101
|
Axelrod CJ, Laberge F, Robinson BW. Intraspecific brain size variation between coexisting sunfish ecotypes. Proc Biol Sci 2018; 285:rspb.2018.1971. [PMID: 30404883 DOI: 10.1098/rspb.2018.1971] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/12/2018] [Indexed: 01/19/2023] Open
Abstract
Variation in spatial complexity and foraging requirements between habitats can impose different cognitive demands on animals that may influence brain size. However, the relationship between ecologically related cognitive performance and brain size is not well established. We test whether variation in relative brain size and brain region size is associated with habitat use within a population of pumpkinseed sunfish composed of different ecotypes that inhabit either the structurally complex shoreline littoral habitat or simpler open-water pelagic habitat. Sunfish using the littoral habitat have on average 8.3% larger brains than those using the pelagic habitat. We found little difference in the proportional sizes of five brain regions between ecotypes. The results suggest that cognitive demands on sunfish may be reduced in the pelagic habitat given no habitat-specific differences in body condition. They also suggest that either a short divergence time or physiological processes may constrain changes to concerted, global modifications of brain size between sunfish ecotypes.
Collapse
Affiliation(s)
- Caleb J Axelrod
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Frédéric Laberge
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Beren W Robinson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
102
|
Ornelas-García P, Pajares S, Sosa-Jiménez VM, Rétaux S, Miranda-Gamboa RA. Microbiome differences between river-dwelling and cave-adapted populations of the fish Astyanax mexicanus (De Filippi, 1853). PeerJ 2018; 6:e5906. [PMID: 30425894 PMCID: PMC6228550 DOI: 10.7717/peerj.5906] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/09/2018] [Indexed: 11/20/2022] Open
Abstract
Symbiotic relationships between host and microbiome can play a major role in local adaptation. Previous studies with freshwater organisms have shown that microbiome performs numerous important biochemical functions for the host, playing a key role in metabolism, physiology or health. Experimental studies in fish groups have found an effect of enzymatic activity of gut microbiota on a variety of metabolic processes. The goal of this study was to compare stomach microbiome from cave and surface Astyanax mexicanus, in order to evaluate the potential response of microbiota to contrasting environmental conditions and physiological adaptations of the host. Stomach microbiota was obtained from three different populations: Pachón cave, and two surface rivers (Rascón and Micos rivers). The stomach microbiome was analyzed using the Ion 16S Metagenomic kit considering seven variable regions: V2, V3, V4, V6-7, V8 and V9. A high diversity was observed across samples, including 16 phyla, 120 families and 178 genera. Gammaproteobacteria, Firmicutes, Bacteroidetes and Betaproteobacteria were the most abundant phyla across the samples. Although the relative abundance of the core OTUs at genus level were highly contrasting among populations, we did not recover differences in stomach microbiome between contrasting habitats (cave vs. surface rivers). Rather, we observed a consistent association between β-diversity and dissolved oxygen concentration in water. Therefore, and unexpectedly, the microbiota of A. mexicanus is not linked with the contrasting conditions of the habitat considered here but is related to water parameters.
Collapse
Affiliation(s)
- Patricia Ornelas-García
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Silvia Pajares
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Víctor M Sosa-Jiménez
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ramsés A Miranda-Gamboa
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, Mexico
| |
Collapse
|
103
|
Xiong S, Krishnan J, Peuß R, Rohner N. Early adipogenesis contributes to excess fat accumulation in cave populations of Astyanax mexicanus. Dev Biol 2018; 441:297-304. [DOI: 10.1016/j.ydbio.2018.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/11/2018] [Accepted: 06/04/2018] [Indexed: 01/23/2023]
|
104
|
Arenz AL, Tran T, Koyama KH, Marin Gomez AM, Rivera AS. Sexually Dimorphic Eye-Loss Driven by Ecological Selection in an Ostracod Crustacean: Support for the Reproductive Role Hypothesis. Integr Comp Biol 2018; 58:431-440. [PMID: 30107507 DOI: 10.1093/icb/icy077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Euphilomedes carcharodonta ostracods exhibit sex-specific eye-loss, with females lacking image-forming compound eyes compared with males and related species. The standard assumption is that sexual dimorphism is driven by sexual selection. However, previous work in E. carcharodonta suggests that male eyes are used to evade predators in the male-specific ecological niche, and that male-eyes lack the resolution to search for females. In this study, we examine whether sexual selection or ecological selection drives the retention of male eyes. Ecological niche differentiation was hypothesized by Darwin (1871) to be an alternative selective force for sexual dimorphism either through food competition or through dimorphic sex-role behavior, the reproductive role hypothesis. As of yet, there is little experimental evidence supporting this hypothesis. Here, we experimentally blindfold male E. carcharodonta to mimic the female phenotype and examine the effects on sex-specific niches and behavior. Blindfolding does not appear to grossly change male behavior, nor do females behave differently when exposed to blindfolded males. This lead us to conclude that the development of complex eyes in male E. arises from ecological selection rather than sexual selection.
Collapse
Affiliation(s)
- Alexis L Arenz
- Department of Biological Sciences, University of the Pacific, 601 Pacific Avenue, Stockton, CA 95211, USA
| | - Tiffanie Tran
- Department of Biological Sciences, University of the Pacific, 601 Pacific Avenue, Stockton, CA 95211, USA
| | - Kristina H Koyama
- Department of Biological Sciences, University of the Pacific, 601 Pacific Avenue, Stockton, CA 95211, USA
| | - Astrid M Marin Gomez
- Department of Biological Sciences, University of the Pacific, 601 Pacific Avenue, Stockton, CA 95211, USA
| | - Ajna S Rivera
- Department of Biological Sciences, University of the Pacific, 601 Pacific Avenue, Stockton, CA 95211, USA
| |
Collapse
|
105
|
Kries K, Barros MAS, Duytschaever G, Orkin JD, Janiak MC, Pessoa DMA, Melin AD. Colour vision variation in leaf-nosed bats (Phyllostomidae): Links to cave roosting and dietary specialization. Mol Ecol 2018; 27:3627-3640. [PMID: 30059176 DOI: 10.1111/mec.14818] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 11/30/2022]
Abstract
Bats are a diverse radiation of mammals of enduring interest for understanding the evolution of sensory specialization. Colour vision variation among species has previously been linked to roosting preferences and echolocation form in the suborder Yinpterochiroptera, yet questions remain about the roles of diet and habitat in shaping bat visual ecology. We sequenced OPN1SW and OPN1LW opsin genes for 20 species of leaf-nosed bats (family Phyllostomidae; suborder Yangochiroptera) with diverse roosting and dietary ecologies, along with one vespertilionid species (Myotis lavali). OPN1LW genes appear intact for all species, and predicted spectral tuning of long-wavelength opsins varied among lineages. OPN1SW genes appear intact and under purifying selection for Myotis lavali and most phyllostomid bats, with two exceptions: (a) We found evidence of ancient OPN1SW pseudogenization in the vampire bat lineage, and loss-of-function mutations in all three species of extant vampire bats; (b) we additionally found a recent, independently derived OPN1SW pseudogene in Lonchophylla mordax, a cave-roosting species. These mutations in leaf-nosed bats are independent of the OPN1SW pseudogenization events previously reported in Yinpterochiropterans. Therefore, the evolution of monochromacy (complete colour blindness) has occurred in both suborders of bats and under various evolutionary drivers; we find independent support for the hypothesis that obligate cave roosting drives colour vision loss. We additionally suggest that haematophagous dietary specialization and corresponding selection on nonvisual senses led to loss of colour vision through evolutionary sensory trade-off. Our results underscore the evolutionary plasticity of opsins among nocturnal mammals.
Collapse
Affiliation(s)
- Kelly Kries
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri
| | - Marília A S Barros
- Department of Physiology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Gwen Duytschaever
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Joseph D Orkin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Mareike C Janiak
- Department of Anthropology, Rutgers University, New Brunswick, New Jersey
| | - Daniel M A Pessoa
- Department of Physiology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada.,Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
106
|
Porter ML, Sumner-Rooney L. Evolution in the Dark: Unifying our Understanding of Eye Loss. Integr Comp Biol 2018; 58:367-371. [PMID: 30239782 DOI: 10.1093/icb/icy082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Megan L Porter
- Department of Biology, University of Hawai‘i at Mānoa, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Lauren Sumner-Rooney
- Oxford University Museum of Natural History, University of Oxford, Parks Road, Oxford OX1 3PW, UK
| |
Collapse
|
107
|
Body and organ metabolic rates of a cave fish, Triplophysa rosa: influence of light and ontogenetic variation. J Comp Physiol B 2018; 188:947-955. [PMID: 30094506 DOI: 10.1007/s00360-018-1178-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/07/2018] [Accepted: 08/05/2018] [Indexed: 10/28/2022]
Abstract
Triplophysa rosa is a typical species of cave-dwelling fish distributed throughout Wulong County, Chongqing, China. This study aimed to test whether T. rosa has a low metabolic level as a cave species and how the metabolic rate of this fish responds to light stimulation. The whole body and organ (including brain, heart, and liver) oxygen consumption rates ([Formula: see text]) and several blood parameters related to oxygen carrying were compared between T. rosa acclimated in constant dark and those in regular photoperiod conditions. No significant changes in any variables were observed between the regular photoperiod fish and the dark fish, suggesting that the metabolic consumption of T. rosa is not light sensitive, which may be attributed to the highly degraded eyes of this cave species. The average mass-specific resting [Formula: see text] of T. rosa was 38.3 mgO2 kg- 1 h- 1 and was lower than many other fish species. One possible explanation for the low metabolic level of T. rosa can be due to its highly degraded eyes and small brain size. Whole-organ [Formula: see text] of the brain, heart, and liver were on average responsible for 8.18%, 3.55%, and 8.61% of the body resting [Formula: see text], respectively. Both heart mass and liver mass increased with increasing body mass; however, brain mass did not correlate with body mass. Maintaining a small brain size throughout ontogeny suggests energy-saving advantages for this cave species.
Collapse
|
108
|
The developmental origin of heart size and shape differences in Astyanax mexicanus populations. Dev Biol 2018; 441:272-284. [PMID: 29940142 PMCID: PMC6142174 DOI: 10.1016/j.ydbio.2018.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 11/22/2022]
Abstract
Regulation of heart size and shape is one of the least understood processes in developmental biology. We have for the first time analysed the hearts of Astyanax mexicanus and identified several differences in heart morphology between the surface (epigean morph) and cave-dwelling (troglomorph) morphs. Examination of the adult revealed that the troglomorph possesses a smaller heart with a rounder ventricle in comparison to the epigean morph. The size differences identified appear to arise early in development, as early as 24 h post-fertilisation (hpf), while shape differences begin to appear at 2 days post-fertilisation. The heart of the first-generation cross between the cave-dwelling and river-dwelling morph shows uncoupling of different phenotypes observed in the parental populations and indicates that the cardiac differences have become embedded in the genome during evolution. The differences in heart morphology are accompanied by functional changes between the two morphs, with the cave-dwelling morph exhibiting a slower heart rate than the river-dwelling morph. The identification of morphological and functional differences in the A. mexicanus heart could allow us to gain more insight into how such parameters are regulated during cardiac development, with potential relevance to cardiac pathologies in humans. Differences in heart size, shape and tissue structure between Astyanax populations. Furthermore, differences in cardiac melanophore and adipocyte numbers. Heart size and shape differences are apparent early in development. Surface and Pachón show differences in heart rate during development and adulthood. F1 hybrids show uncoupling of features observed in surface and Pachón populations.
Collapse
|
109
|
Tierney SM, Langille B, Humphreys WF, Austin AD, Cooper SJB. Massive Parallel Regression: A Précis of Genetic Mechanisms for Vision Loss in Diving Beetles. Integr Comp Biol 2018; 58:465-479. [DOI: 10.1093/icb/icy035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Simon M Tierney
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Barbara Langille
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - William F Humphreys
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia
- School of Animal Biology, The University of Western Australia, Nedlands, WA 6907, Australia
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Steven J B Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
110
|
Darbani B, Kell DB, Borodina I. Energetic evolution of cellular Transportomes. BMC Genomics 2018; 19:418. [PMID: 29848286 PMCID: PMC5977736 DOI: 10.1186/s12864-018-4816-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Transporter proteins mediate the translocation of substances across the membranes of living cells. Many transport processes are energetically expensive and the cells use 20 to 60% of their energy to power the transportomes. We hypothesized that there may be an evolutionary selection pressure for lower energy transporters. RESULTS We performed a genome-wide analysis of the compositional reshaping of the transportomes across the kingdoms of bacteria, archaea, and eukarya. We found that the share of ABC transporters is much higher in bacteria and archaea (ca. 27% of the transportome) than in primitive eukaryotes (13%), algae and plants (10%) and in fungi and animals (5-6%). This decrease is compensated by an increased occurrence of secondary transporters and ion channels. The share of ion channels is particularly high in animals (ca. 30% of the transportome) and algae and plants with (ca. 13%), when compared to bacteria and archaea with only 6-7%. Therefore, our results show a move to a preference for the low-energy-demanding transporters (ion channels and carriers) over the more energy-costly transporter classes (ATP-dependent families, and ABCs in particular) as part of the transition from prokaryotes to eukaryotes. The transportome analysis also indicated seven bacterial species, including Neorickettsia risticii and Neorickettsia sennetsu, as likely origins of the mitochondrion in eukaryotes, based on the phylogenetically restricted presence therein of clear homologues of modern mitochondrial solute carriers. CONCLUSIONS The results indicate that the transportomes of eukaryotes evolved strongly towards a higher energetic efficiency, as ATP-dependent transporters diminished and secondary transporters and ion channels proliferated. These changes have likely been important in the development of tissues performing energetically costly cellular functions.
Collapse
Affiliation(s)
- Behrooz Darbani
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
111
|
Gore AV, Tomins KA, Iben J, Ma L, Castranova D, Davis AE, Parkhurst A, Jeffery WR, Weinstein BM. An epigenetic mechanism for cavefish eye degeneration. Nat Ecol Evol 2018; 2:1155-1160. [PMID: 29807993 PMCID: PMC6023768 DOI: 10.1038/s41559-018-0569-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/02/2018] [Indexed: 12/23/2022]
Abstract
Coding and non-coding mutations in DNA contribute significantly to phenotypic variability during evolution. However, less is known about the role of epigenetics in this process. Although previous studies have identified eye development genes associated with the loss-of-eyes phenotype in the Pachón blind cave morph of the Mexican tetra Astyanax mexicanus, no inactivating mutations have been found in any of these genes. Here, we show that excess DNA methylation-based epigenetic silencing promotes eye degeneration in blind cave A. mexicanus. By performing parallel analyses in A. mexicanus cave and surface morphs, and in the zebrafish Danio rerio, we have discovered that DNA methylation mediates eye-specific gene repression and globally regulates early eye development. The most significantly hypermethylated and downregulated genes in the cave morph are also linked to human eye disorders, suggesting that the function of these genes is conserved across vertebrates. Our results show that changes in DNA methylation-based gene repression can serve as an important molecular mechanism generating phenotypic diversity during development and evolution.
Collapse
Affiliation(s)
- Aniket V Gore
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.
| | - Kelly A Tomins
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - James Iben
- Molecular Genomics Laboratory, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Li Ma
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Andrew E Davis
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Amy Parkhurst
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.
| |
Collapse
|
112
|
Samuk K, Xue J, Rennision DJ. Exposure to predators does not lead to the evolution of larger brains in experimental populations of threespine stickleback. Evolution 2018; 72:916-929. [PMID: 29392719 DOI: 10.1111/evo.13444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 01/22/2023]
Abstract
Natural selection is often invoked to explain differences in brain size among vertebrates. However, the particular agents of selection that shape brain size variation remain obscure. Recent studies suggest that predators may select for larger brains because increased cognitive and sensory abilities allow prey to better elude predators. Yet, there is little direct evidence that exposure to predators causes the evolution of larger brains in prey species. We experimentally tested this prediction by exposing families of 1000-2000 F2 hybrid benthic-limnetic threespine stickleback to predators under naturalistic conditions, along with matched controls. After two generations of selection, we found that fish from the predator addition treatment had significantly smaller brains (specifically smaller telencephalons and optic lobes) than fish from the control treatment. After an additional generation of selection, we reared experimental fish in a common environment and found that this difference in brain size was maintained in the offspring of fish from the predator addition treatment. Our results provide direct experimental evidence that (a) predators can indeed drive the evolution of brain size--but not in the fashion commonly expected and (b) that the tools of experimental evolution can be used to the study the evolution of the vertebrate brain.
Collapse
Affiliation(s)
- Kieran Samuk
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Jan Xue
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Diana J Rennision
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
113
|
Valen R, Karlsen R, Helvik JV. Environmental, population and life-stage plasticity in the visual system of Atlantic cod. ACTA ACUST UNITED AC 2018; 221:jeb.165191. [PMID: 29146770 DOI: 10.1242/jeb.165191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/12/2017] [Indexed: 02/03/2023]
Abstract
The visual system is for many fishes essential in guiding behaviors, such as foraging, predator avoidance and mate choice. The marine environment is characterized by large spatio-temporal fluctuations in light intensity and spectral composition. However, visual capabilities are restricted by both space limitations set by eye size and by the genomic content of light-absorbing opsin genes. The rich array of visual opsins in teleosts may be used differentially to tune vision towards specific needs during ontogeny and to changing light. Yet, to what extent visual plasticity is a pre-programmed developmental event, or is triggered by photic environment, is unclear. Our previous studies on Atlantic cod revealed an evolutionary genomic loss of UV-sensitive sws1 and red-sensitive lws opsin families, while blue-sensitive sws2 and green-sensitive rh2 opsins had duplicated. The current study has taken an opsin expression approach to characterize visual plasticity in cod towards different spectral light during the larval stage, to maturation and extreme seasonal changes in the Barents Sea. Our data suggest that opsin plasticity in cod larvae is controlled by developmental programme rather than immediate light environment. The lack of expressional changes during maturation suggests a less important role for visual modulation related to mate choice. Although no seasonal effects on visual opsins were detected in migratory Northeast Arctic cod, the expressed opsin subset differed from the more stationary Norwegian coastal cod described in previous studies. Interestingly, these data provide the first indications of a population difference in actively used visual opsins associated with cod ecotypes.
Collapse
Affiliation(s)
- Ragnhild Valen
- Department of Biology, University of Bergen, NO-5020 Bergen, Norway
| | - Rita Karlsen
- Department of Biology, University of Bergen, NO-5020 Bergen, Norway
| | - Jon Vidar Helvik
- Department of Biology, University of Bergen, NO-5020 Bergen, Norway
| |
Collapse
|
114
|
|
115
|
Lebhardt F, Desplan C. Retinal perception and ecological significance of color vision in insects. CURRENT OPINION IN INSECT SCIENCE 2017; 24:75-83. [PMID: 29208227 PMCID: PMC5726413 DOI: 10.1016/j.cois.2017.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/12/2017] [Indexed: 05/09/2023]
Abstract
Color vision relies on the ability to discriminate different wavelengths and is often improved in insects that inhabit well-lit, spectrally rich environments. Although the Opsin proteins themselves are sensitive to specific wavelength ranges, other factors can alter and further restrict the sensitivity of photoreceptors to allow for finer color discrimination and thereby more informed decisions while interacting with the environment. The ability to discriminate colors differs between insects that exhibit different life styles, between female and male eyes of the same species, and between regions of the same eye, depending on the requirements of intraspecific communication and ecological demands.
Collapse
Affiliation(s)
- Fleur Lebhardt
- Department of Biology, New York University, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, NY 10003, USA.
| |
Collapse
|
116
|
Shafiee MJ, Mishra A, Wong A. Deep Learning with Darwin: Evolutionary Synthesis of Deep Neural Networks. Neural Process Lett 2017. [DOI: 10.1007/s11063-017-9733-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
117
|
Letelier J, Bovolenta P, Martínez-Morales JR. The pigmented epithelium, a bright partner against photoreceptor degeneration. J Neurogenet 2017; 31:203-215. [PMID: 29113536 DOI: 10.1080/01677063.2017.1395876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sight depends on the intimate association between photoreceptors and pigment epithelial cells. The evolutionary origin of this cellular tandem can be traced back to the emergence of bilateral animals, at least 450 million years ago, as they define the minimal unit of the ancestral prototypic eye. Phototransduction is a demanding process from the energetic and homeostatic points of view, and not surprisingly photoreceptive cells are particularly susceptible to damage and degeneration. Here, we will examine the different ancillary roles that the pigmented cells play in the physiology and homeostasis of photoreceptors, linking each one of these processes to the most common hereditary retinal diseases. We will discuss the challenges and opportunities of recent therapeutic advances based on cell and gene replacement. The transition from animal models to clinical trials will be addressed for each one of the different therapeutic strategies with a special focus on those depending on retinal-pigmented epithelial cells. Finally, we will discuss the potential impact of combining CRISPR technologies with gene and cell therapy approaches, which - in the frame of the personalized medicine revolution - may constitute a leap forward in the treatment of retinal dystrophies.
Collapse
Affiliation(s)
- Joaquín Letelier
- a Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA) , Seville , Spain
| | - Paola Bovolenta
- b Centro de Biología Molecular "Severo Ochoa," (CSIC/UAM) and CIBERER, ISCIII , Madrid , Spain
| | | |
Collapse
|
118
|
Partha R, Chauhan BK, Ferreira Z, Robinson JD, Lathrop K, Nischal KK, Chikina M, Clark NL. Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling. eLife 2017; 6:e25884. [PMID: 29035697 PMCID: PMC5643096 DOI: 10.7554/elife.25884] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022] Open
Abstract
The underground environment imposes unique demands on life that have led subterranean species to evolve specialized traits, many of which evolved convergently. We studied convergence in evolutionary rate in subterranean mammals in order to associate phenotypic evolution with specific genetic regions. We identified a strong excess of vision- and skin-related genes that changed at accelerated rates in the subterranean environment due to relaxed constraint and adaptive evolution. We also demonstrate that ocular-specific transcriptional enhancers were convergently accelerated, whereas enhancers active outside the eye were not. Furthermore, several uncharacterized genes and regulatory sequences demonstrated convergence and thus constitute novel candidate sequences for congenital ocular disorders. The strong evidence of convergence in these species indicates that evolution in this environment is recurrent and predictable and can be used to gain insights into phenotype-genotype relationships.
Collapse
Affiliation(s)
- Raghavendran Partha
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghUnited States
| | - Bharesh K Chauhan
- UPMC Eye CenterChildren’s Hospital of PittsburghPittsburghUnited States
- Department of OphthalmologyUniversity of Pittsburgh School of MedicinePittsburghUnited States
| | - Zelia Ferreira
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghUnited States
| | - Joseph D Robinson
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUnited States
| | - Kira Lathrop
- UPMC Eye CenterChildren’s Hospital of PittsburghPittsburghUnited States
- Department of OphthalmologyUniversity of Pittsburgh School of MedicinePittsburghUnited States
| | - Ken K Nischal
- UPMC Eye CenterChildren’s Hospital of PittsburghPittsburghUnited States
- Department of OphthalmologyUniversity of Pittsburgh School of MedicinePittsburghUnited States
| | - Maria Chikina
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghUnited States
| | - Nathan L Clark
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghUnited States
| |
Collapse
|
119
|
Retinal metabolism: A comparative look at energetics in the retina. Brain Res 2017; 1672:50-57. [DOI: 10.1016/j.brainres.2017.07.025] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022]
|
120
|
Investigating gene flow between the blind cavefish Garra barreimiae and its conspecific surface populations. Sci Rep 2017; 7:5130. [PMID: 28698621 PMCID: PMC5506003 DOI: 10.1038/s41598-017-05194-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/25/2017] [Indexed: 11/08/2022] Open
Abstract
Cave-dwelling taxa often share the same phenotypic modifications like absence of eyes and pigmentation. These “troglomorphic characters” are expressed in the populations of Garra barreimiae from the Al Hoota Cave and nearby Hoti Pit in Northern Oman. Surface morphotypes of this cyprinid species are common throughout the distribution area. Very rarely individuals with intermediate phenotypes can be found. In the present study, potential gene flow between cave and surface populations was tested and population structure within five sampling sites was assessed. Overall, 213 individuals were genotyped at 18 microsatellite loci. We found that the cave populations have lower genetic diversity and are clearly isolated from the surface populations, which seem to be sporadically in contact with each other. The results indicate a recent genetic bottleneck in the cave populations. Thus, it can be assumed that during climatic changes the connection between cave and surface water bodies was disjoined, leaving a subpopulation trapped inside. Nevertheless, occasional gene flow between the morphotypes is detectable, but hybridisation seems only possible in cave habitat with permanent connection to surface water. Individuals from surface sites bearing intermediate phenotypes but cave genotypes imply that phenotypic plasticity might play a role in the development of the phenotype.
Collapse
|
121
|
Ramm T, Scholtz G. No sight, no smell? - Brain anatomy of two amphipod crustaceans with different lifestyles. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:537-551. [PMID: 28344111 DOI: 10.1016/j.asd.2017.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 06/06/2023]
Abstract
The brain anatomy of Niphargus puteanus and Orchestia cavimana, two amphipod species with different lifestyles, has been studied using a variety of recent techniques. The general aspects of the brain anatomy of both species correspond to those of other malacostracans. However, both species lack hemiellipsoid bodies. Furthermore, related to their lifestyle certain differences have been observed. The aquatic subterranean species N. puteanus lacks eye structures, the optic nerve, and the two outer optic neuropils lamina and medulla. Only partial remains of the lobula have been detected. In contrast to this, the central complex in the protocerebrum and the olfactory glomeruli in the deutocerebrum are well differentiated. The terrestrial species Orchestia cavimana shows a reduced first antenna, the absence of olfactory neuropils in the deutocerebrum, and a reduction of the olfactory globular tract. The characteristics in defining the hemiellipsoid bodies are critically discussed. Contradictions about presence or absence of this neuropil are due to different conceptualizations. A comparison with other crustaceans that live in dark environments reveal similar patterns of optic system reduction, but to different degrees following a centripetal pattern. Retaining the olfactory system seems a general problem of terrestrialization in crustaceans with the notable exception of terrestrial hermit crabs.
Collapse
Affiliation(s)
- Till Ramm
- Humboldt-Universität zu Berlin, Institut für Biologie, Vergleichende Zoologie, Philippstr. 13, 10115 Berlin, Germany
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie, Vergleichende Zoologie, Philippstr. 13, 10115 Berlin, Germany.
| |
Collapse
|
122
|
Stahl BA, Gross JB. A Comparative Transcriptomic Analysis of Development in Two Astyanax Cavefish Populations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:515-532. [PMID: 28612405 DOI: 10.1002/jez.b.22749] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/24/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022]
Abstract
Organisms that are isolated into extreme environments often evolve extreme phenotypes. However, global patterns of dynamic gene expression changes that accompany dramatic environmental changes remain largely unknown. The blind Mexican cavefish, Astyanax mexicanus, has evolved a number of severe cave-associated phenotypes including loss of vision and pigmentation, craniofacial bone fusions, increased fat storage, reduced sleep, and amplified nonvisual sensory systems. Interestingly, surface-dwelling forms have repeatedly entered different caves throughout Mexico, providing a natural set of "replicate" instances of cave isolation. These surrogate "ancestral" surface-dwelling forms persist in nearby rivers, enabling direct comparisons to the "derived" cave-dwelling form. We evaluated changes associated with subterranean isolation by measuring differential gene expression in two geographically distinct cave-dwelling populations (Pachón and Tinaja). To understand the impact of these expression changes on development, we performed RNA-sequencing across four critical stages during which troglomorphic traits first appear in cavefish embryos. Gene ontology (GO) studies revealed similar functional profiles evolved in both independent cave lineages. However, enrichment studies indicated that similar GO profiles were occasionally mediated by different genes. Certain "master" regulators, such as Otx2 and Mitf, appear to be important loci for cave adaptation, as remarkably similar patterns of expression were identified in both independent cave lineages. This work reveals that adaptation to an extreme environment, in two distinct cavefish lineages, evolves through a combination of unique and shared gene expression patterns. Shared expression profiles reflect common environmental pressures, while unique expression likely reflects the fact that similar adaptive traits evolve through diverse genetic mechanisms.
Collapse
Affiliation(s)
- Bethany A Stahl
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
123
|
Massive increase in visual range preceded the origin of terrestrial vertebrates. Proc Natl Acad Sci U S A 2017; 114:E2375-E2384. [PMID: 28270619 DOI: 10.1073/pnas.1615563114] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The evolution of terrestrial vertebrates, starting around 385 million years ago, is an iconic moment in evolution that brings to mind images of fish transforming into four-legged animals. Here, we show that this radical change in body shape was preceded by an equally dramatic change in sensory abilities akin to transitioning from seeing over short distances in a dense fog to seeing over long distances on a clear day. Measurements of eye sockets and simulations of their evolution show that eyes nearly tripled in size just before vertebrates began living on land. Computational simulations of these animal's visual ecology show that for viewing objects through water, the increase in eye size provided a negligible increase in performance. However, when viewing objects through air, the increase in eye size provided a large increase in performance. The jump in eye size was, therefore, unlikely to have arisen for seeing through water and instead points to an unexpected hybrid of seeing through air while still primarily inhabiting water. Our results and several anatomical innovations arising at the same time suggest lifestyle similarity to crocodiles. The consequent combination of the increase in eye size and vision through air would have conferred a 1 million-fold increase in the amount of space within which objects could be seen. The "buena vista" hypothesis that our data suggest is that seeing opportunities from afar played a role in the subsequent evolution of fully terrestrial limbs as well as the emergence of elaborated action sequences through planning circuits in the nervous system.
Collapse
|
124
|
Cartwright RA, Schwartz RS, Merry AL, Howell MM. The importance of selection in the evolution of blindness in cavefish. BMC Evol Biol 2017; 17:45. [PMID: 28173751 PMCID: PMC5297207 DOI: 10.1186/s12862-017-0876-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/09/2017] [Indexed: 12/04/2022] Open
Abstract
Background Blindness has evolved repeatedly in cave-dwelling organisms, and many hypotheses have been proposed to explain this observation, including both accumulation of neutral loss-of-function mutations and adaptation to darkness. Investigating the loss of sight in cave dwellers presents an opportunity to understand the operation of fundamental evolutionary processes, including drift, selection, mutation, and migration. Results Here we model the evolution of blindness in caves. This model captures the interaction of three forces: (1) selection favoring alleles causing blindness, (2) immigration of sightedness alleles from a surface population, and (3) mutations creating blindness alleles. We investigated the dynamics of this model and determined selection-strength thresholds that result in blindness evolving in caves despite immigration of sightedness alleles from the surface. We estimate that the selection coefficient for blindness would need to be at least 0.005 (and maybe as high as 0.5) for blindness to evolve in the model cave-organism, Astyanax mexicanus. Conclusions Our results indicate that strong selection is required for the evolution of blindness in cave-dwelling organisms, which is consistent with recent work suggesting a high metabolic cost of eye development. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0876-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Reed A Cartwright
- The Biodesign Institute, Arizona State University, Tempe, AZ, USA. .,School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | | | - Alexandra L Merry
- Barrett, The Honors College Arizona State University, Tempe, 85287, AZ, USA
| | - Megan M Howell
- Barrett, The Honors College Arizona State University, Tempe, 85287, AZ, USA
| |
Collapse
|
125
|
Krishnan J, Rohner N. Cavefish and the basis for eye loss. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150487. [PMID: 27994128 PMCID: PMC5182419 DOI: 10.1098/rstb.2015.0487] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 11/12/2022] Open
Abstract
Animals have colonized the entire world from rather moderate to the harshest environments, some of these so extreme that only few animals are able to survive. Cave environments present such a challenge and obligate cave animals have adapted to perpetual darkness by evolving a multitude of traits. The most common and most studied cave characteristics are the regression of eyes and the overall reduction in pigmentation. Studying these traits can provide important insights into how evolutionary forces drive convergent and regressive adaptation. The blind Mexican cavefish (Astyanax mexicanus) has emerged as a useful model to study cave evolution owing to the availability of genetic and genomic resources, and the amenability of embryonic development as the different populations remain fertile with each other. In this review, we give an overview of our current knowledge underlying the process of regressive and convergent evolution using eye degeneration in cavefish as an example.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Jaya Krishnan
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
126
|
White TE, Dalrymple RL, Herberstein ME, Kemp DJ. The perceptual similarity of orb-spider prey lures and flower colours. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9876-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
127
|
Gross JB, Powers AK, Davis EM, Kaplan SA. A pleiotropic interaction between vision loss and hypermelanism in Astyanax mexicanus cave x surface hybrids. BMC Evol Biol 2016; 16:145. [PMID: 27363593 PMCID: PMC4929771 DOI: 10.1186/s12862-016-0716-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cave-dwelling animals evolve various traits as a consequence of life in darkness. Constructive traits (e.g., enhanced non-visual sensory systems) presumably arise under strong selective pressures. The mechanism(s) driving regression of features, however, are not well understood. Quantitative trait locus (QTL) analyses in Astyanax mexicanus Pachón cave x surface hybrids revealed phenotypic effects associated with vision and pigmentation loss. Vision QTL were uniformly associated with reductions in the homozygous cave condition, however pigmentation QTL demonstrated mixed phenotypic effects. This implied pigmentation might be lost through both selective and neutral forces. Alternatively, in this report, we examined if a pleiotropic interaction may exist between vision and pigmentation since vision loss has been shown to result in darker skin in other fish and amphibian model systems. RESULTS We discovered that certain members of Pachón x surface pedigrees are significantly darker than surface-dwelling fish. All of these "hypermelanic" individuals demonstrated severe visual system malformations suggesting they may be blind. A vision-mediated behavioral assay revealed that these fish, in stark contrast to surface fish, behaved the same as blind cavefish. Further, hypermelanic melanophores were larger and more dendritic in morphology compared to surface fish melanophores. However, hypermelanic melanophores responded normally to melanin-concentrating hormone suggesting darkening stemmed from vision loss, rather than a defect in pigment cell function. Finally, a number of genomic regions were coordinately associated with both reduced vision and increased pigmentation. CONCLUSIONS This work suggests hypermelanism in hybrid Astyanax results from blindness. This finding provides an alternative explanation for phenotypic effect studies of pigmentation QTL as stemming (at least in part) from environmental, rather than exclusively genetic, interactions between two regressive phenotypes. Further, this analysis reveals persistence of background adaptation in Astyanax. As the eye was lost in cave-dwelling forms, enhanced pigmentation resulted. Given the extreme cave environment, which is often devoid of nutrition, enhanced pigmentation may impose an energetic cost. Such an energetic cost would be selected against, as a means of energy conservation. Thus, the pleiotropic interaction between vision loss and pigmentation may reveal an additional selective pressure favoring the loss of pigmentation in cave-dwelling animals.
Collapse
Affiliation(s)
- Joshua B. Gross
- />Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45223 USA
- />Department of Biological Sciences, University of Cincinnati, Rieveschl Hall Room 711B, 312 Clifton Court, Cincinnati, Ohio 45221 USA
| | - Amanda K. Powers
- />Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45223 USA
| | - Erin M. Davis
- />Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45223 USA
| | - Shane A. Kaplan
- />Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45223 USA
| |
Collapse
|
128
|
Casane D, Rétaux S. Evolutionary Genetics of the Cavefish Astyanax mexicanus. ADVANCES IN GENETICS 2016; 95:117-59. [PMID: 27503356 DOI: 10.1016/bs.adgen.2016.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Blind and depigmented fish belonging to the species Astyanax mexicanus are outstanding models for evolutionary genetics. During their evolution in the darkness of caves, they have undergone a number of changes at the morphological, physiological, and behavioral levels, but they can still breed with their river-dwelling conspecifics. The fertile hybrids between these two morphotypes allow forward genetic approaches, from the search of quantitative trait loci to the identification of the mutations underlying the evolution of troglomorphism. We review here the past 30years of evolutionary genetics on Astyanax: from the first crosses and the discovery of convergent evolution of different Astyanax cavefish populations to the most recent evolutionary transcriptomics and genomics studies that have provided researchers with potential candidate genes to be tested using functional genetic approaches. Although significant progress has been made and some genes have been identified, cavefish have not yet fully revealed the secret of their adaptation to the absence of light. In particular, the genetic determinism of their loss of eyes seems complex and still puzzles researchers. We also discuss future research directions, including searches for the origin of cave alleles and searches for selection genome-wide, as well as the necessary but missing information on the timing of cave colonization by surface fish.
Collapse
Affiliation(s)
- D Casane
- Laboratory EGCE, CNRS and University of Paris-Sud, Gif-sur-Yvette, France; Paris Diderot University, Sorbonne Paris Cité, France
| | - S Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
129
|
Wilkens H. Genetics and hybridization in surface and caveAstyanax(Teleostei): a comparison of regressive and constructive traits. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12773] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Horst Wilkens
- University of Hamburg; Centrum für Naturkunde - CeNak; Zoological Museum; Martin-Luther-King-Platz 3 20146 Hamburg Germany
| |
Collapse
|
130
|
Fišer Ž, Novak L, Luštrik R, Fišer C. Light triggers habitat choice of eyeless subterranean but not of eyed surface amphipods. Naturwissenschaften 2016; 103:7. [PMID: 26757929 DOI: 10.1007/s00114-015-1329-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/04/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
Abstract
Boundaries of species distributions are the result of colonization-extinction processes. Survival on the boundary depends on how well individuals discriminate optimal from suboptimal habitat patches. Such behaviour is called habitat choice and was only rarely applied to macroecology, although it links species ecological niche and species distribution. Surface and subterranean aquatic species are spatially strongly segregated, even in the absence of physical barriers. We explored whether a behavioural response to light functions as a habitat choice mechanism that could explain species turnover between surface and subterranean aquatic ecosystems. In a controlled laboratory experiment, we studied the behavioural response to light of ten pairs of surface and subterranean amphipods that permanently co-occur in springs. Surface species showed a weak photophobic, photoneutral, and in one case, photophilic response, whereas all subterranean species showed a strong photophobic response. Eyeless subterranean but not eyed surface amphipods appear to orient themselves with light cues. On a local scale, this difference possibly diminishes harmful interactions between the co-occurring amphipods, whereas on a regional scale, photophobia could explain limited dispersal and a high degree of endemism observed among subterranean species.
Collapse
Affiliation(s)
- Žiga Fišer
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia.
| | - Luka Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia.
| | - Roman Luštrik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia.
| | - Cene Fišer
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia.
| |
Collapse
|
131
|
McCulloch KJ, Osorio D, Briscoe AD. Sexual dimorphism in the compound eye of Heliconius erato: a nymphalid butterfly with at least five spectral classes of photoreceptor. J Exp Biol 2016; 219:2377-87. [DOI: 10.1242/jeb.136523] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/23/2016] [Indexed: 11/20/2022]
Abstract
Most butterfly families expand the number of spectrally-distinct photoreceptors in their compound eye by opsin gene duplications together with lateral filter pigments, however most nymphalid genera have limited diversity, with only three or four spectral types of photoreceptor. Here we examine the spatial pattern of opsin expression and photoreceptor spectral sensitivities in Heliconius erato, a nymphalid with duplicate ultraviolet opsin genes, UVRh1 and UVRh2. We find that the H. erato compound eye is sexually dimorphic. Females express the two UV opsin proteins in separate photoreceptors, but males do not express UVRh1. Intracellular recordings confirmed that females have three short wavelength-sensitive photoreceptors (λmax=356 nm, ∼390 nm and 470 nm), while males have two (λmax=390 nm and ∼470 nm). We also found two long wavelength-sensitive photoreceptors (green, λmax ∼555 nm, and red, λmax ∼600 nm), which express the same LW opsin. The red cell's shifted sensitivity is probably due to perirhabdomal filtering pigments. Sexual dimorphism of the UV-absorbing rhodopsins may reflect the females' need to discriminate conspecifics from co-mimics. Red-green color vision may be used to detect differences in red coloration on Heliconius wings, or for host-plant identification. Among nymphalids so far investigated, only H. erato is known to possess five spectral classes of photoreceptor; sexual dimorphism of the eye via suppression of one class of opsin (here UVRh1 in males) has not—to our knowledge—been reported in any animal.
Collapse
Affiliation(s)
- Kyle J. McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| | - Daniel Osorio
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Adriana D. Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
132
|
Smolka J, Baird E, el Jundi B, Reber T, Byrne MJ, Dacke M. Night sky orientation with diurnal and nocturnal eyes: dim-light adaptations are critical when the moon is out of sight. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
133
|
Abstract
What selective forces contribute to eye loss in cave animals? A new study shows the eye and optic tectum of a cave fish consumes ∼5-17% of the total energy consumption, emphasising that selection to reduce energy consumption may drive eye loss.
Collapse
Affiliation(s)
- Jeremy E Niven
- School of Life Sciences and Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|