101
|
KUCHTA ANNAM, KELLY PHILIPM, STANTON CATHERINE, DEVERY ROSALEENA. Milk fat globule membrane - a source of polar lipids for colon health? A review. INT J DAIRY TECHNOL 2012. [DOI: 10.1111/j.1471-0307.2011.00759.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
102
|
Liu X, Xiong SL, Yi GH. ABCA1, ABCG1, and SR-BI: Transit of HDL-associated sphingosine-1-phosphate. Clin Chim Acta 2012; 413:384-90. [DOI: 10.1016/j.cca.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/28/2011] [Accepted: 11/03/2011] [Indexed: 01/07/2023]
|
103
|
Lord CC, Betters JL, Ivanova PT, Milne SB, Myers DS, Madenspacher J, Thomas G, Chung S, Liu M, Davis MA, Lee RG, Crooke RM, Graham MJ, Parks JS, Brasaemle DL, Fessler MB, Brown HA, Brown JM. CGI-58/ABHD5-derived signaling lipids regulate systemic inflammation and insulin action. Diabetes 2012; 61:355-63. [PMID: 22228714 PMCID: PMC3266405 DOI: 10.2337/db11-0994] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mutations of comparative gene identification 58 (CGI-58) in humans cause Chanarin-Dorfman syndrome, a rare autosomal recessive disease in which excess triacylglycerol (TAG) accumulates in multiple tissues. CGI-58 recently has been ascribed two distinct biochemical activities, including coactivation of adipose triglyceride lipase and acylation of lysophosphatidic acid (LPA). It is noteworthy that both the substrate (LPA) and the product (phosphatidic acid) of the LPA acyltransferase reaction are well-known signaling lipids. Therefore, we hypothesized that CGI-58 is involved in generating lipid mediators that regulate TAG metabolism and insulin sensitivity. Here, we show that CGI-58 is required for the generation of signaling lipids in response to inflammatory stimuli and that lipid second messengers generated by CGI-58 play a critical role in maintaining the balance between inflammation and insulin action. Furthermore, we show that CGI-58 is necessary for maximal TH1 cytokine signaling in the liver. This novel role for CGI-58 in cytokine signaling may explain why diminished CGI-58 expression causes severe hepatic lipid accumulation yet paradoxically improves hepatic insulin action. Collectively, these findings establish that CGI-58 provides a novel source of signaling lipids. These findings contribute insight into the basic mechanisms linking TH1 cytokine signaling to nutrient metabolism.
Collapse
Affiliation(s)
- Caleb C. Lord
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Jenna L. Betters
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Pavlina T. Ivanova
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Stephen B. Milne
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - David S. Myers
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jennifer Madenspacher
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Gwynneth Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Soonkyu Chung
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Mingxia Liu
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Matthew A. Davis
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Richard G. Lee
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California
| | - Rosanne M. Crooke
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California
| | - Mark J. Graham
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, California
| | - John S. Parks
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Dawn L. Brasaemle
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Michael B. Fessler
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - H. Alex Brown
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - J. Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Corresponding author: J. Mark Brown,
| |
Collapse
|
104
|
Bieberich E. It's a lipid's world: bioactive lipid metabolism and signaling in neural stem cell differentiation. Neurochem Res 2012; 37:1208-29. [PMID: 22246226 DOI: 10.1007/s11064-011-0698-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/31/2011] [Indexed: 01/20/2023]
Abstract
Lipids are often considered membrane components whose function is to embed proteins into cell membranes. In the last two decades, studies on brain lipids have unequivocally demonstrated that many lipids have critical cell signaling functions; they are called "bioactive lipids". Pioneering work in Dr. Robert Ledeen's laboratory has shown that two bioactive brain sphingolipids, sphingomyelin and the ganglioside GM1 are major signaling lipids in the nuclear envelope. In addition to derivatives of the sphingolipid ceramide, the bioactive lipids discussed here belong to the classes of terpenoids and steroids, eicosanoids, and lysophospholipids. These lipids act mainly through two mechanisms: (1) direct interaction between the bioactive lipid and a specific protein binding partner such as a lipid receptor, protein kinase or phosphatase, ion exchanger, or other cell signaling protein; and (2) formation of lipid microdomains or rafts that regulate the activity of a group of raft-associated cell signaling proteins. In recent years, a third mechanism has emerged, which invokes lipid second messengers as a regulator for the energy and redox balance of differentiating neural stem cells (NSCs). Interestingly, developmental niches such as the stem cell niche for adult NSC differentiation may also be metabolic compartments that respond to a distinct combination of bioactive lipids. The biological function of these lipids as regulators of NSC differentiation will be reviewed and their application in stem cell therapy discussed.
Collapse
Affiliation(s)
- Erhard Bieberich
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street Room CA4012, Augusta, GA 30912, USA.
| |
Collapse
|
105
|
Lucki NC, Li D, Sewer MB. Sphingosine-1-phosphate rapidly increases cortisol biosynthesis and the expression of genes involved in cholesterol uptake and transport in H295R adrenocortical cells. Mol Cell Endocrinol 2012; 348:165-75. [PMID: 21864647 PMCID: PMC3508734 DOI: 10.1016/j.mce.2011.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 07/26/2011] [Accepted: 08/03/2011] [Indexed: 12/22/2022]
Abstract
In the acute phase of adrenocortical steroidogenesis, adrenocorticotrophin (ACTH) activates a cAMP/PKA-signaling pathway that promotes the transport of free cholesterol to the inner mitochondrial membrane. We have previously shown that ACTH rapidly stimulates the metabolism of sphingolipids and the secretion of sphingosine-1-phosphate (S1P) in H295R cells. In this study, we examined the effect of S1P on genes involved in the acute phase of steroidogenesis. We show that S1P increases the expression of steroidogenic acute regulatory protein (StAR), 18-kDa translocator protein (TSPO), low-density lipoprotein receptor (LDLR), and scavenger receptor class B type I (SR-BI). S1P-induced StAR mRNA expression requires Gα(i) signaling, phospholipase C (PLC), Ca(2+)/calmodulin-dependent kinase II (CamKII), and ERK1/2 activation. S1P also increases intracellular Ca(2+), the phosphorylation of hormone sensitive lipase (HSL) at Ser(563), and cortisol secretion. Collectively, these findings identify multiple roles for S1P in the regulation of glucocorticoid biosynthesis.
Collapse
Affiliation(s)
- Natasha C. Lucki
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Donghui Li
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0704
| | - Marion B. Sewer
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0704
| |
Collapse
|
106
|
Liu X, Zhang QH, Yi GH. Regulation of metabolism and transport of sphingosine-1-phosphate in mammalian cells. Mol Cell Biochem 2011; 363:21-33. [DOI: 10.1007/s11010-011-1154-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/11/2011] [Indexed: 02/04/2023]
|
107
|
Chamorro-Jorganes A, Araldi E, Penalva LOF, Sandhu D, Fernández-Hernando C, Suárez Y. MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arterioscler Thromb Vasc Biol 2011; 31:2595-606. [PMID: 21885851 PMCID: PMC3226744 DOI: 10.1161/atvbaha.111.236521] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/22/2011] [Indexed: 02/06/2023]
Abstract
OBJECTIVE MicroRNAs play key roles in modulating a variety of cellular processes by posttranscriptional regulation of their target genes. Vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR2), and fibroblast growth factor receptor-1 (FGFR1) were identified by bioinformatic approaches and subsequently validated as targets of microRNA (miR)-16 and miR-424 in endothelial cells (ECs). METHODS AND RESULTS Mimetics of these microRNAs reduced VEGF, VEGFR2, and FGFR1 expression, whereas specific antagonists enhanced their expression. Expression of mature miR-16 and miR-424 was upregulated on VEGF or basic fibroblast growth factor (bFGF) treatment. This upregulation was accompanied by a parallel increase in primary transcript (pri-miR)-16-1 and pri-miR-16-2 but not in pri-miR-424 levels, indicating a VEGF/bFGF-dependent transcriptional and posttranscriptional regulation of miR-16 and miR-424, respectively. Reduced expression of VEGFR2 and FGFR1 by miR-16 or miR-424 overexpression regulated VEGF and bFGF signaling through these receptors, thereby affecting the activity of downstream components of the pathways. Functionally, miR-16 or miR-424 overexpression reduced proliferation, migration, and cord formation of ECs in vitro, and lentiviral overexpression of miR-16 reduced the ability of ECs to form blood vessels in vivo. CONCLUSION We conclude that these miRNAs fine-tune the expression of selected endothelial angiogenic mediators in response to these growth factors. Altogether, these findings suggest that miR-16 and miR-424 play important roles in regulating cell-intrinsic angiogenic activity of ECs.
Collapse
Affiliation(s)
- Aránzazu Chamorro-Jorganes
- Department of Medicine and Cell Biology, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY 10016, USA
| | - Elisa Araldi
- Department of Medicine and Cell Biology, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY 10016, USA
| | - Luiz O. F. Penalva
- Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas, 78229, USA
| | - Devraj Sandhu
- Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas, 78229, USA
| | - Carlos Fernández-Hernando
- Department of Medicine and Cell Biology, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY 10016, USA
| | - Yajaira Suárez
- Department of Medicine and Cell Biology, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
108
|
McGuire PG, Rangasamy S, Maestas J, Das A. Pericyte-derived sphingosine 1-phosphate induces the expression of adhesion proteins and modulates the retinal endothelial cell barrier. Arterioscler Thromb Vasc Biol 2011; 31:e107-15. [PMID: 21940944 DOI: 10.1161/atvbaha.111.235408] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The mechanisms that regulate the physical interaction of pericytes and endothelial cells and the effects of these interactions on interendothelial cell junctions are not well understood. We determined the extent to which vascular pericytes could regulate pericyte-endothelial adhesion and the consequences that this disruption might have on the function of the endothelial barrier. METHODS AND RESULTS Human retinal microvascular endothelial cells were cocultured with pericytes, and the effect on the monolayer resistance of endothelial cells and expression of the cell junction molecules N-cadherin and VE-cadherin were measured. The molecules responsible for the effect of pericytes or pericyte-conditioned media on the endothelial resistance and cell junction molecules were further analyzed. Our results indicate that pericytes increase the barrier properties of endothelial cell monolayers. This barrier function is maintained through the secretion of pericyte-derived sphingosine 1-phosphate. Sphingosine 1-phosphate aids in maintenance of microvascular stability by upregulating the expression of N-cadherin and VE-cadherin, and downregulating the expression of angiopoietin 2. CONCLUSIONS Under normal circumstances, the retinal vascular pericytes maintain pericyte-endothelial contacts and vascular barrier function through the secretion of sphingosine 1-phosphate. Alteration of pericyte-derived sphingosine 1-phosphate production may be an important mechanism in the development of diseases characterized by vascular dysfunction and increased permeability.
Collapse
Affiliation(s)
- Paul G McGuire
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.
| | | | | | | |
Collapse
|
109
|
Sheriff DS, Ali EF. Perspective on plasma membrane cholesterol efflux and spermatozoal function. J Hum Reprod Sci 2011; 3:68-75. [PMID: 21209749 PMCID: PMC2970794 DOI: 10.4103/0974-1208.69337] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 07/29/2010] [Accepted: 08/05/2010] [Indexed: 01/05/2023] Open
Abstract
The process of sperm maturation, capacitation, and fertilization occur in different molecular milieu provided by epididymis and female reproductive tract including oviduct. The different tissue environment with different oxygen tension and temperature may still influence the process of sperm maturation and capacitation. Reactive oxygen species (ROS) is reported to be an initial switch that may activate the molecular process of capacitation. Therefore, the generation of reactive oxygen species and its possible physiological role depends upon a balance between its formation and degradation in an open environment provided by female reproductive tract. The sensitivity of the spermatozoa to the action of ROS may be due to its exposure for the first time to an oxygen rich external milieu compared to its internal milieu in the male reproductive tract. Reduced temperature in testicular environment coupled with reduced oxygen tension may be the right molecular environment for the process of spermatogenesis and spermiogenesis. The morphologically mature spermatozoa then may attain its motility in an environment provided by the caput epididymis wherein, the dyenin motor can become active. This ability to move forward will make the spermatozoa physiologically fit to undertake its sojourn in the competitive race of fertilization in a new oxygen rich female reproductive tract. The first encounter may be oxygen trigger or preconditioning of the spermatozoa with reactive oxygen species that may alter the spermatozoal function. Infertility is still one of the major global health problems that need medical attention. Apart from the development of artificial methods of reproduction and development of newer techniques in the field of andrology focuses attention on spermatozoal structure and metabolism. Therefore, understanding the molecular mechanisms involved in fertilization in general and that of sperm capacitation in particular may help lead to new and better techniques for enhancing fertility, identifying and treating certain forms of male infertility, and preventing conception. One remarkable insight is the importance of membrane cholesterol efflux in initiating transmembrane signaling events that confer fertilization competence. The identity of the physiologically relevant cholesterol acceptors and modulators of cholesterol efflux is therefore of great interest. Still, it is clear that cholesterol efflux represents only a part of this story. The involvement of phospholipid translocation in mediating dynamic changes in the membrane, rendering it conducive to transmembrane signaling, and the modulation of membrane components of signal transduction cascades by cholesterol or phospholipids will yield important insights into the links between environmental sensing and transmembrane signaling in the sperm. Understanding the membrane molecular events will ultimately provide new and exciting areas of investigation for the future
Collapse
|
110
|
Kim ES, Kim JS, Kim SG, Hwang S, Lee CH, Moon A. Sphingosine 1-phosphate regulates matrix metalloproteinase-9 expression and breast cell invasion through S1P3-Gαq coupling. J Cell Sci 2011; 124:2220-30. [PMID: 21652634 DOI: 10.1242/jcs.076794] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent evidence suggests that inflammation is involved in malignant progression of breast cancer. Sphingosine 1-phosphate (S1P), acting on the G-protein-coupled receptors, is known as a potent inflammatory mediator. In this study, the effect of the inflammatory lipid S1P on the regulation of invasive/migratory phenotypes of MCF10A human breast epithelial cells was investigated to elucidate a causal relationship between inflammation and the control of invasiveness of breast cells. We show that S1P causes induction of matrix metalloproteinase-9 (MMP-9) in vitro and in vivo, and thus enhances invasion and migration. We also show that fos plays a crucial role in the transcriptional activation of MMP-9 by S1P. In addition, activation of extracellular-signal-regulated kinases 1 and 2 (ERK1/2), p38 and alpha serine/threonine-protein kinase (Akt) are involved in the process of S1P-mediated induction of MMP-9 expression and invasion. Activation of the S1P receptor S1P₃ and G(αq) are required for S1P-induced invasive/migratory responses, suggesting that the enhancement of S1P-mediated invasiveness is triggered by the specific coupling of S1P₃ to the heterotrimeric G(αq) subunit. Activation of phospholipase C-β₄ and intracellular Ca²⁺ release are required for S1P-induced MMP-9 upregulation. Taken together, this study demonstrated that S1P regulates MMP-9 induction and invasiveness through coupling of S1P₃ and G(αq) in MCF10A cells, thus providing a molecular basis for the crucial role of S1P in promoting breast cell invasion.
Collapse
Affiliation(s)
- Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul 132-714, Korea
| | | | | | | | | | | |
Collapse
|
111
|
Abstract
PURPOSE OF REVIEW Our purpose is to review recent findings highlighting the metabolic and functional diversity of HDL subspecies. RECENT FINDINGS HDL heterogeneity - both structural and functional - is the main focus of this review. Recent work indicates that the metabolism and functionality of HDL particles differ greatly among HDL subspecies. With the introduction of new and improved methodology (e.g., proteomics), new aspects of the structural complexity and functionality of HDL have been revealed. It has been confirmed that HDL functions - including, but not limited to decreasing inflammation, apoptosis, macrophage adhesion to the endothelium and insulin resistance - are due to HDL's ability to remove cholesterol from cells (reverse cholesterol transport). A new level of HDL complexity has recently been revealed by investigating the lipid composition of HDL with gas chromatography, gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. There are about 100 different HDL-associated proteins; however, there are many more lipid species potentially associated with HDL particles. SUMMARY The most important recent findings disclose that HDL is more complex than previously thought. HDL subclasses differ in physical-chemical properties, protein and lipid composition, metabolism, physiological functions and pathophysiological significance. The staggering complexity of HDL demands significantly more investigation before we can truly begin to understand HDL metabolism and function in humans.
Collapse
Affiliation(s)
- Bela F Asztalos
- Lipid Metabolism Laboratory, Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
112
|
Oo ML, Chang SH, Thangada S, Wu MT, Rezaul K, Blaho V, Hwang SI, Han DK, Hla T. Engagement of S1P₁-degradative mechanisms leads to vascular leak in mice. J Clin Invest 2011; 121:2290-300. [PMID: 21555855 DOI: 10.1172/jci45403] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 03/30/2011] [Indexed: 02/02/2023] Open
Abstract
GPCR inhibitors are highly prevalent in modern therapeutics. However, interference with complex GPCR regulatory mechanisms leads to both therapeutic efficacy and adverse effects. Recently, the sphingosine-1-phosphate (S1P) receptor inhibitor FTY720 (also known as Fingolimod), which induces lymphopenia and prevents neuroinflammation, was adopted as a disease-modifying therapeutic in multiple sclerosis. Although highly efficacious, dose-dependent increases in adverse events have tempered its utility. We show here that FTY720P induces phosphorylation of the C-terminal domain of S1P receptor 1 (S1P₁) at multiple sites, resulting in GPCR internalization, polyubiquitinylation, and degradation. We also identified the ubiquitin E3 ligase WWP2 in the GPCR complex and demonstrated its requirement in FTY720-induced receptor degradation. GPCR degradation was not essential for the induction of lymphopenia, but was critical for pulmonary vascular leak in vivo. Prevention of receptor phosphorylation, internalization, and degradation inhibited vascular leak, which suggests that discrete mechanisms of S1P receptor regulation are responsible for the efficacy and adverse events associated with this class of therapeutics.
Collapse
Affiliation(s)
- Myat Lin Oo
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Immunosuppressive and anti-inflammatory activities of sinomenine. Int Immunopharmacol 2011; 11:373-6. [DOI: 10.1016/j.intimp.2010.11.018] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 11/08/2010] [Indexed: 01/07/2023]
|
114
|
Huang YL, Huang WP, Lee H. Roles of sphingosine 1-phosphate on tumorigenesis. World J Biol Chem 2011; 2:25-34. [PMID: 21537487 PMCID: PMC3083992 DOI: 10.4331/wjbc.v2.i2.25] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/10/2011] [Accepted: 02/16/2011] [Indexed: 02/05/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with a variety of biological activities. It is generated from the conversion of ceramide to sphingosine by ceramidase and the subsequent conversion of sphingosine to S1P, which is catalyzed by sphingosine kinases. Through increasing its intracellular levels by sphingolipid metabolism and binding to its cell surface receptors, S1P regulates several physiological and pathological processes, including cell proliferation, migration, angiogenesis and autophagy. These processes are responsible for tumor growth, metastasis and invasion and promote tumor survival. Since ceramide and S1P have distinct functions in regulating in cell fate decision, the balance between the ceramide/sphingosine/S1P rheostat becomes a potent therapeutic target for cancer cells. Herein, we summarize our current understanding of S1P signaling on tumorigenesis and its potential as a target for cancer therapy.
Collapse
Affiliation(s)
- Yuan-Li Huang
- Yuan-Li Huang, Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan, China
| | | | | |
Collapse
|
115
|
McQuiston T, Luberto C, Del Poeta M. Role of sphingosine-1-phosphate (S1P) and S1P receptor 2 in the phagocytosis of Cryptococcus neoformans by alveolar macrophages. MICROBIOLOGY-SGM 2011; 157:1416-1427. [PMID: 21292747 DOI: 10.1099/mic.0.045989-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The pathogenic fungus Cryptococcus neoformans is a major cause of morbidity and mortality in immunocompromised individuals. Infection of the human host occurs through inhalation of infectious propagules following environmental exposure. In the lung, C. neoformans can reside in the extracellular environment of the alveolar spaces or, upon phagocytosis, it can survive and grow intracellularly within alveolar macrophages (AMs). In previous studies, we found that sphingosine kinase 1 (SK1) influenced the intracellular residency of C. neoformans within AMs. Therefore, with this study we aimed to examine the role of the SK1 lipid product, sphingosine-1-phosphate (S1P), in the AMs-C. neoformans interaction. It was found that extracellular S1P enhances the phagocytosis of C. neoformans by AMs. Using both genetic and pharmacological approaches we further show that extracellular S1P exerts its effect on the phagocytosis of C. neoformans by AMs through S1P receptor 2 (S1P2). Interestingly, loss of S1P2 caused a dramatic decrease in the mRNA levels of Fcγ receptors I (FcγRI), -II and -III. In conclusion, our data suggest that extracellular S1P increases antibody-mediated phagocytosis through S1P2 by regulating the expression of the phagocytic Fcγ receptors.
Collapse
Affiliation(s)
- Travis McQuiston
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Chiara Luberto
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.,Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC, USA.,Department of Craniofacial Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
116
|
Awad AS, Rouse MD, Khutsishvili K, Huang L, Bolton WK, Lynch KR, Okusa MD. Chronic sphingosine 1-phosphate 1 receptor activation attenuates early-stage diabetic nephropathy independent of lymphocytes. Kidney Int 2011; 79:1090-8. [PMID: 21289599 DOI: 10.1038/ki.2010.544] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sphingosine 1-phosphate (S1P), a pleiotropic lipid mediator, binds to five related G-protein-coupled receptors to exert its effects. As S1P1 receptor (S1P1R) activation blocks kidney inflammation in acute renal injury, we tested whether activation of S1P1Rs ameliorates renal injury in early-stage diabetic nephropathy (DN) in rats. Urinary albumin excretion increased in vehicle-treated diabetic rats (single injection of streptozotocin), compared with controls, and was associated with tubule injury and increased urinary tumor necrosis factor-α (TNF-α) at 9 weeks. These effects were significantly reduced by FTY720, a non-selective, or SEW2871, a selective S1P1R agonist. Interestingly, only FTY720 was associated with reduced total lymphocyte levels. Albuminuria was reduced by SEW2871 in both Rag-1 (T- and B-cell deficient) and wild-type diabetic mice after 6 weeks, suggesting that the effect was independent of lymphocytes. Another receptor, S1P3R, did not contribute to the FTY720-mediated protection, as albuminuria was also reduced in diabetic S1P3R knockout mice. Further, both agonists restored WT-1 staining along with podocin and nephrin mRNA expression, suggesting podocyte protection. This was corroborated in vitro, as SEW2871 reduced TNF-α and vascular endothelial growth factor mRNA expression in immortalized podocytes grown in media containing high glucose. Whether targeting kidney S1P1Rs will be a useful therapeutic measure in DN will need direct testing.
Collapse
Affiliation(s)
- Alaa S Awad
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Lee SH. Platform Technologies for Research on the G Protein Coupled Receptor: Applications to Drug Discovery Research. Biomol Ther (Seoul) 2011. [DOI: 10.4062/biomolther.2011.19.1.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
118
|
Jin YX, Shin KO, Park MY, Lee SH, Park BD, Oh SK, Yoo HS, Lee YM. Effects of Synthetic Pseudoceramides on Sphingosine Kinase Activity in F9-12 Cells. Biomol Ther (Seoul) 2011. [DOI: 10.4062/biomolther.2011.19.1.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
119
|
Liu J, Hsu A, Lee JF, Cramer DE, Lee MJ. To stay or to leave: Stem cells and progenitor cells navigating the S1P gradient. World J Biol Chem 2011; 2:1-13. [PMID: 21472036 PMCID: PMC3070303 DOI: 10.4331/wjbc.v2.i1.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 02/05/2023] Open
Abstract
Most hematopoietic stem progenitor cells (HSPCs) reside in bone marrow (BM), but a small amount of HSPCs have been found to circulate between BM and tissues through blood and lymph. Several lines of evidence suggest that sphingosine-1-phosphate (S1P) gradient triggers HSPC egression to blood circulation after mobilization from BM stem cell niches. Stem cells also visit certain tissues. After a temporary 36 h short stay in local tissues, HSPCs go to lymph in response to S1P gradient between lymph and tissue and eventually enter the blood circulation. S1P also has a role in the guidance of the primitive HSPCs homing to BM in vivo, as S1P analogue FTY720 treatment can improve HSPC BM homing and engraftment. In stress conditions, various stem cells or progenitor cells can be attracted to local injured tissues and participate in local tissue cell differentiation and tissue rebuilding through modulation the expression level of S1P1, S1P2 or S1P3 receptors. Hence, S1P is important for stem cells circulation in blood system to accomplish its role in body surveillance and injury recovery.
Collapse
Affiliation(s)
- Jingjing Liu
- Jingjing Liu, Andrew Hsu, Jen-Fu Lee, Menq-Jer Lee, Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, United States
| | | | | | | | | |
Collapse
|
120
|
Abstract
Phospholipase A(1) (PLA(1)) is an enzyme that hydrolyzes phospholipids and produces 2-acyl-lysophospholipids and fatty acids. This lipolytic activity is conserved in a wide range of organisms but is carried out by a diverse set of PLA(1) enzymes. Where their function is known, PLA(1)s have been shown to act as digestive enzymes, possess central roles in membrane maintenance and remodeling, or regulate important cellular mechanisms by the production of various lysophospholipid mediators, such as lysophosphatidylserine and lysophosphatidic acid, which in turn have multiple biological functions.
Collapse
Affiliation(s)
- Gregory S. Richmond
- Agilent Technologies, Molecular Separations, Santa Clara, CA 95051, USA; E-Mail:
| | - Terry K. Smith
- Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, KY16 9ST, Scotland, UK
- To whom correspondence should be addressed; E-Mail: ; Tel.: +44-1334-463412; Fax: +44-1334-462595
| |
Collapse
|
121
|
Kharel Y, Mathews TP, Kennedy AJ, Houck JD, Macdonald TL, Lynch KR. A rapid assay for assessment of sphingosine kinase inhibitors and substrates. Anal Biochem 2011; 411:230-5. [PMID: 21216217 DOI: 10.1016/j.ab.2011.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/31/2010] [Accepted: 01/04/2011] [Indexed: 01/26/2023]
Abstract
Sphingosine kinases (SphKs) catalyze the transfer of phosphate from adenosine triphosphate (ATP) to sphingosine to generate sphingosine 1-phosphate (S1P), an important bioactive lipid molecule that mediates a diverse range of cell signaling processes. The conventional assay of SphK enzymatic activity uses [γ-(32)P]ATP and sphingosine as substrates, with the radiolabeled S1P product recovered by organic extraction, displayed by thin layer chromatography, and quantified by liquid scintillation counting. Although this assay is sensitive and accurate, it is slow and labor-intensive; thus, it precludes the simultaneous screening of more than a few inhibitor compounds. Here we describe a 96-well assay for SphKs that is rapid and reproducible. Our method, which takes advantage of the limited solubility of S1P, detects radioactive S1P adhering to the plate by scintillation proximity counting. Our procedure obviates extraction into organic solvents, postreaction transfers, and chromatography. Furthermore, our assay enables assessment of both inhibitors and substrates, and it can detect endogenous SphK activity in cell and tissue extracts. The SphK kinetic parameter, K(m), and the K(i) values of inhibitors determined with our assay and the conventional assay were indistinguishable. These results document that our assay is well-suited for the screening of chemical libraries of SphK inhibitors.
Collapse
Affiliation(s)
- Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | | | | | | | |
Collapse
|
122
|
Demosthenous M, Antoniades C, Tousoulis D, Margaritis M, Marinou K, Stefanadis C. Endothelial nitric oxide synthase in the vascular wall: Mechanisms regulating its expression and enzymatic function. Artery Res 2011; 5:37. [DOI: 10.1016/j.artres.2011.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
123
|
Ciborowski M, Javier Rupérez F, Martínez-Alcázar MP, Angulo S, Radziwon P, Olszanski R, Kloczko J, Barbas C. Metabolomic approach with LC-MS reveals significant effect of pressure on diver's plasma. J Proteome Res 2010; 9:4131-7. [PMID: 20504017 DOI: 10.1021/pr100331j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Professional and recreational diving are growing activities in modern life. Diving has been associated with increased prevalence of stroke, hypertension, asthma, diabetes, or bone necrosis. We evaluated the effect of increased pressure equivalent to diving at 30 and 60 m for 30 min in two groups of divers using an untargeted approach with LC-MS fingerprinting of plasma. We found over 100 metabolites to be altered in plasma post exposure and after the corresponding decompression procedures. Among them, a group of lysophosphatidylcholines and lysophosphatidylethanolamines were increased, including lysoplasmalogen, a thrombosis promoter, together with changes in metabolic rate-associated molecules such as acylcarnitines and hemolysis-related compounds. Moreover, three metabolites that could be associated to bone degradation show different intensities between experimental groups. Ultimately, this nontargeted, short-term study opens the possibility of discovering markers of long-term effect of pressure that could be employed in routine health control of divers and could facilitate the development of safer decompression procedures.
Collapse
Affiliation(s)
- Michal Ciborowski
- Pharmacy Faculty, Campus Monteprincipe, San Pablo-CEU University, Boadilla del Monte. Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Bourquin F, Riezman H, Capitani G, Grütter MG. Structure and function of sphingosine-1-phosphate lyase, a key enzyme of sphingolipid metabolism. Structure 2010; 18:1054-65. [PMID: 20696404 DOI: 10.1016/j.str.2010.05.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/01/2010] [Accepted: 05/09/2010] [Indexed: 12/13/2022]
Abstract
Sphingosine-1-phosphate lyase (SPL), a key enzyme of sphingolipid metabolism, catalyzes the irreversible degradation of sphingoid base phosphates. Its main substrate sphingosine-1-phosphate (S1P) acts both extracellularly, by binding G protein-coupled receptors of the lysophospholipid receptor family, and inside the cell, as a second messenger. There, S1P takes part in regulating various cellular processes and its levels are tightly regulated. SPL is a pivotal enzyme regulating S1P intracellular concentrations and a promising drug target for the design of immunosuppressants. We structurally and functionally characterized yeast SPL (Dpl1p) and its first prokaryotic homolog, from Symbiobacterium thermophilum. The Dpl1p structure served as a basis for a very reliable model of Homo sapiens SPL. The above results, together with in vitro and in vivo studies of SPL mutants, reveal which residues are involved in activity and substrate binding and pave the way to studies aimed at controlling the activity of this pivotal enzyme.
Collapse
Affiliation(s)
- Florence Bourquin
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
125
|
Lai WQ, Melendez AJ, Leung BP. Role of sphingosine kinase and sphingosine-1-phosphate in inflammatory arthritis. World J Biol Chem 2010; 1:321-6. [PMID: 21537466 PMCID: PMC3083938 DOI: 10.4331/wjbc.v1.i11.321] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/20/2010] [Accepted: 08/27/2010] [Indexed: 02/05/2023] Open
Abstract
The importance of sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) in inflammation has been extensively demonstrated. As an intracellular second messenger, S1P plays an important role in calcium signaling and mobilization, and cell proliferation and survival. Activation of various plasma membrane receptors, such as the formyl methionyl leucyl phenylalanine receptor, C5a receptor, and tumor necrosis factor α receptor, leads to a rapid increase in intracellular S1P level via SphK stimulation. SphK and S1P are implicated in various chronic autoimmune conditions such as rheumatoid arthritis, primary Sjögren’s syndrome, and inflammatory bowel disease. Recent studies have demonstrated the important role of SphK and S1P in the development of arthritis by regulating the pro-inflammatory responses. These novel pathways represent exciting potential therapeutic targets.
Collapse
Affiliation(s)
- Wen-Qi Lai
- Wen-Qi Lai, Alirio J Melendez, Bernard P Leung, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | | | | |
Collapse
|
126
|
Xia P, Wadham C. Sphingosine 1-phosphate, a key mediator of the cytokine network: juxtacrine signaling. Cytokine Growth Factor Rev 2010; 22:45-53. [PMID: 21051273 DOI: 10.1016/j.cytogfr.2010.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 09/21/2010] [Indexed: 01/21/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a sphingolipid metabolite, which has emerged as an important signaling mediator participating in the regulation of multiple cellular processes. The discovery of a family of S1P receptors, together with the more recently identified intracellular targets, has provided fundamental understanding of the multi-faceted actions of S1P. Evidence from both in vitro and in vivo studies has implicated the S1P signaling system in the control of immunity, inflammation and many associated diseases. Enigmatically, S1P appears to have both pro- and anti-inflammatory effects depending on the cell context. Here, we review this emerging area and argue for a pivotal role for S1P, as a key mediator of the cytokine network, acting through juxtacrine signaling in the immune system.
Collapse
Affiliation(s)
- Pu Xia
- Signal Transduction Program, Centenary Institute and Sydney Medical School University of Sydney, Australia.
| | | |
Collapse
|
127
|
Hoefer J, Azam MA, Kroetsch JTE, Leong-Poi H, Momen MA, Voigtlaender-Bolz J, Scherer EQ, Meissner A, Bolz SS, Husain M. Sphingosine-1-phosphate-dependent activation of p38 MAPK maintains elevated peripheral resistance in heart failure through increased myogenic vasoconstriction. Circ Res 2010; 107:923-33. [PMID: 20671234 DOI: 10.1161/circresaha.110.226464] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Mechanisms underlying vasomotor abnormalities and increased peripheral resistance exacerbating heart failure (HF) are poorly understood. OBJECTIVE To explore the role and molecular basis of myogenic responses in HF. METHODS AND RESULTS 10 weeks old C57Bl6 mice underwent experimental myocardial infarction (MI) or sham surgery. At 1 to 12 weeks postoperative, mice underwent hemodynamic studies, mesenteric, cerebral, and cremaster artery perfusion myography and Western blot. Organ weights and hemodynamics confirmed HF and increased peripheral resistance after MI. Myogenic responses, ie, pressure-induced vasoconstriction, were increased as early as 1 week after MI and remained elevated. Vasoconstrictor responses to phenylephrine were decreased 1 week after MI, but not at 2 to 6 weeks after MI, whereas those to endothelin (ET)-1 and sphingosine-1-phosphate (S1P) were increased at all time points after MI. An antagonist (JTE-013) for the most abundant S1P receptor detected in mesenteric arteries (S1P(2)R) abolished the enhanced myogenic responses of HF, with significantly less effect on controls. Mice with genetic absence of sphingosine-kinases or S1P(2)R (Sphk1(-/-); Sphk1(-/-)/Sphk2(+/-); S1P(2)R(-/-)) did not manifest enhanced myogenic responses after MI. Mesenteric arteries from HF mice exhibited increased phosphorylation of myosin light chain, with deactivation of its phosphatase (MLCP). Among known S1P-responsive regulators of MLCP, GTP-Rho levels were unexpectedly reduced in HF, whereas levels of activated p38 MAPK and ERK1/2 (extracellular signal-regulated kinase 1/2) were increased. Inhibiting p38 MAPK abolished the myogenic responses of animals with HF, with little effect on controls. CONCLUSIONS Rho-independent p38 MAPK-mediated deactivation of MLCP underlies S1P/S1P(2)R-regulated increases in myogenic vasoconstriction observed in HF. Therapeutic targeting of these findings in HF models deserves study.
Collapse
Affiliation(s)
- Judith Hoefer
- Toronto General Hospital Research Institute, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Habrukowich C, Han DK, Le A, Rezaul K, Pan W, Ghosh M, Li Z, Dodge-Kafka K, Jiang X, Bittman R, Hla T. Sphingosine interaction with acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) regulates PP2A activity and cyclooxygenase (COX)-2 expression in human endothelial cells. J Biol Chem 2010; 285:26825-26831. [PMID: 20558741 DOI: 10.1074/jbc.m110.147058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sphingolipid metabolites regulate cell fate by acting on specific cellular targets. Although the influence of sphingolipids in cellular signaling has been well recognized, the exact molecular targets and how these targets influence cellular signaling mechanisms remain poorly understood. Toward this goal, we used affinity chromatography coupled with proteomics technology and identified acidic leucine-rich nuclear phosphoprotein-32A (ANP32A), an inhibitor of protein phosphatase 2A (PP2A) as a direct target of sphingosine, N,N'-dimethyl sphingosine (DMS) and phytosphingosine but not dihydrosphingosine or sphingosine 1-phosphate. Treatment of human umbilical vein endothelial cells (HUVEC) with DMS, which is not phosphorylated by sphingosine kinases, led to the activation of PP2A activity. Suppression of ANP32A with siRNA enhanced basal and DMS-activated PP2A activity suggesting that the sphingoid base binds to and relieves the inhibitory action of ANP32A on the PP2A complex. Indeed, DMS relieved the ANP32A-mediated inhibition of PP2A enzyme complex in vitro. Interestingly, DMS treatment induced the p38 stress-activated protein kinase (SAPK) and expression of cyclooxygenase (COX)-2 transcript and protein. Knockdown of ANP32A expression further induced p38 SAPK and COX-2. These data identify ANP32A as a novel molecular target of sphingoid bases that regulates cellular signaling events and inflammatory gene expression.
Collapse
Affiliation(s)
- Cheryl Habrukowich
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3501
| | - David K Han
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3501
| | - Andrew Le
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3501
| | - Karim Rezaul
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3501
| | - Wei Pan
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Mallika Ghosh
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3501
| | - Zaiguo Li
- Department of Chemistry and Biochemistry, Queens College, City University of New York, New York, New York 11367
| | - Kimberly Dodge-Kafka
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3501
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College, City University of New York, New York, New York 11367
| | - Timothy Hla
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3501; Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, New York 10065.
| |
Collapse
|
129
|
Circulating sphingosine-1-phosphate inversely correlates with chemotherapy-induced weight gain during early breast cancer. Breast Cancer Res Treat 2010; 124:543-9. [DOI: 10.1007/s10549-010-0968-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/21/2010] [Indexed: 01/24/2023]
|
130
|
Ochi H, Hara Y, Tagawa M, Shinomiya K, Asou Y. The roles of TNFR1 in lipopolysaccharide-induced bone loss: dual effects of TNFR1 on bone metabolism via osteoclastogenesis and osteoblast survival. J Orthop Res 2010; 28:657-63. [PMID: 19890995 DOI: 10.1002/jor.21028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
LPS (lipopolysaccharide), a major constituent of Gram-negative bacteria, regulates proliferation and differentiation of osteoclasts directly or indirectly. This study sought to investigate the functions of the RANK/RANKL pathway in LPS-induced bone loss in vivo. Wild-type mice or TNFR1-/- mice were injected LPS with or without osteoprotegerin (OPG) and analyzed histologically. Bone volume was reduced by LPS injection in all groups, and OPG administration prevented the LPS-induced bone loss regardless of genotypes. LPS-induced enhancement of osteoclastogenesis in wild-type mice was blocked by OPG administration. LPS or OPG did not affect osteoclastogenesis in TNFR1-/- mice. Interestingly, osteoblast surface was remarkably reduced in LPS-treated TNFR1-/- mice as a result of enhanced osteoblast apoptosis. TRAIL, induced by TNF-alpha in BMC, triggered apoptosis of primary osteoblast only when TNFR1 signal was ablated in vitro. In conclusion, RANK signaling plays a prominent role in osteoclastogenesis downstream of LPS. Furthermore, TNFR1 regulates bone metabolism through not only the regulation of osteoclast differentiation but also osteoblast survival.
Collapse
Affiliation(s)
- Hiroki Ochi
- Division of Veterinary Surgery, Department of Veterinary Science, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo, Japan
| | | | | | | | | |
Collapse
|
131
|
Suhaiman L, De Blas GA, Obeid LM, Darszon A, Mayorga LS, Belmonte SA. Sphingosine 1-phosphate and sphingosine kinase are involved in a novel signaling pathway leading to acrosomal exocytosis. J Biol Chem 2010; 285:16302-14. [PMID: 20236935 DOI: 10.1074/jbc.m109.072439] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regulated secretion is a central issue for the specific function of many cells; for instance, mammalian sperm acrosomal exocytosis is essential for egg fertilization. Sphingosine 1-phosphate is a bioactive sphingolipid that regulates crucial physiological processes. Here we report that this lipid triggers acrosomal exocytosis in human sperm by a mechanism involving a G(i)-coupled receptor. Real-time imaging showed a remarkable increase of cytosolic calcium upon activation with sphingosine 1-phosphate and pharmacological experiments indicate that the process requires extracellular calcium influx through voltage and store-operated calcium channels and efflux from intracellular stores through inositol 1,4,5-trisphosphate-sensitive calcium channels. Sphingosine 1-phosphate-induced exocytosis requires phospholipase C and protein kinase C activation. We investigated possible sources of the lipid. Western blot indicates that sphingosine kinase 1 is present in spermatozoa. Indirect immunofluorescence showed that phorbol ester, a potent protein kinase C activator that can also trigger acrosomal exocytosis, redistributes sphingosine kinase 1 to the acrosomal region. Functional assays showed that phorbol ester-induced exocytosis depends on the activation of sphingosine kinase 1. Furthermore, incorporation of (32)P to sphingosine demonstrates that cells treated with the phorbol ester increase their sphingosine kinase activity that yields sphingosine 1-phosphate. We present here the first evidence indicating that human spermatozoa produce sphingosine 1-phosphate when challenged with an exocytic stimulus. These observations point to a new role of sphingosine 1-phosphate in a signaling cascade that facilitates acrosome reaction providing some clues about novel lipid molecules involved in exocytosis.
Collapse
Affiliation(s)
- Laila Suhaiman
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, CC56, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | | | | | | | | | | |
Collapse
|
132
|
Abstract
Execution of physiologic cell death known as apoptosis is tightly regulated and transfers immunologically relevant information. This ensures efficient clearance of dying cells and shapes the phenotype of their "captors" toward anti-inflammatory. Here, we identify a mechanism of sphingosine-1-phosphate production by apoptotic cells. During cell death, sphingosine kinase 2 (SphK2) is cleaved at its N-terminus in a caspase-1-dependent manner. Thereupon, a truncated but enzymatically active fragment of SphK2 is released from cells. This step is coupled to phosphatidylserine exposure, which is a hallmark of apoptosis and a crucial signal for phagocyte/apoptotic cell interaction. Our data link signaling events during apoptosis to the extracellular production of a lipid mediator that affects immune cell attraction and activation.
Collapse
|
133
|
CXCL4-induced monocyte survival, cytokine expression, and oxygen radical formation is regulated by sphingosine kinase 1. Eur J Immunol 2010; 40:1162-73. [DOI: 10.1002/eji.200939703] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
134
|
Michel T, Vanhoutte PM. Cellular signaling and NO production. Pflugers Arch 2010; 459:807-16. [PMID: 20082095 DOI: 10.1007/s00424-009-0765-9] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 11/14/2009] [Accepted: 11/19/2009] [Indexed: 12/22/2022]
Abstract
The endothelium can evoke relaxations (dilatations) of the underlying vascular smooth muscle, by releasing vasodilator substances. The best characterized endothelium-derived relaxing factor is nitric oxide (NO), which is synthesized by the endothelial isoform of nitric oxide synthase (eNOS). Endothelium-dependent relaxations involve both pertussis-toxin-sensitive G(i) (e.g., responses to serotonin, sphingosine 1-phosphate, alpha(2)-adrenergic agonists, and thrombin) and pertussis-toxin-insensitive G(q) (e.g., adenosine diphosphate and bradykinin) coupling proteins. eNOS undergoes a complex pattern of intracellular regulation, including post-translational modifications involving enzyme acylation and phosphorylation. eNOS is reversibly targeted to signal-transducing plasmalemmal caveolae where the enzyme interacts with a number of regulatory proteins, many of which are modified in cardiovascular disease states. The release of nitric oxide by the endothelial cell can be up- (e.g., by estrogens, exercise, and dietary factors) and down-regulated (e.g. oxidative stress, smoking, and oxidized low-density lipoproteins). It is reduced in the course of vascular disease (e.g., diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis-toxin-sensitive pathway for NO release which favors vasospasm, thrombosis, penetration of macrophages, cellular growth, and the inflammatory reaction leading to atherosclerosis. The unraveling of the complex interaction of the pathways regulating the presence and the activity of eNOS will enhance the understanding of the perturbations in endothelium-dependent signaling that are seen in cardiovascular disease states, and may lead to the identification of novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas Michel
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
135
|
Suppression of hepatocellular carcinoma recurrence after rat liver transplantation by FTY720, a sphingosine-1-phosphate analog. Transplantation 2010; 88:980-6. [PMID: 19855243 DOI: 10.1097/tp.0b013e3181b9ca69] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND.: Although the outcome of liver transplant patients with hepatocellular carcinoma (HCC) has improved with the introduction of strict criteria, tumor recurrence still remains a significant problem. Sphingosine-1-phosphate (S1P) is a phospholipid mediator that can induce diverse cellular responses, such as proliferation, migration, adhesion, and cell-rounding, in cancer cells. We investigated whether FTY720, a S1P analog, suppresses tumor recurrence after experimental liver transplantation in a rat HCC model. METHODS.: HCC-bearing rats were subjected to orthotropic liver transplantation. HCC cells were analyzed for cell migration, proliferation, and S1P receptors. RESULTS.: FTY720 induced the down-regulation of the S1P-1 receptor of HCC cells and suppressed both cancer cell migration and proliferation. FTY720 also suppressed mitogen-activated protein kinase phosphorylation. The suppression of tumor recurrence after liver transplantation and a significant prolongation of survival were observed in the FTY720-treated rats, in comparison with FTY720-untreated rats. CONCLUSION.: FTY720 suppresses the invasiveness and proliferation of HCC through a down-regulating S1P-1 receptor to suppress the recurrence of HCC after liver transplantation; FTY720 may be used as a new antimetastatic agent for the prevention of tumor recurrence after liver transplantation.
Collapse
|
136
|
Fyrst H, Oskouian B, Bandhuvula P, Gong Y, Byun HS, Bittman R, Lee AR, Saba JD. Natural sphingadienes inhibit Akt-dependent signaling and prevent intestinal tumorigenesis. Cancer Res 2010; 69:9457-64. [PMID: 19934323 DOI: 10.1158/0008-5472.can-09-2341] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sphingolipid metabolites regulate cell proliferation, migration, and stress responses. Alterations in sphingolipid metabolism have been proposed to contribute to carcinogenesis, cancer progression, and drug resistance. We identified a family of natural sphingolipids called sphingadienes and investigated their effects in colon cancer. We find that sphingadienes induce colon cancer cell death in vitro and prevent intestinal tumorigenesis in vivo. Sphingadienes exert their influence by blocking Akt translocation from the cytosol to the membrane, thereby inhibiting protein translation and promoting apoptosis and autophagy. Sphingadienes are orally available, are slowly metabolized through the sphingolipid degradative pathway, and show limited short-term toxicity. Thus, sphingadienes represent a new class of therapeutic and/or chemopreventive agents that blocks Akt signaling in neoplastic and preneoplastic cells.
Collapse
Affiliation(s)
- Henrik Fyrst
- Children's Hospital Oakland Research Institute, Oakland, California 94609-1673, USA
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Cancer treatment strategies targeting sphingolipid metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:185-205. [PMID: 20919655 DOI: 10.1007/978-1-4419-6741-1_13] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ceramide and sphingosine-1-phosphate are related sphingolipid metabolites that can be generated through a de novo biosynthetic route or derived from the recycling of membrane sphingomyelin. Both these lipids regulate cellular responses to stress, with generally opposing effects. Sphingosine-1-phosphate functions as a growth and survival factor, acting as a ligand for a family of G protein-coupled receptors, whereas ceramide activates intrinsic and extrinsic apoptotic pathways through receptor-independent mechanisms. A growing body of evidence has implicated ceramide, sphingosine-1-phosphate and the genes involved in their synthesis, catabolism and signaling in various aspects of oncogenesis, cancer progression and drug- and radiation resistance. This may be explained in part by the finding that both lipids impinge upon the PI3K/ AKT pathway, which represses apoptosis and autophagy. In addition, sphingolipids influence cell cycle progression, telomerase function, cell migration and stem cell biology. Considering the central role of ceramide in mediating physiological as well as pharmacologically stimulated apoptosis, ceramide can be considered a tumor-suppressor lipid. In contrast, sphingosine-1-phosphate can be considered a tumor-promoting lipid, and the enzyme responsible for its synthesis functions as an oncogene. Not surprisingly, genetic mutations that result in reduced ceramide generation, increased sphingosine-1-phosphate synthesis or which reduce steady state ceramide levels and increase sphingosine-1-phosphate levels have been identified as mechanisms of tumor progression and drug resistance in cancer cells. Pharmacological tools for modulating sphingolipid pathways are being developed and represent novel therapeutic strategies for the treatment of cancer.
Collapse
|
138
|
Cardiomyocyte S1P1 receptor-mediated extracellular signal-related kinase signaling and desensitization. J Cardiovasc Pharmacol 2009; 53:486-94. [PMID: 19433984 DOI: 10.1097/fjc.0b013e3181a7b58a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We examined the ability of sphingosine-1-phosphate (S1P) to desensitize extracellular signal-related kinase (ERK), a mitogen-activated protein kinase linked to antiapoptotic responses in the heart. In isolated adult mouse cardiomyocytes, S1P (10 nM-5 microM) induced ERK phosphorylation in a time- and dose-dependent manner. S1P stimulation of ERK was completely inhibited by an S1P1/3 subtype receptor antagonist (VPC23019), by a Gi protein inhibitor (pertussis toxin) and by a mitogen-activated protein kinase/ERK kinase inhibitor (PD98059). A selective S1P3 receptor antagonist (CAY10444) had no effect on S1P-induced ERK activation. The selective S1P1 agonist SEW2871 also induced ERK phosphorylation. Activation of ERK by restimulation with 100 nM S1P was suppressed after 1 hour of preincubation with 100 nM S1P but recovered fully the next day, suggesting receptor recycling. Similar results were obtained in protein kinase C epsilon-null cardiomyocytes. Treatment with the nonselective S1P receptor agonist FTY720 for 1 hour also reduced phospho-ERK expression in response to subsequent S1P stimulation. In contrast to S1P, some desensitization to FTY720 persisted after overnight exposure. Cell death induced by hypoxia/reoxygenation was reduced by pretreatment with exogenous S1P. This enhanced survival was abrogated by pretreatment with PD98059, VPC23019, or pertussis toxin. Thus, exogenous S1P induces rapid and reversible S1P1-mediated ERK phosphorylation. S1P-induced adult mouse cardiomyocyte survival requires ERK activation mediated via an S1P1-Gi pathway.
Collapse
|
139
|
Chiba K. [New therapeutic approach for autoimmune diseases by the sphingosine 1-phosphate receptor modulator, fingolimod (FTY720)]. YAKUGAKU ZASSHI 2009; 129:655-65. [PMID: 19483408 DOI: 10.1248/yakushi.129.655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fingolimod (FTY720) is the first substance in the new immunomodulator class called sphingosine 1-phosphate (S1P) receptor modulators. We isolated an immunosuppressive natural product, myrocin, from the culture broth of Isaria sinclairii, a kind of vegetative wasp. The chemical modification of myriocin yielded a new compound, FTY720, which has more potent immunosuppressive activity and less toxicity than myriocin. FTY720 has been shown to be highly effective in experimental allograft models and autoimmune disease models such as autoimmune encephalomyelitis, collagen-induced arthritis, and lupus nephritis. The most striking feature of FTY720 is the induction of a marked decrease in peripheral blood lymphocytes at doses that show immunosuppressive activity in these models. FTY720 is rapidly converted to FTY720-phosphate (FTY720-P) by sphingosine kinases. FTY720-P acts as a potent agonist at S1P receptor type 1 (S1P(1)), internalizes S1P(1) on lymphocytes, and inhibits the migration of lymphocytes toward S1P. It is highly likely that the reduction of peripheral blood lymphocytes by FTY720 is due to the inhibition of S1P(1)-dependent lymphocyte egress from secondary lymphoid organs and thymus. Recently, it has been reported that FTY720 exerted considerable therapeutic effects in a placebo-controlled clinical trail involving patients with relapsing multiple sclerosis. Patients who received FTY720 orally had a significant reduction in the clinical disease activity, the number of lesions in the central nervous system, and the relapse rates. Since FTY720 possesses a new mechanism of action that has not been observed with other immunosuppressive agents, it is believed that FTY720 provides a new therapeutic approach for autoimmune diseases including multiple sclerosis.
Collapse
Affiliation(s)
- Kenji Chiba
- Pharmacology Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan.
| |
Collapse
|
140
|
Jung ID, Lee HS, Lee HY, Choi OH. FcepsilonRI-mediated mast cell migration: signaling pathways and dependence on cytosolic free Ca2+ concentration. Cell Signal 2009; 21:1698-705. [PMID: 19632319 DOI: 10.1016/j.cellsig.2009.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/09/2009] [Accepted: 07/16/2009] [Indexed: 11/26/2022]
Abstract
IgE-sensitized rat basophilic leukemia (RBL)-2H3 mast cells have been shown to migrate towards antigen. In the present study we tried to identify the mechanism by which antigen causes mast cell migration. Antigen caused migration of RBL-2H3 cells at the concentration ranges of 1000-fold lower than those required for degranulation and the dose response was biphasic. This suggests that mast cells can detect very low concentration gradients of antigen (pg/ml ranges), which initiate migration until they degranulate near the origin of antigen, of which concentration is in the ng/ml ranges. Similar phenomenon was observed in human mast cells (HMCs) derived from CD34(+) progenitors. As one mechanism of mast cell migration, we tested the involvement of sphingosine 1-phosphate (S1P). Fc epsilon RI-mediated cell migration was dependent on the production of S1P but independent of a S1P receptor or its signaling pathways as determined with S1P receptor antagonist VPC23019 and Gi protein inhibitor pertussis toxin (PTX). This indicated that the site of action of S1P produced by antigen stimulation was intracellular. However, S1P-induced mast cell migration was dependent on S1P receptor activation and inhibited by both VPC23019 and PTX. Cell migration towards antigen or extracellular S1P was dependent on the activation of the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways, while only migration towards antigen was inhibited by the inhibitors of sphingosine kinase and phospholipase C (PLC) and intracellular calcium chelator BAPTA. In summary, our data suggest that the high affinity receptor for IgE (Fc epsilon RI)-mediated mast cell migration is dependent on the production of S1P but independent of S1P receptors. Cell migration mediated by either Fc epsilon RI or S1P receptors involves activation of both PI3K and MAPK.
Collapse
Affiliation(s)
- In Duk Jung
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
141
|
Weigert A, Weis N, Brüne B. Regulation of macrophage function by sphingosine-1-phosphate. Immunobiology 2009; 214:748-60. [PMID: 19625101 DOI: 10.1016/j.imbio.2009.06.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The bioactive lipid sphingosine-1-phosphate (S1P) fulfils manifold tasks in the immune system acting in auto- and/or paracrine fashion. This includes regulation of apoptosis, migration and proliferation. Upon its generation by sphingosine kinases from plasma membrane sphingolipids, S1P can either act as a second messenger within cells or can be released from cells to occupy a family of specific G-protein-coupled receptors (S1P1-5). This diversity is reflected by the impact of S1P on macrophage biology and function. Over the last years it became apparent that the sphingosine kinase/S1P/S1P-receptor signalling axis in macrophages might play a central role in the pathogenesis of inflammatory diseases such as atherosclerosis, asthma, rheumatoid arthritis and cancer. Here, we summarize the current knowledge of the function of S1P in macrophage biology and discuss potential implications for pathology.
Collapse
Affiliation(s)
- Andreas Weigert
- Institute of Biochemistry I/ZAFES, Goethe-University Frankfurt am Main, Germany
| | | | | |
Collapse
|
142
|
Daum G, Grabski A, Reidy MA. Sphingosine 1-phosphate: a regulator of arterial lesions. Arterioscler Thromb Vasc Biol 2009; 29:1439-43. [PMID: 19592471 DOI: 10.1161/atvbaha.108.175240] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sphingosine-1 phosphate (S1P) is a bioactive sphingolipid that is critical in the development of blood vessels, and in the adult regulates vascular functions including vascular tone, endothelial integrity, and angiogenesis. Further, S1P may regulate arterial lesions in disease and after injury by controlling leukocyte recruitment and smooth muscle cell functions.
Collapse
Affiliation(s)
- G Daum
- Department of Surgery, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
143
|
Abstract
Activation of sphingosine kinase/sphingosine 1-phosphate-mediated signaling has emerged as a critical cardioprotective pathway in response to acute ischemia/reperfusion injury. Application of exogenous sphingosine 1-phosphate (S1P) in cultured cardiac myocytes subjected to hypoxia or treatment of isolated hearts either before ischemia or at the onset of reperfusion (pharmacologic preconditioning or postconditioning) exerts prosurvival effects. Synthetic congeners of S1P mimic these responses. Gene-targeted mice null for the sphingosine kinase 1 isoform whose hearts are subjected to ischemia/reperfusion injury exhibit increased infarct size and respond poorly either to ischemic preconditioning or to ischemic postconditioning. Measurements of cardiac sphingosine kinase activity and S1P parallel these observations. High-density lipoprotein is a major carrier of S1P, and studies of hearts in which selected S1P receptors have been deleted implicate the S1P cargo of high-density lipoprotein in cardioprotection. These observations have considerable relevance for future therapeutic approaches to acute and chronic myocardial injury.
Collapse
|
144
|
Schmitz G, Ruebsaamen K. Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis 2009; 208:10-8. [PMID: 19570538 DOI: 10.1016/j.atherosclerosis.2009.05.029] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 04/27/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
Abstract
Lysophosphatidylcholine (LPC) is a major plasma lipid that has been recognized as an important cell signalling molecule produced under physiological conditions by the action of phospholipase A(2) on phosphatidylcholine. LPC transports glycerophospholipid components such as fatty acids, phosphatidylglycerol and choline between tissues. LPC is a ligand for specific G protein-coupled signalling receptors and activates several second messengers. LPC is also a major phospholipid component of oxidized low-density lipoproteins (Ox-LDL) and is implicated as a critical factor in the atherogenic activity of Ox-LDL. Hence, LPC plays an important role in atherosclerosis and acute and chronic inflammation. In this review we focus in some detail on LPC function, biochemical pathways, sources and signal-transduction system. Moreover, we outline the detection of LPC by mass spectrometry which is currently the best method for accurate and simultaneous analysis of each individual LPC species and reveal the pathophysiological implication of LPC which makes it an interesting target for biomarker and drug development regarding atherosclerosis and cardiovascular disorders.
Collapse
Affiliation(s)
- Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
145
|
Cationic lipids activate cellular cascades. Which receptors are involved? Biochim Biophys Acta Gen Subj 2009; 1790:425-30. [DOI: 10.1016/j.bbagen.2009.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/25/2009] [Accepted: 02/27/2009] [Indexed: 12/14/2022]
|
146
|
Shimizu T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu Rev Pharmacol Toxicol 2009; 49:123-50. [PMID: 18834304 DOI: 10.1146/annurev.pharmtox.011008.145616] [Citation(s) in RCA: 434] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prostaglandins, leukotrienes, platelet-activating factor, lysophosphatidic acid, sphingosine 1-phosphate, and endocannabinoids, collectively referred to as lipid mediators, play pivotal roles in immune regulation and self-defense, and in the maintenance of homeostasis in living systems. They are produced by multistep enzymatic pathways, which are initiated by the de-esterification of membrane phospholipids by phospholipase A2s or sphingo-myelinase. Lipid mediators exert their biological effects by binding to cognate receptors, which are members of the G protein-coupled receptor superfamily. The synthesis of the lipid mediators and subsequent induction of receptor activity is tightly regulated under normal physiological conditions, and enzyme and/or receptor dysfunction can lead to a variety of disease conditions. Thus, the manipulation of lipid mediator signaling, through either enzyme inhibitors or receptor antagonists and agonists, has great potential as a therapeutic approach to disease. In this review, I summarize our current state of knowledge of the synthesis of lipid mediators and the function of their cognate receptors, and discuss the effects of genetic or pharmacological ablation of enzyme or receptor function on various pathophysiological processes.
Collapse
Affiliation(s)
- Takao Shimizu
- Department of Biochemistry and Molecular Biology, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
147
|
Ryu SD, Lee HS, Suk HY, Park CS, Choi OH. Cross-linking of FcepsilonRI causes Ca2+ mobilization via a sphingosine kinase pathway in a clathrin-dependent manner. Cell Calcium 2009; 45:99-108. [PMID: 18675457 DOI: 10.1016/j.ceca.2008.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
Abstract
Clathrin-coated pits are now recognized to be involved in cell signaling in addition to receptor down-regulation. Here we tried to identify signaling pathways that might be dependent on clathrin. Our initial data with pharmacological inhibitors of formation of clathrin-coated pits or lipid-rafts indicated that Ca(2+) response evoked by cross-linking of the high affinity receptors for IgE (FcepsilonRI) was dependent on clathrin. To confirm this finding, we created clathrin-knockdown cells by transfecting the mast cell line RBL-2H3 with a shRNA-clathrin heavy chain construct. In these cells, the FcepsilonRI-mediated Ca(2+) response was almost completely abolished, which was accompanied by the inhibition of sphingosine 1-phosphate (S1P) production with no changes in inositol 1,4,5-trisphosphate (IP(3)) production. This suggests that the Ca(2+) signaling pathway via a sphingosine kinase (SK) is dependent on clathrin. Furthermore, antigen-induced tyrosine phosphorylation of p85 and p110 subunits of PI3K was almost completely inhibited in clathrin-knockdown cells. In contrast, antigen-induced tyrosine phosphorylation of phospholipase Cgamma was not affected by clathrin-knockdown and tyrosine phosphorylation of Syk and degranulation were partially inhibited in clathrin-knockdown cells. The present study identifies the SK/Ca(2+) pathway to be dependent on clathrin.
Collapse
Affiliation(s)
- Seung-Duk Ryu
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
148
|
Skoura A, Hla T. Regulation of vascular physiology and pathology by the S1P2 receptor subtype. Cardiovasc Res 2009; 82:221-8. [PMID: 19287048 DOI: 10.1093/cvr/cvp088] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is now recognized as a lipid mediator that acts via G-protein-coupled receptors. S1P receptors couple to various heterotrimeric G-proteins and regulate downstream targets and ultimately cell behaviour. The prototypical S1P1 receptor is known to couple to Gi and regulates angiogenesis, vascular development, and immune cell trafficking. In this review, we focus our attention on the S1P2 receptor, which has a unique G-protein-coupling property in that it preferentially activates the G(12/13) pathway. Recent studies indicate that the S1P2 receptor regulates critical intracellular signalling pathways, such as Rho GTPase, the phosphatase PTEN, and VE-cadherin-based adherens junctions. Analysis of mutant mice has revealed the critical role of this receptor in inner ear physiology, heart and vascular development, vascular remodelling, and vascular tone, permeability, and angiogenesis in vertebrates. These studies suggest that selective modulation of S1P2 receptor function by pharmacological tools may be useful in a variety of pathological conditions.
Collapse
Affiliation(s)
- Athanasia Skoura
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030-3501, USA
| | | |
Collapse
|
149
|
Pamuklar Z, Federico L, Liu S, Umezu-Goto M, Dong A, Panchatcharam M, Fulerson Z, Berdyshev E, Natarajan V, Fang X, van Meeteren LA, Moolenaar WH, Mills GB, Morris AJ, Smyth SS, Smyth SS. Autotaxin/lysopholipase D and lysophosphatidic acid regulate murine hemostasis and thrombosis. J Biol Chem 2009; 284:7385-94. [PMID: 19139100 PMCID: PMC2652269 DOI: 10.1074/jbc.m807820200] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The lipid mediator lysophosphatidic acid (LPA) is a potent regulator of vascular cell function in vitro, but its physiologic role in the cardiovasculature is largely unexplored. To address the role of LPA in regulating platelet function and thrombosis, we investigated the effects of LPA on isolated murine platelets. Although LPA activates platelets from the majority of human donors, we found that treatment of isolated murine platelets with physiologic concentrations of LPA attenuated agonist-induced aggregation. Transgenic overexpression of autotaxin/lysophospholipase D (Enpp2), the enzyme necessary for production of the bulk of biologically active LPA in plasma, elevated circulating LPA levels and induced a bleeding diathesis and attenuation of thrombosis in mice. Intravascular administration of exogenous LPA recapitulated the prolonged bleeding time observed in Enpp2-Tg mice. Enpp2+/- mice, which have approximately 50% normal plasma LPA levels, were more prone to thrombosis. Plasma autotaxin associated with platelets during aggregation and concentrated in arterial thrombus, and activated but not resting platelets bound recombinant autotaxin/lysoPLD in an integrin-dependent manner. These results identify a novel pathway in which LPA production by autotaxin/lysoPLD regulates murine hemostasis and thrombosis and suggest that binding of autotaxin/lysoPLD to activated platelets may provide a mechanism to localize LPA production.
Collapse
Affiliation(s)
- Zehra Pamuklar
- Division of Cardiovascular
Medicine, The Gill Heart Institute, and Departments of
Pharmacology and
Biochemistry, University of
Kentucky, Lexington, Kentucky 40536-0200,
Department of Systems Biology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
Department of Medicine, The University
of Chicago, Chicago, Illinois, 60637,
Department of Biochemistry, Virginia
Commonwealth University School of Medicine, Richmond, Virginia 23298,
Division of Cellular
Biochemistry, Centre for Biomedical Genetics, The Netherlands Cancer
Institute, Plesmanlaan 121, Amsterdam, The Netherlands, and
Department of Veterans Affairs
Medical Center, Lexington, Kentucky 40511
| | - Lorenzo Federico
- Division of Cardiovascular
Medicine, The Gill Heart Institute, and Departments of
Pharmacology and
Biochemistry, University of
Kentucky, Lexington, Kentucky 40536-0200,
Department of Systems Biology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
Department of Medicine, The University
of Chicago, Chicago, Illinois, 60637,
Department of Biochemistry, Virginia
Commonwealth University School of Medicine, Richmond, Virginia 23298,
Division of Cellular
Biochemistry, Centre for Biomedical Genetics, The Netherlands Cancer
Institute, Plesmanlaan 121, Amsterdam, The Netherlands, and
Department of Veterans Affairs
Medical Center, Lexington, Kentucky 40511
| | - Shuying Liu
- Division of Cardiovascular
Medicine, The Gill Heart Institute, and Departments of
Pharmacology and
Biochemistry, University of
Kentucky, Lexington, Kentucky 40536-0200,
Department of Systems Biology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
Department of Medicine, The University
of Chicago, Chicago, Illinois, 60637,
Department of Biochemistry, Virginia
Commonwealth University School of Medicine, Richmond, Virginia 23298,
Division of Cellular
Biochemistry, Centre for Biomedical Genetics, The Netherlands Cancer
Institute, Plesmanlaan 121, Amsterdam, The Netherlands, and
Department of Veterans Affairs
Medical Center, Lexington, Kentucky 40511
| | - Makiko Umezu-Goto
- Division of Cardiovascular
Medicine, The Gill Heart Institute, and Departments of
Pharmacology and
Biochemistry, University of
Kentucky, Lexington, Kentucky 40536-0200,
Department of Systems Biology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
Department of Medicine, The University
of Chicago, Chicago, Illinois, 60637,
Department of Biochemistry, Virginia
Commonwealth University School of Medicine, Richmond, Virginia 23298,
Division of Cellular
Biochemistry, Centre for Biomedical Genetics, The Netherlands Cancer
Institute, Plesmanlaan 121, Amsterdam, The Netherlands, and
Department of Veterans Affairs
Medical Center, Lexington, Kentucky 40511
| | - Anping Dong
- Division of Cardiovascular
Medicine, The Gill Heart Institute, and Departments of
Pharmacology and
Biochemistry, University of
Kentucky, Lexington, Kentucky 40536-0200,
Department of Systems Biology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
Department of Medicine, The University
of Chicago, Chicago, Illinois, 60637,
Department of Biochemistry, Virginia
Commonwealth University School of Medicine, Richmond, Virginia 23298,
Division of Cellular
Biochemistry, Centre for Biomedical Genetics, The Netherlands Cancer
Institute, Plesmanlaan 121, Amsterdam, The Netherlands, and
Department of Veterans Affairs
Medical Center, Lexington, Kentucky 40511
| | - Manikandan Panchatcharam
- Division of Cardiovascular
Medicine, The Gill Heart Institute, and Departments of
Pharmacology and
Biochemistry, University of
Kentucky, Lexington, Kentucky 40536-0200,
Department of Systems Biology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
Department of Medicine, The University
of Chicago, Chicago, Illinois, 60637,
Department of Biochemistry, Virginia
Commonwealth University School of Medicine, Richmond, Virginia 23298,
Division of Cellular
Biochemistry, Centre for Biomedical Genetics, The Netherlands Cancer
Institute, Plesmanlaan 121, Amsterdam, The Netherlands, and
Department of Veterans Affairs
Medical Center, Lexington, Kentucky 40511
| | - Zachary Fulerson
- Division of Cardiovascular
Medicine, The Gill Heart Institute, and Departments of
Pharmacology and
Biochemistry, University of
Kentucky, Lexington, Kentucky 40536-0200,
Department of Systems Biology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
Department of Medicine, The University
of Chicago, Chicago, Illinois, 60637,
Department of Biochemistry, Virginia
Commonwealth University School of Medicine, Richmond, Virginia 23298,
Division of Cellular
Biochemistry, Centre for Biomedical Genetics, The Netherlands Cancer
Institute, Plesmanlaan 121, Amsterdam, The Netherlands, and
Department of Veterans Affairs
Medical Center, Lexington, Kentucky 40511
| | - Evgeny Berdyshev
- Division of Cardiovascular
Medicine, The Gill Heart Institute, and Departments of
Pharmacology and
Biochemistry, University of
Kentucky, Lexington, Kentucky 40536-0200,
Department of Systems Biology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
Department of Medicine, The University
of Chicago, Chicago, Illinois, 60637,
Department of Biochemistry, Virginia
Commonwealth University School of Medicine, Richmond, Virginia 23298,
Division of Cellular
Biochemistry, Centre for Biomedical Genetics, The Netherlands Cancer
Institute, Plesmanlaan 121, Amsterdam, The Netherlands, and
Department of Veterans Affairs
Medical Center, Lexington, Kentucky 40511
| | - Viswanathan Natarajan
- Division of Cardiovascular
Medicine, The Gill Heart Institute, and Departments of
Pharmacology and
Biochemistry, University of
Kentucky, Lexington, Kentucky 40536-0200,
Department of Systems Biology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
Department of Medicine, The University
of Chicago, Chicago, Illinois, 60637,
Department of Biochemistry, Virginia
Commonwealth University School of Medicine, Richmond, Virginia 23298,
Division of Cellular
Biochemistry, Centre for Biomedical Genetics, The Netherlands Cancer
Institute, Plesmanlaan 121, Amsterdam, The Netherlands, and
Department of Veterans Affairs
Medical Center, Lexington, Kentucky 40511
| | - Xianjun Fang
- Division of Cardiovascular
Medicine, The Gill Heart Institute, and Departments of
Pharmacology and
Biochemistry, University of
Kentucky, Lexington, Kentucky 40536-0200,
Department of Systems Biology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
Department of Medicine, The University
of Chicago, Chicago, Illinois, 60637,
Department of Biochemistry, Virginia
Commonwealth University School of Medicine, Richmond, Virginia 23298,
Division of Cellular
Biochemistry, Centre for Biomedical Genetics, The Netherlands Cancer
Institute, Plesmanlaan 121, Amsterdam, The Netherlands, and
Department of Veterans Affairs
Medical Center, Lexington, Kentucky 40511
| | - Laurens A. van Meeteren
- Division of Cardiovascular
Medicine, The Gill Heart Institute, and Departments of
Pharmacology and
Biochemistry, University of
Kentucky, Lexington, Kentucky 40536-0200,
Department of Systems Biology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
Department of Medicine, The University
of Chicago, Chicago, Illinois, 60637,
Department of Biochemistry, Virginia
Commonwealth University School of Medicine, Richmond, Virginia 23298,
Division of Cellular
Biochemistry, Centre for Biomedical Genetics, The Netherlands Cancer
Institute, Plesmanlaan 121, Amsterdam, The Netherlands, and
Department of Veterans Affairs
Medical Center, Lexington, Kentucky 40511
| | - Wouter H. Moolenaar
- Division of Cardiovascular
Medicine, The Gill Heart Institute, and Departments of
Pharmacology and
Biochemistry, University of
Kentucky, Lexington, Kentucky 40536-0200,
Department of Systems Biology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
Department of Medicine, The University
of Chicago, Chicago, Illinois, 60637,
Department of Biochemistry, Virginia
Commonwealth University School of Medicine, Richmond, Virginia 23298,
Division of Cellular
Biochemistry, Centre for Biomedical Genetics, The Netherlands Cancer
Institute, Plesmanlaan 121, Amsterdam, The Netherlands, and
Department of Veterans Affairs
Medical Center, Lexington, Kentucky 40511
| | - Gordon B. Mills
- Division of Cardiovascular
Medicine, The Gill Heart Institute, and Departments of
Pharmacology and
Biochemistry, University of
Kentucky, Lexington, Kentucky 40536-0200,
Department of Systems Biology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
Department of Medicine, The University
of Chicago, Chicago, Illinois, 60637,
Department of Biochemistry, Virginia
Commonwealth University School of Medicine, Richmond, Virginia 23298,
Division of Cellular
Biochemistry, Centre for Biomedical Genetics, The Netherlands Cancer
Institute, Plesmanlaan 121, Amsterdam, The Netherlands, and
Department of Veterans Affairs
Medical Center, Lexington, Kentucky 40511
| | - Andrew J. Morris
- Division of Cardiovascular
Medicine, The Gill Heart Institute, and Departments of
Pharmacology and
Biochemistry, University of
Kentucky, Lexington, Kentucky 40536-0200,
Department of Systems Biology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
Department of Medicine, The University
of Chicago, Chicago, Illinois, 60637,
Department of Biochemistry, Virginia
Commonwealth University School of Medicine, Richmond, Virginia 23298,
Division of Cellular
Biochemistry, Centre for Biomedical Genetics, The Netherlands Cancer
Institute, Plesmanlaan 121, Amsterdam, The Netherlands, and
Department of Veterans Affairs
Medical Center, Lexington, Kentucky 40511
| | - Susan S. Smyth
- Division of Cardiovascular
Medicine, The Gill Heart Institute, and Departments of
Pharmacology and
Biochemistry, University of
Kentucky, Lexington, Kentucky 40536-0200,
Department of Systems Biology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
Department of Medicine, The University
of Chicago, Chicago, Illinois, 60637,
Department of Biochemistry, Virginia
Commonwealth University School of Medicine, Richmond, Virginia 23298,
Division of Cellular
Biochemistry, Centre for Biomedical Genetics, The Netherlands Cancer
Institute, Plesmanlaan 121, Amsterdam, The Netherlands, and
Department of Veterans Affairs
Medical Center, Lexington, Kentucky 40511
| | | |
Collapse
|
150
|
Kim RH, Takabe K, Milstien S, Spiegel S. Export and functions of sphingosine-1-phosphate. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:692-6. [PMID: 19268560 DOI: 10.1016/j.bbalip.2009.02.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 02/20/2009] [Accepted: 02/20/2009] [Indexed: 02/07/2023]
Abstract
The sphingolipid metabolite, sphingosine-1-phosphate (S1P), has emerged as a critical player in a number of fundamental biological processes and is important in cancer, angiogenesis, wound healing, cardiovascular function, atherosclerosis, immunity and asthma, among others. Activation of sphingosine kinases, enzymes that catalyze the phosphorylation of sphingosine to S1P, by a variety of agonists, including growth factors, cytokines, hormones, and antigen, increases intracellular S1P. Many of the biological effects of S1P are mediated by its binding to five specific G protein-coupled receptors located on the cell surface in an autocrine and/or paracrine manner. Therefore, understanding the mechanism by which intracellularly generated S1P is released out of cells is both interesting and important. In this review, we will discuss how S1P is formed and released. We will focus particularly on the current knowledge of how the S1P gradient between tissues and blood is maintained, and the role of ABC transporters in S1P release.
Collapse
Affiliation(s)
- Roger H Kim
- Division of Surgical Oncology, Department of Surgery and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|