101
|
Ma J, Liao I, Ma KL, Frazier J. Living Liquid: Design and Evaluation of an Exploratory Visualization Tool for Museum Visitors. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2012; 18:2799-2808. [PMID: 26357189 DOI: 10.1109/tvcg.2012.244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Interactive visualizations can allow science museum visitors to explore new worlds by seeing and interacting with scientific data. However, designing interactive visualizations for informal learning environments, such as museums, presents several challenges. First, visualizations must engage visitors on a personal level. Second, visitors often lack the background to interpret visualizations of scientific data. Third, visitors have very limited time at individual exhibits in museums. This paper examines these design considerations through the iterative development and evaluation of an interactive exhibit as a visualization tool that gives museumgoers access to scientific data generated and used by researchers. The exhibit prototype, Living Liquid, encourages visitors to ask and answer their own questions while exploring the time-varying global distribution of simulated marine microbes using a touchscreen interface. Iterative development proceeded through three rounds of formative evaluations using think-aloud protocols and interviews, each round informing a key visualization design decision: (1) what to visualize to initiate inquiry, (2) how to link data at the microscopic scale to global patterns, and (3) how to include additional data that allows visitors to pursue their own questions. Data from visitor evaluations suggests that, when designing visualizations for public audiences, one should (1) avoid distracting visitors from data that they should explore, (2) incorporate background information into the visualization, (3) favor understandability over scientific accuracy, and (4) layer data accessibility to structure inquiry. Lessons learned from this case study add to our growing understanding of how to use visualizations to actively engage learners with scientific data.
Collapse
Affiliation(s)
- J Ma
- Exploratorium in San Francisco, USA.
| | | | | | | |
Collapse
|
102
|
Moreno-Letelier A, Olmedo-Alvarez G, Eguiarte LE, Souza V. Divergence and phylogeny of Firmicutes from the Cuatro Ciénegas Basin, Mexico: a window to an ancient ocean. ASTROBIOLOGY 2012; 12:674-84. [PMID: 22920517 PMCID: PMC3426897 DOI: 10.1089/ast.2011.0685] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The Cuatro Ciénegas Basin (CCB) has been identified as a center of endemism for many life-forms. Nearly half the bacterial species found in the spring systems have their closest relatives in the ocean. This raises the question of whether the high diversity observed today is the product of an adaptive radiation similar to that of the Galapagos Islands or whether the bacterial groups are "survivors" of an ancient sea, which would be of interest for astrobiology. To help answer this question, we focused on Firmicutes from Cuatro Ciénegas (mainly Bacillus and Exiguobacterium). We reconstructed the phylogenetic relationships of Firmicutes with 28 housekeeping genes and dated the resulting tree using geological events as calibration points. Our results show that marine Bacillus diverged from other Bacillus strains 838 Ma, while Bacillus from Cuatro Ciénegas have divergence dates that range from 770 to 202 Ma. The members of Exiguobacterium from the CCB conform to a much younger group that diverged from the Andes strain 60 Ma and from the one in Yellowstone 183 Ma. Therefore, the diversity of Firmicutes in Cuatro Ciénegas is not the product of a recent radiation but the product of the isolation of lineages from an ancient ocean. Hence, Cuatro Ciénegas is not a Galapagos Archipelago for bacteria but is more like an astrobiological "time machine" in which bacterial lineages survived in an oligotrophic environment that may be very similar to that of the Precambrian. Key Words: Firmicutes-Cuatro Ciénegas-Precambrian-Molecular dating-Western Interior Seaway.
Collapse
Affiliation(s)
- Alejandra Moreno-Letelier
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, México D.F., México
| | | | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, México D.F., México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, México D.F., México
| |
Collapse
|
103
|
Abstract
Dissolved oxygen concentration is a crucial organizing principle in marine ecosystems. As oxygen levels decline, energy is increasingly diverted away from higher trophic levels into microbial metabolism, leading to loss of fixed nitrogen and to production of greenhouse gases, including nitrous oxide and methane. In this Review, we describe current efforts to explore the fundamental factors that control the ecological and microbial biodiversity in oxygen-starved regions of the ocean, termed oxygen minimum zones. We also discuss how recent advances in microbial ecology have provided information about the potential interactions in distributed co-occurrence and metabolic networks in oxygen minimum zones, and we provide new insights into coupled biogeochemical processes in the ocean.
Collapse
|
104
|
Liu Y, Beer LL, Whitman WB. Methanogens: a window into ancient sulfur metabolism. Trends Microbiol 2012; 20:251-8. [PMID: 22406173 DOI: 10.1016/j.tim.2012.02.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/29/2012] [Accepted: 02/06/2012] [Indexed: 11/26/2022]
Abstract
Methanogenesis is an ancient metabolism that originated on the early anoxic Earth. The buildup of O(2) about 2.4 billion years ago led to formation of a large oceanic sulfate pool, the onset of widespread sulfate reduction and the marginalization of methanogens to anoxic and sulfate-poor niches. Contemporary methanogens are restricted to anaerobic habitats and may have retained some metabolic relics that were common in early anaerobic life. Consistent with this hypothesis, methanogens do not utilize sulfate as a sulfur source, Cys is not utilized as a sulfur donor for Fe-S cluster and Met biosynthesis, and Cys biosynthesis uses an unusual tRNA-dependent pathway.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
105
|
Morrissey J, Bowler C. Iron utilization in marine cyanobacteria and eukaryotic algae. Front Microbiol 2012; 3:43. [PMID: 22408637 PMCID: PMC3296057 DOI: 10.3389/fmicb.2012.00043] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/27/2012] [Indexed: 12/21/2022] Open
Abstract
Iron is essential for aerobic organisms. Additionally, photosynthetic organisms must maintain the iron-rich photosynthetic electron transport chain, which likely evolved in the iron-replete Proterozoic ocean. The subsequent rise in oxygen since those times has drastically decreased the levels of bioavailable iron, indicating that adaptations have been made to maintain sufficient cellular iron levels in the midst of scarcity. In combination with physiological studies, the recent sequencing of marine microorganism genomes and transcriptomes has begun to reveal the mechanisms of iron acquisition and utilization that allow marine microalgae to persist in iron limited environments.
Collapse
Affiliation(s)
- Joe Morrissey
- Ecole Normale Supérieur, Institut de Biologie de l'ENS Paris, France Inserm U1024, Paris, France CNRS UMR 8197, Paris, France
| | | |
Collapse
|
106
|
Saei AA, Omidi AA, Barzegari A. Screening and genetic manipulation of green organisms for establishment of biological life support systems in space. Bioengineered 2012; 4:65-71. [PMID: 22992434 DOI: 10.4161/bioe.22286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Curiosity has driven humankind to explore and conquer space. However, today, space research is not a means to relieve this curiosity anymore, but instead has turned into a need. To support the crew in distant expeditions, supplies should either be delivered from the Earth, or prepared for short durations through physiochemical methods aboard the space station. Thus, research continues to devise reliable regenerative systems. Biological life support systems may be the only answer to human autonomy in outposts beyond Earth. For construction of an artificial extraterrestrial ecosystem, it is necessary to search for highly adaptable super-organisms capable of growth in harsh space environments. Indeed, a number of organisms have been proposed for cultivation in space. Meanwhile, some manipulations can be done to increase their photosynthetic potential and stress tolerance. Genetic manipulation and screening of plants, microalgae and cyanobacteria is currently a fascinating topic in space bioengineering. In this commentary, we will provide a viewpoint on the realities, limitations and promises in designing biological life support system based on engineered and/or selected green organism. Special focus will be devoted to the engineering of key photosynthetic enzymes in pioneer green organisms and their potential use in establishment of transgenic photobioreactors in space.
Collapse
Affiliation(s)
- Amir Ata Saei
- Research Center for Pharmaceutical Nanotechnology, Astrobiology and Space Medicine Laboratory, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
107
|
Latysheva N, Junker VL, Palmer WJ, Codd GA, Barker D. The evolution of nitrogen fixation in cyanobacteria. Bioinformatics 2012; 28:603-6. [DOI: 10.1093/bioinformatics/bts008] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
108
|
Andrulis ED. Theory of the origin, evolution, and nature of life. Life (Basel) 2011; 2:1-105. [PMID: 25382118 PMCID: PMC4187144 DOI: 10.3390/life2010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/10/2011] [Accepted: 12/13/2011] [Indexed: 12/22/2022] Open
Abstract
Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe.
Collapse
Affiliation(s)
- Erik D Andrulis
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Wood Building, W212, Cleveland, OH 44106, USA.
| |
Collapse
|
109
|
Schulze-Makuch D, Méndez A, Fairén AG, von Paris P, Turse C, Boyer G, Davila AF, António MRDS, Catling D, Irwin LN. A two-tiered approach to assessing the habitability of exoplanets. ASTROBIOLOGY 2011; 11:1041-1052. [PMID: 22017274 DOI: 10.1089/ast.2010.0592] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In the next few years, the number of catalogued exoplanets will be counted in the thousands. This will vastly expand the number of potentially habitable worlds and lead to a systematic assessment of their astrobiological potential. Here, we suggest a two-tiered classification scheme of exoplanet habitability. The first tier consists of an Earth Similarity Index (ESI), which allows worlds to be screened with regard to their similarity to Earth, the only known inhabited planet at this time. The ESI is based on data available or potentially available for most exoplanets such as mass, radius, and temperature. For the second tier of the classification scheme we propose a Planetary Habitability Index (PHI) based on the presence of a stable substrate, available energy, appropriate chemistry, and the potential for holding a liquid solvent. The PHI has been designed to minimize the biased search for life as we know it and to take into account life that might exist under more exotic conditions. As such, the PHI requires more detailed knowledge than is available for any exoplanet at this time. However, future missions such as the Terrestrial Planet Finder will collect this information and advance the PHI. Both indices are formulated in a way that enables their values to be updated as technology and our knowledge about habitable planets, moons, and life advances. Applying the proposed metrics to bodies within our Solar System for comparison reveals two planets in the Gliese 581 system, GJ 581 c and d, with an ESI comparable to that of Mars and a PHI between that of Europa and Enceladus.
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- School of Earth and Environmental Sciences, Washington State University, Pullman, Washington, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Light induced oxidative water splitting in photosynthesis: Energetics, kinetics and mechanism. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:35-43. [DOI: 10.1016/j.jphotobiol.2011.01.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 11/20/2022]
|
111
|
Leigh JA, Albers SV, Atomi H, Allers T. Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 2011; 35:577-608. [PMID: 21265868 DOI: 10.1111/j.1574-6976.2011.00265.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The tree of life is split into three main branches: eukaryotes, bacteria, and archaea. Our knowledge of eukaryotic and bacteria cell biology has been built on a foundation of studies in model organisms, using the complementary approaches of genetics and biochemistry. Archaea have led to some exciting discoveries in the field of biochemistry, but archaeal genetics has been slow to get off the ground, not least because these organisms inhabit some of the more inhospitable places on earth and are therefore believed to be difficult to culture. In fact, many species can be cultivated with relative ease and there has been tremendous progress in the development of genetic tools for both major archaeal phyla, the Euryarchaeota and the Crenarchaeota. There are several model organisms available for methanogens, halophiles, and thermophiles; in the latter group, there are genetic systems for Sulfolobales and Thermococcales. In this review, we present the advantages and disadvantages of working with each archaeal group, give an overview of their different genetic systems, and direct the neophyte archaeologist to the most appropriate model organism.
Collapse
Affiliation(s)
- John A Leigh
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
112
|
The Role of Sulfate Reduction in Stromatolites and Microbial Mats: Ancient and Modern Perspectives. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-94-007-0397-1_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
|
113
|
Wegener KM, Singh AK, Jacobs JM, Elvitigala T, Welsh EA, Keren N, Gritsenko MA, Ghosh BK, Camp DG, Smith RD, Pakrasi HB. Global proteomics reveal an atypical strategy for carbon/nitrogen assimilation by a cyanobacterium under diverse environmental perturbations. Mol Cell Proteomics 2010; 9:2678-89. [PMID: 20858728 DOI: 10.1074/mcp.m110.000109] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, are present in diverse ecological niches and play crucial roles in global carbon and nitrogen cycles. To proliferate in nature, cyanobacteria utilize a host of stress responses to accommodate periodic changes in environmental conditions. A detailed knowledge of the composition of, as well as the dynamic changes in, the proteome is necessary to gain fundamental insights into such stress responses. Toward this goal, we have performed a large-scale proteomic analysis of the widely studied model cyanobacterium Synechocystis sp. PCC 6803 under 33 different environmental conditions. The resulting high-quality dataset consists of 22,318 unique peptides corresponding to 1955 proteins, a coverage of 53% of the predicted proteome. Quantitative determination of protein abundances has led to the identification of 1198 differentially regulated proteins. Notably, our analysis revealed that a common stress response under various environmental perturbations, irrespective of amplitude and duration, is the activation of atypical pathways for the acquisition of carbon and nitrogen from urea and arginine. In particular, arginine is catabolized via putrescine to produce succinate and glutamate, sources of carbon and nitrogen, respectively. This study provides the most comprehensive functional and quantitative analysis of the Synechocystis proteome to date, and shows that a significant stress response of cyanobacteria involves an uncommon mode of acquisition of carbon and nitrogen.
Collapse
|
114
|
Singh AK, Elvitigala T, Cameron JC, Ghosh BK, Bhattacharyya-Pakrasi M, Pakrasi HB. Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium. BMC SYSTEMS BIOLOGY 2010; 4:105. [PMID: 20678200 PMCID: PMC2924297 DOI: 10.1186/1752-0509-4-105] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 08/02/2010] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cyanobacteria are the only known prokaryotes capable of oxygenic photosynthesis. They play significant roles in global biogeochemical cycles and carbon sequestration, and have recently been recognized as potential vehicles for production of renewable biofuels. Synechocystis sp. PCC 6803 has been extensively used as a model organism for cyanobacterial studies. DNA microarray studies in Synechocystis have shown varying degrees of transcriptome reprogramming under altered environmental conditions. However, it is not clear from published work how transcriptome reprogramming affects pre-existing networks of fine-tuned cellular processes. RESULTS We have integrated 163 transcriptome data sets generated in response to numerous environmental and genetic perturbations in Synechocystis. Our analyses show that a large number of genes, defined as the core transcriptional response (CTR), are commonly regulated under most perturbations. The CTR contains nearly 12% of Synechocystis genes found on its chromosome. The majority of genes in the CTR are involved in photosynthesis, translation, energy metabolism and stress protection. Our results indicate that a large number of differentially regulated genes identified in most reported studies in Synechocystis under different perturbations are associated with the general stress response. We also find that a majority of genes in the CTR are coregulated with 25 regulatory genes. Some of these regulatory genes have been implicated in cellular responses to oxidative stress, suggesting that reactive oxygen species are involved in the regulation of the CTR. A Bayesian network, based on the regulation of various KEGG pathways determined from the expression patterns of their associated genes, has revealed new insights into the coordination between different cellular processes. CONCLUSION We provide here the first integrative analysis of transcriptome data sets generated in a cyanobacterium. This compilation of data sets is a valuable resource to researchers for all cyanobacterial gene expression related queries. Importantly, our analysis provides a global description of transcriptional reprogramming under different perturbations and a basic framework to understand the strategies of cellular adaptations in Synechocystis.
Collapse
Affiliation(s)
- Abhay K Singh
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | | | | | | | | | |
Collapse
|
115
|
González-Muñoz MT, Rodriguez-Navarro C, Martínez-Ruiz F, Arias JM, Merroun ML, Rodriguez-Gallego M. Bacterial biomineralization: new insights from Myxococcus-induced mineral precipitation. ACTA ACUST UNITED AC 2010. [DOI: 10.1144/sp336.3] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractBacteria have contributed to the formation of minerals since the advent of life on Earth. Bacterial biomineralization plays a critical role on biogeochemical cycles and has important technological and environmental applications. Despite the numerous efforts to better understand how bacteria induce/mediate or control mineralization, our current knowledge is far from complete. Considering that the number of recent publications on bacterial biomineralization has been overwhelming, here we attempt to show the importance of bacteria–mineral interactions by focusing in a single bacterial genus, Myxococcus, which displays an unusual capacity of producing minerals of varying compositions and morphologies. First, an overview of the recent history of bacterial mineralization, the most common bacteriogenic minerals and current models on bacterial biomineralization is presented. Afterwards a description of myxobacteria is presented, followed by a section where Myxococcus-induced precipitation of a number of phosphates, carbonates, sulphates, chlorides, oxalates and silicates is described and discussed in lieu of the information presented in the first part. As concluding remarks, implications of bacterial mineralization and perspectives for future research are outlined. This review strives to show that the mechanisms which control bacterial biomineralization are not mineral- or bacterial-specific. On the contrary, they appear to be universal and depend on the environment in which bacteria dwell.
Collapse
Affiliation(s)
| | - Carlos Rodriguez-Navarro
- Departamento de Mineralogía y Petrología, Universidad de Granada, Fuentenueva s/n, 18002, Granada, Spain
| | - Francisca Martínez-Ruiz
- Instituto Andaluz de Ciencias de la Tierra, CSIC – Universidad de Granada, Fuentenueva s/n, 18002, Granada, Spain
| | - Jose Maria Arias
- Departamento de Microbiología, Universidad de Granada, Fuentenueva s/n, 18002, Granada, Spain
| | - Mohamed L. Merroun
- Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, D–01314, Dresden, Germany; Present address: Departamento de Microbiología, Universidad de Granada, Granada, Spain
| | - Manuel Rodriguez-Gallego
- Departamento de Mineralogía y Petrología, Universidad de Granada, Fuentenueva s/n, 18002, Granada, Spain
| |
Collapse
|
116
|
McGuinness ET. Some Molecular Moments of the Hadean and Archaean Aeons: A Retrospective Overview from the Interfacing Years of the Second to Third Millennia. Chem Rev 2010; 110:5191-215. [DOI: 10.1021/cr050061l] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eugene T. McGuinness
- Department of Chemistry & Biochemistry, Seton Hall University, South Orange, New Jersey 07079-2690
| |
Collapse
|
117
|
Abstract
Cyanobacteria are found worldwide, primarily in aquatic habitats. They are increasing in abundance as a result of increasing nutrient inputs from various human activities. Recent data indicate that most cyanobacteria produce the neurotoxin beta-N-methylamino-L-alanine (BMAA), and this toxin can biomagnify UP some food chains to rather high concentrations in animals used as food by humans. BMAA may pose an increasing human health risk.
Collapse
Affiliation(s)
- Larry E Brand
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, USA.
| |
Collapse
|
118
|
Papineau D. Global biogeochemical changes at both ends of the proterozoic: insights from phosphorites. ASTROBIOLOGY 2010; 10:165-181. [PMID: 20105035 DOI: 10.1089/ast.2009.0360] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The distribution of major phosphate deposits in the Precambrian sedimentary rock record is restricted to periods that witnessed global biogeochemical changes, but the cause of this distribution is unclear. The oldest known phosphogenic event occurred around 2.0 Ga and was followed, after more than 1.3 billion years, by an even larger phosphogenic event in the Neoproterozoic. Phosphorites (phosphate-rich sedimentary rocks that contain more than 15% P(2)O(5)) preserve a unique record of seawater chemistry, biological activity, and oceanographic changes. In an attempt to emphasize the potentially crucial significance of phosphorites in the evolution of Proterozoic biogeochemical cycles, this contribution provides a review of some important Paleoproterozoic phosphate deposits and of models proposed for their origin. A new model is then presented for the spatial and temporal modes of occurrence of phosphorites along with possible connections to global changes at both ends of the Proterozoic. Central to the new model is that periods of atmospheric oxygenation may have been caused by globally elevated rates of primary productivity stimulated by high fluxes of phosphorus delivery to seawater as a result of increased chemical weathering of continental crust over geological timescales. The striking similarities in biogeochemical evolution between the Paleo- and Neoproterozoic are discussed in light of the two oldest major phosphogenic events and their possible relation to the stepwise rise of atmospheric oxygen that ultimately resulted in significant leaps in biological evolution.
Collapse
Affiliation(s)
- Dominic Papineau
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015, USA.
| |
Collapse
|
119
|
Intermolecular disulfide bond to modulate protein function as a redox-sensing switch. Amino Acids 2010; 41:59-72. [DOI: 10.1007/s00726-010-0508-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 01/27/2010] [Indexed: 12/29/2022]
|
120
|
Renger G, Hanssum B. Oxygen detection in biological systems. PHOTOSYNTHESIS RESEARCH 2009; 102:487-98. [PMID: 19543804 DOI: 10.1007/s11120-009-9434-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 05/06/2009] [Indexed: 05/12/2023]
Abstract
This article presents a brief description of analytical tools for monitoring evolution and consumption of molecular dioxygen in biological organisms. Based on its nature as a gas and its physical and chemical properties of the ground state ³Σ(g)O₂; different approaches have been developed for quantitative determinations: (i) manometry, (ii) formation of titratable sediments, (iii) solid state electrodes, (iv) EPR oximetry, (v) luminescence quenching, (vi) biological sensoring, (vii) mass spectrometry and (viii) amperometry. Among these methods mass spectrometry and amperometry are of special relevance for studies on the mechanisms of photosynthetic dioxygen evolution. Mass spectrometry is described in the article of Beckman et al. in this special issue. Therefore, the major part of this contribution focuses on amperometric methods that are currently widely used. Two different types of electrodes are described: (i) Clark-type electrode and (ii) Joliot-type electrode. The complementary advantages of both systems are outlined. A more detailed description comprises the potential of the Joliot-type electrode for mechanistic studies on the reactivity of the different redox states of the water oxidizing complex (WOC).
Collapse
Affiliation(s)
- Gernot Renger
- Institut für Chemie, Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | | |
Collapse
|
121
|
Response of gram-positive bacteria to copper stress. J Biol Inorg Chem 2009; 15:3-14. [PMID: 19774401 DOI: 10.1007/s00775-009-0588-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 09/01/2009] [Indexed: 01/05/2023]
Abstract
The Gram-positive bacteria Enterococcus hirae, Lactococcus lactis, and Bacillus subtilis have received wide attention in the study of copper homeostasis. Consequently, copper extrusion by ATPases, gene regulation by copper, and intracellular copper chaperoning are understood in some detail. This has provided profound insight into basic principles of how organisms handle copper. It also emerged that many bacterial species may not require copper for life, making copper homeostatic systems pure defense mechanisms. Structural work on copper homeostatic proteins has given insight into copper coordination and bonding and has started to give molecular insight into copper handling in biological systems. Finally, recent biochemical work has shed new light on the mechanism of copper toxicity, which may not primarily be mediated by reactive oxygen radicals.
Collapse
|
122
|
Gribaldo S, Brochier C. Phylogeny of prokaryotes: does it exist and why should we care? Res Microbiol 2009; 160:513-21. [PMID: 19631737 DOI: 10.1016/j.resmic.2009.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 12/12/2022]
Abstract
Understanding microbial evolution is essential for gathering information on the most ancient events in the history of Life on our planet. Nevertheless, the idea that it is impossible to reconstruct the evolutionary history of prokaryotes because of horizontal gene transfer has become very popular. We review this important debate and how it can be solved.
Collapse
|
123
|
|
124
|
Crockford SJ. Evolutionary roots of iodine and thyroid hormones in cell-cell signaling. Integr Comp Biol 2009; 49:155-66. [PMID: 21669854 DOI: 10.1093/icb/icp053] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In vertebrates, thyroid hormones (THs, thyroxine, and triiodothyronine) are critical cell signaling molecules. THs regulate and coordinate physiology within and between cells, tissues, and whole organisms, in addition to controlling embryonic growth and development, via dose-dependent regulatory effects on essential genes. While invertebrates and plants do not have thyroid glands, many utilize THs for development, while others store iodine as TH derivatives or TH precursor molecules (iodotyrosines)-or produce similar hormones that act in analogous ways. Such common developmental roles for iodotyrosines across kingdoms suggest that a common endocrine signaling mechanism may account for coordinated evolutionary change in all multi-cellular organisms. Here, I expand my earlier hypothesis for the role of THs in vertebrate evolution by proposing a critical evolutionary role for iodine, the essential ingredient in all iodotyrosines and THs. Iodine is known to be crucial for life in many unicellular organisms (including evolutionarily ancient cyanobacteria), in part, because it acts as a powerful antioxidant. I propose that during the last 3-4 billion years, the ease with which various iodine species become volatile, react with simple organic compounds, and catalyze biochemical reactions explains why iodine became an essential constituent of life and the Earth's atmosphere-and a potential marker for the origins of life. From an initial role as membrane antioxidant and biochemical catalyst, spontaneous coupling of iodine with tyrosine appears to have created a versatile, highly reactive and mobile molecule, which over time became integrated into the machinery of energy production, gene function, and DNA replication in mitochondria. Iodotyrosines later coupled together to form THs, the ubiquitous cell-signaling molecules used by all vertebrates. Thus, due to their evolutionary history, THs, and their derivative and precursors molecules not only became essential for communicating within and between cells, tissues and organs, and for coordinating development and whole-body physiology in vertebrates, but they can also be shared between organisms from different kingdoms.
Collapse
Affiliation(s)
- Susan J Crockford
- Department of Anthropology, PO Box 3050 STN CSC, University of Victoria, British Columbia, Canada V8W 3P5
| |
Collapse
|
125
|
Banaszak AT, Lesser MP. Effects of solar ultraviolet radiation on coral reef organisms. Photochem Photobiol Sci 2009; 8:1276-94. [DOI: 10.1039/b902763g] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
126
|
Renger G, Renger T. Photosystem II: The machinery of photosynthetic water splitting. PHOTOSYNTHESIS RESEARCH 2008; 98:53-80. [PMID: 18830685 DOI: 10.1007/s11120-008-9345-7] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 07/29/2008] [Indexed: 05/26/2023]
Abstract
This review summarizes our current state of knowledge on the structural organization and functional pattern of photosynthetic water splitting in the multimeric Photosystem II (PS II) complex, which acts as a light-driven water: plastoquinone-oxidoreductase. The overall process comprises three types of reaction sequences: (1) photon absorption and excited singlet state trapping by charge separation leading to the ion radical pair [Formula: see text] formation, (2) oxidative water splitting into four protons and molecular dioxygen at the water oxidizing complex (WOC) with P680+* as driving force and tyrosine Y(Z) as intermediary redox carrier, and (3) reduction of plastoquinone to plastoquinol at the special Q(B) binding site with Q(A)-* acting as reductant. Based on recent progress in structure analysis and using new theoretical approaches the mechanism of reaction sequence (1) is discussed with special emphasis on the excited energy transfer pathways and the sequence of charge transfer steps: [Formula: see text] where (1)(RC-PC)* denotes the excited singlet state (1)P680* of the reaction centre pigment complex. The structure of the catalytic Mn(4)O(X)Ca cluster of the WOC and the four step reaction sequence leading to oxidative water splitting are described and problems arising for the electronic configuration, in particular for the nature of redox state S(3), are discussed. The unravelling of the mode of O-O bond formation is of key relevance for understanding the mechanism of the process. This problem is not yet solved. A multistate model is proposed for S(3) and the functional role of proton shifts and hydrogen bond network(s) is emphasized. Analogously, the structure of the Q(B) site for PQ reduction to PQH(2) and the energetic and kinetics of the two step redox reaction sequence are described. Furthermore, the relevance of the protein dynamics and the role of water molecules for its flexibility are briefly outlined. We end this review by presenting future perspectives on the water oxidation process.
Collapse
Affiliation(s)
- Gernot Renger
- Max Volmer Laboratory for Biophysical Chemistry, Berlin Institute of Technology, Berlin, Germany.
| | | |
Collapse
|
127
|
Syntrophic growth on formate: a new microbial niche in anoxic environments. Appl Environ Microbiol 2008; 74:6126-31. [PMID: 18708519 DOI: 10.1128/aem.01428-08] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaerobic syntrophic associations of fermentative bacteria and methanogenic archaea operate at the thermodynamic limits of life. The interspecies transfer of electrons from formate or hydrogen as a substrate for the methanogens is key. Contrary requirements of syntrophs and methanogens for growth-sustaining product and substrate concentrations keep the formate and hydrogen concentrations low and within a narrow range. Since formate is a direct substrate for methanogens, a niche for microorganisms that grow by the conversion of formate to hydrogen plus bicarbonate--or vice versa--may seem unlikely. Here we report experimental evidence for growth on formate by syntrophic communities of (i) Moorella sp. strain AMP in coculture with a thermophilic hydrogen-consuming Methanothermobacter species and of (ii) Desulfovibrio sp. strain G11 in coculture with a mesophilic hydrogen consumer, Methanobrevibacter arboriphilus AZ. In pure culture, neither Moorella sp. strain AMP, nor Desulfovibrio sp. strain G11, nor the methanogens grow on formate alone. These results imply the existence of a previously unrecognized microbial niche in anoxic environments.
Collapse
|
128
|
Global warming and cyanobacterial harmful algal blooms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 619:239-57. [PMID: 18461772 DOI: 10.1007/978-0-387-75865-7_11] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Earth and the oceans have warmed significantly over the past four decades, providing evidence that the Earth is undergoing long-term climate change. Increasing temperatures and changing rainfall patterns have been documented. Cyanobacteria have a long evolutionary history, with their first occurrence dating back at least 2.7 billion years ago. Cyanobacteria often dominated the oceans after past mass extinction events. They evolved under anoxic conditions and are well adapted to environmental stress including exposure to UV, high solar radiation and temperatures, scarce and abundant nutrients. These environmental conditions favor the dominance of cyanobacteria in many aquatic habitats, from freshwater to marine ecosystems. A few studies have examined the ecological consequences of global warming on cyanobacteria and other phytoplankton over the past decades in freshwater, estuarine, and marine environments, with varying results. The responses of cyanobacteria to changing environmental patterns associated with global climate change are important subjects for future research. Results of this research will have ecological and biogeochemical significance as well as management implications.
Collapse
|
129
|
Zhuravlev Y, Tuzinkevich A, Frisman E. Modelling the early events of primordial life. Ecol Modell 2008. [DOI: 10.1016/j.ecolmodel.2007.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
130
|
Abstract
Mitochondrial respiration is responsible for more than 90% of oxygen consumption in humans. Cells utilize oxygen as the final electron acceptor in the aerobic metabolism of glucose to generate ATP which fuels most active cellular processes. Consequently, a drop in tissue oxygen levels to the point where oxygen demand exceeds supply (termed hypoxia) leads rapidly to metabolic crisis and represents a severe threat to ongoing physiological function and ultimately, viability. Because of the central role of oxygen in metabolism, it is perhaps not surprising that we have evolved an efficient and rapid molecular response system which senses hypoxia in cells, leading to the induction of an array of adaptive genes which facilitate increased oxygen supply and support anaerobic ATP generation. This response is governed by HIF (hypoxia-inducible factor). The oxygen sensitivity of this pathway is conferred by a family of hydroxylases which repress HIF activity in normoxia allowing its rapid activation in hypoxia. Because of its importance in a diverse range of disease states, the mechanism by which cells sense hypoxia and transduce a signal to the HIF pathway is an area of intense investigation. Inhibition of mitochondrial function reverses hypoxia-induced HIF leading to speculation of a role for mitochondria in cellular oxygen sensing. However, the nature of the signal between mitochondria and oxygen-sensing hydroxylase enzymes has remained controversial. In the present review, two models of the role for mitochondria in oxygen sensing will be discussed and recent evidence will be presented which raises the possibility that these two models which implicate ROS (reactive oxygen species) and oxygen redistribution respectively may complement each other and facilitate rapid and dynamic activation of the HIF pathway in hypoxia.
Collapse
|
131
|
Moran JJ, House CH, Vrentas JM, Freeman KH. Methyl sulfide production by a novel carbon monoxide metabolism in Methanosarcina acetivorans. Appl Environ Microbiol 2008; 74:540-2. [PMID: 18024677 PMCID: PMC2223258 DOI: 10.1128/aem.01750-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 11/07/2007] [Indexed: 11/20/2022] Open
Abstract
We observed dimethyl sulfide and methanthiol production in pure incubations of the methanogen Methanosarcina acetivorans when carbon monoxide (CO) served as the only electron donor. Energy conservation likely uses sodium ion gradients for ATP synthesis. This novel metabolism permits utilization of CO by the methanogen, resulting in quantitative sulfide methylation.
Collapse
Affiliation(s)
- James J Moran
- School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
132
|
Williams RJP. A system's view of the evolution of life. J R Soc Interface 2007; 4:1049-70. [PMID: 17439861 PMCID: PMC2396344 DOI: 10.1098/rsif.2007.0225] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 02/19/2007] [Indexed: 11/12/2022] Open
Abstract
Previous treatments of biological evolution have concentrated upon either the general appearance or habits of organisms or the sequences of molecules, such as their proteins and DNA (RNA), within species. There is no consideration of the changing relationship of the chemistry of organisms to the elements and energy available from the environment. In essence, organisms at all times had to accumulate certain elements while rejecting others. Central to accumulation were C, N, H, P, S, K, Mg and Fe while, as ions, Na, Cl, Ca and other heavy metals were largely rejected. In order to form the vital biopolymers, C and H, from CO2 and H2O, had to be combined generating oxygen. The oxygen then slowly oxidized the environment over long periods of time. These environmental changes were relatively rapid, unconstrained and continuous, and they imposed a necessary sequential adaptation by organisms while increasing the use of energy. Then, evolution has a chemical direction in a combined organism/environment ecosystem. Joint organization of the initial reductive chemistry of cells and the later need to handle oxidative chemistry has also forced the complexity of chemistry of organism in compartments. The complexity increased to take full advantage of the environment from bacteria to humans in a logical, physical, compartmental and chemical sequence of the whole system. In one sense, rejected material can be looked upon as waste and, in the context of this article, leads to the consideration of the importance of waste from the activities of humankind.
Collapse
|
133
|
Williams RJP. Life, the environment and our ecosystem. J Inorg Biochem 2007; 101:1550-61. [PMID: 17709144 DOI: 10.1016/j.jinorgbio.2007.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 07/05/2007] [Accepted: 07/06/2007] [Indexed: 11/19/2022]
Abstract
This article is dedicated to Ed Stiefel who not only contributed with distinction to the development of biological inorganic chemistry with a special interest in molybdenum and its chemistry but had begun the long task of increasing our awareness of the difficulties mankind faces arising from damage to the environment. Here, I take up this theme in an effort to illustrate the nature of today's problems by putting them in the perspective of the whole of evolution of our ecosystem. The central theme is that evolution of organisms has always had to come to terms with the systematic development of the environment. In the past, environmental changes have been slow so that adaptation through genetic adjustment has had time to follow. In the last two hundred years change has become fast and the adaptive process rests not with genes but with mankind's physical-chemical control.
Collapse
Affiliation(s)
- R J P Williams
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
| |
Collapse
|
134
|
Kern J, Renger G. Photosystem II: structure and mechanism of the water:plastoquinone oxidoreductase. PHOTOSYNTHESIS RESEARCH 2007; 94:183-202. [PMID: 17634752 DOI: 10.1007/s11120-007-9201-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 05/16/2007] [Indexed: 05/07/2023]
Abstract
This mini-review briefly summarizes our current knowledge on the reaction pattern of light-driven water splitting and the structure of Photosystem II that acts as a water:plastoquinone oxidoreductase. The overall process comprises three types of reaction sequences: (a) light-induced charge separation leading to formation of the radical ion pair P680+*QA(-*) ; (b) reduction of plastoquinone to plastoquinol at the QB site via a two-step reaction sequence with QA(-*) as reductant and (c) oxidative water splitting into O2 and four protons at a manganese-containing catalytic site via a four-step sequence driven by P680+* as oxidant and a redox active tyrosine YZ acting as mediator. Based on recent progress in X-ray diffraction crystallographic structure analysis the array of the cofactors within the protein matrix is discussed in relation to the functional pattern. Special emphasis is paid on the structure of the catalytic sites of PQH2 formation (QB-site) and oxidative water splitting (Mn4OxCa cluster). The energetics and kinetics of the reactions taking place at these sites are presented only in a very concise manner with reference to recent up-to-date reviews. It is illustrated that several questions on the mechanism of oxidative water splitting and the structure of the catalytic sites are far from being satisfactorily answered.
Collapse
Affiliation(s)
- Jan Kern
- Institut für Chemie, Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany.
| | | |
Collapse
|
135
|
Free A, Barton NH. Do evolution and ecology need the Gaia hypothesis? Trends Ecol Evol 2007; 22:611-9. [PMID: 17954000 DOI: 10.1016/j.tree.2007.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 07/06/2007] [Accepted: 07/06/2007] [Indexed: 11/27/2022]
Abstract
Gaia theory, which describes the life-environment system of the Earth as stable and self-regulating, has remained at the fringes of mainstream biological science owing to its historically inadequate definition and apparent incompatibility with individual-level natural selection. The key issue is whether and why the biosphere might tend towards stability and self-regulation. We review the various ways in which these issues have been addressed by evolutionary and ecological theory, and relate these to 'Gaia theory'. We then ask how this theory extends the perspectives offered by these disciplines, and how it might be tested by novel modelling approaches and laboratory experiments using emergent technologies.
Collapse
Affiliation(s)
- Andrew Free
- Centre for the Study of Environmental Change and Sustainability, University of Edinburgh, Edinburgh, EH9 3JN, UK.
| | | |
Collapse
|
136
|
Wong JTF, Chen J, Mat WK, Ng SK, Xue H. Polyphasic evidence delineating the root of life and roots of biological domains. Gene 2007; 403:39-52. [PMID: 17884304 DOI: 10.1016/j.gene.2007.07.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 12/29/2022]
Abstract
Twenty different lines of polyphasic evidence obtained from tRNA and protein sequences, anticodon usages, gene contents, metabolism and geochemistry have made possible the identification of a Last Universal Common Ancestor (LUCA) phylogenetically located proximal to the hyperthermophilic methanogenic archaeon Methanopyrus. Combined with analysis of high-similarity cross-domain tRNA pairs, the evidence also suggests a Thermotoga-proximal Last Bacterial Common Ancestor (LBACA) that originated from Crenarchaeota close to Aeropyrum, and a Plasmodium-proximal Last Eukaryotic Common Ancestor (LECA) derived from Ferroplasma through endosymbiosis.
Collapse
Affiliation(s)
- J Tze-Fei Wong
- Department of Biochemistry and Applied Genomics Center, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China.
| | | | | | | | | |
Collapse
|
137
|
Kirillova MV, Kuznetsov ML, Reis PM, da Silva JAL, da Silva JJRF, Pombeiro AJL. Direct and Remarkably Efficient Conversion of Methane into Acetic Acid Catalyzed by Amavadine and Related Vanadium Complexes. A Synthetic and a Theoretical DFT Mechanistic Study. J Am Chem Soc 2007; 129:10531-45. [PMID: 17676842 DOI: 10.1021/ja072531u] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Vanadium(IV or V) complexes with N,O- or O,O-ligands, i.e., [VO{N(CH2CH2O)3}], Ca[V(HIDPA)2] (synthetic amavadine), Ca[V(HIDA)2], or [Bu4N]2[V(HIDA)2] [HIDPA, HIDA = basic form of 2,2'-(hydroxyimino)dipropionic or -diacetic acid, respectively], [VO(CF3SO3)2], Ba[VO(nta)(H2O)]2 (nta = nitrilotriacetate), [VO(ada)(H2O)] (ada = N-2-acetamidoiminodiacetate), [VO(Hheida)(H2O)] (Hheida = 2-hydroxyethyliminodiacetate), [VO(bicine)] [bicine = basic form of N,N-bis(2-hydroxyethyl)glycine], and [VO(dipic)(OCH2CH3)] (dipic = pyridine-2,6-dicarboxylate), are catalyst precursors for the efficient single-pot conversion of methane into acetic acid, in trifluoroacetic acid (TFA) under moderate conditions, using peroxodisulfate as oxidant. Effects on the yields and TONs of various factors are reported. TFA acts as a carbonylating agent and CO is an inhibitor for some systems, although for others there is an optimum CO pressure. The most effective catalysts (as amavadine) bear triethanolaminate or (hydroxyimino)dicarboxylates and lead, in a single batch, to CH3COOH yields > 50% (based on CH4) or remarkably high TONs up to 5.6 x 103. The catalyst can remain active upon multiple recycling of its solution. Carboxylation proceeds via free radical mechanisms (CH3* can be trapped by CBrCl3), and theoretical calculations disclose a particularly favorable process involving the sequential formation of CH3*, CH3CO*, and CH3COO* which, upon H-abstraction (from TFA or CH4), yields acetic acid. The CH3COO* radical is formed by oxygenation of CH3CO* by a peroxo-V complex via a V{eta1-OOC(O)CH3} intermediate. Less favorable processes involve the oxidation of CH3CO* by the protonated (hydroperoxo) form of that peroxo-V complex or by peroxodisulfate. The calculations also indicate that (i) peroxodisulfate behaves as a source of sulfate radicals which are methane H-abstractors, as a peroxidative and oxidizing agent for vanadium, and as an oxidizing and coupling agent for CH3CO* and that (ii) TFA is involved in the formation of CH3COOH (by carbonylating CH3*, acting as an H-source to CH3COO*, and enhancing on protonation the oxidizing power of a peroxo-VV complex) and of CF3COOCH3 (minor product in the absence of CO).
Collapse
Affiliation(s)
- Marina V Kirillova
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
138
|
Renger G. Oxidative photosynthetic water splitting: energetics, kinetics and mechanism. PHOTOSYNTHESIS RESEARCH 2007; 92:407-25. [PMID: 17647091 DOI: 10.1007/s11120-007-9185-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 04/19/2007] [Indexed: 05/16/2023]
Abstract
This minireview is an attempt to summarize our current knowledge on oxidative water splitting in photosynthesis. Based on the extended Kok model (Kok, Forbush, McGloin (1970) Photochem Photobiol 11:457-476) as a framework, the energetics and kinetics of two different types of reactions comprising the overall process are discussed: (i) P680+* reduction by the redox active tyrosine YZ of polypeptide D1 and (ii) Yz (ox) induced oxidation of the four step sequence in the water oxidizing complex (WOC) leading to the formation of molecular oxygen. The mode of coupling between electron transport (ET) and proton transfer (PT) is of key mechanistic relevance for the redox turnover of YZ and the reactions within the WOC. The peculiar energetics of the oxidation steps in the WOC assure that redox state S1 is thermodynamically most stable. This is a general feature in all oxygen evolving photosynthetic organisms and assumed to be of physiological relevance. The reaction coordinate of oxidative water splitting is discussed on the basis of the available information about the Gibbs energy differences between the individual redox states Si+1 and Si and the data reported for the activation energies of the individual oxidation steps in the WOC. Finally, an attempt is made to cast our current state of knowledge into a mechanism of oxidative water splitting with special emphasis on the formation of the essential O-O bond and on the active role of the protein in tuning the local proton activity that depends on time and redox state Si. The O-O linkage is assumed to take place at the level of a complexed peroxide.
Collapse
Affiliation(s)
- Gernot Renger
- Technische Universität Berlin, Institut für Chemie, Max-Volmer-Laboratorium für Biophysikalische Chemie, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
139
|
Hendrickson EL, Haydock AK, Moore BC, Whitman WB, Leigh JA. Functionally distinct genes regulated by hydrogen limitation and growth rate in methanogenic Archaea. Proc Natl Acad Sci U S A 2007; 104:8930-4. [PMID: 17502615 PMCID: PMC1885605 DOI: 10.1073/pnas.0701157104] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The use of molecular hydrogen as electron donor for energy generation is a defining characteristic of the hydrogenotrophic methanogens, an ancient group that dominates the phylum Euryarchaeota. We present here a global study of changes in mRNA abundance in response to hydrogen availability for a hydrogenotrophic methanogen. Cells of Methanococcus maripaludis were grown by using continuous culture to deconvolute the effects of hydrogen limitation and growth rate, and microarray analyses were conducted. Hydrogen limitation markedly increased mRNA levels for genes encoding enzymes of the methanogenic pathway that reduce or oxidize the electron-carrying deazaflavin, coenzyme F(420). F(420)-dependent redox functions in energy-generating metabolism are characteristic of the methanogenic Archaea, and the results show that their regulation is distinct from other redox processes in the cell. Rapid growth increased mRNA levels of the gene for an unusual hydrogenase, the hydrogen-dependent methylenetetrahydromethanopterin dehydrogenase.
Collapse
Affiliation(s)
- Erik L. Hendrickson
- *Department of Microbiology, University of Washington, Seattle, WA 98195; and
| | - Andrew K. Haydock
- *Department of Microbiology, University of Washington, Seattle, WA 98195; and
| | - Brian C. Moore
- *Department of Microbiology, University of Washington, Seattle, WA 98195; and
| | | | - John A. Leigh
- *Department of Microbiology, University of Washington, Seattle, WA 98195; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
140
|
Abstract
Numerous hypotheses about how life on earth could have started can be found in the literature. In this article, we give an overview about the most widespread ones and try to point out which of them might have occurred on the primordial earth with highest probability from a chemical point of view. The idea that a very early stage of life was the "RNA world" encounters crucial problems concerning the formation of its building blocks and their stability in a prebiotic environment. Instead, it seems much more likely that a "peptide world" originated first and that RNA and DNA took up their part at a much later stage. It is shown that amino acids and peptides can be easily formed in a realistic primordial scenario and that these biomolecules can start chemical evolution without the help of RNA. The origin of biohomochirality seems strongly related to the most probable formation of the first peptides via the salt-induced peptide formation (SIPF) reaction.
Collapse
|
141
|
Abstract
A methanogenic archaeon isolated from deep-sea hydrothermal vent fluid was found to reduce N(2) to NH(3) at up to 92 degrees C, which is 28 degrees C higher than the current upper temperature limit of biological nitrogen fixation. The 16S ribosomal RNA gene of the hyperthermophilic nitrogen fixer, designated FS406-22, was 99% similar to that of non-nitrogen fixing Methanocaldococcus jannaschii DSM 2661. At its optimal growth temperature of 90 degrees C, FS406-22 incorporated (15)N(2) and expressed nifH messenger RNA. This increase in the temperature limit of nitrogen fixation could reveal a broader range of conditions for life in the subseafloor biosphere and other nitrogen-limited ecosystems than previously estimated.
Collapse
Affiliation(s)
- Mausmi P Mehta
- School of Oceanography, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
142
|
Renger G, Kühn P. Reaction pattern and mechanism of light induced oxidative water splitting in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1767:458-71. [PMID: 17428439 DOI: 10.1016/j.bbabio.2006.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 12/08/2006] [Accepted: 12/13/2006] [Indexed: 11/18/2022]
Abstract
This mini review is an attempt to briefly summarize our current knowledge on light driven oxidative water splitting in photosynthesis. The reaction leading to molecular oxygen and four protons via photosynthesis comprises thermodynamic and kinetic constraints that require a balanced fine tuning of the reaction coordinates. The mode of coupling between electron (ET) and proton transfer (PT) reactions is shown to be of key mechanistic relevance for the redox turnover of Y(Z) and the reactions within the WOC. The WOC is characterized by peculiar energetics of its oxidation steps in the WOC. In all oxygen evolving photosynthetic organisms the redox state S(1) is thermodynamically most stable and therefore this general feature is assumed to be of physiological relevance. Available information on the Gibbs energy differences between the individual redox states S(i+1) and S(i) and on the activation energies of their oxidative transitions are used to construct a general reaction coordinate of oxidative water splitting in photosystem II (PS II). Finally, an attempt is presented to cast our current state of knowledge into a mechanism of oxidative water splitting with special emphasis on the formation of the essential O-O bond and the active role of the protein environment in tuning the local proton activity that depends on time and redox state S(i). The O-O linkage is assumed to take place within a multistate equilibrium at the redox level of S(3), comprising both redox isomerism and proton tautomerism. It is proposed that one state, S(3)(P), attains an electronic configuration and nuclear geometry that corresponds with a hydrogen bonded peroxide which acts as the entatic state for the generation of complexed molecular oxygen through S(3)(P) oxidation by Y(Z)(ox).
Collapse
Affiliation(s)
- Gernot Renger
- Technische Universität Berlin, Institut für Chemie, Max-Volmer-Laboratorium für Biophysikalische Chemie, Strasse des 17.Juni 135, D-10623 Berlin, Germany.
| | | |
Collapse
|
143
|
|
144
|
Eigenbrode JL, Freeman KH. Late Archean rise of aerobic microbial ecosystems. Proc Natl Acad Sci U S A 2006; 103:15759-64. [PMID: 17043234 PMCID: PMC1635076 DOI: 10.1073/pnas.0607540103] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Indexed: 11/18/2022] Open
Abstract
We report the (13)C content of preserved organic carbon for a 150 million-year section of late Archean shallow and deepwater sediments of the Hamersley Province in Western Australia. We find a (13)C enrichment of approximately 10 per thousand in organic carbon of post-2.7-billion-year-old shallow-water carbonate rocks relative to deepwater sediments. The shallow-water organic-carbon (13)C content has a 29 per thousand range in values (-57 to -28 per thousand), and it contrasts with the less variable but strongly (13)C-depleted (-40 to -45 per thousand) organic carbon in deepwater sediments. The (13)C enrichment likely represents microbial habitats not as strongly influenced by assimilation of methane or other (13)C-depleted substrates. We propose that continued oxidation of shallow settings favored the expansion of aerobic ecosystems and respiring organisms, and, as a result, isotopic signatures of preserved organic carbon in shallow settings approached that of photosynthetic biomass. Facies analysis of published carbon-isotopic records indicates that the Hamersley shallow-water signal may be representative of a late Archean global signature and that it preceded a similar, but delayed, (13)C enrichment of deepwater deposits. The data suggest that a global-scale expansion of oxygenated habitats accompanied the progression away from anaerobic ecosystems toward respiring microbial communities fueled by oxygenic photosynthesis before the oxygenation of the atmosphere after 2.45 billion years ago.
Collapse
Affiliation(s)
- Jennifer L Eigenbrode
- Department of Geosciences and Penn State Astrobiology Research Center, Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
145
|
Aller MA, Arias JL, Arias JI, Sánchez-Patán F, Arias J. The inflammatory response recapitulates phylogeny through trophic mechanisms to the injured tissue. Med Hypotheses 2006; 68:202-9. [PMID: 16963191 DOI: 10.1016/j.mehy.2006.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 06/16/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
The post-traumatic local acute inflammatory response is described as a succession of three functional phases of possible trophic significance: 1. Nervous or immediate (ischemia-reperfusion); 2. Immune or intermediate (infiltration by inflammatory and bacterial cells) and 3. Endocrine or late (angiogenesis with regeneration and/or cicatrization). Each of these phases emphasizes the trophic role of the mechanisms in the damaged tissue. Hence, the nervous phase is predominated by nutrition by diffusion; in the immune phase trophism is mediated by inflammatory cells and bacteria and, finally, in the endocrine phase, the blood circulation and oxidative metabolism play the most significant nutritive role. Since these trophic mechanisms are of increasing complexity, progressing from anoxia to total specialization in the use of oxygen to obtain usable energy, it could be speculated that they represent the successive reappearance of the stages that take place during the evolution of life on Earth, from ancient times without oxygen. In this sense, the inflammatory response could recapitulate phylogeny through the successive expression of pathophysiologic mechanisms that have a trophic meaning to the injured tissue.
Collapse
Affiliation(s)
- M A Aller
- Surgery Department, School of Medicine, Complutense University of Madrid, Spain
| | | | | | | | | |
Collapse
|
146
|
Cavalier-Smith T. Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc Lond B Biol Sci 2006; 361:969-1006. [PMID: 16754610 PMCID: PMC1578732 DOI: 10.1098/rstb.2006.1842] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This synthesis has three main parts. The first discusses the overall tree of life and nature of the last common ancestor (cenancestor). I emphasize key steps in cellular evolution important for ordering and timing the major evolutionary innovations in the history of the biosphere, explaining especially the origins of the eukaryote cell and of bacterial flagella and cell envelope novelties. Second, I map the tree onto the fossil record and discuss dates of key events and their biogeochemical impact. Finally, I present a broad synthesis, discussing evidence for a three-phase history of life. The first phase began perhaps ca 3.5 Gyr ago, when the origin of cells and anoxic photosynthesis generated the arguably most primitive prokaryote phylum, Chlorobacteria (= Chloroflexi), the first negibacteria with cells bounded by two acyl ester phospholipid membranes. After this 'chlorobacterial age' of benthic anaerobic evolution protected from UV radiation by mineral grains, two momentous quantum evolutionary episodes of cellular innovation and microbial radiation dramatically transformed the Earth's surface: the glycobacterial revolution initiated an oxygenic 'age of cyanobacteria' and, as the ozone layer grew, the rise of plankton; immensely later, probably as recently as ca 0.9 Gyr ago, the neomuran revolution ushered in the 'age of eukaryotes', Archaebacteria (arguably the youngest bacterial phylum), and morphological complexity. Diversification of glycobacteria ca 2.8 Gyr ago, predominantly inhabiting stratified benthic mats, I suggest caused serial depletion of 13C by ribulose 1,5-bis-phosphate caboxylase/oxygenase (Rubisco) to yield ultralight late Archaean organic carbon formerly attributed to methanogenesis plus methanotrophy. The late origin of archaebacterial methanogenesis ca 720 Myr ago perhaps triggered snowball Earth episodes by slight global warming increasing weathering and reducing CO2 levels, to yield runaway cooling; the origin of anaerobic methane oxidation ca 570 Myr ago reduced methane flux at source, stabilizing Phanerozoic climates. I argue that the major cellular innovations exhibit a pattern of quantum evolution followed by very rapid radiation and then substantial stasis, as described by Simpson. They yielded organisms that are a mosaic of extremely conservative and radically novel features, as characterized by De Beer's phrase 'mosaic evolution'. Evolution is not evenly paced and there are no real molecular clocks.
Collapse
|
147
|
Cavalier-Smith T. Rooting the tree of life by transition analyses. Biol Direct 2006; 1:19. [PMID: 16834776 PMCID: PMC1586193 DOI: 10.1186/1745-6150-1-19] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 07/11/2006] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Despite great advances in clarifying the family tree of life, it is still not agreed where its root is or what properties the most ancient cells possessed--the most difficult problems in phylogeny. Protein paralogue trees can theoretically place the root, but are contradictory because of tree-reconstruction artefacts or poor resolution; ribosome-related and DNA-handling enzymes suggested one between neomura (eukaryotes plus archaebacteria) and eubacteria, whereas metabolic enzymes often place it within eubacteria but in contradictory places. Palaeontology shows that eubacteria are much more ancient than eukaryotes, and, together with phylogenetic evidence that archaebacteria are sisters not ancestral to eukaryotes, implies that the root is not within the neomura. Transition analysis, involving comparative/developmental and selective arguments, can polarize major transitions and thereby systematically exclude the root from major clades possessing derived characters and thus locate it; previously the 20 shared neomuran characters were thus argued to be derived, but whether the root was within eubacteria or between them and archaebacteria remained controversial. RESULTS I analyze 13 major transitions within eubacteria, showing how they can all be congruently polarized. I infer the first fully resolved prokaryote tree, with a basal stem comprising the new infrakingdom Glidobacteria (Chlorobacteria, Hadobacteria, Cyanobacteria), which is entirely non-flagellate and probably ancestrally had gliding motility, and two derived branches (Gracilicutes and Unibacteria/Eurybacteria) that diverged immediately following the origin of flagella. Proteasome evolution shows that the universal root is outside a clade comprising neomura and Actinomycetales (proteates), and thus lies within other eubacteria, contrary to a widespread assumption that it is between eubacteria and neomura. Cell wall and flagellar evolution independently locate the root outside Posibacteria (Actinobacteria and Endobacteria), and thus among negibacteria with two membranes. Posibacteria are derived from Eurybacteria and ancestral to neomura. RNA polymerase and other insertions strongly favour the monophyly of Gracilicutes (Proteobacteria, Planctobacteria, Sphingobacteria, Spirochaetes). Evolution of the negibacterial outer membrane places the root within Eobacteria (Hadobacteria and Chlorobacteria, both primitively without lipopolysaccharide): as all phyla possessing the outer membrane beta-barrel protein Omp85 are highly probably derived, the root lies between them and Chlorobacteria, the only negibacteria without Omp85, or possibly within Chlorobacteria. CONCLUSION Chlorobacteria are probably the oldest and Archaebacteria the youngest bacteria, with Posibacteria of intermediate age, requiring radical reassessment of dominant views of bacterial evolution. The last ancestor of all life was a eubacterium with acyl-ester membrane lipids, large genome, murein peptidoglycan walls, and fully developed eubacterial molecular biology and cell division. It was a non-flagellate negibacterium with two membranes, probably a photosynthetic green non-sulphur bacterium with relatively primitive secretory machinery, not a heterotrophic posibacterium with one membrane.
Collapse
|
148
|
Abstract
Cyanobacteria such as Synechococcus elongatus PCC 7942, Thermosynechococcus elongatus BP-1, and Synechocystis species strain PCC 6803 have an endogenous timing mechanism that can generate and maintain a 24 h (circadian) periodicity to global (whole genome) gene expression patterns. This rhythmicity extends to many other physiological functions, including chromosome compaction. These rhythmic patterns seem to reflect the periodicity of availability of the primary energy source for these photoautotrophic organisms, the Sun. Presumably, eons of environmentally derived rhythmicity--light/dark cycles--have simply been mechanistically incorporated into the regulatory networks of these cyanobacteria. Genetic and biochemical experimentation over the last 15 years has identified many key components of the primary timing mechanism that generates rhythmicity, the input pathways that synchronize endogenous rhythms to exogenous rhythms, and the output pathways that transduce temporal information from the timekeeper to the regulators of gene expression and function. Amazingly, the primary timing mechanism has evidently been extracted from S. elongatus PCC 7942 and can also keep time in vitro. Mixing the circadian clock proteins KaiA, KaiB, and KaiC from S. elongatus PCC 7942 in vitro and adding ATP results in a circadian rhythm in the KaiC protein phosphorylation state. Nonetheless, many questions still loom regarding how this circadian clock mechanism works, how it communicates with the environment and how it regulates temporal patterns of gene expression. Many details regarding structure and function of the individual clock-related proteins are provided here as a basis to discuss these questions. A strong, data-intensive foundation has been developed to support the working model for the cyanobacterial circadian regulatory system. The eventual addition to that model of the metabolic parameters participating in the command and control of this circadian global regulatory system will ultimately allow a fascinating look into whole-cell physiology and metabolism and the consequential organization of global gene expression patterns.
Collapse
Affiliation(s)
- Stanly B Williams
- Department of Biology, Life Science Building, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
149
|
Abstract
Oxidative stress-the production and accumulation of reduced oxygen intermediates such as superoxide radicals, singlet oxygen, hydrogen peroxide, and hydroxyl radicals-can damage lipids, proteins, and DNA. Many disease processes of clinical interest and the aging process involve oxidative stress in their underlying etiology. The production of reactive oxygen species is also prevalent in the world's oceans, and oxidative stress is an important component of the stress response in marine organisms exposed to a variety of insults as a result of changes in environmental conditions such as thermal stress, exposure to ultraviolet radiation, or exposure to pollution. As in the clinical setting, reactive oxygen species are also important signal transduction molecules and mediators of damage in cellular processes, such as apoptosis and cell necrosis, for marine organisms. This review brings together the voluminous literature on the biochemistry and physiology of oxidative stress from the clinical and plant physiology disciplines with the fast-increasing interest in oxidative stress in marine environments.
Collapse
Affiliation(s)
- Michael P Lesser
- Department of Zoology and Center for Marine Biology, University of New Hampshire, Durham, NH 03824, USA.
| |
Collapse
|
150
|
Linnanto J, Korppi-Tommola J. Quantum chemical simulation of excited states of chlorophylls, bacteriochlorophylls and their complexes. Phys Chem Chem Phys 2005; 8:663-87. [PMID: 16482307 DOI: 10.1039/b513086g] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present review describes the use of quantum chemical methods in estimation of structures and electronic transition energies of photosynthetic pigments in vacuum, in solution and imbedded in proteins. Monomeric Mg-porphyrins, chlorophylls and bacteriochlorophylls and their solvent 1:1 and 1:2 complexes were studied. Calculations were performed for Mg-porphyrin, Mg-chlorin, Mg-bacteriochlorin, mesochlorophyll a, chlorophylls a, b, c(1), c(2), c(3), d and bacteriochlorophylls a, b, c, d, e, f, g, h, plus several homologues. Geometries were optimised with PM3, PM3/CISD, PM5, ab initio HF (6-31G*/6-311G**) and density functional B3LYP (6-31G*/6-311G**) methods. Spectroscopic transition energies were calculated with ZINDO/S CIS, PM3 CIS, PM3 CISD, ab initio CIS, time-dependent HF and time-dependent B3LYP methods. Estimates for experimental transition energies were obtained from linear correlations of the calculated transition energies of 1:1 solvent complexes against experimentally recorded solution energies (scaling). According to the calculations in five-coordinated solvent complexes the magnesium atom lies out of the porphyrin plane, while in six-coordinated complexes the porphyrin is nearly planar. Charge densities on magnesium and nitrogen atoms were strongly dependent on the computational method deployed. Several dark states of low oscillator strength below the main Soret band were predicted for solvent complexes and chlorophylls and bacteriochlorophylls in protein environment. Such states, though not yet identified experimentally, might serve as intermediate states for excitation energy transfer in photosynthetic complexes. Q(y), Q(x) and Soret transition energies were found to depend on the orientation of the acetyl group and external pressure. A method to estimate site energies and dimeric interaction energies and to simulate absorption and CD spectra of photosynthetic complexes is described. Simulations for the light harvesting complexes Rhodospirillum molischianum, chlorosomes of Chlorobium tepidum and Chloroflexus aurantiacus, and LHC-II of Spinacia oleracea are presented as examples.
Collapse
Affiliation(s)
- Juha Linnanto
- Physical Chemistry Laboratory, University of Jyväskylä, P.O. Box 35, FIN-40014, Finland.
| | | |
Collapse
|