101
|
Siclari F. Sleep: The Sensory Disconnection of Dreams. Curr Biol 2020; 30:R826-R828. [PMID: 32693081 DOI: 10.1016/j.cub.2020.05.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It has been known for some time that the brain can react selectively to meaningful sensory stimuli during sleep. A recent study shows that this ability may be selectively suppressed during rapid eye movements of sleep.
Collapse
Affiliation(s)
- Francesca Siclari
- Center for Investigation and Research in Sleep, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
102
|
Neurostimulation techniques to enhance sleep and improve cognition in aging. Neurobiol Dis 2020; 141:104865. [DOI: 10.1016/j.nbd.2020.104865] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023] Open
|
103
|
Bandarabadi M, Vassalli A, Tafti M. Sleep as a default state of cortical and subcortical networks. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
104
|
|
105
|
Peyrache A, Seibt J. A mechanism for learning with sleep spindles. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190230. [PMID: 32248788 PMCID: PMC7209910 DOI: 10.1098/rstb.2019.0230] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Spindles are ubiquitous oscillations during non-rapid eye movement (NREM) sleep. A growing body of evidence points to a possible link with learning and memory, and the underlying mechanisms are now starting to be unveiled. Specifically, spindles are associated with increased dendritic activity and high intracellular calcium levels, a situation favourable to plasticity, as well as with control of spiking output by feed-forward inhibition. During spindles, thalamocortical networks become unresponsive to inputs, thus potentially preventing interference between memory-related internal information processing and extrinsic signals. At the system level, spindles are co-modulated with other major NREM oscillations, including hippocampal sharp wave-ripples (SWRs) and neocortical slow waves, both previously shown to be associated with learning and memory. The sequential occurrence of reactivation at the time of SWRs followed by neuronal plasticity-promoting spindles is a possible mechanism to explain NREM sleep-dependent consolidation of memories. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Adrien Peyrache
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 1A1
| | - Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| |
Collapse
|
106
|
Boutin A, Doyon J. A sleep spindle framework for motor memory consolidation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190232. [PMID: 32248783 DOI: 10.1098/rstb.2019.0232] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sleep spindle activity has repeatedly been found to contribute to brain plasticity and consolidation of both declarative and procedural memories. Here we propose a framework for motor memory consolidation that outlines the essential contribution of the hierarchical and multi-scale periodicity of spindle activity, as well as of the synchronization and interaction of brain oscillations during this sleep-dependent process. We posit that the clustering of sleep spindles in 'trains', together with the temporally organized alternation between spindles and associated refractory periods, is critical for efficient reprocessing and consolidation of motor memories. We further argue that the long-term retention of procedural memories relies on the synchronized (functional connectivity) local reprocessing of new information across segregated, but inter-connected brain regions that are involved in the initial learning process. Finally, we propose that oscillatory synchrony in the spindle frequency band may reflect the cross-structural reactivation, reorganization and consolidation of motor, and potentially declarative, memory traces within broader subcortical-cortical networks during sleep. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Arnaud Boutin
- Université Paris-Saclay, CIAMS, 91405, Orsay, France.,Université d'Orléans, CIAMS, 45067, Orléans, France
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
107
|
Pigarev IN, Pigareva ML, Levichkina EV. Probable Mechanism of Antiepileptic Effect of the Vagus Nerve Stimulation in the Context of the Recent Results in Sleep Research. Front Neurosci 2020; 14:160. [PMID: 32180701 PMCID: PMC7059639 DOI: 10.3389/fnins.2020.00160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ivan N Pigarev
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Marina L Pigareva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina V Levichkina
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia.,Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
108
|
Solomonova E, Dubé S, Blanchette-Carrière C, Sandra DA, Samson-Richer A, Carr M, Paquette T, Nielsen T. Different Patterns of Sleep-Dependent Procedural Memory Consolidation in Vipassana Meditation Practitioners and Non-meditating Controls. Front Psychol 2020; 10:3014. [PMID: 32038390 PMCID: PMC6989470 DOI: 10.3389/fpsyg.2019.03014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023] Open
Abstract
Aim Rapid eye movement (REM) sleep, non-rapid eye movement (NREM) sleep, and sleep spindles are all implicated in the consolidation of procedural memories. Relative contributions of sleep stages and sleep spindles were previously shown to depend on individual differences in task processing. However, no studies to our knowledge have focused on individual differences in experience with Vipassana meditation as related to sleep. Vipassana meditation is a form of mental training that enhances proprioceptive and somatic awareness and alters attentional style. The goal of this study was to examine a potential role for Vipassana meditation experience in sleep-dependent procedural memory consolidation. Methods Groups of Vipassana meditation practitioners (N = 22) and matched meditation-naïve controls (N = 20) slept for a daytime nap in the laboratory. Before and after the nap they completed a procedural task on the Wii Fit balance platform. Results Meditators performed slightly better on the task before the nap, but the two groups improved similarly after sleep. The groups showed different patterns of sleep-dependent procedural memory consolidation: in meditators, task learning was positively correlated with density of slow occipital spindles, while in controls task improvement was positively associated with time in REM sleep. Sleep efficiency and sleep architecture did not differ between groups. Meditation practitioners, however, had a lower density of occipital slow sleep spindles than controls. Conclusion Results suggest that neuroplastic changes associated with meditation practice may alter overall sleep microarchitecture and reorganize sleep-dependent patterns of memory consolidation. The lower density of occipital spindles in meditators may mean that meditation practice compensates for some of the memory functions of sleep.
Collapse
Affiliation(s)
- Elizaveta Solomonova
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada.,Department of Psychiatry, Université de Montréal, Montréal, QC, Canada.,Culture, Mind and Brain Research Group, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Simon Dubé
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada.,Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Cloé Blanchette-Carrière
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada
| | - Dasha A Sandra
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Arnaud Samson-Richer
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada
| | - Michelle Carr
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada.,Sleep Laboratory, Swansea University, Swansea, United Kingdom
| | - Tyna Paquette
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada
| | - Tore Nielsen
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada.,Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
109
|
Dash MB. Infraslow coordination of slow wave activity through altered neuronal synchrony. Sleep 2019; 42:5540154. [PMID: 31353415 DOI: 10.1093/sleep/zsz170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/29/2019] [Indexed: 11/14/2022] Open
Abstract
Slow wave activity (SWA; the EEG power between 0.5 and 4 Hz during non-rapid eye movement sleep [NREM]) is the best electrophysiological marker of sleep need; SWA dissipates across the night and increases following sleep deprivation. In addition to these well-documented homeostatic SWA trends, SWA exhibits extensive variability across shorter timescales (seconds to minutes) and between local cortical regions. The physiological underpinnings of SWA variability, however, remain poorly characterized. In male Sprague-Dawley rats, we observed that SWA exhibits pronounced infraslow fluctuations (~40- to 120-s periods) that are coordinated across disparate cortical locations. Peaks in SWA across infraslow cycles were associated with increased slope, amplitude, and duration of individual slow waves and a reduction in the total number of waves and proportion of multipeak waves. Using a freely available data set comprised of extracellular unit recordings during consolidated NREM episodes in male Long-Evans rats, we further show that infraslow SWA does not appear to arise as a consequence of firing rate modulation of putative excitatory or inhibitory neurons. Instead, infraslow SWA was associated with alterations in neuronal synchrony surrounding "On"/"Off" periods and changes in the number and duration of "Off" periods. Collectively, these data provide a mechanism by which SWA can be coordinated across disparate cortical locations and thereby connect local and global expression of this patterned neuronal activity. In doing so, infraslow SWA may contribute to the regulation of cortical circuits during sleep and thereby play a critical role in sleep function.
Collapse
Affiliation(s)
- Michael B Dash
- Department of Psychology, Middlebury College, Middlebury, VT
- Program in Neuroscience, Middlebury College, Middlebury, VT
| |
Collapse
|
110
|
Abstract
Sleep spindles are burstlike signals in the electroencephalogram (EEG) of the sleeping mammalian brain and electrical surface correlates of neuronal oscillations in thalamus. As one of the most inheritable sleep EEG signatures, sleep spindles probably reflect the strength and malleability of thalamocortical circuits that underlie individual cognitive profiles. We review the characteristics, organization, regulation, and origins of sleep spindles and their implication in non-rapid-eye-movement sleep (NREMS) and its functions, focusing on human and rodent. Spatially, sleep spindle-related neuronal activity appears on scales ranging from small thalamic circuits to functional cortical areas, and generates a cortical state favoring intracortical plasticity while limiting cortical output. Temporally, sleep spindles are discrete events, part of a continuous power band, and elements grouped on an infraslow time scale over which NREMS alternates between continuity and fragility. We synthesize diverse and seemingly unlinked functions of sleep spindles for sleep architecture, sensory processing, synaptic plasticity, memory formation, and cognitive abilities into a unifying sleep spindle concept, according to which sleep spindles 1) generate neural conditions of large-scale functional connectivity and plasticity that outlast their appearance as discrete EEG events, 2) appear preferentially in thalamic circuits engaged in learning and attention-based experience during wakefulness, and 3) enable a selective reactivation and routing of wake-instated neuronal traces between brain areas such as hippocampus and cortex. Their fine spatiotemporal organization reflects NREMS as a physiological state coordinated over brain and body and may indicate, if not anticipate and ultimately differentiate, pathologies in sleep and neurodevelopmental, -degenerative, and -psychiatric conditions.
Collapse
Affiliation(s)
- Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
111
|
Adamantidis AR, Gutierrez Herrera C, Gent TC. Oscillating circuitries in the sleeping brain. Nat Rev Neurosci 2019; 20:746-762. [DOI: 10.1038/s41583-019-0223-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
|
112
|
Liu M, Song C, Liang Y, Knöpfel T, Zhou C. Assessing spatiotemporal variability of brain spontaneous activity by multiscale entropy and functional connectivity. Neuroimage 2019; 198:198-220. [PMID: 31091474 DOI: 10.1016/j.neuroimage.2019.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 01/24/2023] Open
Abstract
Brain signaling occurs across a wide range of spatial and temporal scales, and analysis of brain signal variability and synchrony has attracted recent attention as markers of intelligence, cognitive states, and brain disorders. However, current technologies to measure brain signals in humans have limited resolutions either in space or in time and cannot fully capture spatiotemporal variability, leaving it untested whether temporal variability and spatiotemporal synchrony are valid and reliable proxy of spatiotemporal variability in vivo. Here we used optical voltage imaging in mice under anesthesia and wakefulness to monitor cortical voltage activity at both high spatial and temporal resolutions to investigate functional connectivity (FC, a measure of spatiotemporal synchronization), Multi-Scale Entropy (MSE, a measure of temporal variability), and their relationships to Regional Entropy (RE, a measure of spatiotemporal variability). We observed that across cortical space, MSE pattern can largely explain RE pattern at small and large temporal scales with high positive and negative correlation respectively, while FC pattern strongly negatively associated with RE pattern. The time course of FC and small scale MSE tightly followed that of RE, while large scale MSE was more loosely coupled to RE. fMRI and EEG data simulated by reducing spatiotemporal resolution of the voltage imaging data or considering hemodynamics yielded MSE and FC measures that still contained information about RE based on the high resolution voltage imaging data. This suggested that MSE and FC could still be effective measures to capture spatiotemporal variability under limitation of imaging modalities applicable to human subjects. Our results support the notion that FC and MSE are effective biomarkers for brain states, and provide a promising viewpoint to unify these two principal domains in human brain data analysis.
Collapse
Affiliation(s)
- Mianxin Liu
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Chenchen Song
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London, UK
| | - Yuqi Liang
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London, UK.
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research Centre, HKBU Institute of Research and Continuing Education, Virtual University Park Building, South Area Hi-tech Industrial Park, Shenzhen, China; Beijing Computational Science Research Center, Beijing, China; Department of Physics, Zhejiang University, 38 Zheda Road, Hangzhou, China.
| |
Collapse
|
113
|
Papalambros NA, Weintraub S, Chen T, Grimaldi D, Santostasi G, Paller KA, Zee PC, Malkani RG. Acoustic enhancement of sleep slow oscillations in mild cognitive impairment. Ann Clin Transl Neurol 2019; 6:1191-1201. [PMID: 31353857 PMCID: PMC6649400 DOI: 10.1002/acn3.796] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Slow-wave activity (SWA) during sleep is reduced in people with amnestic mild cognitive impairment (aMCI) and is related to sleep-dependent memory consolidation. Acoustic stimulation of slow oscillations has proven effective in enhancing SWA and memory in younger and older adults. In this study we aimed to determine whether acoustic stimulation during sleep boosts SWA and improves memory performance in people with aMCI. METHODS Nine adults with aMCI (72 ± 8.7 years) completed one night of acoustic stimulation (stim) and one night of sham stimulation (sham) in a blinded, randomized crossover study. Acoustic stimuli were delivered phase-locked to the upstate of the endogenous sleep slow-waves. Participants completed a declarative recall task with 44 word-pairs before and after sleep. RESULTS During intervals of acoustic stimulation, SWA increased by >10% over sham intervals (P < 0.01), but memory recall increased in only five of the nine patients. The increase in SWA with stimulation was associated with improved morning word recall (r = 0.78, P = 0.012). INTERPRETATION Acoustic stimulation delivered during slow-wave sleep over one night was effective for enhancing SWA in individuals with aMCI. Given established relationships between SWA and memory, a larger or more prolonged enhancement may be needed to consistently improve memory in aMCI.
Collapse
Affiliation(s)
- Nelly A. Papalambros
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinois
- Center for Circadian and Sleep MedicineNorthwestern University Feinberg School of MedicineChicagoIllinois
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of MedicineChicagoIllinois
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinois
| | - Tammy Chen
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinois
- Center for Circadian and Sleep MedicineNorthwestern University Feinberg School of MedicineChicagoIllinois
| | - Daniela Grimaldi
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinois
- Center for Circadian and Sleep MedicineNorthwestern University Feinberg School of MedicineChicagoIllinois
| | - Giovanni Santostasi
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinois
- DeepWave TechnologiesEncinitasCalifornia
| | - Ken A. Paller
- Department of PsychologyNorthwestern UniversityEvanstonIllinois
| | - Phyllis C. Zee
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinois
- Center for Circadian and Sleep MedicineNorthwestern University Feinberg School of MedicineChicagoIllinois
| | - Roneil G. Malkani
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinois
- Center for Circadian and Sleep MedicineNorthwestern University Feinberg School of MedicineChicagoIllinois
| |
Collapse
|
114
|
Csernai M, Borbély S, Kocsis K, Burka D, Fekete Z, Balogh V, Káli S, Emri Z, Barthó P. Dynamics of sleep oscillations is coupled to brain temperature on multiple scales. J Physiol 2019; 597:4069-4086. [PMID: 31197831 DOI: 10.1113/jp277664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/11/2019] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Sleep spindle frequency positively, duration negatively correlates with brain temperature. Local heating of the thalamus produces similar effects in the heated area. Thalamic network model corroborates temperature dependence of sleep spindle frequency. Brain temperature shows spontaneous microfluctuations during both anesthesia and natural sleep. Larger fluctuations are associated with epochs of REM sleep. Smaller fluctuations correspond to the alteration of spindling and delta epochs of infra-slow oscillation. ABSTRACT Every form of neural activity depends on temperature, yet its relationship to brain rhythms is poorly understood. In this work we examined how sleep spindles are influenced by changing brain temperatures and how brain temperature is influenced by sleep oscillations. We employed a novel thermoelectrode designed for measuring temperature while recording neural activity. We found that spindle frequency is positively correlated and duration negatively correlated with brain temperature. Local heating of the thalamus replicated the temperature dependence of spindle parameters in the heated area only, suggesting biophysical rather than global modulatory mechanisms, a finding also supported by a thalamic network model. Finally, we show that switches between oscillatory states also influence brain temperature on a shorter and smaller scale. Epochs of paradoxical sleep as well as the infra-slow oscillation were associated with brain temperature fluctuations below 0.2°C. Our results highlight that brain temperature is massively intertwined with sleep oscillations on various time scales.
Collapse
Affiliation(s)
- Márton Csernai
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Sándor Borbély
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Kinga Kocsis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,Neuronal Network and Behavior Research Group, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dávid Burka
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Corvinus University of Budapest, Budapest, Hungary
| | - Zoltán Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,Institute of Technical Physics and Material Science, Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Veronika Balogh
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szabolcs Káli
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Péter Barthó
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
115
|
Grimaldi D, Papalambros NA, Reid KJ, Abbott SM, Malkani RG, Gendy M, Iwanaszko M, Braun RI, Sanchez DJ, Paller KA, Zee PC. Strengthening sleep-autonomic interaction via acoustic enhancement of slow oscillations. Sleep 2019; 42:zsz036. [PMID: 30753650 PMCID: PMC7729207 DOI: 10.1093/sleep/zsz036] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/25/2019] [Indexed: 11/14/2022] Open
Abstract
Slow-wave sleep (SWS) is important for overall health since it affects many physiological processes including cardio-metabolic function. Sleep and autonomic nervous system (ANS) activity are closely coupled at anatomical and physiological levels. Sleep-related changes in autonomic function are likely the main pathway through which SWS affects many systems within the body. There are characteristic changes in ANS activity across sleep stages. Notably, in non-rapid eye-movement sleep, the progression into SWS is characterized by increased parasympathetic activity, an important measure of cardiovascular health. Experimental manipulations that enhance slow-wave activity (SWA, 0.5-4 Hz) can improve sleep-mediated memory and immune function. However, effects of SWA enhancement on autonomic regulation have not been investigated. Here, we employed an adaptive algorithm to deliver 50 ms sounds phase-locked to slow-waves, with regular pauses in stimulation (~5 s ON/~5 s OFF), in healthy young adults. We sought to determine whether acoustic enhancement of SWA altered parasympathetic activity during SWS assessed with heart rate variability (HRV), and evening-to-morning changes in HRV, plasma cortisol, and blood pressure. Stimulation, compared with a sham condition, increased SWA during ON versus OFF intervals. This ON/OFF SWA enhancement was associated with a reduction in evening-to-morning change of cortisol levels and indices of sympathetic activity. Furthermore, the enhancement of SWA in ON intervals during sleep cycles 2-3 was accompanied by an increase in parasympathetic activity (high-frequency, HRV). Together these findings suggest that acoustic enhancement of SWA has a positive effect on autonomic function in sleep. Approaches to strengthen brain-heart interaction during sleep could have important implications for cardiovascular health.
Collapse
Affiliation(s)
- Daniela Grimaldi
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Nelly A Papalambros
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Kathryn J Reid
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Sabra M Abbott
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Roneil G Malkani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Maged Gendy
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Marta Iwanaszko
- Biostatistics Division, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Rosemary I Braun
- Biostatistics Division, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL
| | | | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL
| | - Phyllis C Zee
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
116
|
Okun M, Steinmetz NA, Lak A, Dervinis M, Harris KD. Distinct Structure of Cortical Population Activity on Fast and Infraslow Timescales. Cereb Cortex 2019; 29:2196-2210. [PMID: 30796825 PMCID: PMC6458908 DOI: 10.1093/cercor/bhz023] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
Cortical activity is organized across multiple spatial and temporal scales. Most research on the dynamics of neuronal spiking is concerned with timescales of 1 ms-1 s, and little is known about spiking dynamics on timescales of tens of seconds and minutes. Here, we used frequency domain analyses to study the structure of individual neurons' spiking activity and its coupling to local population rate and to arousal level across 0.01-100 Hz frequency range. In mouse medial prefrontal cortex, the spiking dynamics of individual neurons could be quantitatively captured by a combination of interspike interval and firing rate power spectrum distributions. The relative strength of coherence with local population often differed across timescales: a neuron strongly coupled to population rate on fast timescales could be weakly coupled on slow timescales, and vice versa. On slow but not fast timescales, a substantial proportion of neurons showed firing anticorrelated with the population. Infraslow firing rate changes were largely determined by arousal rather than by local factors, which could explain the timescale dependence of individual neurons' population coupling strength. These observations demonstrate how neurons simultaneously partake in fast local dynamics, and slow brain-wide dynamics, extending our understanding of infraslow cortical activity beyond the mesoscale resolution of fMRI.
Collapse
Affiliation(s)
- Michael Okun
- Centre for Systems Neuroscience and Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
- Institute of Neurology, University College London, London, UK
| | | | - Armin Lak
- Institute of Neurology, University College London, London, UK
| | - Martynas Dervinis
- Centre for Systems Neuroscience and Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | | |
Collapse
|
117
|
Sleep spindles and K-complex activities are decreased in spinocerebellar ataxia type 2: relationship to memory and motor performances. Sleep Med 2019; 60:188-196. [PMID: 31186215 DOI: 10.1016/j.sleep.2019.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Sleep spindles and K-complexes are electroencephalographic hallmarks of non-rapid eye movement (non-REM) sleep that provide valuable information into brain functioning, plasticity and sleep functions in normal and pathological conditions. However, they have not been systematically investigated in spinocerebellar ataxias (SCA). To close this gap, the current study was carried out to quantify sleep spindles and K-complexes in SCA2 and to assess their relationship with clinical and molecular measures, as well as with memory and attention/executive functioning. METHODS In this study, 20 SCA2 patients, 20 preclinical carriers and 20 healthy controls underwent whole-night polysomnographic (PSG) recordings as well as sleep interviews, ataxia scoring and neuropsychological assessments. Sleep spindles and K-complexes were automatically detected during non-REM sleep stage 2 (N2). Their densities were evaluated as events/minute. RESULTS Compared to controls, sleep spindle density was significantly reduced in SCA2 patients and preclinical subjects. By contrast, K-complex density was specifically and significantly decreased only in SCA2 patients. Reduced spindle activity correlated with measures of verbal memory, whereas reduced K-complex activity correlated with age, ataxia severity and N3 sleep percentage in SCA2 patients. CONCLUSIONS Findings document an impairment of N2 sleep microstructure in SCA2 already in prodromal stages, suggesting an early involvement of thalamo-cortical and/or cortical circuits underlying the generation of sleep spindles and K-complexes. Thus, sleep spindle density may serve as useful biomarker for deficits of neural plasticity mechanisms underlying verbal memory alterations in patients. It may also serve as promising outcome measure in further therapeutical trials targeting memory decline in SCA2. With regard to K-complexes, they have potential usefulness as marker of sleep protection.
Collapse
|
118
|
Lázár ZI, Dijk DJ, Lázár AS. Infraslow oscillations in human sleep spindle activity. J Neurosci Methods 2019; 316:22-34. [PMID: 30571990 PMCID: PMC6390176 DOI: 10.1016/j.jneumeth.2018.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/29/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND It has previously been reported that EEG sigma (10-15 Hz) activity during sleep exhibits infraslow oscillations (ISO) with a period of 50 s. However, a detailed analysis of the ISO of individually identified sleep spindles is not available. NEW METHOD We investigated basic properties of ISO during baseline sleep of 34 healthy young human participants using new and established methods. The analyses focused on fast sleep spindle and sigma activity (13-15 Hz) in NREM stage 2 and slow wave sleep (SWS). To describe ISO in sigma activity we analyzed power of power of the EEG signal. For the study of ISO in sleep spindle activity we applied a new method in which the EEG signal was reduced to a spindle on/off binary square signal. Its spectral properties were contrasted to that of a square signal wherein the same spindles and also the inter spindle intervals were permutated randomly. This approach was validated using surrogate data with imposed ISO modulation. RESULTS We confirm the existence of ISO in sigma activity albeit with a frequency below the previously reported 0.02 Hz. These ISO are most prominent in the high sigma band and over the centro-parieto-occipital regions. A similar modulation is present in spindle activity. ISO in sleep spindles are most prominent in the centro-parieto-occipital regions, left hemisphere and second half of the night independent of the number of spindles. CONCLUSIONS The comparison of spectral properties of binary event signals and permutated event signals is effective in detecting slow oscillatory phenomena.
Collapse
Affiliation(s)
- Zsolt I Lázár
- Babeş-Bolyai University, Faculty of Physics, RO-400084 Cluj-Napoca, Str. Kogălniceanu Nr. 1, Romania
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Alpár S Lázár
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
119
|
Masvidal-Codina E, Illa X, Dasilva M, Calia AB, Dragojević T, Vidal-Rosas EE, Prats-Alfonso E, Martínez-Aguilar J, De la Cruz JM, Garcia-Cortadella R, Godignon P, Rius G, Camassa A, Del Corro E, Bousquet J, Hébert C, Durduran T, Villa R, Sanchez-Vives MV, Garrido JA, Guimerà-Brunet A. High-resolution mapping of infraslow cortical brain activity enabled by graphene microtransistors. NATURE MATERIALS 2019; 18:280-288. [PMID: 30598536 DOI: 10.1038/s41563-018-0249-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/14/2018] [Indexed: 05/24/2023]
Abstract
Recording infraslow brain signals (<0.1 Hz) with microelectrodes is severely hampered by current microelectrode materials, primarily due to limitations resulting from voltage drift and high electrode impedance. Hence, most recording systems include high-pass filters that solve saturation issues but come hand in hand with loss of physiological and pathological information. In this work, we use flexible epicortical and intracortical arrays of graphene solution-gated field-effect transistors (gSGFETs) to map cortical spreading depression in rats and demonstrate that gSGFETs are able to record, with high fidelity, infraslow signals together with signals in the typical local field potential bandwidth. The wide recording bandwidth results from the direct field-effect coupling of the active transistor, in contrast to standard passive electrodes, as well as from the electrochemical inertness of graphene. Taking advantage of such functionality, we envision broad applications of gSGFET technology for monitoring infraslow brain activity both in research and in the clinic.
Collapse
Affiliation(s)
- Eduard Masvidal-Codina
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
| | - Xavi Illa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Miguel Dasilva
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Andrea Bonaccini Calia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain
| | - Tanja Dragojević
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Ernesto E Vidal-Rosas
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Elisabet Prats-Alfonso
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Javier Martínez-Aguilar
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Jose M De la Cruz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain
| | - Ramon Garcia-Cortadella
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain
| | - Philippe Godignon
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
| | - Gemma Rius
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
| | - Alessandra Camassa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elena Del Corro
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain
| | - Jessica Bousquet
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain
| | - Clement Hébert
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain
| | - Turgut Durduran
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Rosa Villa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jose A Garrido
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Anton Guimerà-Brunet
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
120
|
Naji M, Krishnan GP, McDevitt EA, Bazhenov M, Mednick SC. Coupling of autonomic and central events during sleep benefits declarative memory consolidation. Neurobiol Learn Mem 2019; 157:139-150. [PMID: 30562589 PMCID: PMC6425961 DOI: 10.1016/j.nlm.2018.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/24/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023]
Abstract
While anatomical pathways between forebrain cognitive and brainstem autonomic nervous centers are well-defined, autonomic-central interactions during sleep and their contribution to waking performance are not understood. Here, we analyzed simultaneous central activity via electroencephalography (EEG) and autonomic heart beat-to-beat intervals (RR intervals) from electrocardiography (ECG) during wake and daytime sleep. We identified bursts of ECG activity that lasted 4-5 s and predominated in non-rapid-eye-movement sleep (NREM). Using event-based analysis of NREM sleep, we found an increase in delta (0.5-4 Hz) and sigma (12-15 Hz) power and an elevated density of slow oscillations (0.5-1 Hz) about 5 s prior to peak of the heart rate burst, as well as a surge in vagal activity, assessed by high-frequency (HF) component of RR intervals. Using regression framework, we show that these Autonomic/Central Events (ACE) positively predicted post-nap improvement in a declarative memory task after controlling for the effects of spindles and slow oscillations from sleep periods without ACE. No such relation was found between memory performance and a control nap. Additionally, NREM ACE negatively correlated with REM sleep and learning in a non-declarative memory task. These results provide the first evidence that coordinated autonomic and central events play a significant role in declarative memory consolidation.
Collapse
Affiliation(s)
- Mohsen Naji
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Giri P Krishnan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Maxim Bazhenov
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
121
|
Dijk DJ, Landolt HP. Sleep Physiology, Circadian Rhythms, Waking Performance and the Development of Sleep-Wake Therapeutics. Handb Exp Pharmacol 2019; 253:441-481. [PMID: 31254050 DOI: 10.1007/164_2019_243] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Disturbances of the sleep-wake cycle are highly prevalent and diverse. The aetiology of some sleep disorders, such as circadian rhythm sleep-wake disorders, is understood at the conceptual level of the circadian and homeostatic regulation of sleep and in part at a mechanistic level. Other disorders such as insomnia are more difficult to relate to sleep regulatory mechanisms or sleep physiology. To further our understanding of sleep-wake disorders and the potential of novel therapeutics, we discuss recent findings on the neurobiology of sleep regulation and circadian rhythmicity and its relation with the subjective experience of sleep and the quality of wakefulness. Sleep continuity and to some extent REM sleep emerge as determinants of subjective sleep quality and waking performance. The effects of insufficient sleep primarily concern subjective and objective sleepiness as well as vigilant attention, whereas performance on higher cognitive functions appears to be better preserved albeit at the cost of increased effort. We discuss age-related, sex and other trait-like differences in sleep physiology and sleep need and compare the effects of existing pharmacological and non-pharmacological sleep- and wake-promoting treatments. Successful non-pharmacological approaches such as sleep restriction for insomnia and light and melatonin treatment for circadian rhythm sleep disorders target processes such as sleep homeostasis or circadian rhythmicity. Most pharmacological treatments of sleep disorders target specific signalling pathways with no well-established role in either sleep homeostasis or circadian rhythmicity. Pharmacological sleep therapeutics induce changes in sleep structure and the sleep EEG which are specific to the mechanism of action of the drug. Sleep- and wake-promoting therapeutics often induce residual effects on waking performance and sleep, respectively. The need for novel therapeutic approaches continues not at least because of the societal demand to sleep and be awake out of synchrony with the natural light-dark cycle, the high prevalence of sleep-wake disturbances in mental health disorders and in neurodegeneration. Novel approaches, which will provide a more comprehensive description of sleep and allow for large-scale sleep and circadian physiology studies in the home environment, hold promise for continued improvement of therapeutics for disturbances of sleep, circadian rhythms and waking performance.
Collapse
Affiliation(s)
- Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, Sleep and Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| |
Collapse
|
122
|
Fernandez LM, Vantomme G, Osorio-Forero A, Cardis R, Béard E, Lüthi A. Thalamic reticular control of local sleep in mouse sensory cortex. eLife 2018; 7:39111. [PMID: 30583750 PMCID: PMC6342525 DOI: 10.7554/elife.39111] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/19/2018] [Indexed: 12/25/2022] Open
Abstract
Sleep affects brain activity globally, but many cortical sleep waves are spatially confined. Local rhythms serve cortical area-specific sleep needs and functions; however, mechanisms controlling locality are unclear. We identify the thalamic reticular nucleus (TRN) as a source for local, sensory-cortex-specific non-rapid-eye-movement sleep (NREMS) in mouse. Neurons in optogenetically identified sensory TRN sectors showed stronger repetitive burst discharge compared to non-sensory TRN cells due to higher activity of the low-threshold Ca2+ channel CaV3.3. Major NREMS rhythms in sensory but not non-sensory cortical areas were regulated in a CaV3.3-dependent manner. In particular, NREMS in somatosensory cortex was enriched in fast spindles, but switched to delta wave-dominated sleep when CaV3.3 channels were genetically eliminated or somatosensory TRN cells chemogenetically hyperpolarized. Our data indicate a previously unrecognized heterogeneity in a powerful forebrain oscillator that contributes to sensory-cortex-specific and dually regulated NREMS, enabling local sleep regulation according to use- and experience-dependence. Falling asleep affects our behavior immediately and profoundly. During sleep, large electrical waves appear across the brain in areas responsible for consciousness, sensation and movement. In the cortex – the outer layer of the brain – sleep waves arise from networks that connect to the thalamus, a deeper structure within the brain. However, not all areas of the brain sleep equally. We know this intuitively because sensory stimuli, such as an alarm clock or a baby’s cry, can still wake us up. By contrast, we typically do not move much or take major decisions while we sleep. Therefore, the brain areas involved in sensation should not be expected to sleep in the same way as areas involved in movement or reasoning. Neighboring brain areas generally show very different sleep waves. The brain regions that we use during the day can also affect how sleep varies from one area to the next. It is not well understood what determines these ‘local’ sleep properties. By studying the brains of mice, Fernandez et al. now show that the networks between the cortex and thalamus are much more varied than previously thought, in particular regarding a thalamic nucleus that is relevant for sleep wave generation. These previously unrecognized differences deep within the brain are part of the origin of local sleep in the outer layer of the brain. Sleep wave activity differed depending on whether the networks were involved in sensory or non-sensory roles. The networks allow sensory areas to switch efficiently between different forms of local sleep. This might underlie how the brain’s sensory activity during the day can influence local sleep at night. There is growing evidence that major sleep disorders are due to disturbances to local sleep. Techniques to modify or restore specific sleep waves locally in the brain could help to develop new sleep therapies. For example, having a detailed map of electrical waves within the sleep-disordered brain could help researchers to apply transcranial stimulation techniques in ways that might help to treat these debilitating disorders.
Collapse
Affiliation(s)
- Laura Mj Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Gil Vantomme
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | - Romain Cardis
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Elidie Béard
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
123
|
A highly collateralized thalamic cell type with arousal-predicting activity serves as a key hub for graded state transitions in the forebrain. Nat Neurosci 2018; 21:1551-1562. [PMID: 30349105 PMCID: PMC6441588 DOI: 10.1038/s41593-018-0251-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/19/2018] [Indexed: 11/09/2022]
Abstract
Sleep cycles consist of rapid alterations between arousal states
including transient perturbation of sleep rhythms, microarousals and full-blown
awake states. Here we demonstrate that the calretinin containing (CR+) neurons
in the dorsal medial thalamus (DMT) constitute a key diencephalic node that
mediates distinct levels of forebrain arousal. Cell-type-specific activation of
DMT/CR+ cells could elicit active locomotion lasting for minutes, stereotyped
microarousals or transient disruption of sleep rhythms depending on the
parameters of the stimulation. State transitions could be induced in both
slow-wave and REM sleep. The DMT/CR+ cells displayed elevated activity prior to
arousal, received selective subcortical inputs and innervated several forebrain
sites via highly branched axons. Together, these features enable DMT/CR+ cells
to summate subcortical arousal information and effectively transfer it as a
rapid, synchronous signal to several forebrain regions to modulate the level of
arousal.
Collapse
|
124
|
Watson BO. Cognitive and Physiologic Impacts of the Infraslow Oscillation. Front Syst Neurosci 2018; 12:44. [PMID: 30386218 PMCID: PMC6198276 DOI: 10.3389/fnsys.2018.00044] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/06/2018] [Indexed: 11/30/2022] Open
Abstract
Brain states are traditionally recognized via sleep-wake cycles, but modern neuroscience is beginning to identify many sub-states within these larger arousal types. Multiple lines of converging evidence now point to the infraslow oscillation (ISO) as a mediator of brain sub-states, with impacts ranging from the creation of resting state networks (RSNs) in awake subjects to interruptions in neural activity during sleep. This review will explore first the basic characteristics of the ISO in human subjects before reviewing findings in sleep and in animals. Networks of consistently correlated brain regions known as RSNs seen in human functional neuroimaging studies oscillate together at infraslow frequencies. The infraslow rhythm subdivides nonREM in a manner that may correlate with plasticity. The mechanism of this oscillation may be found in the thalamus and may ultimately come from glial cells. Finally, I review the functional impacts of ISOs on brain phenomena ranging from higher frequency oscillations, to brain networks, to information representation and cognitive performance. ISOs represent a relatively understudied phenomenon with wide effects on the brain and behavior.
Collapse
Affiliation(s)
- Brendon O. Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
125
|
Libourel PA, Barrillot B, Arthaud S, Massot B, Morel AL, Beuf O, Herrel A, Luppi PH. Partial homologies between sleep states in lizards, mammals, and birds suggest a complex evolution of sleep states in amniotes. PLoS Biol 2018; 16:e2005982. [PMID: 30307933 PMCID: PMC6181266 DOI: 10.1371/journal.pbio.2005982] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
It is crucial to determine whether rapid eye movement (REM) sleep and slow-wave sleep (SWS) (or non-REM sleep), identified in most mammals and birds, also exist in lizards, as they share a common ancestor with these groups. Recently, a study in the bearded dragon (P. vitticeps) reported states analogous to REM and SWS alternating in a surprisingly regular 80-s period, suggesting a common origin of the two sleep states across amniotes. We first confirmed these results in the bearded dragon with deep brain recordings and electro-oculogram (EOG) recordings. Then, to confirm a common origin and more finely characterize sleep in lizards, we developed a multiparametric approach in the tegu lizard, a species never recorded to date. We recorded EOG, electromyogram (EMG), heart rate, and local field potentials (LFPs) and included data on arousal thresholds, sleep deprivation, and pharmacological treatments with fluoxetine, a serotonin reuptake blocker that suppresses REM sleep in mammals. As in the bearded dragon, we demonstrate the existence of two sleep states in tegu lizards. However, no clear periodicity is apparent. The first sleep state (S1 sleep) showed high-amplitude isolated sharp waves, and the second sleep state (S2 sleep) displayed 15-Hz oscillations, isolated ocular movements, and a decrease in heart rate variability and muscle tone compared to S1. Fluoxetine treatment induced a significant decrease in S2 quantities and in the number of sharp waves in S1. Because S2 sleep is characterized by the presence of ocular movements and is inhibited by a serotonin reuptake inhibitor, as is REM sleep in birds and mammals, it might be analogous to this state. However, S2 displays a type of oscillation never previously reported and does not display a desynchronized electroencephalogram (EEG) as is observed in the bearded dragons, mammals, and birds. This suggests that the phenotype of sleep states and possibly their role can differ even between closely related species. Finally, our results suggest a common origin of two sleep states in amniotes. Yet, they also highlight a diversity of sleep phenotypes across lizards, demonstrating that the evolution of sleep states is more complex than previously thought. Until recently, the general understanding about sleep was that only mammals and birds show two sleep states: slow-wave sleep and rapid eye movement (REM) sleep. Consequently, it was thought that these two states appeared independently in these warm-blooded animals. However, a recent paper reported the presence of these two states in the bearded dragon lizard (Pogona vitticeps), suggesting that these two states arose with the common ancestor of mammals, birds, and reptiles. We confirmed the presence of two sleep states in the bearded dragon and compared its sleep with that of another lizard, the Argentine tegu (Salvator merianae). Our results show that both lizard species have two sleep states with similarities to the two sleep states observed in mammals and birds. Additionally, our study of behavioral and physiological parameters as well as the brain activity associated with sleep in these lizards allowed us to also show important differences between these two species of lizards and between lizards, birds, and mammals. Our findings indicate that sleep in lizards is more complex than previously thought and raise further questions about the nature, function, and evolution of these two sleep states.
Collapse
Affiliation(s)
- Paul-Antoine Libourel
- Neuroscience Research Center of Lyon, SLEEP Team, UMR 5292 CNRS/U1028 INSERM, Université Claude Bernard Lyon 1, Lyon, France
- * E-mail:
| | - Baptiste Barrillot
- Neuroscience Research Center of Lyon, SLEEP Team, UMR 5292 CNRS/U1028 INSERM, Université Claude Bernard Lyon 1, Lyon, France
| | - Sébastien Arthaud
- Neuroscience Research Center of Lyon, SLEEP Team, UMR 5292 CNRS/U1028 INSERM, Université Claude Bernard Lyon 1, Lyon, France
| | - Bertrand Massot
- Nanotechnologies Institute of Lyon, UMR5270 CNRS, INSA Lyon, Université Claude Bernard Lyon 1, France
| | - Anne-Laure Morel
- Neuroscience Research Center of Lyon, SLEEP Team, UMR 5292 CNRS/U1028 INSERM, Université Claude Bernard Lyon 1, Lyon, France
| | - Olivier Beuf
- Health Image Processing and Acquisition Research Center of Lyon, UMR 5220 CNRS/U1206 INSERM, INSA Lyon, Université Claude Bernard Lyon 1, LYON, France
| | - Anthony Herrel
- MECADEV, UMR7179 CNRS, National Museum of Natural History, Paris, France
- University of Antwerp, Department of Biology, Antwerpen, Belgium
- Ghent University, Evolutionary Morphology of Vertebrates, Ghent, Belgium
| | - Pierre-Hervé Luppi
- Neuroscience Research Center of Lyon, SLEEP Team, UMR 5292 CNRS/U1028 INSERM, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
126
|
Absent sleep EEG spindle activity in GluA1 (Gria1) knockout mice: relevance to neuropsychiatric disorders. Transl Psychiatry 2018; 8:154. [PMID: 30108203 PMCID: PMC6092338 DOI: 10.1038/s41398-018-0199-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 06/03/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022] Open
Abstract
Sleep EEG spindles have been implicated in attention, sensory processing, synaptic plasticity and memory consolidation. In humans, deficits in sleep spindles have been reported in a wide range of neurological and psychiatric disorders, including schizophrenia. Genome-wide association studies have suggested a link between schizophrenia and genes associated with synaptic plasticity, including the Gria1 gene which codes for the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. Gria1-/- mice exhibit a phenotype relevant for neuropsychiatric disorders, including reduced synaptic plasticity and, at the behavioural level, attentional deficits leading to aberrant salience. In this study we report a striking reduction of EEG power density including the spindle-frequency range (10-15 Hz) during sleep in Gria1-/- mice. The reduction of spindle-activity in Gria1-/- mice was accompanied by longer REM sleep episodes, increased EEG slow-wave activity in the occipital derivation during baseline sleep, and a reduced rate of decline of EEG slow wave activity (0.5-4 Hz) during NREM sleep after sleep deprivation. These data provide a novel link between glutamatergic dysfunction and sleep abnormalities in a schizophrenia-relevant mouse model.
Collapse
|
127
|
Song C, Piscopo DM, Niell CM, Knöpfel T. Cortical signatures of wakeful somatosensory processing. Sci Rep 2018; 8:11977. [PMID: 30097603 PMCID: PMC6086870 DOI: 10.1038/s41598-018-30422-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Sensory inputs carry critical information for the survival of an organism. In mice, tactile information conveyed by the whiskers is of high behavioural relevance, and is broadcasted across cortical areas beyond the primary somatosensory cortex. Mesoscopic voltage sensitive dye imaging (VSDI) of cortical population response to whisker stimulations has shown that seemingly 'simple' sensory stimuli can have extended impact on cortical circuit dynamics. Here we took advantage of genetically encoded voltage indicators (GEVIs) that allow for cell type-specific monitoring of population voltage dynamics in a chronic dual-hemisphere transcranial windowed mouse preparation to directly compare the cortex-wide broadcasting of sensory information in wakening (lightly anesthetized to sedated) and awake mice. Somatosensory-evoked cortex-wide dynamics is altered across brain states, with anatomically sequential hyperpolarising activity observed in the awake cortex. GEVI imaging revealed cortical activity maps with increased specificity, high spatial coverage, and at the timescale of cortical information processing.
Collapse
Affiliation(s)
- Chenchen Song
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, W12 0NN, London, UK
| | - Denise M Piscopo
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, 97403, USA
| | - Cristopher M Niell
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, 97403, USA
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, W12 0NN, London, UK. .,Centre for Neurotechnology, Institute of Biomedical Engineering, Imperial College London, SW7 2AZ, London, UK.
| |
Collapse
|
128
|
Bernardi G, Siclari F, Handjaras G, Riedner BA, Tononi G. Local and Widespread Slow Waves in Stable NREM Sleep: Evidence for Distinct Regulation Mechanisms. Front Hum Neurosci 2018; 12:248. [PMID: 29970995 PMCID: PMC6018150 DOI: 10.3389/fnhum.2018.00248] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/30/2018] [Indexed: 12/04/2022] Open
Abstract
Previous work showed that two types of slow waves are temporally dissociated during the transition to sleep: widespread, large and steep slow waves predominate early in the falling asleep period (type I), while smaller, more circumscribed slow waves become more prevalent later (type II). Here, we studied the possible occurrence of these two types of slow waves in stable non-REM (NREM) sleep and explored potential differences in their regulation. A heuristic approach based on slow wave synchronization efficiency was developed and applied to high-density electroencephalographic (EEG) recordings collected during consolidated NREM sleep to identify the potential type I and type II slow waves. Slow waves with characteristics compatible with those previously described for type I and type II were identified in stable NREM sleep. Importantly, these slow waves underwent opposite changes across the night, with only type II slow waves displaying a clear homeostatic regulation. In addition, we showed that the occurrence of type I slow waves was often followed by larger type II slow waves, whereas the occurrence of type II slow waves was usually followed by smaller type I waves. Finally, type II slow waves were associated with a relative increase in spindle activity, while type I slow waves triggered periods of high-frequency activity. Our results provide evidence for the existence of two distinct slow wave synchronization processes that underlie two different types of slow waves. These slow waves may have different functional roles and mark partially distinct “micro-states” of the sleeping brain.
Collapse
Affiliation(s)
- Giulio Bernardi
- Center for Investigation and Research on Sleep, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.,Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States.,MoMiLab Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.,Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Brady A Riedner
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
129
|
Antony JW, Piloto L, Wang M, Pacheco P, Norman KA, Paller KA. Sleep Spindle Refractoriness Segregates Periods of Memory Reactivation. Curr Biol 2018; 28:1736-1743.e4. [PMID: 29804809 PMCID: PMC5992601 DOI: 10.1016/j.cub.2018.04.020] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/14/2018] [Accepted: 04/05/2018] [Indexed: 11/18/2022]
Abstract
The stability of long-term memories is enhanced by reactivation during sleep. Correlative evidence has linked memory reactivation with thalamocortical sleep spindles, although their functional role is not fully understood. Our initial study replicated this correlation and also demonstrated a novel rhythmicity to spindles, such that a spindle is more likely to occur approximately 3-6 s following a prior spindle. We leveraged this rhythmicity to test the role of spindles in memory by using real-time spindle tracking to present cues within versus just after the presumptive refractory period; as predicted, cues presented just after the refractory period led to better memory. Our findings demonstrate a precise temporal link between sleep spindles and memory reactivation. Moreover, they reveal a previously undescribed neural mechanism whereby spindles may segment sleep into two distinct substates: prime opportunities for reactivation and gaps that segregate reactivation events.
Collapse
Affiliation(s)
- James W Antony
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Luis Piloto
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Margaret Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Paula Pacheco
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Kenneth A Norman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
130
|
Rudzik F, Thiesse L, Pieren R, Wunderli JM, Brink M, Foraster M, Héritier H, Eze IC, Garbazza C, Vienneau D, Probst-Hensch N, Röösli M, Cajochen C. Sleep spindle characteristics and arousability from nighttime transportation noise exposure in healthy young and older individuals. Sleep 2018; 41:4985511. [DOI: 10.1093/sleep/zsy077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Franziska Rudzik
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Laurie Thiesse
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Reto Pieren
- Empa, Laboratory for Acoustics/Noise Control, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Jean Marc Wunderli
- Empa, Laboratory for Acoustics/Noise Control, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Mark Brink
- Department of Noise and Non-ionizing Radiation, Federal Office for the Environment, Bern, Switzerland
| | - Maria Foraster
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Harris Héritier
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ikenna C Eze
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Corrado Garbazza
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicole Probst-Hensch
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
131
|
Durán E, Oyanedel CN, Niethard N, Inostroza M, Born J. Sleep stage dynamics in neocortex and hippocampus. Sleep 2018; 41:4980412. [DOI: 10.1093/sleep/zsy060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 01/31/2023] Open
Affiliation(s)
- Ernesto Durán
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate School of Neural and Behavioural Science, International Max Planck Research School, Tübingen, Germany
- Laboratorio de Circuitos Neuronales, Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos N Oyanedel
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate School of Neural and Behavioural Science, International Max Planck Research School, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
132
|
Weber FD. Sleep: Eye-Opener Highlights Sleep's Organization. Curr Biol 2018; 28:R217-R220. [PMID: 29510110 DOI: 10.1016/j.cub.2018.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
What can eyes tell us about what happens during sleep? Their movements split sleep into two distinct states - rapid-eye-movement (REM) or non-REM sleep. A new study now reveals that periodic pupil constrictions are linked to non-REM sleep plunging into deeper offline states and back about every minute.
Collapse
Affiliation(s)
- Frederik D Weber
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EZ, Nijmegen, The Netherlands; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
133
|
Yüzgeç Ö, Prsa M, Zimmermann R, Huber D. Pupil Size Coupling to Cortical States Protects the Stability of Deep Sleep via Parasympathetic Modulation. Curr Biol 2018; 28:392-400.e3. [PMID: 29358069 PMCID: PMC5807087 DOI: 10.1016/j.cub.2017.12.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022]
Abstract
During wakefulness, pupil diameter can reflect changes in attention, vigilance, and cortical states. How pupil size relates to cortical activity during sleep, however, remains unknown. Pupillometry during natural sleep is inherently challenging since the eyelids are usually closed. Here, we present a novel head-fixed sleep paradigm in combination with infrared back-illumination pupillometry (iBip) allowing robust tracking of pupil diameter in sleeping mice. We found that pupil size can be used as a reliable indicator of sleep states and that cortical activity becomes tightly coupled to pupil size fluctuations during non-rapid eye movement (NREM) sleep. Pharmacological blocking experiments indicate that the observed pupil size changes during sleep are mediated via the parasympathetic system. We furthermore found that constrictions of the pupil during NREM episodes might play a protective role for stability of sleep depth. These findings reveal a fundamental relationship between cortical activity and pupil size, which has so far been hidden behind closed eyelids. Infrared back-illumination allows accurate pupillometry in sleeping mice Brain activity and pupil diameter are tightly coupled during sleep The parasympathetic system is the main driver of pupillary changes during NREM sleep Pupillary constrictions might have a protective function to stabilize deep sleep
Collapse
Affiliation(s)
- Özge Yüzgeç
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Mario Prsa
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Robert Zimmermann
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Daniel Huber
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
134
|
Simor P, Gombos F, Blaskovich B, Bódizs R. Long-range alpha and beta and short-range gamma EEG synchronization distinguishes phasic and tonic REM periods. Sleep 2017; 41:4773864. [DOI: 10.1093/sleep/zsx210] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/05/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Péter Simor
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
- Nyírő Gyula Hospital, National Institute of Psychiatry and Addictions, Budapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Borbála Blaskovich
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Róbert Bódizs
- Semmelweis University, Institute of Behavioural Sciences, Budapest, Hungary
- National Institute of Clinical Neuroscience, Budapest, Hungary
| |
Collapse
|
135
|
Manconi M, Silvani A, Ferri R. Commentary: Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep. Front Physiol 2017; 8:847. [PMID: 29176949 PMCID: PMC5686119 DOI: 10.3389/fphys.2017.00847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/11/2017] [Indexed: 12/03/2022] Open
Affiliation(s)
- Mauro Manconi
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital (EOC) of Lugano, Lugano, Switzerland.,Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology I.C., Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Troina, Italy
| |
Collapse
|
136
|
Fernandez LMJ, Lecci S, Cardis R, Vantomme G, Béard E, Lüthi A. Quantifying Infra-slow Dynamics of Spectral Power and Heart Rate in Sleeping Mice. J Vis Exp 2017. [PMID: 28809834 DOI: 10.3791/55863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Three vigilance states dominate mammalian life: wakefulness, non-rapid eye movement (non-REM) sleep, and REM sleep. As more neural correlates of behavior are identified in freely moving animals, this three-fold subdivision becomes too simplistic. During wakefulness, ensembles of global and local cortical activities, together with peripheral parameters such as pupillary diameter and sympathovagal balance, define various degrees of arousal. It remains unclear the extent to which sleep also forms a continuum of brain states-within which the degree of resilience to sensory stimuli and arousability, and perhaps other sleep functions, vary gradually-and how peripheral physiological states co-vary. Research advancing the methods to monitor multiple parameters during sleep, as well as attributing to constellations of these functional attributes, is central to refining our understanding of sleep as a multifunctional process during which many beneficial effects must be executed. Identifying novel parameters characterizing sleep states will open opportunities for novel diagnostic avenues in sleep disorders. We present a procedure to describe dynamic variations of mouse non-REM sleep states via the combined monitoring and analysis of electroencephalogram (EEG)/electrocorticogram (ECoG), electromyogram (EMG), and electrocardiogram (ECG) signals using standard polysomnographic recording techniques. Using this approach, we found that mouse non-REM sleep is organized into cycles of coordinated neural and cardiac oscillations that generate successive 25-s intervals of high and low fragility to external stimuli. Therefore, central and autonomic nervous systems are coordinated to form behaviorally distinct sleep states during consolidated non-REM sleep. We present surgical manipulations for polysomnographic (i.e., EEG/EMG combined with ECG) monitoring to track these cycles in the freely sleeping mouse, the analysis to quantify their dynamics, and the acoustic stimulation protocols to assess their role in the likelihood of waking up. Our approach has already been extended to human sleep and promises to unravel common organizing principles of non-REM sleep states in mammals.
Collapse
Affiliation(s)
| | - Sandro Lecci
- Department of Fundamental Neurosciences, University of Lausanne
| | - Romain Cardis
- Department of Fundamental Neurosciences, University of Lausanne
| | - Gil Vantomme
- Department of Fundamental Neurosciences, University of Lausanne
| | - Elidie Béard
- Department of Fundamental Neurosciences, University of Lausanne
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne;
| |
Collapse
|
137
|
Zubler F, Rubino A, Lo Russo G, Schindler K, Nobili L. Correlating Interictal Spikes with Sigma and Delta Dynamics during Non-Rapid-Eye-Movement-Sleep. Front Neurol 2017; 8:288. [PMID: 28690583 PMCID: PMC5479894 DOI: 10.3389/fneur.2017.00288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/02/2017] [Indexed: 01/21/2023] Open
Abstract
Interictal spikes (IS) are one of the major hallmarks of epilepsy. Understanding the factors promoting or suppressing IS would increase our comprehension of epilepsy and possibly open new avenues for therapy. Sleep strongly influences epileptic activity, and the modulatory effects of the different sleep stages on IS have been studied for decades. However, several aspects are still disputed, in particular the role of sleep spindles and slow waves in the activation of IS during Non-REM sleep. Here, we correlate the rate of IS with quantitative measures derived from stereo-EEG during one Non-REM cycle in 10 patients suffering from drug-resistant epilepsy due to type 2 focal cortical dysplasia. We show that the IS rate (ISR) is positively correlated with sigma power (a surrogate for sleep-spindle density) but negatively correlated with delta power (surrogate for slow wave activity). In addition, we present two new indices for quantifying the spatial and temporal instability of sleep. We found that both instability indices are correlated with a high ISR. The main contribution of this study is to confirm the suppressive effect of stable deep sleep on IS. This result might influence future guidelines for therapy of patients suffering from epilepsy and sleep disorders.
Collapse
Affiliation(s)
- Frédéric Zubler
- "C. Munari" Center for Epilepsy Surgery, Department of Neuroscience, Niguarda Hospital, Milan, Italy
| | - Annalisa Rubino
- "C. Munari" Center for Epilepsy Surgery, Department of Neuroscience, Niguarda Hospital, Milan, Italy
| | - Giorgio Lo Russo
- "C. Munari" Center for Epilepsy Surgery, Department of Neuroscience, Niguarda Hospital, Milan, Italy
| | - Kaspar Schindler
- Department of Neurology, Inselspital-Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lino Nobili
- "C. Munari" Center for Epilepsy Surgery, Department of Neuroscience, Niguarda Hospital, Milan, Italy
| |
Collapse
|