101
|
Guieysse B, Wuertz S. Metabolically versatile large-genome prokaryotes. Curr Opin Biotechnol 2012; 23:467-73. [PMID: 22226959 DOI: 10.1016/j.copbio.2011.12.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/19/2011] [Indexed: 11/26/2022]
Abstract
Although versatile microorganisms are critical in industrial applications where the ability to cope with change and carry out complex tasks is needed, very little is in fact known about the evolutionary and ecological meanings of versatility in prokaryotes. Testing the hypothesis that a large genome size is a prerequisite for versatility in prokaryotes, we found that putatively versatile prokaryotes are phylogenetically and ecologically diverse and indeed include many well known and commercially relevant versatile microorganisms. Despite individual differences in metabolic abilities, a common trait of large-genome prokaryotes appears that they have gained their large genomes as an evolutionary response to nutrient-scarce and/or variable environments. This insight seriously questions the ability of traditional microbiology methods to isolate versatile prokaryotes and casts doubt on the ecological relevance of knowledge based on the study of specialists.
Collapse
Affiliation(s)
- Benoit Guieysse
- Centre for Environmental Technology and Engineering, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | |
Collapse
|
102
|
Abstract
Recent significant progress toward understanding the function of pseudogenes in protozoa (Trypanosoma brucei), metazoa (mouse) and plants, make it pertinent to provide a brief overview on what has been learned about this fascinating subject. We discuss the regulatory mechanisms of pseudogenes at the post-transcriptional level and advance new ideas toward understanding the evolution of these, sometimes called "garbage genes" or "junk DNA," seeking to stimulate the interest of scientists and additional research on the subject. We hope this point-of-view can be helpful to scientists working or seeking to work on these and related issues.
Collapse
Affiliation(s)
- Yan-Zi Wen
- School of Life Sciences and Key Laboratory of Tropical Diseases and Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
103
|
Wang Y, Yang JK, Lee OO, Li TG, Al-Suwailem A, Danchin A, Qian PY. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments. PLoS One 2011; 6:e29149. [PMID: 22216192 PMCID: PMC3244439 DOI: 10.1371/journal.pone.0029149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/21/2011] [Indexed: 11/18/2022] Open
Abstract
The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers) of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed.
Collapse
Affiliation(s)
- Yong Wang
- KAUST Global Collaborative Research, Division of Life Sciences, Hong Kong, University of Science and Technology, Clear Water Bay, Hong Kong, China
- Institute of Oceanography, Chinese Academy of Sciences, Qingdao, China
| | - Jiang Ke Yang
- KAUST Global Collaborative Research, Division of Life Sciences, Hong Kong, University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - On On Lee
- KAUST Global Collaborative Research, Division of Life Sciences, Hong Kong, University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tie Gang Li
- King Abdullah University of Science and Technology, Thuwal, The Kingdom of Saudi Arabia
| | - Abdulaziz Al-Suwailem
- King Abdullah University of Science and Technology, Thuwal, The Kingdom of Saudi Arabia
| | | | - Pei-Yuan Qian
- KAUST Global Collaborative Research, Division of Life Sciences, Hong Kong, University of Science and Technology, Clear Water Bay, Hong Kong, China
- * E-mail:
| |
Collapse
|
104
|
Shlykov MA, Zheng WH, Chen JS, Saier MH. Bioinformatic characterization of the 4-Toluene Sulfonate Uptake Permease (TSUP) family of transmembrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:703-17. [PMID: 22192777 DOI: 10.1016/j.bbamem.2011.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/26/2011] [Accepted: 12/06/2011] [Indexed: 11/29/2022]
Abstract
The ubiquitous sequence diverse 4-Toluene Sulfonate Uptake Permease (TSUP) family contains few characterized members and is believed to catalyze the transport of several sulfur-based compounds. Prokaryotic members of the TSUP family outnumber the eukaryotic members substantially, and in prokaryotes, but not eukaryotes, extensive lateral gene transfer occurred during family evolution. Despite unequal representation, homologues from the three taxonomic domains of life share well-conserved motifs. We show that the prototypical eight TMS topology arose from an intragenic duplication of a four transmembrane segment (TMS) unit. Possibly, a two TMS α-helical hairpin structure was the precursor of the 4 TMS repeat unit. Genome context analyses confirmed the proposal of a sulfur-based compound transport role for many TSUP homologues, but functional outliers appear to be prevalent as well. Preliminary results suggest that the TSUP family is a member of a large novel superfamily that includes rhodopsins, integral membrane chaperone proteins, transmembrane electron flow carriers and several transporter families. All of these proteins probably arose via the same pathway: 2→4→8 TMSs followed by loss of a TMS either at the N- or C-terminus, depending on the family, to give the more frequent 7 TMS topology.
Collapse
|
105
|
Lozada-Chávez I, Stadler PF, Prohaska SJ. "Hypothesis for the modern RNA world": a pervasive non-coding RNA-based genetic regulation is a prerequisite for the emergence of multicellular complexity. ORIGINS LIFE EVOL B 2011; 41:587-607. [PMID: 22322874 DOI: 10.1007/s11084-011-9262-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 12/12/2011] [Indexed: 02/06/2023]
Abstract
The transitions to multicellularity mark the most pivotal and distinctive events in life's history on Earth. Although several transitions to "simple" multicellularity (SM) have been recorded in both bacterial and eukaryotic clades, transitions to complex multicellularity (CM) have only happened a few times in eukaryotes. A large number of cell types (associated with large body size), increased energy consumption per gene expressed, and an increment of non-protein-coding DNA positively correlate with CM. These three factors can indeed be understood as the causes and consequences of the regulation of gene expression. Here, we discuss how a vast expansion of non-protein-coding RNA (ncRNAs) regulators rather than large numbers of novel protein regulators can easily contribute to the emergence of CM. We also propose that the evolutionary advantage of RNA-based gene regulation derives from the robustness of the RNA structure that makes it easy to combine genetic drift with functional exploration. We describe a model which aims to explain how the evolutionary dynamic of ncRNAs becomes dominated by the accessibility of advantageous mutations to innovate regulation in complex multicellular organisms. The information and models discussed here outline the hypothesis that pervasive ncRNA-based regulatory systems, only capable of being expanded and explored in higher eukaryotes, are prerequisite to complex multicellularity. Thereby, regulatory RNA molecules in Eukarya have allowed intensification of morphological complexity by stabilizing critical phenotypes and controlling developmental precision. Although the origin of RNA on early Earth is still controversial, it is becoming clear that once RNA emerged into a protocellular system, its relevance within the evolution of biological systems has been greater than we previously thought.
Collapse
Affiliation(s)
- Irma Lozada-Chávez
- Computational EvoDevo Group, University of Leipzig, Härtelstrasse 16-18, 04107, Leipzig, Germany.
| | | | | |
Collapse
|
106
|
Abstract
Fungi display a large diversity in genome size and complexity, variation that is often considered to be adaptive. But because nonadaptive processes can also have important consequences on the features of genomes, we investigated the relationship of genetic drift and genome size in the phylum Ascomycota using multiple indicators of genetic drift. We detected a complex relationship between genetic drift and genome size in fungi: genetic drift is associated with genome expansion on broad evolutionary timescales, as hypothesized for other eukaryotes; but within subphyla over smaller timescales, the opposite trend is observed. Moreover, fungi and bacteria display similar patterns of genome degradation that are associated with initial effects of genetic drift. We conclude that changes in genome size within Ascomycota have occurred using two different routes: large-scale genome expansions are catalyzed by increasing drift as predicted by the mutation-hazard model of genome evolution and small-scale modifications in genome size are independent of drift.
Collapse
|
107
|
Deutschbauer A, Price MN, Wetmore KM, Shao W, Baumohl JK, Xu Z, Nguyen M, Tamse R, Davis RW, Arkin AP. Evidence-based annotation of gene function in Shewanella oneidensis MR-1 using genome-wide fitness profiling across 121 conditions. PLoS Genet 2011; 7:e1002385. [PMID: 22125499 PMCID: PMC3219624 DOI: 10.1371/journal.pgen.1002385] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/30/2011] [Indexed: 11/21/2022] Open
Abstract
Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates, alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S. oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-based annotation of gene function in prokaryotes. Many computationally predicted gene annotations in bacteria are incomplete or wrong. Consequently, experimental methods to systematically determine gene function in bacteria are required. Here, we describe a genetic approach to meet this challenge. We constructed a large transposon mutant library in the metal-reducing bacterium Shewanella oneidensis MR-1 and profiled the fitness of this collection in more than 100 diverse experimental conditions. In addition to identifying a phenotype for more than 2,000 genes, we demonstrate that mutant fitness profiles can be used to assign “evidence-based” gene annotations for enzymes, signaling proteins, transporters, and transcription factors, a subset of which we verify experimentally.
Collapse
Affiliation(s)
- Adam Deutschbauer
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Morgan N. Price
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kelly M. Wetmore
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Wenjun Shao
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jason K. Baumohl
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Zhuchen Xu
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
| | - Michelle Nguyen
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Raquel Tamse
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Ronald W. Davis
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Adam P. Arkin
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
108
|
McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 2011; 10:13-26. [PMID: 22064560 DOI: 10.1038/nrmicro2670] [Citation(s) in RCA: 983] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Since 2006, numerous cases of bacterial symbionts with extraordinarily small genomes have been reported. These organisms represent independent lineages from diverse bacterial groups. They have diminutive gene sets that rival some mitochondria and chloroplasts in terms of gene numbers and lack genes that are considered to be essential in other bacteria. These symbionts have numerous features in common, such as extraordinarily fast protein evolution and a high abundance of chaperones. Together, these features point to highly degenerate genomes that retain only the most essential functions, often including a considerable fraction of genes that serve the hosts. These discoveries have implications for the concept of minimal genomes, the origins of cellular organelles, and studies of symbiosis and host-associated microbiota.
Collapse
Affiliation(s)
- John P McCutcheon
- University of Montana, Division of Biological Sciences, 32 Campus Drive, HS104, Missoula, Montana 59812, USA.
| | | |
Collapse
|
109
|
Challacombe JF, Eichorst SA, Hauser L, Land M, Xie G, Kuske CR. Biological consequences of ancient gene acquisition and duplication in the large genome of Candidatus Solibacter usitatus Ellin6076. PLoS One 2011; 6:e24882. [PMID: 21949776 PMCID: PMC3174227 DOI: 10.1371/journal.pone.0024882] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/19/2011] [Indexed: 11/21/2022] Open
Abstract
Members of the bacterial phylum Acidobacteria are widespread in soils and sediments worldwide, and are abundant in many soils. Acidobacteria are challenging to culture in vitro, and many basic features of their biology and functional roles in the soil have not been determined. Candidatus Solibacter usitatus strain Ellin6076 has a 9.9 Mb genome that is approximately 2–5 times as large as the other sequenced Acidobacteria genomes. Bacterial genome sizes typically range from 0.5 to 10 Mb and are influenced by gene duplication, horizontal gene transfer, gene loss and other evolutionary processes. Our comparative genome analyses indicate that the Ellin6076 large genome has arisen by horizontal gene transfer via ancient bacteriophage and/or plasmid-mediated transduction, and widespread small-scale gene duplications, resulting in an increased number of paralogs. Low amino acid sequence identities among functional group members, and lack of conserved gene order and orientation in regions containing similar groups of paralogs, suggest that most of the paralogs are not the result of recent duplication events. The genome sizes of additional cultured Acidobacteria strains were estimated using pulsed-field gel electrophoresis to determine the prevalence of the large genome trait within the phylum. Members of subdivision 3 had larger genomes than those of subdivision 1, but none were as large as the Ellin6076 genome. The large genome of Ellin6076 may not be typical of the phylum, and encodes traits that could provide a selective metabolic, defensive and regulatory advantage in the soil environment.
Collapse
Affiliation(s)
- Jean F Challacombe
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
| | | | | | | | | | | |
Collapse
|
110
|
McCutcheon JP, von Dohlen CD. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol 2011; 21:1366-72. [PMID: 21835622 DOI: 10.1016/j.cub.2011.06.051] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/23/2011] [Accepted: 06/21/2011] [Indexed: 11/28/2022]
Abstract
Highly reduced genomes of 144-416 kilobases have been described from nutrient-provisioning bacterial symbionts of several insect lineages [1-5]. Some host insects have formed stable associations with pairs of bacterial symbionts that live in specialized cells and provide them with essential nutrients; genomic data from these systems have revealed remarkable levels of metabolic complementarity between the symbiont pairs [3, 4, 6, 7]. The mealybug Planococcus citri (Hemiptera: Pseudococcidae) contains dual bacterial symbionts existing with an unprecedented organization: an unnamed gammaproteobacteria, for which we propose the name Candidatus Moranella endobia, lives inside the betaproteobacteria Candidatus Tremblaya princeps [8]. Here we describe the complete genomes and metabolic contributions of these unusual nested symbionts. We show that whereas there is little overlap in retained genes involved in nutrient production between symbionts, several essential amino acid pathways in the mealybug assemblage require a patchwork of interspersed gene products from Tremblaya, Moranella, and possibly P. citri. Furthermore, although Tremblaya has the smallest cellular genome yet described, it contains a genomic inversion present in both orientations in individual insects, starkly contrasting with the extreme structural stability typical of highly reduced bacterial genomes [4, 9, 10].
Collapse
Affiliation(s)
- John P McCutcheon
- Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
111
|
Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 2011; 35:957-76. [PMID: 21711367 DOI: 10.1111/j.1574-6976.2011.00292.x] [Citation(s) in RCA: 403] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Horizontal genetic transfer (HGT) has played an important role in bacterial evolution at least since the origins of the bacterial divisions, and HGT still facilitates the origins of bacterial diversity, including diversity based on antibiotic resistance. Adaptive HGT is aided by unique features of genetic exchange in bacteria such as the promiscuity of genetic exchange and the shortness of segments transferred. Genetic exchange rates are limited by the genetic and ecological similarity of organisms. Adaptive transfer of genes is limited to those that can be transferred as a functional unit, provide a niche-transcending adaptation, and are compatible with the architecture and physiology of other organisms. Horizontally transferred adaptations may bring about fitness costs, and natural selection may ameliorate these costs. The origins of ecological diversity can be analyzed by comparing the genomes of recently divergent, ecologically distinct populations, which can be discovered as sequence clusters. Such genome comparisons demonstrate the importance of HGT in ecological diversification. Newly divergent populations cannot be discovered as sequence clusters when their ecological differences are coded by plasmids, as is often the case for antibiotic resistance; the discovery of such populations requires a screen for plasmid-coded functions. This paper reviews the features of bacterial genetics that allow HGT, the similarities between organisms that foster HGT between them, the limits to the kinds of adaptations that can be transferred, and amelioration of fitness costs associated with HGT; the paper also reviews approaches to discover the origins of new, ecologically distinct bacterial populations and the role that HGT plays in their founding.
Collapse
Affiliation(s)
- Jane Wiedenbeck
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|
112
|
Plague GR, Dougherty KM, Boodram KS, Boustani SE, Cao H, Manning SR, McNally CC. Relaxed natural selection alone does not permit transposable element expansion within 4,000 generations in Escherichia coli. Genetica 2011; 139:895-902. [PMID: 21751098 DOI: 10.1007/s10709-011-9593-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 06/25/2011] [Indexed: 10/18/2022]
Abstract
Insertion sequences (ISs) are transposable genetic elements in bacterial genomes. IS elements are common among bacteria but are generally rare within free-living species, probably because of the negative fitness effects they have on their hosts. Conversely, ISs frequently proliferate in intracellular symbionts and pathogens that recently transitioned from a free-living lifestyle. IS elements can profoundly influence the genomic evolution of their bacterial hosts, although it is unknown why they often expand in intracellular bacteria. We designed a laboratory evolution experiment with Escherichia coli K-12 to test the hypotheses that IS elements often expand in intracellular bacteria because of relaxed natural selection due to (1) their generally small effective population sizes (N (e)) and thus enhanced genetic drift, and (2) their nutrient rich environment, which makes many biosynthetic genes unnecessary and thus selectively neutral territory for IS insertion. We propagated 12 populations under four experimental conditions: large N (e) versus small N (e), and nutrient rich medium versus minimal medium. We found that relaxed selection over 4,000 generations was not sufficient to permit IS element expansion in any experimental population, thus leading us to hypothesize that IS expansion in intracellular symbionts may often be spurred by enhanced transposition rates, possibly due to environmental stress, coupled with relaxed natural selection.
Collapse
Affiliation(s)
- Gordon R Plague
- Louis Calder Center-Biological Field Station, Department of Biological Sciences, Fordham University, Armonk, NY 10504, USA.
| | | | | | | | | | | | | |
Collapse
|
113
|
Cross LJ, Russell JE, Desai M. Examining the genetic variation of reference microbial cultures used within food and environmental laboratories using fluorescent amplified fragment length polymorphism analysis. FEMS Microbiol Lett 2011; 321:100-6. [DOI: 10.1111/j.1574-6968.2011.02320.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
114
|
Pink RC, Wicks K, Caley DP, Punch EK, Jacobs L, Carter DRF. Pseudogenes: pseudo-functional or key regulators in health and disease? RNA (NEW YORK, N.Y.) 2011; 17:792-8. [PMID: 21398401 PMCID: PMC3078729 DOI: 10.1261/rna.2658311] [Citation(s) in RCA: 311] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pseudogenes have long been labeled as "junk" DNA, failed copies of genes that arise during the evolution of genomes. However, recent results are challenging this moniker; indeed, some pseudogenes appear to harbor the potential to regulate their protein-coding cousins. Far from being silent relics, many pseudogenes are transcribed into RNA, some exhibiting a tissue-specific pattern of activation. Pseudogene transcripts can be processed into short interfering RNAs that regulate coding genes through the RNAi pathway. In another remarkable discovery, it has been shown that pseudogenes are capable of regulating tumor suppressors and oncogenes by acting as microRNA decoys. The finding that pseudogenes are often deregulated during cancer progression warrants further investigation into the true extent of pseudogene function. In this review, we describe the ways in which pseudogenes exert their effect on coding genes and explore the role of pseudogenes in the increasingly complex web of noncoding RNA that contributes to normal cellular regulation.
Collapse
Affiliation(s)
- Ryan Charles Pink
- School of Life Sciences, Oxford Brookes University, Headington, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
115
|
Morales SE, Holben WE. Linking bacterial identities and ecosystem processes: can 'omic' analyses be more than the sum of their parts? FEMS Microbiol Ecol 2011; 75:2-16. [PMID: 20662931 DOI: 10.1111/j.1574-6941.2010.00938.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A major goal in microbial ecology is to link specific microbial populations to environmental processes (e.g. biogeochemical transformations). The cultivation and characterization of isolates using genetic, biochemical and physiological tests provided direct links between organisms and their activities, but did not provide an understanding of the process networks in situ. Cultivation-independent molecular techniques have extended capabilities in this regard, and yet, for two decades, the focus has been on monitoring microbial community diversity and population dynamics by means of rRNA gene abundances or rRNA molecules. However, these approaches are not always well suited for establishing metabolic activity or microbial roles in ecosystem function. The current approaches, microbial community metagenomic and metatranscriptomic techniques, have been developed as other ways to study microbial assemblages, giving rise to exponentially increasing collections of information from numerous environments. This review considers some advantages and limitations of nucleic acid-based 'omic' approaches and discusses the potential for the integration of multiple molecular or computational techniques for a more effective assessment of links between specific microbial populations and ecosystem processes in situ. Establishing such connections will enhance the predictive power regarding ecosystem response to parameters or perturbations, and will bring us closer to integrating microbial data into ecosystem- and global-scale process measurements and models.
Collapse
Affiliation(s)
- Sergio E Morales
- Microbial Ecology Program, Division of Biological Sciences, The University of Montana, Missoula, MT 59812-1006, USA.
| | | |
Collapse
|
116
|
Advances in Research on Pseudogenes. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
117
|
Abstract
The birth and death of genes is central to adaptive evolution, yet the underlying genome dynamics remain elusive. The availability of closely related complete genome sequences helps to follow changes in gene contents and clarify their relationship to overall genome organization. Helicobacter pylori, bacteria in our stomach, are known for their extreme genome plasticity through mutation and recombination and will make a good target for such an analysis. In comparing their complete genome sequences, we found that gain and loss of genes (loci) for outer membrane proteins, which mediate host interaction, occurred at breakpoints of chromosomal inversions. Sequence comparison there revealed a unique mechanism of DNA duplication: DNA duplication associated with inversion. In this process, a DNA segment at one chromosomal locus is copied and inserted, in an inverted orientation, into a distant locus on the same chromosome, while the entire region between these two loci is also inverted. Recognition of this and three more inversion modes, which occur through reciprocal recombination between long or short sequence similarity or adjacent to a mobile element, allowed reconstruction of synteny evolution through inversion events in this species. These results will guide the interpretation of extensive DNA sequencing results for understanding long- and short-term genome evolution in various organisms and in cancer cells.
Collapse
|
118
|
Trombert AN, Berrocal L, Fuentes JA, Mora GC. S. Typhimurium sseJ gene decreases the S. Typhi cytotoxicity toward cultured epithelial cells. BMC Microbiol 2010; 10:312. [PMID: 21138562 PMCID: PMC3004891 DOI: 10.1186/1471-2180-10-312] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/07/2010] [Indexed: 11/25/2022] Open
Abstract
Background Salmonella enterica serovar Typhi and Typhimurium are closely related serovars as indicated by >96% DNA sequence identity between shared genes. Nevertheless, S. Typhi is a strictly human-specific pathogen causing a systemic disease, typhoid fever. In contrast, S. Typhimurium is a broad host range pathogen causing only a self-limited gastroenteritis in immunocompetent humans. We hypothesize that these differences have arisen because some genes are unique to each serovar either gained by horizontal gene transfer or by the loss of gene activity due to mutation, such as pseudogenes. S. Typhi has 5% of genes as pseudogenes, much more than S. Typhimurium which contains 1%. As a consequence, S. Typhi lacks several protein effectors implicated in invasion, proliferation and/or translocation by the type III secretion system that are fully functional proteins in S. Typhimurium. SseJ, one of these effectors, corresponds to an acyltransferase/lipase that participates in SCV biogenesis in human epithelial cell lines and is needed for full virulence of S. Typhimurium. In S. Typhi, sseJ is a pseudogene. Therefore, we suggest that sseJ inactivation in S. Typhi has an important role in the development of the systemic infection. Results We investigated whether the S. Typhi trans-complemented with the functional sseJ gene from S. Typhimurium (STM) affects the cytotoxicity toward cultured cell lines. It was found that S. Typhi harbouring sseJSTM presents a similar cytotoxicity level and intracellular retention/proliferation of cultured epithelial cells (HT-29 or HEp-2) as wild type S. Typhimurium. These phenotypes are significantly different from wild type S. Typhi Conclusions Based on our results we conclude that the mutation that inactivate the sseJ gene in S. Typhi resulted in evident changes in the behaviour of bacteria in contact with eukaryotic cells, plausibly contributing to the S. Typhi adaptation to the systemic infection in humans.
Collapse
Affiliation(s)
- A Nicole Trombert
- Laboratorio de Microbiologia, Facultad de Ciencias Biologicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | | | | | | |
Collapse
|
119
|
Sterling EJ, Gómez A, Porzecanski AL. A systemic view of biodiversity and its conservation: Processes, interrelationships, and human culture. Bioessays 2010; 32:1090-8. [DOI: 10.1002/bies.201000049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
120
|
McCutcheon JP, Moran NA. Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol Evol 2010; 2:708-18. [PMID: 20829280 PMCID: PMC2953269 DOI: 10.1093/gbe/evq055] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The main genomic changes in the evolution of host-restricted microbial symbionts are ongoing inactivation and loss of genes combined with rapid sequence evolution and extreme structural stability; these changes reflect high levels of genetic drift due to small population sizes and strict clonality. This genomic erosion includes irreversible loss of genes in many functional categories and can include genes that underlie the nutritional contributions to hosts that are the basis of the symbiotic association. Candidatus Sulcia muelleri is an ancient symbiont of sap-feeding insects and is typically coresident with another bacterial symbiont that varies among host subclades. Previously sequenced Sulcia genomes retain pathways for the same eight essential amino acids, whereas coresident symbionts synthesize the remaining two. Here, we describe a dual symbiotic system consisting of Sulcia and a novel species of Betaproteobacteria, Candidatus Zinderia insecticola, both living in the spittlebug Clastoptera arizonana. This Sulcia has completely lost the pathway for the biosynthesis of tryptophan and, therefore, retains the ability to make only 7 of the 10 essential amino acids. Zinderia has a tiny genome (208 kb) and the most extreme nucleotide base composition (13.5% G + C) reported to date, yet retains the ability to make the remaining three essential amino acids, perfectly complementing capabilities of the coresident Sulcia. Combined with the results from related symbiotic systems with complete genomes, these data demonstrate the critical role that bacterial symbionts play in the host insect’s biology and reveal one outcome following the loss of a critical metabolic activity through genome reduction.
Collapse
|
121
|
Cui J, Das S, Smith TF, Samuelson J. Trichomonas transmembrane cyclases result from massive gene duplication and concomitant development of pseudogenes. PLoS Negl Trop Dis 2010; 4:e782. [PMID: 20689771 PMCID: PMC2914791 DOI: 10.1371/journal.pntd.0000782] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 07/02/2010] [Indexed: 01/04/2023] Open
Abstract
Background Trichomonas vaginalis has an unusually large genome (∼160 Mb) encoding ∼60,000 proteins. With the goal of beginning to understand why some Trichomonas genes are present in so many copies, we characterized here a family of ∼123 Trichomonas genes that encode transmembrane adenylyl cyclases (TMACs). Methodology/Principal Findings The large family of TMACs genes is the result of recent duplications of a small set of ancestral genes that appear to be unique to trichomonads. Duplicated TMAC genes are not closely associated with repetitive elements, and duplications of flanking sequences are rare. However, there is evidence for TMAC gene replacements by homologous recombination. A high percentage of TMAC genes (∼46%) are pseudogenes, as they contain stop codons and/or frame shifts, or the genes are truncated. Numerous stop codons present in the genome project G3 strain are not present in orthologous genes of two other Trichomonas strains (S1 and B7RC2). Each TMAC is composed of a series of N-terminal transmembrane helices and a single C-terminal cyclase domain that has adenylyl cyclase activity. Multiple TMAC genes are transcribed by Trichomonas cloned by limiting dilution. Conclusions/Significance We conclude that one reason for the unusually large genome of Trichomonas is the presence of unstable families of genes such as those encoding TMACs that are undergoing massive gene duplication and concomitant development of pseudogenes. Trichomonas vaginalis is the only medically important protist (single-cell eukaryote) that is sexually transmitted. The ∼160-Mb Trichomonas genome contains more predicted protein-encoding genes (∼60,000) than the human genome. To begin to understand why there are so many copies of some genes, we chose here to study a large family of genes encoding unique transmembrane cyclases. Our most important results include the following. More than 100 transmembrane cyclase genes do not result from chromosomal duplications, because for the most part only the coding regions of the genes, rather than flanking sequences, are duplicated. Almost half of the transmembrane cyclase genes are pseudogenes, and these pseudogenes are polymorphic among laboratory strains of Trichomonas. Messenger RNAs for numerous transmembrane cyclases are expressed simultaneously, and representative cyclase domains have adenylyl cyclase activity. In summary, the large family of Trichomonas genes encoding transmembrane adenylyl cyclases results from massive gene duplication and concomitant development of pseudogenes.
Collapse
Affiliation(s)
- Jike Cui
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Bioinformatics, Boston University, Boston, Massachusetts, United States of America
| | - Suchismita Das
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Temple F. Smith
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
122
|
Accurate localization of the integration sites of two genomic islands at single-nucleotide resolution in the genome of Bacillus cereus ATCC 10987. Comp Funct Genomics 2010:451930. [PMID: 18464912 PMCID: PMC2359905 DOI: 10.1155/2008/451930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/14/2008] [Indexed: 11/18/2022] Open
Abstract
We have identified two genomic islands, that is, BCEGI-1 and BCEGI-2, in the genome of Bacillus cereus ATCC 10987, based on comparative analysis with Bacillus cereus ATCC 14579. Furthermore, by using the cumulative GC profile and performing homology searches between the two genomes, the integration sites of the two genomic islands were determined at single-nucleotide resolution. BCEGI-1 is integrated between 159705 bp and 198000 bp, whereas BCEGI-2 is integrated between the end of ORF BCE4594 and the start of the intergenic sequence immediately following BCE4626, that is, from 4256803 bp to 4285534 bp. BCEGI-1 harbors two bacterial Tn7 transposons, which have two sets of genes encoding TnsA, B, C, and D. It is generally believed that unlike the TnsABC+E pathway, the TnsABC+D pathway would only promote vertical transmission to daughter cells. The evidence presented in this paper, however, suggests a role of the TnsABC+D pathway in the horizontal transfer of some genomic islands.
Collapse
|
123
|
Lin Y, Gao F, Zhang CT. Functionality of essential genes drives gene strand-bias in bacterial genomes. Biochem Biophys Res Commun 2010; 396:472-6. [PMID: 20417622 DOI: 10.1016/j.bbrc.2010.04.119] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 04/20/2010] [Indexed: 11/29/2022]
Abstract
Essential genes, indispensable genes for an organism's survival, encode functions that are considered a foundation of life. Based on those experimentally determined for 10 bacteria, we find that essential genes are more preferentially situated at the leading strand than at the lagging strand, for all the 10 genomes studied, confirming previous findings based on either smaller datasets or putatively assigned ones by homology search. Furthermore, we find that rather than all essential genes, only those with the COG functional category of information storage and process (J, K and L), and subcategories D (cell cycle control), M (cell wall biogenesis), O (posttranslational modification), C (energy production and conversion), G (carbohydrate transport and metabolism), E (amino acid transport and metabolism) and F (nucleotide transport and metabolism) are preferentially situated at the leading strand. In contrast, the strand-bias for essential genes in other COG functional subcategories is not statistically significant. These results suggest that the remarkable strand-bias of the distribution of essential genes is mainly relevant to the aforementioned functionalities, which, therefore, likely play a key role in shaping the gene strand-bias in bacterial genomes.
Collapse
Affiliation(s)
- Yan Lin
- Department of Physics, Tianjin University, Tianjin 300072, China
| | | | | |
Collapse
|
124
|
Mann S, Li J, Chen YPP. Insights into bacterial genome composition through variable target GC content profiling. J Comput Biol 2010; 17:79-96. [PMID: 20078399 DOI: 10.1089/cmb.2009.0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study presents a new computational method for guanine (G) and cytosine (C), or GC, content profiling based on the idea of multiple resolution sampling (MRS). The benefit of our new approach over existing techniques follows from its ability to locate significant regions without prior knowledge of the sequence, nor the features being sought. The use of MRS has provided novel insights into bacterial genome composition. Key findings include those that are related to the core composition of bacterial genomes, to the identification of large genomic islands (in Enterobacterial genomes), and to the identification of surface protein determinants in human pathogenic organisms (e.g., Staphylococcus genomes). We observed that bacterial surface binding proteins maintain abnormal GC content, potentially pointing to a viral origin. This study has demonstrated that GC content holds a high informational worth and hints at many underlying evolutionary processes. For online Supplementary Material, see www.liebertonline.com .
Collapse
Affiliation(s)
- Scott Mann
- Faculty of Science and Technology, Deakin University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
125
|
Aziz RK, Breitbart M, Edwards RA. Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Res 2010; 38:4207-17. [PMID: 20215432 PMCID: PMC2910039 DOI: 10.1093/nar/gkq140] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Genes, like organisms, struggle for existence, and the most successful genes persist and widely disseminate in nature. The unbiased determination of the most successful genes requires access to sequence data from a wide range of phylogenetic taxa and ecosystems, which has finally become achievable thanks to the deluge of genomic and metagenomic sequences. Here, we analyzed 10 million protein-encoding genes and gene tags in sequenced bacterial, archaeal, eukaryotic and viral genomes and metagenomes, and our analysis demonstrates that genes encoding transposases are the most prevalent genes in nature. The finding that these genes, classically considered as selfish genes, outnumber essential or housekeeping genes suggests that they offer selective advantage to the genomes and ecosystems they inhabit, a hypothesis in agreement with an emerging body of literature. Their mobile nature not only promotes dissemination of transposable elements within and between genomes but also leads to mutations and rearrangements that can accelerate biological diversification and—consequently—evolution. By securing their own replication and dissemination, transposases guarantee to thrive so long as nucleic acid-based life forms exist.
Collapse
Affiliation(s)
- Ramy K Aziz
- Computation Institute, University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
126
|
A zinc-binding site by negative selection induces metallodrug susceptibility in an essential chaperonin. Proc Natl Acad Sci U S A 2010; 107:4943-8. [PMID: 20194796 DOI: 10.1073/pnas.0913970107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GroES is an indispensable chaperonin virtually found throughout all life forms. Consequently, mutations of this protein must be critically scrutinized by natural selection. Nevertheless, the homolog from a potentially virulent gastric pathogen, Helicobacter pylori, strikingly features a histidine/cysteine-rich C terminus that shares no significant homology with other family members. Additionally, three more (H45, C51, and C53) are uniquely present in its apical domain. The statistical analyses show that these residues may have originated from negative selection, presumably driven by either dependent or independent amino acid mutations. In the absence of the C-terminal metal-binding domain, the mutant protein still exhibits a substantial capacity for zinc binding in vivo. The biochemical properties of site-directed mutants indicate that H45, C51, and C53 make up an oxidation-sensitive zinc-binding site that may donate the bound metal to a zinc acceptor. Of interest, bismuth antiulcer drugs strongly bind at this site (K(d) of approximately 7 x 10(-26) M), replacing the bound zinc and consequently inducing the disruption of the quaternary structure. Because biological features by negative selection are usually inert to change during evolution, this study sheds light on a promising field whereby medicines can be designed or improved to specifically target the residues that uniquely evolved in pathogenic proteins so as to retard the emergence of drug resistance.
Collapse
|
127
|
Losada L, Ronning CM, DeShazer D, Woods D, Fedorova N, Kim HS, Shabalina SA, Pearson TR, Brinkac L, Tan P, Nandi T, Crabtree J, Badger J, Beckstrom-Sternberg S, Saqib M, Schutzer SE, Keim P, Nierman WC. Continuing evolution of Burkholderia mallei through genome reduction and large-scale rearrangements. Genome Biol Evol 2010; 2:102-16. [PMID: 20333227 PMCID: PMC2839346 DOI: 10.1093/gbe/evq003] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2010] [Indexed: 11/25/2022] Open
Abstract
Burkholderia mallei (Bm), the causative agent of the
predominately equine disease glanders, is a genetically uniform species that is
very closely related to the much more diverse species Burkholderia
pseudomallei (Bp), an opportunistic human pathogen and the primary
cause of melioidosis. To gain insight into the relative lack of genetic
diversity within Bm, we performed whole-genome comparative analysis of seven Bm
strains and contrasted these with eight Bp strains. The Bm core genome (shared
by all seven strains) is smaller in size than that of Bp, but the inverse is
true for the variable gene sets that are distributed across strains.
Interestingly, the biological roles of the Bm variable gene sets are much more
homogeneous than those of Bp. The Bm variable genes are found mostly in
contiguous regions flanked by insertion sequence (IS) elements, which appear to
mediate excision and subsequent elimination of groups of genes that are under
reduced selection in the mammalian host. The analysis suggests that the Bm
genome continues to evolve through random IS-mediated recombination events, and
differences in gene content may contribute to differences in virulence observed
among Bm strains. The results are consistent with the view that Bm recently
evolved from a single strain of Bp upon introduction into an animal host
followed by expansion of IS elements, prophage elimination, and genome
rearrangements and reduction mediated by homologous recombination across IS
elements.
Collapse
|
128
|
McCutcheon JP. The bacterial essence of tiny symbiont genomes. Curr Opin Microbiol 2010; 13:73-8. [PMID: 20044299 DOI: 10.1016/j.mib.2009.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 11/18/2022]
Abstract
Bacterial genomes vary in size over two orders of magnitude. The Mycoplasma genitalium genome has historically defined the extreme small end of this spectrum, and has therefore heavily informed theoretical and experimental work aimed at determining the minimal gene content necessary to support cellular life. Recent genomic data from insect symbionts have revealed bacterial genomes that are incredibly small-two to four times smaller than M. genitalium-and these tiny genomes have raised questions about the limits of genome reduction and have blurred the once-clear distinction between autonomous cellular life and highly integrated organelle. New data from various systems with symbiotic bacterial or archaeal partners have begun to shed light on how these bacteria may function with such small gene sets, but major mechanistic questions remain.
Collapse
Affiliation(s)
- John P McCutcheon
- Center for Insect Science, Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
129
|
Feng Y, Shi X, Zhang H, Zhang S, Ma Y, Zheng B, Han H, Lan Q, Tang J, Cheng J, Gao GF, Hu Q. Recurrence of HumanStreptococcus suisInfections in 2007: Three Cases of Meningitis and Implications that HeterogeneousS. suis2 Circulates in China. Zoonoses Public Health 2009; 56:506-14. [DOI: 10.1111/j.1863-2378.2008.01225.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
130
|
Liu YJ, Zheng D, Balasubramanian S, Carriero N, Khurana E, Robilotto R, Gerstein MB. Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: the anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity. BMC Genomics 2009; 10:480. [PMID: 19835609 PMCID: PMC2770531 DOI: 10.1186/1471-2164-10-480] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 10/16/2009] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Pseudogenes provide a record of the molecular evolution of genes. As glycolysis is such a highly conserved and fundamental metabolic pathway, the pseudogenes of glycolytic enzymes comprise a standardized genomic measuring stick and an ideal platform for studying molecular evolution. One of the glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has already been noted to have one of the largest numbers of associated pseudogenes, among all proteins. RESULTS We assembled the first comprehensive catalog of the processed and duplicated pseudogenes of glycolytic enzymes in many vertebrate model-organism genomes, including human, chimpanzee, mouse, rat, chicken, zebrafish, pufferfish, fruitfly, and worm (available at http://pseudogene.org/glycolysis/). We found that glycolytic pseudogenes are predominantly processed, i.e. retrotransposed from the mRNA of their parent genes. Although each glycolytic enzyme plays a unique role, GAPDH has by far the most pseudogenes, perhaps reflecting its large number of non-glycolytic functions or its possession of a particularly retrotranspositionally active sub-sequence. Furthermore, the number of GAPDH pseudogenes varies significantly among the genomes we studied: none in zebrafish, pufferfish, fruitfly, and worm, 1 in chicken, 50 in chimpanzee, 62 in human, 331 in mouse, and 364 in rat. Next, we developed a simple method of identifying conserved syntenic blocks (consistently applicable to the wide range of organisms in the study) by using orthologous genes as anchors delimiting a conserved block between a pair of genomes. This approach showed that few glycolytic pseudogenes are shared between primate and rodent lineages. Finally, by estimating pseudogene ages using Kimura's two-parameter model of nucleotide substitution, we found evidence for bursts of retrotranspositional activity approximately 42, 36, and 26 million years ago in the human, mouse, and rat lineages, respectively. CONCLUSION Overall, we performed a consistent analysis of one group of pseudogenes across multiple genomes, finding evidence that most of them were created within the last 50 million years, subsequent to the divergence of rodent and primate lineages.
Collapse
Affiliation(s)
- Yuen-Jong Liu
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, USA
- Department of Molecular Biophysics and Biochemistry, P.O. Box 208114, Yale University, New Haven, CT 06520, USA
| | - Deyou Zheng
- Albert Einstein College of Medicine of Yeshiva University, Department of Neurology, Rose F. Kennedy Center, 1410 Pelham Parkway South, Room 915B, Bronx, NY 10461, USA
| | - Suganthi Balasubramanian
- Department of Molecular Biophysics and Biochemistry, P.O. Box 208114, Yale University, New Haven, CT 06520, USA
| | - Nicholas Carriero
- Department of Molecular Biophysics and Biochemistry, P.O. Box 208114, Yale University, New Haven, CT 06520, USA
| | - Ekta Khurana
- Department of Molecular Biophysics and Biochemistry, P.O. Box 208114, Yale University, New Haven, CT 06520, USA
| | - Rebecca Robilotto
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Mark B Gerstein
- Department of Molecular Biophysics and Biochemistry, P.O. Box 208114, Yale University, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA
| |
Collapse
|
131
|
Norman A, Hansen LH, Sørensen SJ. Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 2009; 364:2275-89. [PMID: 19571247 DOI: 10.1098/rstb.2009.0037] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Comparative whole-genome analyses have demonstrated that horizontal gene transfer (HGT) provides a significant contribution to prokaryotic genome innovation. The evolution of specific prokaryotes is therefore tightly linked to the environment in which they live and the communal pool of genes available within that environment. Here we use the term supergenome to describe the set of all genes that a prokaryotic 'individual' can draw on within a particular environmental setting. Conjugative plasmids can be considered particularly successful entities within the communal pool, which have enabled HGT over large taxonomic distances. These plasmids are collections of discrete regions of genes that function as 'backbone modules' to undertake different aspects of overall plasmid maintenance and propagation. Conjugative plasmids often carry suites of 'accessory elements' that contribute adaptive traits to the hosts and, potentially, other resident prokaryotes within specific environmental niches. Insight into the evolution of plasmid modules therefore contributes to our knowledge of gene dissemination and evolution within prokaryotic communities. This communal pool provides the prokaryotes with an important mechanistic framework for obtaining adaptability and functional diversity that alleviates the need for large genomes of specialized 'private genes'.
Collapse
Affiliation(s)
- Anders Norman
- Department of Biology, Section for Evolution and Microbiology, University of Copenhagen, Copenhagen K, Denmark.
| | | | | |
Collapse
|
132
|
Isambert H, Stein RR. On the need for widespread horizontal gene transfers under genome size constraint. Biol Direct 2009; 4:28. [PMID: 19703318 PMCID: PMC2740843 DOI: 10.1186/1745-6150-4-28] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 08/25/2009] [Indexed: 11/20/2022] Open
Abstract
Background While eukaryotes primarily evolve by duplication-divergence expansion (and reduction) of their own gene repertoire with only rare horizontal gene transfers, prokaryotes appear to evolve under both gene duplications and widespread horizontal gene transfers over long evolutionary time scales. But, the evolutionary origin of this striking difference in the importance of horizontal gene transfers remains by and large a mystery. Hypothesis We propose that the abundance of horizontal gene transfers in free-living prokaryotes is a simple but necessary consequence of two opposite effects: i) their apparent genome size constraint compared to typical eukaryote genomes and ii) their underlying genome expansion dynamics through gene duplication-divergence evolution, as demonstrated by the presence of many tandem and block repeated genes. In principle, this combination of genome size constraint and underlying duplication expansion should lead to a coalescent-like process with extensive turnover of functional genes. This would, however, imply the unlikely, systematic reinvention of functions from discarded genes within independent phylogenetic lineages. Instead, we propose that the long-term evolutionary adaptation of free-living prokaryotes must have resulted in the emergence of efficient non-phylogenetic pathways to circumvent gene loss. Implications This need for widespread horizontal gene transfers due to genome size constraint implies, in particular, that prokaryotes must remain under strong selection pressure in order to maintain the long-term evolutionary adaptation of their "mutualized" gene pool, beyond the inevitable turnover of individual prokaryote species. By contrast, the absence of genome size constraint for typical eukaryotes has presumably relaxed their need for widespread horizontal gene transfers and strong selection pressure. Yet, the resulting loss of genetic functions, due to weak selection pressure and inefficient gene recovery mechanisms, must have ultimately favored the emergence of more complex life styles and ecological integration of many eukaryotes. Reviewers This article was reviewed by Pierre Pontarotti, Eugene V Koonin and Sergei Maslov.
Collapse
Affiliation(s)
- Hervé Isambert
- Institut Curie, CNRS UMR168, 11 rue P, & M, Curie, 75005 Paris, France.
| | | |
Collapse
|
133
|
Poole AM. Horizontal gene transfer and the earliest stages of the evolution of life. Res Microbiol 2009; 160:473-80. [PMID: 19647074 DOI: 10.1016/j.resmic.2009.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/14/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
Abstract
Horizontal gene transfer (HGT) has been suggested to be the dominant hereditary process at the earliest stages of evolution. I examine this suggestion within the context of the problem of genetic parasites and suggest that extreme rates of transfer may in fact negatively impact evolutionary transitions. In regard to the proposal that HGT is Lamarckian, the apparent conflict between HGT and Darwinian evolution is easily avoided by considering HGT at the appropriate level of selection.
Collapse
Affiliation(s)
- Anthony M Poole
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| |
Collapse
|
134
|
Larsson P, Elfsmark D, Svensson K, Wikström P, Forsman M, Brettin T, Keim P, Johansson A. Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen. PLoS Pathog 2009; 5:e1000472. [PMID: 19521508 PMCID: PMC2688086 DOI: 10.1371/journal.ppat.1000472] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 05/13/2009] [Indexed: 12/21/2022] Open
Abstract
Francisella tularensis is a potent mammalian pathogen well adapted to intracellular habitats, whereas F. novicida and F. philomiragia are less virulent in mammals and appear to have less specialized lifecycles. We explored adaptations within the genus that may be linked to increased host association, as follows. First, we determined the genome sequence of F. tularensis subsp. mediasiatica, the only subspecies that had not been previously sequenced. This genome, and those of 12 other F. tularensis isolates, were then compared to the genomes of F. novicida (three isolates) and F. philomiragia (one isolate). Signs of homologous recombination were found in approximately 19.2% of F. novicida and F. philomiragia genes, but none among F. tularensis genomes. In addition, random insertions of insertion sequence elements appear to have provided raw materials for secondary adaptive mutations in F. tularensis, e.g. for duplication of the Francisella Pathogenicity Island and multiplication of a putative glycosyl transferase gene. Further, the five major genetic branches of F. tularensis seem to have converged along independent routes towards a common gene set via independent losses of gene functions. Our observations suggest that despite an average nucleotide identity of >97%, F. tularensis and F. novicida have evolved as two distinct population lineages, the former characterized by clonal structure with weak purifying selection, the latter by more frequent recombination and strong purifying selection. F. tularensis and F. novicida could be considered the same bacterial species, given their high similarity, but based on the evolutionary analyses described in this work we propose retaining separate species names.
Collapse
Affiliation(s)
- Pär Larsson
- Division of CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Daniel Elfsmark
- Division of CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Kerstin Svensson
- Division of CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
- Department of Clinical Microbiology, Infectious Diseases and Bacteriology, Umeå University, Umeå, Sweden
| | - Per Wikström
- Division of CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Mats Forsman
- Division of CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Thomas Brettin
- Joint Genome Institute, Los Alamos National Laboratories, Los Alamos, New Mexico, United States of America
| | - Paul Keim
- Northern Arizona University, Flagstaff, Arizona, United States of America
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Anders Johansson
- Division of CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
- Department of Clinical Microbiology, Infectious Diseases and Bacteriology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
135
|
Kuo CH, Moran NA, Ochman H. The consequences of genetic drift for bacterial genome complexity. Genome Res 2009; 19:1450-4. [PMID: 19502381 DOI: 10.1101/gr.091785.109] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genetic drift, which is particularly effective within small populations, can shape the size and complexity of genomes by affecting the fixation of deleterious mutations. In Bacteria, assessing the contribution of genetic drift to genome evolution is problematic because the usual methods, based on intraspecific polymorphisms, can be thwarted by difficulties in delineating species' boundaries. The increased availability of sequenced bacterial genomes allows application of an alternative estimator of drift, the genome-wide ratio of replacement to silent substitutions in protein-coding sequences. This ratio, which reflects the action of purifying selection across the entire genome, shows a strong inverse relationship with genome size, indicating that drift promotes genome reduction in bacteria.
Collapse
Affiliation(s)
- Chih-Horng Kuo
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
136
|
Whole-genome tiling array analysis of Mycobacterium leprae RNA reveals high expression of pseudogenes and noncoding regions. J Bacteriol 2009; 191:3321-7. [PMID: 19286800 DOI: 10.1128/jb.00120-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Whole-genome sequence analysis of Mycobacterium leprae has revealed a limited number of protein-coding genes, with half of the genome composed of pseudogenes and noncoding regions. We previously showed that some M. leprae pseudogenes are transcribed at high levels and that their expression levels change following infection. In order to clarify the RNA expression profile of the M. leprae genome, a tiling array in which overlapping 60-mer probes cover the entire 3.3-Mbp genome was designed. The array was hybridized with M. leprae RNA from the SHR/NCrj-rnu nude rat, and the results were compared to results from an open reading frame array and confirmed by reverse transcription-PCR. RNA expression was detected from genes, pseudogenes, and noncoding regions. The signal intensities obtained from noncoding regions were higher than those from pseudogenes. Expressed noncoding regions include the M. leprae unique repetitive sequence RLEP and other sequences without any homology to known functional noncoding RNAs. Although the biological functions of RNA transcribed from M. leprae pseudogenes and noncoding regions are not known, RNA expression analysis will provide insights into the bacteriological significance of the species. In addition, our study suggests that M. leprae will be a useful model organism for the study of the molecular mechanism underlying the creation of pseudogenes and the role of microRNAs derived from noncoding regions.
Collapse
|
137
|
Abstract
Haemophilus parasuis is the causative agent of Glässer's disease, which produces big losses in swine populations worldwide. H. parasuis SH0165, belonging to the dominant serovar 5 in China, is a clinically isolated strain with high-level virulence. Here, we report the first completed genome sequence of this species.
Collapse
|
138
|
Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 2008; 77:642-56. [PMID: 19047403 DOI: 10.1128/iai.01141-08] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetically distinct isolates of Coxiella burnetii, the cause of human Q fever, display different phenotypes with respect to in vitro infectivity/cytopathology and pathogenicity for laboratory animals. Moreover, correlations between C. burnetii genomic groups and human disease presentation (acute versus chronic) have been described, suggesting that isolates have distinct virulence characteristics. To provide a more-complete understanding of C. burnetii's genetic diversity, evolution, and pathogenic potential, we deciphered the whole-genome sequences of the K (Q154) and G (Q212) human chronic endocarditis isolates and the naturally attenuated Dugway (5J108-111) rodent isolate. Cross-genome comparisons that included the previously sequenced Nine Mile (NM) reference isolate (RSA493) revealed both novel gene content and disparate collections of pseudogenes that may contribute to isolate virulence and other phenotypes. While C. burnetii genomes are highly syntenous, recombination between abundant insertion sequence (IS) elements has resulted in genome plasticity manifested as chromosomal rearrangement of syntenic blocks and DNA insertions/deletions. The numerous IS elements, genomic rearrangements, and pseudogenes of C. burnetii isolates are consistent with genome structures of other bacterial pathogens that have recently emerged from nonpathogens with expanded niches. The observation that the attenuated Dugway isolate has the largest genome with the fewest pseudogenes and IS elements suggests that this isolate's lineage is at an earlier stage of pathoadaptation than the NM, K, and G lineages.
Collapse
|
139
|
Abstract
Bacteria experience a continual influx of novel genetic material from a wide range of sources and yet their genomes remain relatively small. This aspect of bacterial evolution indicates that most newly arriving sequences are rapidly eliminated; however, numerous new genes persist, as evident from the presence of unique genes in almost all bacterial genomes. This review summarizes the methods for identifying new genes in bacterial genomes and examines the features that promote the retention and elimination of these evolutionary novelties.
Collapse
Affiliation(s)
- Chih-Horng Kuo
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
140
|
McBride AJA, Cerqueira GM, Suchard MA, Moreira AN, Zuerner RL, Reis MG, Haake DA, Ko AI, Dellagostin OA. Genetic diversity of the Leptospiral immunoglobulin-like (Lig) genes in pathogenic Leptospira spp. INFECTION GENETICS AND EVOLUTION 2008; 9:196-205. [PMID: 19028604 DOI: 10.1016/j.meegid.2008.10.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/23/2008] [Accepted: 10/28/2008] [Indexed: 11/17/2022]
Abstract
Recent serologic, immunoprotection, and pathogenesis studies identified the Lig proteins as key virulence determinants in interactions of leptospiral pathogens with the mammalian host. We examined the sequence variation and recombination patterns of ligA, ligB, and ligC among 10 pathogenic strains from five Leptospira species. All strains were found to have intact ligB genes and genetic drift accounting for most of the ligB genetic diversity observed. The ligA gene was found exclusively in L. interrogans and L. kirschneri strains, and was created from ligB by a two-step partial gene duplication process. The aminoterminal domain of LigB and the LigA paralog were essentially identical (98.5+/-0.8% mean identity) in strains with both genes. Like ligB, ligC gene variation also followed phylogenetic patterns, suggesting an early gene duplication event. However, ligC is a pseudogene in several strains, suggesting that LigC is not essential for virulence. Two ligB genes and one ligC gene had mosaic compositions and evidence for recombination events between related Leptospira species was also found for some ligA genes. In conclusion, the results presented here indicate that Lig diversity has important ramifications for the selection of Lig polypeptides for use in diagnosis and as vaccine candidates. This sequence information will aid the identification of highly conserved regions within the Lig proteins and improve upon the performance characteristics of the Lig proteins in diagnostic assays and in subunit vaccine formulations with the potential to confer heterologous protection.
Collapse
Affiliation(s)
- Alan J A McBride
- Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
|
142
|
Descorps-Declère S, Barba M, Labedan B. Matching curated genome databases: a non trivial task. BMC Genomics 2008; 9:501. [PMID: 18950477 PMCID: PMC2596144 DOI: 10.1186/1471-2164-9-501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 10/24/2008] [Indexed: 12/02/2022] Open
Abstract
Background Curated databases of completely sequenced genomes have been designed independently at the NCBI (RefSeq) and EBI (Genome Reviews) to cope with non-standard annotation found in the version of the sequenced genome that has been published by databanks GenBank/EMBL/DDBJ. These curation attempts were expected to review the annotations and to improve their pertinence when using them to annotate newly released genome sequences by homology to previously annotated genomes. However, we observed that such an uncoordinated effort has two unwanted consequences. First, it is not trivial to map the protein identifiers of the same sequence in both databases. Secondly, the two reannotated versions of the same genome differ at the level of their structural annotation. Results Here, we propose CorBank, a program devised to provide cross-referencing protein identifiers no matter what the level of identity is found between their matching sequences. Approximately 98% of the 1,983,258 amino acid sequences are matching, allowing instantaneous retrieval of their respective cross-references. CorBank further allows detecting any differences between the independently curated versions of the same genome. We found that the RefSeq and Genome Reviews versions are perfectly matching for only 50 of the 641 complete genomes we have analyzed. In all other cases there are differences occurring at the level of the coding sequence (CDS), and/or in the total number of CDS in the respective version of the same genome. CorBank is freely accessible at . The CorBank site contains also updated publication of the exhaustive results obtained by comparing RefSeq and Genome Reviews versions of each genome. Accordingly, this web site allows easy search of cross-references between RefSeq, Genome Reviews, and UniProt, for either a single CDS or a whole replicon. Conclusion CorBank is very efficient in rapid detection of the numerous differences existing between RefSeq and Genome Reviews versions of the same curated genome. Although such differences are acceptable as reflecting different views, we suggest that curators of both genome databases could help reducing further divergence by agreeing on a minimal dialogue and attempting to publish the point of view of the other database whenever it is technically possible.
Collapse
Affiliation(s)
- Stéphane Descorps-Declère
- Institut de Génétique et Microbiologie, Université Paris Sud XI, CNRS UMR 8621, Bât, 400, 91405 Orsay Cedex, France.
| | | | | |
Collapse
|
143
|
|
144
|
Heuer H, Abdo Z, Smalla K. Patchy distribution of flexible genetic elements in bacterial populations mediates robustness to environmental uncertainty. FEMS Microbiol Ecol 2008; 65:361-71. [DOI: 10.1111/j.1574-6941.2008.00539.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
145
|
Darling AE, Miklós I, Ragan MA. Dynamics of genome rearrangement in bacterial populations. PLoS Genet 2008; 4:e1000128. [PMID: 18650965 PMCID: PMC2483231 DOI: 10.1371/journal.pgen.1000128] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Accepted: 06/16/2008] [Indexed: 11/24/2022] Open
Abstract
Genome structure variation has profound impacts on phenotype in organisms ranging from microbes to humans, yet little is known about how natural selection acts on genome arrangement. Pathogenic bacteria such as Yersinia pestis, which causes bubonic and pneumonic plague, often exhibit a high degree of genomic rearrangement. The recent availability of several Yersinia genomes offers an unprecedented opportunity to study the evolution of genome structure and arrangement. We introduce a set of statistical methods to study patterns of rearrangement in circular chromosomes and apply them to the Yersinia. We constructed a multiple alignment of eight Yersinia genomes using Mauve software to identify 78 conserved segments that are internally free from genome rearrangement. Based on the alignment, we applied Bayesian statistical methods to infer the phylogenetic inversion history of Yersinia. The sampling of genome arrangement reconstructions contains seven parsimonious tree topologies, each having different histories of 79 inversions. Topologies with a greater number of inversions also exist, but were sampled less frequently. The inversion phylogenies agree with results suggested by SNP patterns. We then analyzed reconstructed inversion histories to identify patterns of rearrangement. We confirm an over-representation of "symmetric inversions"-inversions with endpoints that are equally distant from the origin of chromosomal replication. Ancestral genome arrangements demonstrate moderate preference for replichore balance in Yersinia. We found that all inversions are shorter than expected under a neutral model, whereas inversions acting within a single replichore are much shorter than expected. We also found evidence for a canonical configuration of the origin and terminus of replication. Finally, breakpoint reuse analysis reveals that inversions with endpoints proximal to the origin of DNA replication are nearly three times more frequent. Our findings represent the first characterization of genome arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of circular bacterial chromosomes.
Collapse
Affiliation(s)
- Aaron E Darling
- ARC Center of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Queensland, Australia.
| | | | | |
Collapse
|
146
|
Toxic introns and parasitic intein in Coxiella burnetii: legacies of a promiscuous past. J Bacteriol 2008; 190:5934-43. [PMID: 18606739 DOI: 10.1128/jb.00602-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The genome of the obligate intracellular pathogen Coxiella burnetii contains a large number of selfish genetic elements, including two group I introns (Cbu.L1917 and Cbu.L1951) and an intervening sequence that interrupts the 23S rRNA gene, an intein (Cbu.DnaB) within dnaB and 29 insertion sequences. Here, we describe the ability of the intron-encoded RNAs (ribozymes) to retard bacterial growth rate (toxicity) and examine the functionality and phylogenetic history of Cbu.DnaB. When expressed in Escherichia coli, both introns repressed growth, with Cbu.L1917 being more inhibitory. Both ribozymes were found to associate with ribosomes of Coxiella and E. coli. In addition, ribozymes significantly reduced in vitro luciferase translation, again with Cbu.L1917 being more inhibitory. We analyzed the relative quantities of ribozymes and genomes throughout a 14-day growth cycle of C. burnetii and found that they were inversely correlated, suggesting that the ribozymes have a negative effect on Coxiella's growth. We determined possible sites for ribozyme associations with 23S rRNA that could explain the observed toxicities. Further research is needed to determine whether the introns are being positively selected because they promote bacterial persistence or whether they were fixed in the population due to genetic drift. The intein, Cbu.DnaB, is able to self-splice, leaving the host protein intact and presumably functional. Similar inteins have been found in two extremophilic bacteria (Alkalilimnicola ehrlichei and Halorhodospira halophila) that are distantly related to Coxiella, making it difficult to determine whether the intein was acquired by horizontal gene transfer or was vertically inherited from a common ancestor.
Collapse
|
147
|
Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc Natl Acad Sci U S A 2008; 105:8097-101. [PMID: 18523005 DOI: 10.1073/pnas.0803525105] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yersinia pestis, the agent of bubonic plague, evolved from the enteric pathogen Yersinia pseudotuberculosis within the past 20,000 years. Because ancestor and descendant both exist, it is possible to infer steps in molecular evolution by direct experimental approaches. The Y. pestis life cycle includes establishment of a biofilm within its vector, the flea. Although Y. pseudotuberculosis makes biofilms in other environments, it fails to do so in the insect. We show that rcsA, a negative regulator of biofilms that is functional in Y. pseudotuberculosis, is a pseudogene in Y. pestis. Replacement of the pseudogene with the functional Y. pseudotuberculosis rcsA allele strongly represses biofilm formation and essentially abolishes flea biofilms. The conversion of rcsA to a pseudogene during Y. pestis evolution, therefore, was a case of negative selection rather than neutral genetic drift.
Collapse
|
148
|
van Passel MWJ, Marri PR, Ochman H. The emergence and fate of horizontally acquired genes in Escherichia coli. PLoS Comput Biol 2008; 4:e1000059. [PMID: 18404206 PMCID: PMC2275313 DOI: 10.1371/journal.pcbi.1000059] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 03/14/2008] [Indexed: 11/18/2022] Open
Abstract
Bacterial species, and even strains within species, can vary greatly in their gene contents and metabolic capabilities. We examine the evolution of this diversity by assessing the distribution and ancestry of each gene in 13 sequenced isolates of Escherichia coli and Shigella. We focus on the emergence and demise of two specific classes of genes, ORFans (genes with no homologs in present databases) and HOPs (genes with distant homologs), since these genes, in contrast to most conserved ancestral sequences, are known to be a major source of the novel features in each strain. We find that the rates of gain and loss of these genes vary greatly among strains as well as through time, and that ORFans and HOPs show very different behavior with respect to their emergence and demise. Although HOPs, which mostly represent gene acquisitions from other bacteria, originate more frequently, ORFans are much more likely to persist. This difference suggests that many adaptive traits are conferred by completely novel genes that do not originate in other bacterial genomes. With respect to the demise of these acquired genes, we find that strains of Shigella lose genes, both by disruption events and by complete removal, at accelerated rates.
Collapse
Affiliation(s)
- Mark W J van Passel
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona, United States of America.
| | | | | |
Collapse
|
149
|
Hershberg R, Tang H, Petrov DA. Reduced selection leads to accelerated gene loss in Shigella. Genome Biol 2008; 8:R164. [PMID: 17686180 PMCID: PMC2374995 DOI: 10.1186/gb-2007-8-8-r164] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/22/2007] [Accepted: 08/08/2007] [Indexed: 11/25/2022] Open
Abstract
The rate of gene loss was studied in the facultative pathogens, E. coli and Shigella, and was found to be greater in the more niche-limited Shigella. This is demonstrated to be due to a genome-wide reduction in the effectiveness of selection. Background Obligate pathogenic bacteria lose more genes relative to facultative pathogens, which, in turn, lose more genes than free-living bacteria. It was suggested that the increased gene loss in obligate pathogens may be due to a reduction in the effectiveness of purifying selection. Less attention has been given to the causes of increased gene loss in facultative pathogens. Results We examined in detail the rate of gene loss in two groups of facultative pathogenic bacteria: pathogenic Escherichia coli, and Shigella. We show that Shigella strains are losing genes at an accelerated rate relative to pathogenic E. coli. We demonstrate that a genome-wide reduction in the effectiveness of selection contributes to the observed increase in the rate of gene loss in Shigella. Conclusion When compared with their closely related pathogenic E. coli relatives, the more niche-limited Shigella strains appear to be losing genes at a significantly accelerated rate. A genome-wide reduction in the effectiveness of purifying selection plays a role in creating this observed difference. Our results demonstrate that differences in the effectiveness of selection contribute to differences in rate of gene loss in facultative pathogenic bacteria. We discuss how the lifestyle and pathogenicity of Shigella may alter the effectiveness of selection, thus influencing the rate of gene loss.
Collapse
Affiliation(s)
- Ruth Hershberg
- Department of Biological Sciences, Stanford University, Serra Mall, Stanford, CA 94305, USA
| | - Hua Tang
- Department of Genetics, Stanford University, Serra Mall, Stanford, CA 94305, USA
| | - Dmitri A Petrov
- Department of Biological Sciences, Stanford University, Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
150
|
Rohmer L, Fong C, Abmayr S, Wasnick M, Larson Freeman TJ, Radey M, Guina T, Svensson K, Hayden HS, Jacobs M, Gallagher LA, Manoil C, Ernst RK, Drees B, Buckley D, Haugen E, Bovee D, Zhou Y, Chang J, Levy R, Lim R, Gillett W, Guenthener D, Kang A, Shaffer SA, Taylor G, Chen J, Gallis B, D'Argenio DA, Forsman M, Olson MV, Goodlett DR, Kaul R, Miller SI, Brittnacher MJ. Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol 2008; 8:R102. [PMID: 17550600 PMCID: PMC2394750 DOI: 10.1186/gb-2007-8-6-r102] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/02/2007] [Accepted: 06/05/2007] [Indexed: 01/04/2023] Open
Abstract
.Sequencing of the non-pathogenic Francisella tularensis sub-species novicida U112, and comparison with two pathogenic sub-species, provides insights into the evolution of pathogenicity in these species. Background Francisella tularensis subspecies tularensis and holarctica are pathogenic to humans, whereas the two other subspecies, novicida and mediasiatica, rarely cause disease. To uncover the factors that allow subspecies tularensis and holarctica to be pathogenic to humans, we compared their genome sequences with the genome sequence of Francisella tularensis subspecies novicida U112, which is nonpathogenic to humans. Results Comparison of the genomes of human pathogenic Francisella strains with the genome of U112 identifies genes specific to the human pathogenic strains and reveals pseudogenes that previously were unidentified. In addition, this analysis provides a coarse chronology of the evolutionary events that took place during the emergence of the human pathogenic strains. Genomic rearrangements at the level of insertion sequences (IS elements), point mutations, and small indels took place in the human pathogenic strains during and after differentiation from the nonpathogenic strain, resulting in gene inactivation. Conclusion The chronology of events suggests a substantial role for genetic drift in the formation of pseudogenes in Francisella genomes. Mutations that occurred early in the evolution, however, might have been fixed in the population either because of evolutionary bottlenecks or because they were pathoadaptive (beneficial in the context of infection). Because the structure of Francisella genomes is similar to that of the genomes of other emerging or highly pathogenic bacteria, this evolutionary scenario may be shared by pathogens from other species.
Collapse
Affiliation(s)
- Laurence Rohmer
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Christine Fong
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Simone Abmayr
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Michael Wasnick
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Theodore J Larson Freeman
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Matthew Radey
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Tina Guina
- Department of Pediatrics, Division of Infectious Diseases, University of Washington, Campus Box 357710, 1720 NE Pacific street, Seattle, Washington 98195, USA
| | - Kerstin Svensson
- NBC Analysis, Division of NBC Defence, Swedish Defence Research Agency, SE-901 82 Umeå, Sweden
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, SE-901 85 Umeå, Sweden
| | - Hillary S Hayden
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Michael Jacobs
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Larry A Gallagher
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Colin Manoil
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| | - Robert K Ernst
- Department Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Becky Drees
- Department of Microbiology, University of Washington, Box 357242, 1720 NE Pacific street, Seattle, Washington 98195, USA
| | - Danielle Buckley
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Eric Haugen
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Donald Bovee
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Yang Zhou
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Jean Chang
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Ruth Levy
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Regina Lim
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Will Gillett
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Don Guenthener
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Allison Kang
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
| | - Scott A Shaffer
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195, USA
| | - Greg Taylor
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195, USA
| | - Jinzhi Chen
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195, USA
| | - Byron Gallis
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195, USA
| | - David A D'Argenio
- Department of Microbiology, University of Washington, Box 357242, 1720 NE Pacific street, Seattle, Washington 98195, USA
| | - Mats Forsman
- NBC Analysis, Division of NBC Defence, Swedish Defence Research Agency, SE-901 82 Umeå, Sweden
| | - Maynard V Olson
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
- Department Medicine, University of Washington, Seattle, Washington 98195, USA
| | - David R Goodlett
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195, USA
| | - Rajinder Kaul
- University of Washington Genome Center, University of Washington, Campus Box 352145, Mason Road, Seattle, Washington 98195, USA
- Department Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Samuel I Miller
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
- Department Medicine, University of Washington, Seattle, Washington 98195, USA
- Department of Microbiology, University of Washington, Box 357242, 1720 NE Pacific street, Seattle, Washington 98195, USA
| | - Mitchell J Brittnacher
- Department of Genome Sciences, University of Washington, Campus Box 357710, 1705 NE Pacific street Seattle, Washington 98195, USA
| |
Collapse
|