudulatory effects on cytokine secretion, cell proliferation, cell migration and nitric oxide production (NO) were observed by co-incubation of rHcARF1. IFA results revealed that rHcARF1 could bind to the PBMCs. The interaction of rHcARF1 modulated the cytokine production, the production of IL-4, IL-10 and IL-17 was increased in a dose dependent manner, however, the IFN-γ production was significantly decreased. Cell migration and NO production were significantly increased by rHcARF1, whereas, rHcARF1 treatment significantly suppressed the proliferation of the PBMC in a dose dependent manner. Our findings showed that the rHcARF1 play important roles on the goat PBMCs.
Collapse
Affiliation(s)
- Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China.,Department of Veterinary Parasitology, Sindh Agriculture University, Tando Jam, Pakistan
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Zhenchao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
145
|
Mahajan-Thakur S, Bien-Möller S, Marx S, Schroeder H, Rauch BH. Sphingosine 1-phosphate (S1P) signaling in glioblastoma multiforme-A systematic review. Int J Mol Sci 2017; 18:E2448. [PMID: 29149079 PMCID: PMC5713415 DOI: 10.3390/ijms18112448] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022] Open
Abstract
The multifunctional sphingosine-1-phosphate (S1P) is a lipid signaling molecule and central regulator in the development of several cancer types. In recent years, intriguing information has become available regarding the role of S1P in the progression of Glioblastoma multiforme (GBM), the most aggressive and common brain tumor in adults. S1P modulates numerous cellular processes in GBM, such as oncogenesis, proliferation and survival, invasion, migration, metastasis and stem cell behavior. These processes are regulated via a family of five G-protein-coupled S1P receptors (S1PR1-5) and may involve mainly unknown intracellular targets. Distinct expression patterns and multiple intracellular signaling pathways of each S1PR subtype enable S1P to exert its pleiotropic cellular actions. Several studies have demonstrated alterations in S1P levels, the involvement of S1PRs and S1P metabolizing enzymes in GBM pathophysiology. While the tumorigenic actions of S1P involve the activation of several kinases and transcription factors, the specific G-protein (Gi, Gq, and G12/13)-coupled signaling pathways and downstream mediated effects in GBM remain to be elucidated in detail. This review summarizes the recent findings concerning the role of S1P and its receptors in GBM. We further highlight the current insights into the signaling pathways considered fundamental for regulating the cellular processes in GMB and ultimately patient prognosis.
Collapse
Affiliation(s)
| | - Sandra Bien-Möller
- Department of Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany.
- Clinic of Neurosurgery, University Medicine Greifswald, 17487 Greifswald, Germany.
| | - Sascha Marx
- Clinic of Neurosurgery, University Medicine Greifswald, 17487 Greifswald, Germany.
| | - Henry Schroeder
- Clinic of Neurosurgery, University Medicine Greifswald, 17487 Greifswald, Germany.
| | - Bernhard H Rauch
- Department of Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany.
| |
Collapse
|
146
|
Song OR, Queval CJ, Iantomasi R, Delorme V, Marion S, Veyron-Churlet R, Werkmeister E, Popoff M, Ricard I, Jouny S, Deboosere N, Lafont F, Baulard A, Yeramian E, Marsollier L, Hoffmann E, Brodin P. ArfGAP1 restricts Mycobacterium tuberculosis entry by controlling the actin cytoskeleton. EMBO Rep 2017; 19:29-42. [PMID: 29141986 DOI: 10.15252/embr.201744371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 11/09/2022] Open
Abstract
The interaction of Mycobacterium tuberculosis (Mtb) with pulmonary epithelial cells is critical for early stages of bacillus colonization and during the progression of tuberculosis. Entry of Mtb into epithelial cells has been shown to depend on F-actin polymerization, though the molecular mechanisms are still unclear. Here, we demonstrate that mycobacterial uptake into epithelial cells requires rearrangements of the actin cytoskeleton, which are regulated by ADP-ribosylation factor 1 (Arf1) and phospholipase D1 (PLD1), and is dependent on the M3 muscarinic receptor (M3R). We show that this pathway is controlled by Arf GTPase-activating protein 1 (ArfGAP1), as its silencing has an impact on actin cytoskeleton reorganization leading to uncontrolled uptake and replication of Mtb. Furthermore, we provide evidence that this pathway is critical for mycobacterial entry, while the cellular infection with other pathogens, such as Shigella flexneri and Yersinia pseudotuberculosis, is not affected. Altogether, these results reveal how cortical actin plays the role of a barrier to prevent mycobacterial entry into epithelial cells and indicate a novel role for ArfGAP1 as a restriction factor of host-pathogen interactions.
Collapse
Affiliation(s)
- Ok-Ryul Song
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France.,Equipe ATIP AVENIR, CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Institute Pasteur Korea, Seongnam-si Gyeonggi-do, South Korea
| | - Christophe J Queval
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Raffaella Iantomasi
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Vincent Delorme
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France.,Institute Pasteur Korea, Seongnam-si Gyeonggi-do, South Korea
| | - Sabrina Marion
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Romain Veyron-Churlet
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Elisabeth Werkmeister
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Michka Popoff
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France.,CNRS, UMR8520, Institut d'électronique, de microélectronique et de nanotechnologie, Villeneuve d'Ascq, France
| | - Isabelle Ricard
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Samuel Jouny
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Nathalie Deboosere
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Frank Lafont
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Alain Baulard
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Edouard Yeramian
- Unité de Microbiologie Structurale, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Laurent Marsollier
- Equipe ATIP AVENIR, CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France .,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Eik Hoffmann
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Priscille Brodin
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France .,Institute Pasteur Korea, Seongnam-si Gyeonggi-do, South Korea
| |
Collapse
|
147
|
Roth E, Frohman MA. Proliferative and metastatic roles for Phospholipase D in mouse models of cancer. Adv Biol Regul 2017; 67:134-140. [PMID: 29154090 DOI: 10.1016/j.jbior.2017.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 02/06/2023]
Abstract
Phospholipase D (PLD) activity has been proposed to facilitate multiple steps in cancer progression including growth, metabolism, angiogenesis, and mobility. The canonical enzymes PLD1 and PLD2 enact their diverse effects through hydrolyzing the membrane lipid phosphatidylcholine to generate the second messenger and signaling lipid phosphatidic acid (PA). However, the widespread expression of PLD1 and PLD2 in normal tissues and the additional distinct enzymatic mechanisms through which PA can be generated have produced uncertainty regarding the optimal settings in which PLD inhibition might ameliorate cancer. Recent studies in mouse model systems have demonstrated that inhibition or elimination of PLD activity reduces tumor growth and metastasis. One mechanism proposed for this outcome involves proliferative signaling mediated by receptor tyrosine kinases (RTK) and G protein-coupled receptors (GPCR), which is attenuated when downstream PLD signal propagation is suppressed. The reduced proliferative signaling has been reported to be compounded by dysfunctional energetic metabolism in the tumor cells under conditions of nutrient deprivation. Moreover, cancer cells lacking PLD activity display inefficiencies across multiple steps of the metastatic cascade, limiting the tumor's lethal spread. Using PLD isoform knockout mice, recent studies have reported on the net effects of inhibition and ablation in multiple cancer models through examining the role of PLD in the non-tumor cells comprising the stroma and microenvironment. The promising results of such in vivo studies, combined with the apparent low toxicity of highly-specific and potent inhibitors, highlights PLD as an attractive target for therapeutic inhibition in cancer. We discuss here the array of anti-tumor effects produced by PLD inhibition and ablation in cancer models with a focus on animal studies.
Collapse
Affiliation(s)
- Eric Roth
- The Graduate Program in Molecular and Cellular Pharmacology, The Medical Scientist Training Program, and the Department of Pharmacological Sciences, Stony Brook University, New York, 11794, USA.
| | - Michael A Frohman
- The Graduate Program in Molecular and Cellular Pharmacology, The Medical Scientist Training Program, and the Department of Pharmacological Sciences, Stony Brook University, New York, 11794, USA.
| |
Collapse
|
148
|
Pazhouhandeh M, Samiee F, Boniadi T, Khedmat AF, Vahedi E, Mirdamadi M, Sigari N, Siadat SD, Vaziri F, Fateh A, Ajorloo F, Tafsiri E, Ghanei M, Mahboudi F, Rahimi Jamnani F. Comparative Network Analysis of Patients with Non-Small Cell Lung Cancer and Smokers for Representing Potential Therapeutic Targets. Sci Rep 2017; 7:13812. [PMID: 29062084 PMCID: PMC5653836 DOI: 10.1038/s41598-017-14195-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/06/2017] [Indexed: 02/08/2023] Open
Abstract
Cigarette smoking is the leading cause of lung cancer worldwide. In this study, we evaluated the serum autoantibody (AAb) repertoires of non-small cell lung cancer (NSCLC) patients and smokers (SM), leading to the identification of overactivated pathways and hubs involved in the pathogenesis of NSCLC. Surface- and solution-phase biopanning were performed on immunoglobulin G purified from the sera of NSCLC and SM groups. In total, 20 NSCLC- and 12 SM-specific peptides were detected, which were used to generate NSCLC and SM protein datasets. NSCLC- and SM-related proteins were visualized using STRING and Gephi, and their modules were analyzed using Enrichr. By integrating the overrepresented pathways such as pathways in cancer, epithelial growth factor receptor, c-Met, interleukin-4 (IL-4) and IL-6 signaling pathways, along with a set of proteins (e.g. phospholipase D (PLD), IL-4 receptor, IL-17 receptor, laminins, collagens, and mucins) into the PLD pathway and inflammatory cytokines network as the most critical events in both groups, two super networks were made to elucidate new aspects of NSCLC pathogenesis and to determine the influence of cigarette smoking on tumour formation. Taken together, assessment of the AAb repertoires using a systems biology approach can delineate the hidden events involved in various disorders.
Collapse
Affiliation(s)
| | - Fatemeh Samiee
- Department of Microbial Biotechnology, Islamic Azad University, Pharmaceutical Sciences Branch, Tehran, Iran
| | - Tahereh Boniadi
- Department of Microbial Biotechnology, Islamic Azad University, Pharmaceutical Sciences Branch, Tehran, Iran
| | - Abbas Fadaei Khedmat
- Department of Pulmonology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ensieh Vahedi
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahsa Mirdamadi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Naseh Sigari
- Internal Medicine Department, Medical Faculty, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Seyed Davar Siadat
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research Pasteur Institute of Iran, Tehran, Iran
| | - Faezeh Ajorloo
- Department of Biology, Faculty of Science, Islamic Azad University, East Tehran Branch, Tehran, Iran
| | - Elham Tafsiri
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | | | - Fatemeh Rahimi Jamnani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Department of Mycobacteriology and Pulmonary Research Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
149
|
Wang Z, Zhang F, He J, Wu P, Tay LWR, Cai M, Nian W, Weng Y, Qin L, Chang JT, McIntire LB, Di Paolo G, Xu J, Peng J, Du G. Binding of PLD2-Generated Phosphatidic Acid to KIF5B Promotes MT1-MMP Surface Trafficking and Lung Metastasis of Mouse Breast Cancer Cells. Dev Cell 2017; 43:186-197.e7. [PMID: 29033361 DOI: 10.1016/j.devcel.2017.09.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/19/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022]
Abstract
Little is known about the cellular events promoting metastasis. We show that knockout of phospholipase D2 (PLD2), which generates the signaling lipid phosphatidic acid (PA), inhibits lung metastases in the mammary tumor virus (MMTV)-Neu transgenic mouse breast cancer model. PLD2 promotes local invasion through the regulation of the plasma membrane targeting of MT1-MMP and its associated invadopodia. A liposome pull-down screen identifies KIF5B, the heavy chain of the motor protein kinesin-1, as a new PA-binding protein. In vitro assays reveal that PA specifically and directly binds to the C terminus of KIF5B. The binding between PLD2-generated PA and KIF5B is required for the vesicular association of KIF5B, surface localization of MT1-MMP, invadopodia, and invasion in cancer cells. Taken together, these results identify a role of PLD2-generated PA in the regulation of kinesin-1 motor functions and breast cancer metastasis and suggest PLD2 as a potential therapeutic target for metastatic breast cancer.
Collapse
Affiliation(s)
- Ziqing Wang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Feng Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA; Core Facility, Department of Clinical Laboratory, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Jingquan He
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Ping Wu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Li Wei Rachel Tay
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Ming Cai
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Weiqi Nian
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Hospital & Institute & Cancer Center, Chongqing 400030, China
| | - Yuanyuan Weng
- Core Facility, Department of Clinical Laboratory, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Li Qin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Laura B McIntire
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA.
| |
Collapse
|
150
|
Barber CN, Huganir RL, Raben DM. Phosphatidic acid-producing enzymes regulating the synaptic vesicle cycle: Role for PLD? Adv Biol Regul 2017; 67:141-147. [PMID: 28986032 DOI: 10.1016/j.jbior.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 02/03/2023]
Abstract
In cortical and hippocampal neurons of the mammalian brain, the synaptic vesicle cycle is a series of steps that tightly regulate exo- and endocytosis of vesicles. Many proteins contribute to this regulation, but lipids have recently emerged as critical regulators as well. Of all the many lipid signaling molecules, phosphatidic acid is important to the physical processes of membrane fusion. Therefore, the lipid-metabolizing enzymes that produce phosphatidic acid are vital to the regulation of the cycle. Our lab is particularly interested in the potential regulatory mechanisms and neuronal roles of two phosphatidic acid-producing enzymes: diacylglycerol kinase theta (DGKθ) and phospholipase D (PLD). We recently discovered a regulatory role of DGKθ on evoked endocytosis (Goldschmidt et al., 2016). In addition to this enzyme, studies implicate PLD1 in neurotransmission, although its precise role is of some debate. Altogether, the production of phosphatidic acid by these enzymes offer an interesting and novel pathway for the regulation of the synaptic vesicle cycle.
Collapse
Affiliation(s)
- Casey N Barber
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725North Wolfe St, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725North Wolfe St, Baltimore, MD 21205, USA
| | - Richard L Huganir
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725North Wolfe St, Baltimore, MD 21205, USA
| | - Daniel M Raben
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725North Wolfe St, Baltimore, MD 21205, USA.
| |
Collapse
|