101
|
Chen Y, Saulnier JL, Yellen G, Sabatini BL. A PKA activity sensor for quantitative analysis of endogenous GPCR signaling via 2-photon FRET-FLIM imaging. Front Pharmacol 2014; 5:56. [PMID: 24765076 PMCID: PMC3980114 DOI: 10.3389/fphar.2014.00056] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/14/2014] [Indexed: 11/13/2022] Open
Abstract
Neuromodulators have profound effects on behavior, but the dynamics of their intracellular effectors has remained unclear. Most neuromodulators exert their function via G-protein-coupled receptors (GPCRs). One major challenge for understanding neuromodulator action is the lack of dynamic readouts of the biochemical signals produced by GPCR activation. The adenylate cyclase/cyclic AMP/protein kinase A (PKA) module is a central component of such biochemical signaling. This module is regulated by several behaviorally important neuromodulator receptors. Furthermore, PKA activity is necessary for the induction of many forms of synaptic plasticity as well as for the formation of long-term memory. In order to monitor PKA activity in brain tissue, we have developed a 2-photon fluorescence lifetime imaging microscopy (2pFLIM) compatible PKA sensor termed FLIM-AKAR, which is based on the ratiometric FRET sensor AKAR3. FLIM-AKAR shows a large dynamic range and little pH sensitivity. In addition, it is a rapidly diffusible cytoplasmic protein that specifically reports net PKA activity in situ. FLIM-AKAR expresses robustly in various brain regions with multiple transfection methods, can be targeted to genetically identified cell types, and responds to activation of both endogenous GPCRs and spatial-temporally specific delivery of glutamate. Initial experiments reveal differential regulation of PKA activity across subcellular compartments in response to neuromodulator inputs. Therefore, the reporter FLIM-AKAR, coupled with 2pFLIM, enables the study of PKA activity in response to neuromodulator inputs in genetically identified neurons in the brain, and sheds light on the intracellular dynamics of endogenous GPCR activation.
Collapse
Affiliation(s)
- Yao Chen
- Howard Hughes Medical Institute Boston, MA, USA ; Department of Neurobiology, Harvard Medical School Boston, MA, USA
| | - Jessica L Saulnier
- Howard Hughes Medical Institute Boston, MA, USA ; Department of Neurobiology, Harvard Medical School Boston, MA, USA
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School Boston, MA, USA
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute Boston, MA, USA ; Department of Neurobiology, Harvard Medical School Boston, MA, USA
| |
Collapse
|
102
|
Dendritic integration in pyramidal neurons during network activity and disease. Brain Res Bull 2014; 103:2-10. [DOI: 10.1016/j.brainresbull.2013.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022]
|
103
|
Ma XM, Miller MB, Vishwanatha KS, Gross MJ, Wang Y, Abbott T, Lam TT, Mains RE, Eipper BA. Nonenzymatic domains of Kalirin7 contribute to spine morphogenesis through interactions with phosphoinositides and Abl. Mol Biol Cell 2014; 25:1458-71. [PMID: 24600045 PMCID: PMC4004595 DOI: 10.1091/mbc.e13-04-0215] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Like several Rho GDP/GTP exchange factors (GEFs), Kalirin7 (Kal7) contains an N-terminal Sec14 domain and multiple spectrin repeats. A natural splice variant of Kalrn lacking the Sec14 domain and four spectrin repeats is unable to increase spine formation; our goal was to understand the function of the Sec14 and spectrin repeat domains. Kal7 lacking its Sec14 domain still increased spine formation, but the spines were short. Strikingly, Kal7 truncation mutants containing only the Sec14 domain and several spectrin repeats increased spine formation. The Sec14 domain bound phosphoinositides, a minor but crucial component of cellular membranes, and binding was increased by a phosphomimetic mutation. Expression of KalSec14-GFP in nonneuronal cells impaired receptor-mediated endocytosis, linking Kal7 to membrane trafficking. Consistent with genetic studies placing Abl, a non-receptor tyrosine kinase, and the Drosophila orthologue of Kalrn into the same signaling pathway, Abl1 phosphorylated two sites in the fourth spectrin repeat of Kalirin, increasing its sensitivity to calpain-mediated degradation. Treating cortical neurons of the wild-type mouse, but not the Kal7(KO) mouse, with an Abl inhibitor caused an increase in linear spine density. Phosphorylation of multiple sites in the N-terminal Sec14/spectrin region of Kal7 may allow coordination of the many signaling pathways contributing to spine morphogenesis.
Collapse
Affiliation(s)
- Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030 WM Keck Foundation Biotechnology Resource Laboratory, Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 2014; 94:141-88. [PMID: 24382885 DOI: 10.1152/physrev.00012.2013] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The introduction of high-resolution time lapse imaging and molecular biological tools has changed dramatically the rate of progress towards the understanding of the complex structure-function relations in synapses of central spiny neurons. Standing issues, including the sequence of molecular and structural processes leading to formation, morphological change, and longevity of dendritic spines, as well as the functions of dendritic spines in neurological/psychiatric diseases are being addressed in a growing number of recent studies. There are still unsettled issues with respect to spine formation and plasticity: Are spines formed first, followed by synapse formation, or are synapses formed first, followed by emergence of a spine? What are the immediate and long-lasting changes in spine properties following exposure to plasticity-producing stimulation? Is spine volume/shape indicative of its function? These and other issues are addressed in this review, which highlights the complexity of molecular pathways involved in regulation of spine structure and function, and which contributes to the understanding of central synaptic interactions in health and disease.
Collapse
|
105
|
Seong HJ, Behnia R, Carter AG. Impact of subthreshold membrane potential on synaptic responses at dendritic spines of layer 5 pyramidal neurons in the prefrontal cortex. J Neurophysiol 2014; 111:1960-72. [PMID: 24478153 DOI: 10.1152/jn.00590.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamatergic inputs onto cortical pyramidal neurons are received and initially processed at dendritic spines. AMPA and NMDA receptors generate both synaptic potentials and calcium (Ca) signals in the spine head. These responses can in turn activate a variety of Ca, sodium (Na), and potassium (K) channels at spines. In principle, the roles of these receptors and channels can be strongly regulated by the subthreshold membrane potential. However, the impact of different receptors and channels has usually been studied at the level of dendrites. Much less is known about their influence at spines, where synaptic transmission and plasticity primarily occur. Here we examine single-spine responses in the basal dendrites of layer 5 pyramidal neurons in the mouse prefrontal cortex. Using two-photon microscopy and two-photon uncaging, we first show that synaptic potentials and Ca signals differ at resting and near-threshold potentials. We then determine how subthreshold depolarizations alter the contributions of AMPA and NMDA receptors to synaptic responses. We show that voltage-sensitive Ca channels enhance synaptic Ca signals but fail to engage small-conductance Ca-activated K (SK) channels, which require greater numbers of inputs. Finally, we establish how the subthreshold membrane potential controls the ability of voltage-sensitive Na channels and K channels to influence synaptic responses. Our findings reveal how subthreshold depolarizations promote electrical and biochemical signaling at dendritic spines by regulating the contributions of multiple glutamate receptors and ion channels.
Collapse
Affiliation(s)
- Hannah J Seong
- Center for Neural Science, New York University, New York, New York; and
| | - Rudy Behnia
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York
| | - Adam G Carter
- Center for Neural Science, New York University, New York, New York; and
| |
Collapse
|
106
|
|
107
|
da Costa NM. Diversity of thalamorecipient spine morphology in cat visual cortex and its implication for synaptic plasticity. J Comp Neurol 2013. [PMID: 23184851 DOI: 10.1002/cne.23272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A feature of spine synapses is the existence of a neck connecting the synapse on the spine head to the dendritic shaft. As with a cable, spine neck resistance (R(neck)) increases with increasing neck length and is inversely proportional to the cross-sectional area of the neck. A synaptic current entering a spine with a high R(neck) will lead to greater local depolarization in the spine head than would a similar input applied to a spine with a lower R(neck). This could make spines with high R(neck) more sensitive to plastic changes since voltage sensitive conductances, such as N-methyl-D-aspartic acid (NMDA) channels can be more easily activated. This hypothesis was tested using serial section electron microscopic reconstructions of thalamocortical spine synapses and spine necks located on spiny stellate cells and corticothalamic cells from area 17 of cats. Thalamic axons and corticothalamic neurons were labeled by injections of the tracer biotinylated dextran amine (BDA) in the dorsal lateral geniculate nucleus (dLGN) of anesthetized cats and spiny stellates were filled intracellularly in vivo with horseradish peroxidase. Twenty-eight labeled spines that formed synapses with dLGN boutons were collected from three spiny stellate and four corticothalamic cells and reconstructed in 3D from serial electron micrographs. Spine length, spine diameter, and the area of the postsynaptic density were measured from the 3D reconstructions and R(neck) of the spine was estimated. No correlation was found between the postsynaptic density size and the estimated spine R(neck). This suggests that forms of plasticity that lead to larger synapses are independent of spine neck resistance.
Collapse
Affiliation(s)
- Nuno Maçarico da Costa
- Institute for Neuroinformatics, University of Zürich and ETH Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
108
|
Nechipurenko IV, Doroquez DB, Sengupta P. Primary cilia and dendritic spines: different but similar signaling compartments. Mol Cells 2013; 36:288-303. [PMID: 24048681 PMCID: PMC3837705 DOI: 10.1007/s10059-013-0246-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 01/11/2023] Open
Abstract
Primary non-motile cilia and dendritic spines are cellular compartments that are specialized to sense and transduce environmental cues and presynaptic signals, respectively. Despite their unique cellular roles, both compartments exhibit remarkable parallels in the general principles, as well as molecular mechanisms, by which their protein composition, membrane domain architecture, cellular interactions, and structural and functional plasticity are regulated. We compare and contrast the pathways required for the generation and function of cilia and dendritic spines, and suggest that insights from the study of one may inform investigations into the other of these critically important signaling structures.
Collapse
Affiliation(s)
- Inna V. Nechipurenko
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - David B. Doroquez
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
109
|
Bethge P, Chéreau R, Avignone E, Marsicano G, Nägerl UV. Two-photon excitation STED microscopy in two colors in acute brain slices. Biophys J 2013; 104:778-85. [PMID: 23442956 DOI: 10.1016/j.bpj.2012.12.054] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/12/2012] [Accepted: 12/11/2012] [Indexed: 11/24/2022] Open
Abstract
Many cellular structures and organelles are too small to be properly resolved by conventional light microscopy. This is particularly true for dendritic spines and glial processes, which are very small, dynamic, and embedded in dense tissue, making it difficult to image them under realistic experimental conditions. Two-photon microscopy is currently the method of choice for imaging in thick living tissue preparations, both in acute brain slices and in vivo. However, the spatial resolution of a two-photon microscope, which is limited to ~350 nm by the diffraction of light, is not sufficient for resolving many important details of neural morphology, such as the width of spine necks or thin glial processes. Recently developed superresolution approaches, such as stimulated emission depletion microscopy, have set new standards of optical resolution in imaging living tissue. However, the important goal of superresolution imaging with significant subdiffraction resolution has not yet been accomplished in acute brain slices. To overcome this limitation, we have developed a new microscope based on two-photon excitation and pulsed stimulated emission depletion microscopy, which provides unprecedented spatial resolution and excellent experimental access in acute brain slices using a long-working distance objective. The new microscope improves on the spatial resolution of a regular two-photon microscope by a factor of four to six, and it is compatible with time-lapse and simultaneous two-color superresolution imaging in living cells. We demonstrate the potential of this nanoscopy approach for brain slice physiology by imaging the morphology of dendritic spines and microglial cells well below the surface of acute brain slices.
Collapse
Affiliation(s)
- Philipp Bethge
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France
| | | | | | | | | |
Collapse
|
110
|
Long lasting protein synthesis- and activity-dependent spine shrinkage and elimination after synaptic depression. PLoS One 2013; 8:e71155. [PMID: 23951097 PMCID: PMC3739806 DOI: 10.1371/journal.pone.0071155] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/02/2013] [Indexed: 11/30/2022] Open
Abstract
Neuronal circuits modify their response to synaptic inputs in an experience-dependent fashion. Increases in synaptic weights are accompanied by structural modifications, and activity dependent, long lasting growth of dendritic spines requires new protein synthesis. When multiple spines are potentiated within a dendritic domain, they show dynamic structural plasticity changes, indicating that spines can undergo bidirectional physical modifications. However, it is unclear whether protein synthesis dependent synaptic depression leads to long lasting structural changes. Here, we investigate the structural correlates of protein synthesis dependent long-term depression (LTD) mediated by metabotropic glutamate receptors (mGluRs) through two-photon imaging of dendritic spines on hippocampal pyramidal neurons. We find that induction of mGluR-LTD leads to robust and long lasting spine shrinkage and elimination that lasts for up to 24 hours. These effects depend on signaling through group I mGluRs, require protein synthesis, and activity. These data reveal a mechanism for long lasting remodeling of synaptic inputs, and offer potential insights into mental retardation.
Collapse
|
111
|
Affiliation(s)
- Rafael Yuste
- HHMI, Departments of Biological Sciences and Neuroscience, and Kavli Institute for Brain Science, Columbia University, New York, NY 10027;
| |
Collapse
|
112
|
Scheuss V, Bonhoeffer T. Function of Dendritic Spines on Hippocampal Inhibitory Neurons. Cereb Cortex 2013; 24:3142-53. [DOI: 10.1093/cercor/bht171] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
113
|
Holcman D, Schuss Z. Control of flux by narrow passages and hidden targets in cellular biology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:074601. [PMID: 23787818 DOI: 10.1088/0034-4885/76/7/074601] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Critical biological processes, such as synaptic plasticity and transmission, activation of genes by transcription factors, or double-strained DNA break repair, are controlled by diffusion in structures that have both large and small spatial scales. These may be small binding sites inside or on the surface of the cell, or narrow passages between subcellular compartments. The great disparity in spatial scales is the key to controlling cell function by structure. We report here recent progress on resolving analytical and numerical difficulties in extracting properties from experimental data, from biophysical models, and from Brownian dynamics simulations of diffusion in multi-scale structures. This progress is achieved by developing an analytical approximation methodology for solving the model equations. The reported results are applied to analysis and simulations of subcellular processes and to the quantification of their biological functions.
Collapse
Affiliation(s)
- D Holcman
- Group of Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, 46 rue d'Ulm 75005 Paris, France.
| | | |
Collapse
|
114
|
Iomin A, Méndez V. Reaction-subdiffusion front propagation in a comblike model of spiny dendrites. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012706. [PMID: 23944491 DOI: 10.1103/physreve.88.012706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/07/2013] [Indexed: 06/02/2023]
Abstract
Fractional reaction-diffusion equations are derived by exploiting the geometrical similarities between a comb structure and a spiny dendrite. In the framework of the obtained equations, two scenarios of reaction transport in spiny dendrites are explored, where both a linear reaction in spines and nonlinear Fisher-Kolmogorov-Petrovskii-Piskunov reactions along dendrites are considered. In the framework of fractional subdiffusive comb model, we develop a Hamilton-Jacobi approach to estimate the overall velocity of the reaction front propagation. One of the main effects observed is the failure of the front propagation for both scenarios due to either the reaction inside the spines or the interaction of the reaction with the spines. In the first case the spines are the source of reactions, while in the latter case, the spines are a source of a damping mechanism.
Collapse
Affiliation(s)
- A Iomin
- Department of Physics, Technion, Haifa 32000, Israel
| | | |
Collapse
|
115
|
Sassa T. The Role of Human-Specific Gene Duplications During Brain Development and Evolution. J Neurogenet 2013; 27:86-96. [DOI: 10.3109/01677063.2013.789512] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
116
|
Lin YC, Phua SC, Lin B, Inoue T. Visualizing molecular diffusion through passive permeability barriers in cells: conventional and novel approaches. Curr Opin Chem Biol 2013; 17:663-71. [PMID: 23731778 DOI: 10.1016/j.cbpa.2013.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/23/2013] [Indexed: 12/19/2022]
Abstract
Diffusion barriers are universal solutions for cells to achieve distinct organizations, compositions, and activities within a limited space. The influence of diffusion barriers on the spatiotemporal dynamics of signaling molecules often determines cellular physiology and functions. Over the years, the passive permeability barriers in various subcellular locales have been characterized using elaborate analytical techniques. In this review, we will summarize the current state of knowledge on the various passive permeability barriers present in mammalian cells. We will conclude with a description of several conventional techniques and one new approach based on chemically inducible diffusion trap (CIDT) for probing permeable barriers.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, United States.
| | | | | | | |
Collapse
|
117
|
Merino-Serrais P, Benavides-Piccione R, Blazquez-Llorca L, Kastanauskaite A, Rábano A, Avila J, DeFelipe J. The influence of phospho-τ on dendritic spines of cortical pyramidal neurons in patients with Alzheimer's disease. ACTA ACUST UNITED AC 2013; 136:1913-28. [PMID: 23715095 PMCID: PMC3673457 DOI: 10.1093/brain/awt088] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The dendritic spines on pyramidal cells represent the main postsynaptic elements of cortical excitatory synapses and they are fundamental structures in memory, learning and cognition. In the present study, we used intracellular injections of Lucifer yellow in fixed tissue to analyse over 19 500 dendritic spines that were completely reconstructed in three dimensions along the length of the basal dendrites of pyramidal neurons in the parahippocampal cortex and CA1 of patients with Alzheimer’s disease. Following intracellular injection, sections were immunostained for anti-Lucifer yellow and with tau monoclonal antibodies AT8 and PHF-1, which recognize tau phosphorylated at Ser202/Thr205 and at Ser396/404, respectively. We observed that the diffuse accumulation of phospho-tau in a putative pre-tangle state did not induce changes in the dendrites of pyramidal neurons, whereas the presence of tau aggregates forming intraneuronal neurofibrillary tangles was associated with progressive alteration of dendritic spines (loss of dendritic spines and changes in their morphology) and dendrite atrophy, depending on the degree of tangle development. Thus, the presence of phospho-tau in neurons does not necessarily mean that they suffer severe and irreversible effects as thought previously but rather, the characteristic cognitive impairment in Alzheimer’s disease is likely to depend on the relative number of neurons that have well developed tangles.
Collapse
Affiliation(s)
- Paula Merino-Serrais
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus Montegancedo S/N, 28223 Pozuelo de Alarcón, Spain
| | | | | | | | | | | | | |
Collapse
|
118
|
Chiu CQ, Lur G, Morse TM, Carnevale NT, Ellis-Davies GCR, Higley MJ. Compartmentalization of GABAergic inhibition by dendritic spines. Science 2013; 340:759-62. [PMID: 23661763 DOI: 10.1126/science.1234274] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
γ-aminobutyric acid-mediated (GABAergic) inhibition plays a critical role in shaping neuronal activity in the neocortex. Numerous experimental investigations have examined perisomatic inhibitory synapses, which control action potential output from pyramidal neurons. However, most inhibitory synapses in the neocortex are formed onto pyramidal cell dendrites, where theoretical studies suggest they may focally regulate cellular activity. The precision of GABAergic control over dendritic electrical and biochemical signaling is unknown. By using cell type-specific optical stimulation in combination with two-photon calcium (Ca(2+)) imaging, we show that somatostatin-expressing interneurons exert compartmentalized control over postsynaptic Ca(2+) signals within individual dendritic spines. This highly focal inhibitory action is mediated by a subset of GABAergic synapses that directly target spine heads. GABAergic inhibition thus participates in localized control of dendritic electrical and biochemical signaling.
Collapse
Affiliation(s)
- Chiayu Q Chiu
- Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
119
|
Abstract
Astrocytes extend their processes to make contact with neurons and blood vessels and regulate important processes associated with the physiology/pathophysiology of the brain. Their elaborate morphology, with numerous fine processes, could allow them to perform complex signal transductions with distinct compartments or to function as a spatial buffer depending on the diffusion properties of their intracellular molecules. Apart from calcium ions, however, the diffusion dynamics of molecules within astrocytes are poorly understood. In this study, we applied two-photon uncaging and fluorescence recovery after photobleaching of fluorescent molecules to acute cortical brain slices from mice to investigate the diffusion dynamics of molecules within astrocytes. We found that diffusion was significantly more restricted at the endfeet than at trunks and distal ends of other processes. Slow diffusion dynamics at the endfeet resulted in a large population of molecules being retained in a small region for tens of seconds, creating subcellular compartments that were isolated from other regions. In contrast, diffusion was fast and free at other processes. The same patterns were observed with the diffusions of a higher molecular weight (10 kDa) molecule and 2-NBDG, a fluorescent analog of glucose. These findings suggest that molecular diffusion is not uniform across the intracellular environment and that subcellular compartments are present in astrocytes. Therefore, similar to neurons, the elaborate and specialized structures of astrocytes may enable them to perform complex computations by providing distinct information storage/processing capacity among processes.
Collapse
|
120
|
Petersen C, Crochet S. Synaptic Computation and Sensory Processing in Neocortical Layer 2/3. Neuron 2013; 78:28-48. [DOI: 10.1016/j.neuron.2013.03.020] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2013] [Indexed: 11/26/2022]
|
121
|
Bort G, Gallavardin T, Ogden D, Dalko PI. From One-Photon to Two-Photon Probes: “Caged” Compounds, Actuators, and Photoswitches. Angew Chem Int Ed Engl 2013; 52:4526-37. [DOI: 10.1002/anie.201204203] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/07/2012] [Indexed: 01/09/2023]
|
122
|
Bort G, Gallavardin T, Ogden D, Dalko PI. Von Ein- zu Zwei-Photonen-Sonden: photoaktivierbare Reagentien, Aktuatoren und Photoschalter. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201204203] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
123
|
The chemistry of small-molecule fluorogenic probes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 113:1-34. [PMID: 23244787 DOI: 10.1016/b978-0-12-386932-6.00001-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Chemical fluorophores find wide use in biology to detect and visualize different phenomena. A key advantage of small-molecule dyes is the ability to construct compounds where fluorescence is activated by chemical or biochemical processes. Fluorogenic molecules, in which fluorescence is activated by enzymatic activity, light, or environmental changes, enable advanced bioassays and sophisticated imaging experiments. Here, we detail the collection of fluorophores and highlight both general strategies and unique approaches that are employed to control fluorescence using chemistry.
Collapse
|
124
|
Harnett MT, Makara JK, Spruston N, Kath WL, Magee JC. Synaptic amplification by dendritic spines enhances input cooperativity. Nature 2012; 491:599-602. [PMID: 23103868 PMCID: PMC3504647 DOI: 10.1038/nature11554] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/07/2012] [Indexed: 11/29/2022]
Abstract
Dendritic spines are the nearly ubiquitous site of excitatory synaptic input onto neurons and as such are critically positioned to influence diverse aspects of neuronal signalling. Decades of theoretical studies have proposed that spines may function as highly effective and modifiable chemical and electrical compartments that regulate synaptic efficacy, integration and plasticity. Experimental studies have confirmed activity-dependent structural dynamics and biochemical compartmentalization by spines. However, there is a longstanding debate over the influence of spines on the electrical aspects of synaptic transmission and dendritic operation. Here we measure the amplitude ratio of spine head to parent dendrite voltage across a range of dendritic compartments and calculate the associated spine neck resistance (R(neck)) for spines at apical trunk dendrites in rat hippocampal CA1 pyramidal neurons. We find that R(neck) is large enough (~500 MΩ) to amplify substantially the spine head depolarization associated with a unitary synaptic input by ~1.5- to ~45-fold, depending on parent dendritic impedance. A morphologically realistic compartmental model capable of reproducing the observed spatial profile of the amplitude ratio indicates that spines provide a consistently high-impedance input structure throughout the dendritic arborization. Finally, we demonstrate that the amplification produced by spines encourages electrical interaction among coactive inputs through an R(neck)-dependent increase in spine head voltage-gated conductance activation. We conclude that the electrical properties of spines promote nonlinear dendritic processing and associated forms of plasticity and storage, thus fundamentally enhancing the computational capabilities of neurons.
Collapse
Affiliation(s)
| | - Judit K. Makara
- HHMI Janelia Farm Research Campus, Ashburn, VA 20147 USA
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1083, Hungary
| | | | - William L. Kath
- Departments of Applied Mathematics and Neurobiology, Northwestern University, Evanston, IL, 60208 USA
| | | |
Collapse
|
125
|
Yasuda R. Studying signal transduction in single dendritic spines. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a005611. [PMID: 22843821 DOI: 10.1101/cshperspect.a005611] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many forms of synaptic plasticity are triggered by biochemical signaling that occurs in small postsynaptic compartments called dendritic spines, each of which typically houses the postsynaptic terminal associated with a single glutamatergic synapse. Recent advances in optical techniques allow investigators to monitor biochemical signaling in single dendritic spines and thus reveal the signaling mechanisms that link synaptic activity and the induction of synaptic plasticity. This is mostly in the study of Ca2+-dependent forms of synaptic plasticity for which many of the steps between Ca2+ influx and changes to the synapse are now known. This article introduces the new techniques used to investigate signaling in single dendritic spines and the neurobiological insights that they have produced.
Collapse
Affiliation(s)
- Ryohei Yasuda
- Neurobiology Department, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
126
|
Weimer RM, Hill TC, Hamilton AM, Zito K. Imaging synaptic protein dynamics using photoactivatable green fluorescent protein. Cold Spring Harb Protoc 2012; 2012:771-777. [PMID: 22753605 DOI: 10.1101/pdb.prot070029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Considerable evidence has accumulated that structural changes in dendritic spines and their synapses are associated with adaptive functional changes in cortical circuits, such as during circuit refinement in young animals and in learning and memory in adults. Understanding the mechanisms of circuit plasticity requires detailed investigation of the structural dynamics of dendritic spines and how they are regulated by neural activity and sensory experience. Studying the dynamic localization of synaptic proteins in dendritic spines and how their stabilization and exchange rates influence spine structural plasticity is also important. This protocol describes imaging approaches to study synaptic protein dynamics in dendritic spines of the rodent cerebral cortex. It gives a strategy for generating photoactivatable green fluorescent protein (PA-GFP)-tagged synaptic proteins and in vitro and in vivo transfection methods for coexpression of these proteins with a spectrally separable cell-filling marker (DsRed-Express). Methods for tracking synaptic protein localization using photoactivation and time-lapse imaging of PA-GFP in spiny pyramidal neuron dendrites are given. A discussion of imaging hardware and software preferences is also included. The methods described here can be used to study the dynamic processes underlying spine synapse development during the formation and plasticity of neural circuits in the mammalian brain.
Collapse
|
127
|
Distinct subsets of Syt-IV/BDNF vesicles are sorted to axons versus dendrites and recruited to synapses by activity. J Neurosci 2012; 32:5398-413. [PMID: 22514304 DOI: 10.1523/jneurosci.4515-11.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BDNF plays a critical role in the regulation of synaptic strength and is essential for long-term potentiation, a phenomenon that underlies learning and memory. However, whether BDNF acts in a diffuse manner or is targeted to specific neuronal subcompartments or synaptic sites to affect circuit function remains unknown. Here, using photoactivation of BDNF or syt-IV (a regulator of exocytosis present on BDNF-containing vesicles) in transfected rat hippocampal neurons, we discovered that distinct subsets of BDNF vesicles are targeted to axons versus dendrites and are not shared between these compartments. Moreover, syt-IV- and BDNF-harboring vesicles are recruited to both presynaptic and postsynaptic sites in response to increased neuronal activity. Finally, using syt-IV knockout mouse neurons, we found that syt-IV is necessary for both presynaptic and postsynaptic scaling of synaptic strength in response to changes in network activity. These findings demonstrate that BDNF-containing vesicles can be targeted to specific sites in neurons and suggest that syt-IV-regulated BDNF secretion is subject to spatial control to regulate synaptic function in a site-specific manner.
Collapse
|
128
|
N-glycosylation of acid-sensing ion channel 1a regulates its trafficking and acidosis-induced spine remodeling. J Neurosci 2012; 32:4080-91. [PMID: 22442073 DOI: 10.1523/jneurosci.5021-11.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acid-sensing ion channel-1a (ASIC1a) is a potential therapeutic target for multiple neurological diseases. We studied here ASIC1a glycosylation and trafficking, two poorly understood processes pivotal in determining the functional outcome of an ion channel. We found that most ASIC1a in the mouse brain was fully glycosylated. Inhibiting glycosylation with tunicamycin reduced ASIC1a surface trafficking, dendritic targeting, and acid-activated current density. N-glycosylation of the two glycosylation sites, Asn393 and Asn366, has differential effects on ASIC1a biogenesis. Maturation of Asn393 increased ASIC1a surface and dendritic trafficking, pH sensitivity, and current density. In contrast, glycosylation of Asn366 was dispensable for ASIC1a function and may be a rate-limiting step in ASIC1a biogenesis. In addition, we revealed that acidosis reduced the density and length of dendritic spines in a time- and ASIC1a-dependent manner. ASIC1a N366Q, which showed increased glycosylation and dendritic targeting, potentiated acidosis-induced spine loss. Conversely, ASIC1a N393Q, which had diminished dendritic targeting and inhibited ASIC1a current dominant-negatively, had the opposite effect. These data tie N-glycosylation of ASIC1a with its trafficking. More importantly, by revealing a site-specific effect of acidosis on dendritic spines, our findings suggest that these processes have an important role in regulating synaptic plasticity and determining long-term consequences in diseases that generate acidosis.
Collapse
|
129
|
Raghuram V, Sharma Y, Kreutz MR. Ca(2+) sensor proteins in dendritic spines: a race for Ca(2+). Front Mol Neurosci 2012; 5:61. [PMID: 22586368 PMCID: PMC3347464 DOI: 10.3389/fnmol.2012.00061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/18/2012] [Indexed: 12/21/2022] Open
Abstract
Dendritic spines are believed to be micro-compartments of Ca2+ regulation. In a recent study, it was suggested that the ubiquitous and evolutionarily conserved Ca2+ sensor, calmodulin (CaM), is the first to intercept Ca2+ entering the spine and might be responsible for the fast decay of Ca2+ transients in spines. Neuronal calcium sensor (NCS) and neuronal calcium-binding protein (nCaBP) families consist of Ca2+ sensors with largely unknown synaptic functions despite an increasing number of interaction partners. Particularly how these sensors operate in spines in the presence of CaM has not been discussed in detail before. The limited Ca2+ resources and the existence of common targets create a highly competitive environment where Ca2+ sensors compete with each other for Ca2+ and target binding. In this review, we take a simple numerical approach to put forth possible scenarios and their impact on signaling via Ca2+ sensors of the NCS and nCaBP families. We also discuss the ways in which spine geometry and properties of ion channels, their kinetics and distribution, alter the spatio-temporal aspects of Ca2+ transients in dendritic spines, whose interplay with Ca2+ sensors in turn influences the race for Ca2+.
Collapse
Affiliation(s)
- Vijeta Raghuram
- Centre for Cellular and Molecular Biology, CSIR Hyderabad, India
| | | | | |
Collapse
|
130
|
Charrier C, Joshi K, Coutinho-Budd J, Kim JE, Lambert N, de Marchena J, Jin WL, Vanderhaeghen P, Ghosh A, Sassa T, Polleux F. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 2012; 149:923-35. [PMID: 22559944 DOI: 10.1016/j.cell.2012.03.034] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 12/28/2022]
Abstract
Structural genomic variations represent a major driving force of evolution, and a burst of large segmental gene duplications occurred in the human lineage during its separation from nonhuman primates. SRGAP2, a gene recently implicated in neocortical development, has undergone two human-specific duplications. Here, we find that both duplications (SRGAP2B and SRGAP2C) are partial and encode a truncated F-BAR domain. SRGAP2C is expressed in the developing and adult human brain and dimerizes with ancestral SRGAP2 to inhibit its function. In the mouse neocortex, SRGAP2 promotes spine maturation and limits spine density. Expression of SRGAP2C phenocopies SRGAP2 deficiency. It underlies sustained radial migration and leads to the emergence of human-specific features, including neoteny during spine maturation and increased density of longer spines. These results suggest that inhibition of SRGAP2 function by its human-specific paralogs has contributed to the evolution of the human neocortex and plays an important role during human brain development.
Collapse
Affiliation(s)
- Cécile Charrier
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Mancuso JJ, Chen Y, Li X, Xue Z, Wong STC. Methods of dendritic spine detection: from Golgi to high-resolution optical imaging. Neuroscience 2012; 251:129-40. [PMID: 22522468 DOI: 10.1016/j.neuroscience.2012.04.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 12/18/2022]
Abstract
Dendritic spines, the bulbous protrusions that form the postsynaptic half of excitatory synapses, are one of the most prominent features of neurons and have been imaged and studied for over a century. In that time, changes in the number and morphology of dendritic spines have been correlated to the developmental process as well as the pathophysiology of a number of neurodegenerative diseases. Due to the sheer scale of synaptic connectivity in the brain, work to date has merely scratched the surface in the study of normal spine function and pathology. This review will highlight traditional approaches to the imaging of dendritic spines and newer approaches made possible by advances in microscopy, protein engineering, and image analysis. The review will also describe recent work that is leading researchers toward the possibility of a systematic and comprehensive study of spine anatomy throughout the brain.
Collapse
Affiliation(s)
- J J Mancuso
- Department of Systems Medicine and Bioengineering, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA; Ting Tsung and Wei Fong Chao Center for Bioinformatics Research and Imaging in Neurosciences, USA
| | | | | | | | | |
Collapse
|
132
|
Gulledge AT, Carnevale NT, Stuart GJ. Electrical advantages of dendritic spines. PLoS One 2012; 7:e36007. [PMID: 22532875 PMCID: PMC3332048 DOI: 10.1371/journal.pone.0036007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/29/2012] [Indexed: 02/03/2023] Open
Abstract
Many neurons receive excitatory glutamatergic input almost exclusively onto dendritic spines. In the absence of spines, the amplitudes and kinetics of excitatory postsynaptic potentials (EPSPs) at the site of synaptic input are highly variable and depend on dendritic location. We hypothesized that dendritic spines standardize the local geometry at the site of synaptic input, thereby reducing location-dependent variability of local EPSP properties. We tested this hypothesis using computational models of simplified and morphologically realistic spiny neurons that allow direct comparison of EPSPs generated on spine heads with EPSPs generated on dendritic shafts at the same dendritic locations. In all morphologies tested, spines greatly reduced location-dependent variability of local EPSP amplitude and kinetics, while having minimal impact on EPSPs measured at the soma. Spine-dependent standardization of local EPSP properties persisted across a range of physiologically relevant spine neck resistances, and in models with variable neck resistances. By reducing the variability of local EPSPs, spines standardized synaptic activation of NMDA receptors and voltage-gated calcium channels. Furthermore, spines enhanced activation of NMDA receptors and facilitated the generation of NMDA spikes and axonal action potentials in response to synaptic input. Finally, we show that dynamic regulation of spine neck geometry can preserve local EPSP properties following plasticity-driven changes in synaptic strength, but is inefficient in modifying the amplitude of EPSPs in other cellular compartments. These observations suggest that one function of dendritic spines is to standardize local EPSP properties throughout the dendritic tree, thereby allowing neurons to use similar voltage-sensitive postsynaptic mechanisms at all dendritic locations.
Collapse
Affiliation(s)
- Allan T Gulledge
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America.
| | | | | |
Collapse
|
133
|
Examining form and function of dendritic spines. Neural Plast 2012; 2012:704103. [PMID: 22577585 PMCID: PMC3345238 DOI: 10.1155/2012/704103] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/10/2012] [Indexed: 12/20/2022] Open
Abstract
The majority of fast excitatory synaptic transmission in the central nervous system takes place at protrusions along dendrites called spines. Dendritic spines are highly heterogeneous, both morphologically and functionally. Not surprisingly, there has been much speculation and debate on the relationship between spine structure and function. The advent of multi-photon laser-scanning microscopy has greatly improved our ability to investigate the dynamic interplay between spine form and function. Regulated structural changes occur at spines undergoing plasticity, offering a mechanism to account for the well-described correlation between spine size and synapse strength. In turn, spine structure can influence the degree of biochemical and perhaps electrical compartmentalization at individual synapses. Here, we review the relationship between dendritic spine morphology, features of spine compartmentalization and synaptic plasticity. We highlight emerging molecular mechanisms that link structural and functional changes in spines during plasticity, and also consider circumstances that underscore some divergence from a tight structure-function coupling. Because of the intricate influence of spine structure on biochemical and electrical signalling, activity-dependent changes in spine morphology alone may thus contribute to the metaplastic potential of synapses. This possibility asserts a role for structural dynamics in neuronal information storage and aligns well with current computational models.
Collapse
|
134
|
Siegel F, Lohmann C. Probing synaptic function in dendrites with calcium imaging. Exp Neurol 2012; 242:27-32. [PMID: 22374356 DOI: 10.1016/j.expneurol.2012.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 11/22/2011] [Accepted: 02/13/2012] [Indexed: 11/19/2022]
Abstract
Calcium imaging has become a widely used technique to probe neuronal activity on the cellular and subcellular levels. In contrast to standard electrophysiological methods, calcium imaging resolves sub- and suprathreshold activation patterns in structures as small as fine dendritic branches and spines. This review highlights recent findings gained on the subcellular level using calcium imaging, with special emphasis on synaptic transmission and plasticity in individual spines. Since imaging allows monitoring activity across populations of synapses, it has recently been adopted to investigate how dendrites integrate information from many synapses. Future experiments, ideally carried out in vivo, will reveal how the dendritic tree integrates and computes afferent signals. For example, it is now possible to directly test the concept that dendritic inputs are clustered and that single dendrites or dendritic stretches act as independent computational units.
Collapse
|
135
|
Oliveira RF, Kim M, Blackwell KT. Subcellular location of PKA controls striatal plasticity: stochastic simulations in spiny dendrites. PLoS Comput Biol 2012; 8:e1002383. [PMID: 22346744 PMCID: PMC3276550 DOI: 10.1371/journal.pcbi.1002383] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 12/26/2011] [Indexed: 12/01/2022] Open
Abstract
Dopamine release in the striatum has been implicated in various forms of reward dependent learning. Dopamine leads to production of cAMP and activation of protein kinase A (PKA), which are involved in striatal synaptic plasticity and learning. PKA and its protein targets are not diffusely located throughout the neuron, but are confined to various subcellular compartments by anchoring molecules such as A-Kinase Anchoring Proteins (AKAPs). Experiments have shown that blocking the interaction of PKA with AKAPs disrupts its subcellular location and prevents LTP in the hippocampus and striatum; however, these experiments have not revealed whether the critical function of anchoring is to locate PKA near the cAMP that activates it or near its targets, such as AMPA receptors located in the post-synaptic density. We have developed a large scale stochastic reaction-diffusion model of signaling pathways in a medium spiny projection neuron dendrite with spines, based on published biochemical measurements, to investigate this question and to evaluate whether dopamine signaling exhibits spatial specificity post-synaptically. The model was stimulated with dopamine pulses mimicking those recorded in response to reward. Simulations show that PKA colocalization with adenylate cyclase, either in the spine head or in the dendrite, leads to greater phosphorylation of DARPP-32 Thr34 and AMPA receptor GluA1 Ser845 than when PKA is anchored away from adenylate cyclase. Simulations further demonstrate that though cAMP exhibits a strong spatial gradient, diffusible DARPP-32 facilitates the spread of PKA activity, suggesting that additional inactivation mechanisms are required to produce spatial specificity of PKA activity. The striatum is a part of the basal ganglia which plays a role in addiction and reward learning. Its importance is underscored by pathologies such as Parkinson's disease and Huntington's disease in which degeneration of the dopamine inputs to the striatum or degeneration of neurons in the striatum, respectively, produces motor dysfunction. Dopamine in the striatum activates cascades of signaling molecules, ultimately producing an activity dependent change in the strength of connections between neurons. However, the dispersive movement of signaling molecules seems incompatible with the strengthening of specific subsets of connections, which is required for formation of distinct memories. Anchoring proteins, which restrict molecules to particular compartments within the neuron, are proposed to achieve specificity. We develop a reaction-diffusion model of dopamine activated signaling pathways to explore mechanisms whereby anchoring proteins can produce specificity. We use an efficient Monte-Carlo simulator to implement the cascades of signaling molecules in a neuronal dendrite with multiple dendritic spines. Simulations demonstrate that spatial specificity requires both anchoring proteins and inactivation mechanisms that limit the diffusion of signaling molecules.
Collapse
Affiliation(s)
- Rodrigo F. Oliveira
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - MyungSook Kim
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Kim T. Blackwell
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
- * E-mail:
| |
Collapse
|
136
|
Jerome J, Heck DH. The age of enlightenment: evolving opportunities in brain research through optical manipulation of neuronal activity. Front Syst Neurosci 2012; 5:95. [PMID: 22275886 PMCID: PMC3257845 DOI: 10.3389/fnsys.2011.00095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/01/2011] [Indexed: 11/13/2022] Open
Abstract
Optical manipulation of neuronal activity has rapidly developed into the most powerful and widely used approach to study mechanisms related to neuronal connectivity over a range of scales. Since the early use of single site uncaging to map network connectivity, rapid technological development of light modulation techniques has added important new options, such as fast scanning photostimulation, massively parallel control of light stimuli, holographic uncaging, and two-photon stimulation techniques. Exciting new developments in optogenetics complement neurotransmitter uncaging techniques by providing cell-type specificity and in vivo usability, providing optical access to the neural substrates of behavior. Here we review the rapid evolution of methods for the optical manipulation of neuronal activity, emphasizing crucial recent developments.
Collapse
Affiliation(s)
- Jason Jerome
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | | |
Collapse
|
137
|
Spatiotemporal maps of CaMKII in dendritic spines. J Comput Neurosci 2012; 33:123-39. [DOI: 10.1007/s10827-011-0377-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 01/28/2023]
|
138
|
Abstract
Long-term synaptic plasticity requires postsynaptic influx of Ca²⁺ and is accompanied by changes in dendritic spine size. Unless Ca²⁺ influx mechanisms and spine volume scale proportionally, changes in spine size will modify spine Ca²⁺ concentrations during subsequent synaptic activation. We show that the relationship between Ca²⁺ influx and spine volume is a fundamental determinant of synaptic stability. If Ca²⁺ influx is undercompensated for increases in spine size, then strong synapses are stabilized and synaptic strength distributions have a single peak. In contrast, overcompensation of Ca²⁺ influx leads to binary, persistent synaptic strengths with double-peaked distributions. Biophysical simulations predict that CA1 pyramidal neuron spines are undercompensating. This unifies experimental findings that weak synapses are more plastic than strong synapses, that synaptic strengths are unimodally distributed, and that potentiation saturates for a given stimulus strength. We conclude that structural plasticity provides a simple, local, and general mechanism that allows dendritic spines to foster both rapid memory formation and persistent memory storage.
Collapse
|
139
|
Murakoshi H, Yasuda R. Postsynaptic signaling during plasticity of dendritic spines. Trends Neurosci 2012; 35:135-43. [PMID: 22222350 DOI: 10.1016/j.tins.2011.12.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/25/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
Dendritic spines, small bulbous postsynaptic compartments emanating from neuronal dendrites, have been thought to serve as basic units of memory storage. Despite their small size (~0.1 femtoliter), thousands of species of proteins exist in the spine, including receptors, channels, scaffolding proteins and signaling enzymes. Biochemical signaling mediated by these molecules leads to morphological and functional plasticity of dendritic spines, and ultimately learning and memory in the brain. Here, we review new insights into the mechanisms underlying spine plasticity brought about by recent advances in imaging techniques to monitor molecular events in single dendritic spines. The activity of each protein displays a specific spatiotemporal pattern, coordinating downstream events at different microdomains to change the function and morphology of dendritic spines.
Collapse
Affiliation(s)
- Hideji Murakoshi
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
140
|
Optical highlighter molecules in neurobiology. Curr Opin Neurobiol 2011; 22:111-20. [PMID: 22129781 DOI: 10.1016/j.conb.2011.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/05/2011] [Accepted: 11/07/2011] [Indexed: 12/18/2022]
Abstract
The development of advanced optical methods has played a key role in propelling progress in neurobiology. Genetically-encoded fluorescent molecules found in nature have enabled labeling of individual neurons to study their physiology and anatomy. Here we discuss the recent use of both native and synthetic optical highlighter proteins to address key problems in neurobiology, including questions relevant to synaptic function, neuroanatomy, and the organization of neural circuits.
Collapse
|
141
|
Depolarization gates spine calcium transients and spike-timing-dependent potentiation. Curr Opin Neurobiol 2011; 22:509-15. [PMID: 22051693 DOI: 10.1016/j.conb.2011.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 09/24/2011] [Accepted: 10/06/2011] [Indexed: 11/21/2022]
Abstract
Timing-dependent long-term potentiation (t-LTP) is induced when synaptic activity is immediately followed by one or more back-propagating action potentials (bAPs) in the postsynaptic cell. As a mechanistic explanation, it has been proposed that the bAP removes the Mg2+ block of synaptic NMDA receptors, allowing for rapid Ca2+ entry at the active synapse. Recent experimental studies suggest that this model is incomplete: NMDA receptor-based coincidence detection requires strong postsynaptic depolarization, usually provided by AMPA receptor currents. Apparently, the brief AMPA-EPSP does not only enable t-LTP, it is also responsible for the very narrow time window for t-LTP induction. The emerging consensus puts the spine in the center of coincidence detection, as active conductances on the spine together with the electrical resistance of the spine neck regulate the depolarization of the spine head and thus Ca2+ influx during pairing. A focus on postsynaptic voltage during synaptic activation not only encompasses spike-timing-dependent plasticity (STDP), but explains also the cooperativity and frequency-dependence of plasticity.
Collapse
|
142
|
Abstract
Dendritic spines receive most excitatory connections in pyramidal cells and many other principal neurons. But why do neurons use spines, when they could accommodate excitatory contacts directly on their dendritic shafts? One suggestion is that spines serve to connect with passing axons, thus increasing the connectivity of the dendrites. Another hypothesis is that spines are biochemical compartments that enable input-specific synaptic plasticity. A third possibility is that spines have an electrical role, filtering synaptic potentials and electrically isolating inputs from each other. In this review, I argue that, when viewed from the perspective of the circuit function, these three functions dovetail with one another to achieve a single overarching goal: to implement a distributed circuit with widespread connectivity. Spines would endow these circuits with nonsaturating, linear integration and input-specific learning rules, which would enable them to function as neural networks, with emergent encoding and processing of information.
Collapse
Affiliation(s)
- Rafael Yuste
- HHMI, Department Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
143
|
The emerging functions of septins in metazoans. EMBO Rep 2011; 12:1118-26. [PMID: 21997296 DOI: 10.1038/embor.2011.193] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/05/2011] [Indexed: 01/19/2023] Open
Abstract
Septins form a subfamily of highly related GTP-binding proteins conserved from eukaryotic protists to mammals. In most cases, septins function in close association with cell membranes and the actin and microtubule cytoskeleton to regulate a wide variety of key cellular processes. Further underscoring their importance, septin abnormalities are associated with several human diseases. Remarkably, septins have the ability to polymerize into assemblies of different sizes in vitro and in vivo. In cells, these structures act in the formation of diffusion barriers and scaffolds that maintain subcellular polarity. Here, we focus on the emerging roles of vertebrate septins in ciliogenesis, neurogenesis, tumorigenesis and host-pathogen interactions, and discuss whether unifying themes underlie the molecular function of septins in health and disease.
Collapse
|
144
|
Holcman D, Schuss Z. Diffusion laws in dendritic spines. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2011; 1:10. [PMID: 22655862 PMCID: PMC3365919 DOI: 10.1186/2190-8567-1-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/27/2011] [Indexed: 05/13/2023]
Abstract
Dendritic spines are small protrusions on a neuronal dendrite that are the main locus of excitatory synaptic connections. Although their geometry is variable over time and along the dendrite, they typically consist of a relatively large head connected to the dendritic shaft by a narrow cylindrical neck. The surface of the head is connected smoothly by a funnel or non-smoothly to the narrow neck, whose end absorbs the particles at the dendrite. We demonstrate here how the geometry of the neuronal spine can control diffusion and ultimately synaptic processes. We show that the mean residence time of a Brownian particle, such as an ion or molecule inside the spine, and of a receptor on its membrane, prior to absorption at the dendritic shaft depends strongly on the curvature of the connection of the spine head to the neck and on the neck's length. The analytical results solve the narrow escape problem for domains with long narrow necks.
Collapse
Affiliation(s)
- David Holcman
- Institute for Biology (IBENS), Group of Computational Biology and Applied Mathematics Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
- Department of Applied Mathematics, UMR 7598 Université Pierre et Marie Curie, Boite Courrier 187, 75252 Paris, France
| | - Zeev Schuss
- Department of Mathematics, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
145
|
Abstract
Over the past decade, the use and development of optical imaging techniques has advanced our understanding of synaptic plasticity by offering the spatial and temporal resolution necessary to examine long-term changes at individual synapses. Here, we review the use of these techniques in recent studies of synaptic plasticity and, in particular, long-term potentiation in the hippocampus.
Collapse
Affiliation(s)
- Zahid Padamsey
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | | |
Collapse
|
146
|
Kumar A, Mehta MR. Frequency-Dependent Changes in NMDAR-Dependent Synaptic Plasticity. Front Comput Neurosci 2011; 5:38. [PMID: 21994493 PMCID: PMC3182344 DOI: 10.3389/fncom.2011.00038] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 09/07/2011] [Indexed: 11/13/2022] Open
Abstract
The NMDAR-dependent synaptic plasticity is thought to mediate several forms of learning, and can be induced by spike trains containing a small number of spikes occurring with varying rates and timing, as well as with oscillations. We computed the influence of these variables on the plasticity induced at a single NMDAR containing synapse using a reduced model that was analytically tractable, and these findings were confirmed using detailed, multi-compartment model. In addition to explaining diverse experimental results about the rate and timing dependence of synaptic plasticity, the model made several novel and testable predictions. We found that there was a preferred frequency for inducing long-term potentiation (LTP) such that higher frequency stimuli induced lesser LTP, decreasing as 1/f when the number of spikes in the stimulus was kept fixed. Among other things, the preferred frequency for inducing LTP varied as a function of the distance of the synapse from the soma. In fact, same stimulation frequencies could induce LTP or long-term depression depending on the dendritic location of the synapse. Next, we found that rhythmic stimuli induced greater plasticity then irregular stimuli. Furthermore, brief bursts of spikes significantly expanded the timing dependence of plasticity. Finally, we found that in the ∼5-15-Hz frequency range both rate- and timing-dependent plasticity mechanisms work synergistically to render the synaptic plasticity most sensitive to spike timing. These findings provide computational evidence that oscillations can have a profound influence on the plasticity of an NMDAR-dependent synapse, and show a novel role for the dendritic morphology in this process.
Collapse
Affiliation(s)
- Arvind Kumar
- Bernstein Center Freiburg, University of Freiburg Freiburg, Germany
| | | |
Collapse
|
147
|
Bosch M, Hayashi Y. Structural plasticity of dendritic spines. Curr Opin Neurobiol 2011; 22:383-8. [PMID: 21963169 DOI: 10.1016/j.conb.2011.09.002] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 09/11/2011] [Indexed: 12/17/2022]
Abstract
Dendritic spines are small mushroom-like protrusions arising from neurons where most excitatory synapses reside. Their peculiar shape suggests that spines can serve as an autonomous postsynaptic compartment that isolates chemical and electrical signaling. How neuronal activity modifies the morphology of the spine and how these modifications affect synaptic transmission and plasticity are intriguing issues. Indeed, the induction of long-term potentiation (LTP) or depression (LTD) is associated with the enlargement or shrinkage of the spine, respectively. This structural plasticity is mainly controlled by actin filaments, the principal cytoskeletal component of the spine. Here we review the pioneering microscopic studies examining the structural plasticity of spines and propose how changes in actin treadmilling might regulate spine morphology.
Collapse
Affiliation(s)
- Miquel Bosch
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
148
|
Quantitative estimates of the cytoplasmic, PSD, and NMDAR-bound pools of CaMKII in dendritic spines. Brain Res 2011; 1419:46-52. [PMID: 21925648 DOI: 10.1016/j.brainres.2011.08.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/17/2011] [Accepted: 08/19/2011] [Indexed: 02/02/2023]
Abstract
CaMKII plays a critical role in long-term potentiation (LTP). The kinase is a major component of the postsynaptic density (PSD); however, it is also contained in the spine cytoplasm. CaMKII can now be monitored optically in living neurons, and it is therefore important to understand the contribution of the PSD and cytoplasmic pools to optical signals. Here, we estimate the size of these pools under basal conditions. From EM immunolabeling data, we calculate that the PSD/cytoplasmic ratio is ~5%. A second independent estimate is derived from measurements indicating that the average mushroom spine PSD contains 90 to 240 holoenzymes. A cytoplasmic concentration of 16 μM (~2590 holoenzymes) in the spine can be estimated from the total measured CaMKII content of hippocampal tissue, the relative volume of different compartments, and the spine-dendrite ratio of CaMKII (2:1). These numbers yield a second estimate (6%) of the PSD/spine ratio in good agreement with the first. The CaMKII bound to the NMDAR is important because preventing the formation of this complex blocks LTP induction. We estimate that the percentage of spine CaMKII held active by binding to the NMDAR is ~0.2%. Implications of the high spine concentration of CaMKII (> 100 μM alpha subunits) and the small fraction within the PSD are discussed. Of particular note, the finding that the CaMKII signal in spines shows only transient activation (open state) after LTP induction is subject to the qualification that it does not reflect the small but important pool bound to the NMDAR.
Collapse
|
149
|
De Zeeuw CI, Hoogland TM. Anomalous diffusion imposed by dendritic spines (Commentary on Santamaria et al.). Eur J Neurosci 2011; 34:559-60. [DOI: 10.1111/j.1460-9568.2011.07809.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
150
|
Patterson M, Yasuda R. Signalling pathways underlying structural plasticity of dendritic spines. Br J Pharmacol 2011; 163:1626-38. [PMID: 21410464 PMCID: PMC3166652 DOI: 10.1111/j.1476-5381.2011.01328.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/25/2011] [Accepted: 02/17/2011] [Indexed: 11/30/2022] Open
Abstract
Synaptic plasticity, or changes in synaptic strength, is thought to underlie learning and memory. Imaging studies, mainly in brain slices, have revealed that long-term synaptic plasticity of excitatory synapses in hippocampal neurons is coupled with structural plasticity of dendritic spines, which is thought to be essential for inducing and regulating functional plasticity. Using pharmacological and genetic manipulation, the signalling network underlying structural plasticity has been extensively studied. Furthermore, the recent advent of fluorescence resonance energy transfer (FRET) imaging techniques has provided a readout of the dynamics of signal transduction in dendritic spines undergoing structural plasticity. These studies reveal the signalling pathways relaying Ca(2+) to the functional and structural plasticity of dendritic spines.
Collapse
Affiliation(s)
- Michael Patterson
- Department of Neurobiology, Duke University Medical CenterDurham, NC, USA
| | - Ryohei Yasuda
- Department of Neurobiology, Duke University Medical CenterDurham, NC, USA
- Howard Hughes Medical Institute, Duke University Medical CenterDurham, NC, USA
| |
Collapse
|