101
|
Cunningham TJ, Stickgold R, Kensinger EA. Investigating the effects of sleep and sleep loss on the different stages of episodic emotional memory: A narrative review and guide to the future. Front Behav Neurosci 2022; 16:910317. [PMID: 36105652 PMCID: PMC9466000 DOI: 10.3389/fnbeh.2022.910317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
For two decades, sleep has been touted as one of the primary drivers for the encoding, consolidation, retention, and retrieval of episodic emotional memory. Recently, however, sleep's role in emotional memory processing has received renewed scrutiny as meta-analyses and reviews have indicated that sleep may only contribute a small effect that hinges on the content or context of the learning and retrieval episodes. On the one hand, the strong perception of sleep's importance in maintaining memory for emotional events may have been exacerbated by publication bias phenomena, such as the "winner's curse" and "file drawer problem." On the other hand, it is plausible that there are sets of circumstances that lead to consistent and reliable effects of sleep on emotional memory; these circumstances may depend on factors such as the placement and quality of sleep relative to the emotional experience, the content and context of the emotional experience, and the probes and strategies used to assess memory at retrieval. Here, we review the literature on how sleep (and sleep loss) influences each stage of emotional episodic memory. Specifically, we have separated previous work based on the placement of sleep and sleep loss in relation to the different stages of emotional memory processing: (1) prior to encoding, (2) immediately following encoding during early consolidation, (3) during extended consolidation, separated from initial learning, (4) just prior to retrieval, and (5) post-retrieval as memories may be restructured and reconsolidated. The goals of this review are three-fold: (1) examine phases of emotional memory that sleep may influence to a greater or lesser degree, (2) explicitly identify problematic overlaps in traditional sleep-wake study designs that are preventing the ability to better disentangle the potential role of sleep in the different stages of emotional memory processing, and (3) highlight areas for future research by identifying the stages of emotional memory processing in which the effect of sleep and sleep loss remains under-investigated. Here, we begin the task of better understanding the contexts and factors that influence the relationship between sleep and emotional memory processing and aim to be a valuable resource to facilitate hypothesis generation and promote important future research.
Collapse
Affiliation(s)
- Tony J. Cunningham
- Center for Sleep and Cognition, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, United States
| | - Robert Stickgold
- Center for Sleep and Cognition, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Elizabeth A. Kensinger
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
102
|
Abstract
Humans have the remarkable ability to continually store new memories, while maintaining old memories for a lifetime. How the brain avoids catastrophic forgetting of memories due to interference between encoded memories is an open problem in computational neuroscience. Here we present a model for continual learning in a recurrent neural network combining Hebbian learning, synaptic decay and a novel memory consolidation mechanism: memories undergo stochastic rehearsals with rates proportional to the memory's basin of attraction, causing self-amplified consolidation. This mechanism gives rise to memory lifetimes that extend much longer than the synaptic decay time, and retrieval probability of memories that gracefully decays with their age. The number of retrievable memories is proportional to a power of the number of neurons. Perturbations to the circuit model cause temporally-graded retrograde and anterograde deficits, mimicking observed memory impairments following neurological trauma.
Collapse
|
103
|
van der Heijden AC, van den Heuvel OA, van der Werf YD, Talamini LM, van Marle HJF. Sleep as a window to target traumatic memories. Neurosci Biobehav Rev 2022; 140:104765. [PMID: 35803396 DOI: 10.1016/j.neubiorev.2022.104765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a severe psychiatric disorder in which traumatic memories result in flashbacks and nightmares. With one-third of patients not responding to standard exposure-based psychotherapy, new treatment strategies are needed. Sleep offers a unique time window to enhance therapeutic efficacy. Traumatic memories that are neutralized in therapy need to be stored back into memory (consolidated) during sleep to solidify the treatment effect. New basic research shows that memory consolidation can be enhanced by presenting sounds or scents that were linked to the memory at encoding, again during sleep. This procedure, termed targeted memory reactivation (TMR), has, despite its clinical potential, not been tested in (PTSD) patients. In this narrative review, we explore the potential of TMR as a new sleep-based treatment for PTSD. First we provide the necessary background on the memory and sleep principles underlying PTSD as well as the present applications and conditional factors of TMR. Then, we will discuss the outstanding questions and most promising experimental avenues when testing TMR to treat traumatic memories.
Collapse
Affiliation(s)
- A C van der Heijden
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Department Anatomy & Neuroscience, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Amsterdam, the Netherlands.
| | - O A van den Heuvel
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Department Anatomy & Neuroscience, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Amsterdam, the Netherlands
| | - Y D van der Werf
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Department Anatomy & Neuroscience, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Amsterdam, the Netherlands
| | - L M Talamini
- University of Amsterdam, Dept. of Psychology, Brain & Cognition, Nieuwe Achtergracht 129B, 1018 WS Amsterdam, the Netherlands
| | - H J F van Marle
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Department Anatomy & Neuroscience, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amstelveenseweg 589, 1081 JC Amsterdam, the Netherlands
| |
Collapse
|
104
|
Hofmann M, Mader P. Synaptic Scaling-An Artificial Neural Network Regularization Inspired by Nature. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:3094-3108. [PMID: 33502984 DOI: 10.1109/tnnls.2021.3050422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nature has always inspired the human spirit and scientists frequently developed new methods based on observations from nature. Recent advances in imaging and sensing technology allow fascinating insights into biological neural processes. With the objective of finding new strategies to enhance the learning capabilities of neural networks, we focus on a phenomenon that is closely related to learning tasks and neural stability in biological neural networks, called homeostatic plasticity. Among the theories that have been developed to describe homeostatic plasticity, synaptic scaling has been found to be the most mature and applicable. We systematically discuss previous studies on the synaptic scaling theory and how they could be applied to artificial neural networks. Therefore, we utilize information theory to analytically evaluate how mutual information is affected by synaptic scaling. Based on these analytic findings, we propose two flavors in which synaptic scaling can be applied in the training process of simple and complex, feedforward, and recurrent neural networks. We compare our approach with state-of-the-art regularization techniques on standard benchmarks. We found that the proposed method yields the lowest error in both regression and classification tasks compared to previous regularization approaches in our experiments across a wide range of network feedforward and recurrent topologies and data sets.
Collapse
|
105
|
Hayat H, Marmelshtein A, Krom AJ, Sela Y, Tankus A, Strauss I, Fahoum F, Fried I, Nir Y. Reduced neural feedback signaling despite robust neuron and gamma auditory responses during human sleep. Nat Neurosci 2022; 25:935-943. [PMID: 35817847 PMCID: PMC9276533 DOI: 10.1038/s41593-022-01107-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
Abstract
During sleep, sensory stimuli rarely trigger a behavioral response or conscious perception. However, it remains unclear whether sleep inhibits specific aspects of sensory processing, such as feedforward or feedback signaling. Here, we presented auditory stimuli (for example, click-trains, words, music) during wakefulness and sleep in patients with epilepsy, while recording neuronal spiking, microwire local field potentials, intracranial electroencephalogram and polysomnography. Auditory stimuli induced robust and selective spiking and high-gamma (80-200 Hz) power responses across the lateral temporal lobe during both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Sleep only moderately attenuated response magnitudes, mainly affecting late responses beyond early auditory cortex and entrainment to rapid click-trains in NREM sleep. By contrast, auditory-induced alpha-beta (10-30 Hz) desynchronization (that is, decreased power), prevalent in wakefulness, was strongly reduced in sleep. Thus, extensive auditory responses persist during sleep whereas alpha-beta power decrease, likely reflecting neural feedback processes, is deficient. More broadly, our findings suggest that feedback signaling is key to conscious sensory processing.
Collapse
Affiliation(s)
- Hanna Hayat
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Aaron J Krom
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaniv Sela
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Tankus
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Strauss
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Firas Fahoum
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- EEG and Epilepsy Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Itzhak Fried
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA.
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
- The Sieratzki-Sagol Center for Sleep Medicine, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.
| |
Collapse
|
106
|
Vidal V, Barbuzza AR, Tassone LM, Brusco LI, Ballarini FM, Forcato C. Odor cueing during sleep improves consolidation of a history lesson in a school setting. Sci Rep 2022; 12:10350. [PMID: 35725905 PMCID: PMC9208245 DOI: 10.1038/s41598-022-14588-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022] Open
Abstract
Sleep is a key factor in memory consolidation. During sleep, information is reactivated, transferred, and redistributed to neocortical areas, thus favoring memory consolidation and integration. Although these reactivations occur spontaneously, they can also be induced using external cues, such as sound or odor cues, linked to the acquired information. Hence, targeted memory reactivation during sleep represents an advantageous tool for improving memory consolidation in real-life settings. In this study, our goal was to improve the consolidation of complex information such as that of a history lesson, using a school study session in the presence of an odor, and a reactivation round while sleeping at home on the same night of the acquisition, without using additional study sessions. We found that complex information can be associated with an odor in the classroom and that one session of reactivation during the first night of sleep in the students’ houses improves its consolidation. These results bring new evidence for the implementation of reactivation during sleep in real-life settings.
Collapse
Affiliation(s)
- Vanessa Vidal
- Laboratorio de Sueño y Memoria, Departamento de Ciencias de la Vida, Instituto Tecnológico de Buenos Aires (ITBA), Capital Federal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Capital Federal, Buenos Aires, Argentina
| | - Alejo R Barbuzza
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Capital Federal, Buenos Aires, Argentina.,Departamento de Ciencias de la Vida, Instituto Tecnológico de Buenos Aires (ITBA), Capital Federal, Buenos Aires, Argentina
| | - Leonela M Tassone
- Laboratorio de Sueño y Memoria, Departamento de Ciencias de la Vida, Instituto Tecnológico de Buenos Aires (ITBA), Capital Federal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Capital Federal, Buenos Aires, Argentina
| | - Luis I Brusco
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Capital Federal, Buenos Aires, Argentina.,Centro de Neuropsiquiatría y Neurología de la Conducta (CENECON), Facultad de Medicina, Universidad de Buenos Aires (UBA), Capital Federal, Buenos Aires, Argentina
| | - Fabricio M Ballarini
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Capital Federal, Buenos Aires, Argentina.,Departamento de Ciencias de la Vida, Instituto Tecnológico de Buenos Aires (ITBA), Capital Federal, Buenos Aires, Argentina
| | - Cecilia Forcato
- Laboratorio de Sueño y Memoria, Departamento de Ciencias de la Vida, Instituto Tecnológico de Buenos Aires (ITBA), Capital Federal, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Capital Federal, Buenos Aires, Argentina.
| |
Collapse
|
107
|
Ornelas IM, Cini FA, Wießner I, Marcos E, de Araújo D, Goto-Silva L, Nascimento J, Silva SRB, Costa MN, Falchi M, Olivieri R, Palhano-Fontes F, Sequerra E, Martins-de-Souza D, Feilding A, Rennó-Costa C, Tófoli LF, Rehen SK, Ribeiro S. Nootropic effects of LSD: Behavioral, molecular and computational evidence. Exp Neurol 2022; 356:114148. [PMID: 35732217 DOI: 10.1016/j.expneurol.2022.114148] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
The therapeutic use of classical psychedelic substances such as d-lysergic acid diethylamide (LSD) surged in recent years. Studies in rodents suggest that these effects are produced by increased neural plasticity, including stimulation of the mTOR pathway, a key regulator of metabolism, plasticity, and aging. Could psychedelic-induced neural plasticity be harnessed to enhance cognition? Here we show that LSD treatment enhanced performance in a novel object recognition task in rats, and in a visuo-spatial memory task in humans. A proteomic analysis of human brain organoids showed that LSD affected metabolic pathways associated with neural plasticity, including mTOR. To gain insight into the relation of neural plasticity, aging and LSD-induced cognitive gains, we emulated the experiments in rats and humans with a neural network model of a cortico-hippocampal circuit. Using the baseline strength of plasticity as a proxy for age and assuming an increase in plasticity strength related to LSD dose, the simulations provided a good fit for the experimental data. Altogether, the results suggest that LSD has nootropic effects.
Collapse
Affiliation(s)
- Isis M Ornelas
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Felipe A Cini
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Isabel Wießner
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Encarni Marcos
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández de Elche, San Juan de Alicante, Spain
| | - Dráulio de Araújo
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Livia Goto-Silva
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Juliana Nascimento
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Sergio R B Silva
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Marcelo N Costa
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcelo Falchi
- Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Rodolfo Olivieri
- Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Eduardo Sequerra
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Daniel Martins-de-Souza
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
| | | | - César Rennó-Costa
- Digital Metropolis Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.
| | - Luis Fernando Tófoli
- Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.
| |
Collapse
|
108
|
Kim T, Kim S, Kang J, Kwon M, Lee SH. The Common Effects of Sleep Deprivation on Human Long-Term Memory and Cognitive Control Processes. Front Neurosci 2022; 16:883848. [PMID: 35720688 PMCID: PMC9201256 DOI: 10.3389/fnins.2022.883848] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep deprivation is known to have adverse effects on various cognitive abilities. In particular, a lack of sleep has been reported to disrupt memory consolidation and cognitive control functions. Here, focusing on long-term memory and cognitive control processes, we review the consistency and reliability of the results of previous studies of sleep deprivation effects on behavioral performance with variations in the types of stimuli and tasks. Moreover, we examine neural response changes related to these behavioral changes induced by sleep deprivation based on human fMRI studies to determine the brain regions in which neural responses increase or decrease as a consequence of sleep deprivation. Additionally, we discuss about the possibility that light as an environmentally influential factor affects our sleep cycles and related cognitive processes.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sejin Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Joonyoung Kang
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Minjae Kwon
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Sue-Hyun Lee,
| |
Collapse
|
109
|
Asp A, Lund F, Benedict C, Wasling P. Impaired procedural memory in narcolepsy type 1. Acta Neurol Scand 2022; 146:186-193. [PMID: 35652281 PMCID: PMC9544773 DOI: 10.1111/ane.13651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/20/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
Abstract
Objectives Sleep enhances the consolidation of memories. Here, we investigated whether sleep‐dependent memory consolidation differs between healthy subjects and narcolepsy type 1 (NT1) patients. Material and Methods We recruited 18 patients with NT1 and 24 healthy controls. The consolidation of spatial (declarative memory; 2‐dimensional object location) and procedural (non‐declarative memory; finger sequence tapping) memories was examined across one night of at‐home sleep. Sleep was measured by an ambulatory sleep recording device. Results The overnight gain in the number of correctly recalled sequences in the finger‐tapping test was smaller for NT1 patients than healthy subjects (+8.1% vs. +23.8% from pre‐sleep learning to post‐sleep recall, p = .035). No significant group differences were found for the overnight consolidation of spatial memory. Compared to healthy subjects, the sleep of NT1 patients was significantly more fragmented and shallow. However, no significant correlations were found between sleep parameters and overnight performance changes on the memory tests in the whole group. Conclusion The sleep‐dependent consolidation of procedural but not spatial memories may be impaired among patients with NT1. Therefore, future studies are warranted to examine whether sleep improvement, for example, using sodium oxybate, can aid the sleep‐dependent formation of procedural memories among NT1 patients.
Collapse
Affiliation(s)
- Amanda Asp
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
| | - Frida Lund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
| | - Christian Benedict
- Molecular Neuropharmacology (Sleep Science Lab), Department of Pharmaceutical Biosciences Uppsala University Uppsala Sweden
| | - Pontus Wasling
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
- Department of Neurology Sahlgrenska University Hospital Gothenburg Sweden
| |
Collapse
|
110
|
Wießner I, Olivieri R, Falchi M, Palhano-Fontes F, Oliveira Maia L, Feilding A, B Araujo D, Ribeiro S, Tófoli LF. LSD, afterglow and hangover: Increased episodic memory and verbal fluency, decreased cognitive flexibility. Eur Neuropsychopharmacol 2022; 58:7-19. [PMID: 35158230 DOI: 10.1016/j.euroneuro.2022.01.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/20/2022]
Abstract
Psychedelics acutely impair cognitive functions, but these impairments decline with growing experiences with psychedelics and microdoses may even exert opposing effects. Given the recent evidence that psychedelics induce neuroplasticity, this explorative study aimed at investigating the potential of psychedelics to sub-acutely change cognition. For this, we applied a randomized, double-blind, placebo-controlled, crossover study with 24 healthy volunteers receiving 50 μg lysergic acid diethylamide (LSD) or an inactive placebo. Sub-acute changes in cognition were measured 24 h after dosing, including memory (Rey-Osterrieth Complex Figure, ROCF; 2D Object-Location Memory Task, OLMT; Rey Auditory-Verbal Learning Test, RAVLT), verbal fluency (phonological; semantic; switch), design fluency (basic; filter; switch), cognitive flexibility (Wisconsin Card Sorting Test, WCST), sustained and switching attention (Trail Making Test, TMT), inhibitory control (Stroop Task) and perceptual reasoning (Block Design Test, BDT). The results show that when compared to placebo and corrected for Body Mass Index (BMI) and abstinence period from psychedelics, LSD sub-acutely improved visuospatial memory (ROCF immediate recall points and percentage, OLMT consolidation percentage) and phonological verbal fluency and impaired cognitive flexibility (WCST: fewer categories achieved; more perseveration, errors and conceptual level responses). In conclusion, the low dose of LSD moderately induced both "afterglow" and "hangover". The improvements in visuospatial memory and phonological fluency suggest that LSD-assisted therapy should be explored as a novel treatment perspective in conditions involving memory and language declines such as brain injury, stroke or dementia.
Collapse
Affiliation(s)
- Isabel Wießner
- Department of Psychiatry, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil; Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil.
| | - Rodolfo Olivieri
- Department of Psychiatry, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil; Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcelo Falchi
- Department of Psychiatry, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil; Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Fernanda Palhano-Fontes
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Lucas Oliveira Maia
- Department of Psychiatry, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil; Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Amanda Feilding
- The Beckley Foundation, Beckley Park, Oxford, United Kingdom
| | - Draulio B Araujo
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Luís Fernando Tófoli
- Department of Psychiatry, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil; Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
111
|
Essential Oils, Phytoncides, Aromachology, and Aromatherapy—A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094495] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chemical compounds from plants have been used as a medicinal source for various diseases. Aromachology is a unique field that studies the olfactory effects after inhaling aromatic compounds. Aromatherapy is a complementary treatment methodology involving the use of essential oils containing phytoncides and other volatile organic compounds for various physical and mental illnesses. Phytoncides possess an inherent medicinal property. Their health benefits range from treating stress, immunosuppression, blood pressure, respiratory diseases, anxiety, and pain to anti-microbial, anti-larvicidal, anti-septic, anti-cancer effects, etc. Recent advancements in aromatherapy include forest bathing or forest therapy. The inhalation of phytoncide-rich forest air has been proven to reduce stress-induced immunosuppression, normalize immune function and neuroendocrine hormone levels, and, thus, restore physiological and psychological health. The intricate mechanisms related to how aroma converts into olfactory signals and how the olfactory signals relieve physical and mental illness still pose enormous questions and are the subject of ongoing research. Aromatherapy using the aroma of essential oils/phytoncides could be more innovative and attractive to patients. Moreover, with fewer side effects, this field might be recognized as a new field of complementary medicine in alleviating some forms of physical and mental distress. Essential oils are important assets in aromatherapy, cosmetics, and food preservatives. The use of essential oils as an aromatherapeutic agent is widespread. Detailed reports on the effects of EOs in aromatherapy and their pharmacological effects are required to uncover its complete biological mechanism. This review is about the evolution of research related to phytoncides containing EOs in treating various ailments and provides comprehensive details from complementary medicine.
Collapse
|
112
|
Hoedlmoser K, Peigneux P, Rauchs G. Recent advances in memory consolidation and information processing during sleep. J Sleep Res 2022; 31:e13607. [DOI: 10.1111/jsr.13607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Kerstin Hoedlmoser
- Department of Psychology, Centre for Cognitive Neuroscience (CCNS), Laboratory for “Sleep, Cognition and Consciousness Research” University of Salzburg Salzburg Austria
| | - Philippe Peigneux
- UR2NF – Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN – Centre for Research in Cognition and Neurosciences and UNI – ULB Neuroscience Institute Bruxelles Belgium
| | - Géraldine Rauchs
- UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen‐Normandie Normandie Univ Caen France
| |
Collapse
|
113
|
Miyamoto D. Optical imaging and manipulation of sleeping-brain dynamics in memory processing. Neurosci Res 2022; 181:9-16. [DOI: 10.1016/j.neures.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
|
114
|
Measures of differentiation and integration: One step closer to consciousness. Behav Brain Sci 2022; 45:e54. [PMID: 35319430 DOI: 10.1017/s0140525x21002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Interpreting empirical measures of integration and differentiation as indices of cortical performance and memory consolidation during wakefulness rather than consciousness per se is inconsistent with the literature. Recent studies show that these theory-inspired measures can dissociate from such processes and reliably index the brain's capacity for experience. We consider this as a positive trend in consciousness research.
Collapse
|
115
|
Pereira SIR, Tsimpanouli ME, Hutchison I, Schneider J, Anderson IM, McFarquhar M, Elliott R, Lewis PA. Cueing emotional memories during slow wave sleep modulates next-day activity in the orbitofrontal cortex and the amygdala. Neuroimage 2022; 253:119120. [PMID: 35331867 DOI: 10.1016/j.neuroimage.2022.119120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 12/12/2022] Open
Abstract
Emotional memories are preferentially consolidated during sleep, through the process of memory reactivation. Targeted memory reactivation (TMR) has been shown to boost memory consolidation during sleep, but its neural correlates remain unclear, particularly for emotional memories. Here, we aimed to examine how TMR of emotional material during slow wave sleep (SWS) impacts upon neural processing during a subsequent arousal rating task. Participants were trained on a spatial memory task including negative and neutral pictures paired with semantically matching sounds. The picture-sound pairs were rated for emotional arousal before and after the spatial memory task. Then, half of the sounds from each emotional category (negative and neutral) were cued during SWS. The next day, participants were retested on both the arousal rating and the spatial memory task inside an MRI scanner, followed by another retest session a week later. Memory consolidation and arousal processing did not differ between cued and non-cued items of either emotional category. We found increased responses to emotional stimuli in the amygdala and orbitofrontal cortex (OFC), and a cueing versus emotion interaction in the OFC, whereby cueing neutral stimuli led to an increase in OFC activity, while cueing negative stimuli led to decreased OFC activation. Interestingly, the effect of cueing on amygdala activation was modulated by time spent in REM sleep. We conclude that SWS TMR impacts OFC activity, while REM sleep plays a role in mediating the effect of such cueing on amygdala.
Collapse
Affiliation(s)
| | | | - Isabel Hutchison
- School of Psychological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Jules Schneider
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff, Wales, CF24 4HQ, UK; School of Psychological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Ian M Anderson
- School of Psychological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Martyn McFarquhar
- School of Psychological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Rebecca Elliott
- School of Psychological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Penelope A Lewis
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff, Wales, CF24 4HQ, UK; School of Psychological Sciences, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
116
|
Wolters F, van Middendorp H, van den Bergh O, Biermasz NR, Meijer OC, Evers AWM. Conditioning of the Cortisol Awakening Response in Healthy Males: Study Protocol for a Randomized, Controlled Trial (Preprint). JMIR Res Protoc 2022. [DOI: 10.2196/38087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
117
|
Amores J, Dotan M, Maes P. Development and Study of Ezzence: A Modular Scent Wearable to Improve Wellbeing in Home Sleep Environments. Front Psychol 2022; 13:791768. [PMID: 35369196 PMCID: PMC8970317 DOI: 10.3389/fpsyg.2022.791768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 11/26/2022] Open
Abstract
Ezzence is the first smartphone-controlled olfactometer designed for both day and night conditions. We discuss the design and technical implementation of Ezzence and report on a study to evaluate the feasibility of using the device in home-based sleep environments. The study results (N = 40) show that participants were satisfied with the device and found it easy to use. Furthermore, participants reported a significant improvement in sleep quality when using the device with scent in comparison to the control condition (p = 0.003), as well as better mood the following morning (p = 0.038) and shorter time to sleep onset (p = 0.008). The device is integrated with a wearable EEG and real-time sleep staging algorithm to release scent during specific sleep stages (N1, N2, N3, and REM), which is important for certain use cases (e.g., to study the effect of scent on REM dreams, or to improve memory consolidation with a re-exposure of scent during N2 and N3). Ezzence can be used for several applications, including those that require scent triggered day and night. They include targeted memory reactivation, longitudinal health treatments, therapy, and mental or physical exercises. Finally, this article proposes an interaction framework to understand relationships between scents and environments based on proxemic dimensions and passive or active interactions during sleep.
Collapse
Affiliation(s)
- Judith Amores
- MIT Media Lab, Cambridge, MA, United States
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Mae Dotan
- MIT Media Lab, Cambridge, MA, United States
| | | |
Collapse
|
118
|
Mylonas D, Machado S, Larson O, Patel R, Cox R, Vangel M, Maski K, Stickgold R, Manoach DS. Dyscoordination of non-rapid eye movement sleep oscillations in autism spectrum disorder. Sleep 2022; 45:6505127. [DOI: 10.1093/sleep/zsac010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/13/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Study Objectives
Converging evidence from neuroimaging, sleep, and genetic studies suggest that dysregulation of thalamocortical interactions mediated by the thalamic reticular nucleus (TRN) contribute to autism spectrum disorder (ASD). Sleep spindles assay TRN function, and their coordination with cortical slow oscillations (SOs) indexes thalamocortical communication. These oscillations mediate memory consolidation during sleep. In the present study, we comprehensively characterized spindles and their coordination with SOs in relation to memory and age in children with ASD.
Methods
Nineteen children and adolescents with ASD, without intellectual disability, and 18 typically developing (TD) peers, aged 9–17, completed a home polysomnography study with testing on a spatial memory task before and after sleep. Spindles, SOs, and their coordination were characterized during stages 2 (N2) and 3 (N3) non-rapid eye movement sleep.
Results
ASD participants showed disrupted SO-spindle coordination during N2 sleep. Spindles peaked later in SO upstates and their timing was less consistent. They also showed a spindle density (#/min) deficit during N3 sleep. Both groups showed significant sleep-dependent memory consolidation, but their relations with spindle density differed. While TD participants showed the expected positive correlations, ASD participants showed the opposite.
Conclusions
The disrupted SO-spindle coordination and spindle deficit provide further evidence of abnormal thalamocortical interactions and TRN dysfunction in ASD. The inverse relations of spindle density with memory suggest a different function for spindles in ASD than TD. We propose that abnormal sleep oscillations reflect genetically mediated disruptions of TRN-dependent thalamocortical circuit development that contribute to the manifestations of ASD and are potentially treatable.
Collapse
Affiliation(s)
- Dimitrios Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Sasha Machado
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Olivia Larson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA,USA
| | - Rudra Patel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roy Cox
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam,The Netherlands
| | - Mark Vangel
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA,USA
| | - Kiran Maski
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
119
|
Koroma M, Elbaz M, Léger D, Kouider S. Learning New Vocabulary Implicitly During Sleep Transfers With Cross-Modal Generalization Into Wakefulness. Front Neurosci 2022; 16:801666. [PMID: 35356055 PMCID: PMC8959773 DOI: 10.3389/fnins.2022.801666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
New information can be learned during sleep but the extent to which we can access this knowledge after awakening is far less understood. Using a novel Associative Transfer Learning paradigm, we show that, after hearing unknown Japanese words with sounds referring to their meaning during sleep, participants could identify the images depicting the meaning of newly acquired Japanese words after awakening (N = 22). Moreover, we demonstrate that this cross-modal generalization is implicit, meaning that participants remain unaware of this knowledge. Using electroencephalography, we further show that frontal slow-wave responses to auditory stimuli during sleep predicted memory performance after awakening. This neural signature of memory formation gradually emerged over the course of the sleep phase, highlighting the dynamics of associative learning during sleep. This study provides novel evidence that the formation of new associative memories can be traced back to the dynamics of slow-wave responses to stimuli during sleep and that their implicit transfer into wakefulness can be generalized across sensory modalities.
Collapse
Affiliation(s)
- Matthieu Koroma
- Brain and Consciousness Group (ENS, EHESS, CNRS), Département d’Études Cognitives, École Normale Supérieure, Paris, France
- École Doctorale Cerveau Cognition Comportement, Université Pierre et Marie Curie Sorbonne Universités, Paris, France
| | - Maxime Elbaz
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France
| | - Damien Léger
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France
| | - Sid Kouider
- Brain and Consciousness Group (ENS, EHESS, CNRS), Département d’Études Cognitives, École Normale Supérieure, Paris, France
| |
Collapse
|
120
|
Abstract
In human neuroscience, studies of cognition are rarely grounded in non-task-evoked, 'spontaneous' neural activity. Indeed, studies of spontaneous activity tend to focus predominantly on intrinsic neural patterns (for example, resting-state networks). Taking a 'representation-rich' approach bridges the gap between cognition and resting-state communities: this approach relies on decoding task-related representations from spontaneous neural activity, allowing quantification of the representational content and rich dynamics of such activity. For example, if we know the neural representation of an episodic memory, we can decode its subsequent replay during rest. We argue that such an approach advances cognitive research beyond a focus on immediate task demand and provides insight into the functional relevance of the intrinsic neural pattern (for example, the default mode network). This in turn enables a greater integration between human and animal neuroscience, facilitating experimental testing of theoretical accounts of intrinsic activity, and opening new avenues of research in psychiatry.
Collapse
|
121
|
Schreck MR, Zhuang L, Janke E, Moberly AH, Bhattarai JP, Gottfried JA, Wesson DW, Ma M. State-dependent olfactory processing in freely behaving mice. Cell Rep 2022; 38:110450. [PMID: 35235805 PMCID: PMC8958632 DOI: 10.1016/j.celrep.2022.110450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/07/2021] [Accepted: 02/07/2022] [Indexed: 11/06/2022] Open
Abstract
Decreased responsiveness to sensory stimuli during sleep is presumably mediated via thalamic gating. Without an obligatory thalamic relay in the olfactory system, the anterior piriform cortex (APC) is suggested to be a gate in anesthetized states. However, olfactory processing in natural sleep states remains undetermined. Here, we simultaneously record local field potentials (LFPs) in hierarchical olfactory regions (olfactory bulb [OB], APC, and orbitofrontal cortex) while optogenetically activating olfactory sensory neurons, ensuring consistent peripheral inputs across states in behaving mice. Surprisingly, evoked LFPs in sleep states (both non-rapid eye movement [NREM] and rapid eye movement [REM]) are larger and contain greater gamma-band power and cross-region coherence (compared to wakefulness) throughout the olfactory pathway, suggesting the lack of a central gate. Single-unit recordings from the OB and APC reveal a higher percentage of responsive neurons during sleep with a higher incidence of suppressed firing. Additionally, nasal breathing is slower and shallower during sleep, suggesting a partial peripheral gating mechanism. Schreck et al. examine how the olfactory system responds to the same peripheral stimulus during natural sleep and wake in mice. Larger responses along the pathway during sleep suggest the lack of a central gate, but slower and shallower breathing may act as a partial peripheral gate to reduce olfactory input.
Collapse
Affiliation(s)
- Mary R Schreck
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Liujing Zhuang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Emma Janke
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew H Moberly
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jay A Gottfried
- Department of Psychology, University of Pennsylvania, School of Arts and Sciences; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
122
|
Transient Destabilization of Declarative Memory—Opposing Impact of Physical Exercise or Rest after Encoding in Typically Developing Children and Children with Attention Deficit Hyperactivity Disorder but No Difference after Subsequent Sleep. Brain Sci 2022; 12:brainsci12030322. [PMID: 35326278 PMCID: PMC8946801 DOI: 10.3390/brainsci12030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Children are especially sensitive to a broad range of influences and show a remarkable capacity for learning. One prominent example is declarative memory, which may be influenced by a variety of factors and is impaired in attention deficit hyperactivity disorder (ADHD). Exercise and sleep, or both combined, might foster declarative memory. Methods: Here, 12 typically developing children (TDC) and 12 age-matched children with ADHD participated in an exercise and rest condition before a night in the sleep laboratory. Declarative memory was encoded before exercise or rest and retrieved before and after a night of sleep. Results: Exercise in TDC but rest in ADHD lead to a transient destabilization of declarative memory, while there were no more differences after a night of sleep. Rapid eye movement (REM) sleep latency was prolonged after exercise in both groups. Conclusions: Exercise leads to opposing effects on immediate declarative memory formation. The factors or contexts that promote or hinder declarative memory formation in children ADHD and TDC differ, and further work is needed to determine the recommendations for declarative learning in children with ADHD.
Collapse
|
123
|
Liu M, Chen B, Zhong X, Zhang M, Wang Q, Zhou H, Wu Z, Hou L, Peng Q, Zhang S, Yang M, Lin G, Ning Y. Differences in Odor Identification in Early-Onset and Late-Onset Depression. Brain Sci 2022; 12:brainsci12020276. [PMID: 35204039 PMCID: PMC8870099 DOI: 10.3390/brainsci12020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/12/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Odor identification (OI) dysfunction is a potential predictor of developing dementia in late life depression (LLD). However, it is not clear whether patients with early onset depression (EOD) and late onset depression (LOD) may exhibit different OI dysfunctions. The aim of this study was to compare OI between EOD patients and LOD patients and its relationship with cognitive function. (2) Methods: A total of 179 patients with LLD and 189 normal controls were recruited. Participants underwent clinical assessment, olfactory testing, and comprehensive neuropsychological assessment. The OI scores of EOD patients and LOD patients were compared, and correlation analyses and mediation analyses were used to explore the relationship between OI and cognition. (3) Result: LOD patients exhibited lower OI scores than EOD patients and normal controls (NCs). Additionally, the LOD patients exhibited a higher percentage of OI dysfunction than the EOD patients. Moreover, OI scores were associated with global cognition, memory, language, and visuospatial ability in the EOD group (p < 0.05) but were not associated with any cognitive score in the LOD patients (p > 0.05). Finally, the scores of the Auditory Verbal Learning Test Immediate recall and Boston Naming Test exhibited a partially mediating effect on the difference in OI scores between the EOD and LOD patients. (4) Conclusions: LOD patients exhibited worse OI than EOD patients, and their difference in OI was mediated by their memory and language function.
Collapse
Affiliation(s)
- Meiling Liu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510000, China; (M.L.); (B.C.); (X.Z.); (M.Z.); (Q.W.); (H.Z.); (Z.W.); (L.H.); (Q.P.); (S.Z.); (M.Y.); (G.L.)
| | - Ben Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510000, China; (M.L.); (B.C.); (X.Z.); (M.Z.); (Q.W.); (H.Z.); (Z.W.); (L.H.); (Q.P.); (S.Z.); (M.Y.); (G.L.)
| | - Xiaomei Zhong
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510000, China; (M.L.); (B.C.); (X.Z.); (M.Z.); (Q.W.); (H.Z.); (Z.W.); (L.H.); (Q.P.); (S.Z.); (M.Y.); (G.L.)
| | - Min Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510000, China; (M.L.); (B.C.); (X.Z.); (M.Z.); (Q.W.); (H.Z.); (Z.W.); (L.H.); (Q.P.); (S.Z.); (M.Y.); (G.L.)
| | - Qiang Wang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510000, China; (M.L.); (B.C.); (X.Z.); (M.Z.); (Q.W.); (H.Z.); (Z.W.); (L.H.); (Q.P.); (S.Z.); (M.Y.); (G.L.)
| | - Huarong Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510000, China; (M.L.); (B.C.); (X.Z.); (M.Z.); (Q.W.); (H.Z.); (Z.W.); (L.H.); (Q.P.); (S.Z.); (M.Y.); (G.L.)
| | - Zhangying Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510000, China; (M.L.); (B.C.); (X.Z.); (M.Z.); (Q.W.); (H.Z.); (Z.W.); (L.H.); (Q.P.); (S.Z.); (M.Y.); (G.L.)
| | - Le Hou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510000, China; (M.L.); (B.C.); (X.Z.); (M.Z.); (Q.W.); (H.Z.); (Z.W.); (L.H.); (Q.P.); (S.Z.); (M.Y.); (G.L.)
| | - Qi Peng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510000, China; (M.L.); (B.C.); (X.Z.); (M.Z.); (Q.W.); (H.Z.); (Z.W.); (L.H.); (Q.P.); (S.Z.); (M.Y.); (G.L.)
| | - Si Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510000, China; (M.L.); (B.C.); (X.Z.); (M.Z.); (Q.W.); (H.Z.); (Z.W.); (L.H.); (Q.P.); (S.Z.); (M.Y.); (G.L.)
| | - Minfeng Yang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510000, China; (M.L.); (B.C.); (X.Z.); (M.Z.); (Q.W.); (H.Z.); (Z.W.); (L.H.); (Q.P.); (S.Z.); (M.Y.); (G.L.)
| | - Gaohong Lin
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510000, China; (M.L.); (B.C.); (X.Z.); (M.Z.); (Q.W.); (H.Z.); (Z.W.); (L.H.); (Q.P.); (S.Z.); (M.Y.); (G.L.)
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510000, China; (M.L.); (B.C.); (X.Z.); (M.Z.); (Q.W.); (H.Z.); (Z.W.); (L.H.); (Q.P.); (S.Z.); (M.Y.); (G.L.)
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510000, China
- Correspondence: ; Tel.: +86-20-81682902
| |
Collapse
|
124
|
Ben-Zion D, Gabitov E, Prior A, Bitan T. Effects of Sleep on Language and Motor Consolidation: Evidence of Domain General and Specific Mechanisms. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:180-213. [PMID: 37215556 PMCID: PMC10158628 DOI: 10.1162/nol_a_00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/21/2021] [Indexed: 05/24/2023]
Abstract
The current study explores the effects of time and sleep on the consolidation of a novel language learning task containing both item-specific knowledge and the extraction of grammatical regularities. We also compare consolidation effects in language and motor sequence learning tasks, to ask whether consolidation mechanisms are domain general. Young adults learned to apply plural inflections to novel words based on morphophonological rules embedded in the input, and learned to type a motor sequence using a keyboard. Participants were randomly assigned into one of two groups, practicing each task during either the morning or evening hours. Both groups were retested 12 and 24 hours post-training. Performance on frequent trained items in the language task stabilized only following sleep, consistent with a hippocampal mechanism for item-specific learning. However, regularity extraction, indicated by generalization to untrained items in the linguistic task, as well as performance on motor sequence learning, improved 24 hours post-training, irrespective of the timing of sleep. This consolidation process is consistent with a frontostriatal skill-learning mechanism, common across the language and motor domains. This conclusion is further reinforced by cross-domain correlations at the individual level between improvement across 24 hours in the motor task and in the low-frequency trained items in the linguistic task, which involve regularity extraction. Taken together, our results at the group and individual levels suggest that some aspects of consolidation are shared across the motor and language domains, and more specifically, between motor sequence learning and grammar learning.
Collapse
Affiliation(s)
- Dafna Ben-Zion
- Department of Learning Disabilities, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Ella Gabitov
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Anat Prior
- Department of Learning Disabilities, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
| | - Tali Bitan
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
- Department of Psychology, University of Haifa, Haifa, Israel
- Department of Speech Language Pathology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
125
|
Jin R, Xia T, Gawronski B, Hu X. Attitudinal Effects of Stimulus Co-occurrence and Stimulus Relations: Sleep Supports Propositional Learning Via Memory Consolidation. SOCIAL PSYCHOLOGICAL AND PERSONALITY SCIENCE 2022. [DOI: 10.1177/19485506211067673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adaptive behavior requires that organisms learn not only which stimuli tend to co-occur (e.g., whether stimulus A co-occurs with unpleasant stimulus B) but also how co-occurring stimuli are related (e.g., whether A starts or stops B). In a preregistered study ( N = 200 adults), we investigated whether sleep would promote adaptive evaluative choices requiring joint memories for stimulus co-occurrences and stimulus relations. Participants learned about hypothetical pharmaceutical products that either cause or prevent positive or negative health conditions, followed by measures of evaluative choices and explicit memory. After a 12-hr retention interval including either nocturnal sleep or daytime wake, participants completed the same measures a second time. Results showed that sleep strengthened the impact of causal product–condition relations on choices (revealed by multinomial modeling analyses) and enhanced memories for specific stimulus co-occurrences (revealed by memory preservation analyses). The findings suggest that sleep promotes adaptive evaluative choices via offline memory consolidation.
Collapse
Affiliation(s)
- Rui Jin
- The University of Hong Kong, China
| | - Tao Xia
- The University of Hong Kong, China
| | | | - Xiaoqing Hu
- The University of Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
126
|
Age-related changes in sleep-dependent novel word consolidation. Acta Psychol (Amst) 2022; 222:103478. [PMID: 34954541 PMCID: PMC8771760 DOI: 10.1016/j.actpsy.2021.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023] Open
Abstract
Learning new words is a vital, life-long process that benefits from memory consolidation during sleep in young adults. In aging populations, promoting vocabulary learning is an attractive strategy to improve quality of life and workplace longevity by improving the integration of new technology and the associated terminology. Decreases in sleep quality and quantity with aging may diminish sleep-dependent memory consolidation for word learning. Alternatively, given that older adults outperform young adults on vocabulary-based tasks, and that strength of memory encoding (how well older adults learn) predicts sleep-dependent memory consolidation, word learning may uniquely benefit from sleep in older adults. We assessed age-related changes in memory for novel English word-definition pairs recalled following intervals spent asleep and awake. While sleep was shown to fully preserve memory for word/definition pairs in young adults (N = 53, asleep = 32, awake = 21, 18-30 years), older adults (N = 45, asleep = 21, awake = 24, 58-75 years) forgot items equally over wake and sleep intervals but preserved the accuracy of typed responses better following sleep. However, this was modulated by the strength of encoded memories: the proportion of high strength items consolidated increased for older adults following sleep compared to wake. Older adults consolidated a lower proportion of medium strength items across both sleep and wake intervals compared to young adults. Our results contribute to growing evidence that encoding strength is crucially important to understand the expression of sleep-dependent benefits in older adults and assert the need for sufficiently sensitive performance metrics in aging research.
Collapse
|
127
|
Karalis N, Sirota A. Breathing coordinates cortico-hippocampal dynamics in mice during offline states. Nat Commun 2022; 13:467. [PMID: 35075139 PMCID: PMC8786964 DOI: 10.1038/s41467-022-28090-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Network dynamics have been proposed as a mechanistic substrate for the information transfer across cortical and hippocampal circuits. However, little is known about the mechanisms that synchronize and coordinate these processes across widespread brain regions during offline states. Here we address the hypothesis that breathing acts as an oscillatory pacemaker, persistently coupling distributed brain circuit dynamics. Using large-scale recordings from a number of cortical and subcortical brain regions in behaving mice, we uncover the presence of an intracerebral respiratory corollary discharge, that modulates neural activity across these circuits. During offline states, the respiratory modulation underlies the coupling of hippocampal sharp-wave ripples and cortical DOWN/UP state transitions, which mediates systems memory consolidation. These results highlight breathing, a perennial brain rhythm, as an oscillatory scaffold for the functional coordination of the limbic circuit that supports the segregation and integration of information flow across neuronal networks during offline states.
Collapse
Affiliation(s)
- Nikolaos Karalis
- Faculty of Medicine, Ludwig-Maximilian University, Munich, 82152, Martinsried, Germany.
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland.
| | - Anton Sirota
- Faculty of Medicine, Ludwig-Maximilian University, Munich, 82152, Martinsried, Germany.
| |
Collapse
|
128
|
Batterink LJ, Zhang S. Simple statistical regularities presented during sleep are detected but not retained. Neuropsychologia 2022; 164:108106. [PMID: 34864052 DOI: 10.1016/j.neuropsychologia.2021.108106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/06/2021] [Accepted: 11/28/2021] [Indexed: 12/30/2022]
Abstract
In recent years, there has been growing interest and excitement over the newly discovered cognitive capacities of the sleeping brain, including its ability to form novel associations. These recent discoveries raise the possibility that other more sophisticated forms of learning may also be possible during sleep. In the current study, we tested whether sleeping humans are capable of statistical learning - the process of becoming sensitive to repeating, hidden patterns in environmental input, such as embedded words in a continuous stream of speech. Participants' EEG was recorded while they were presented with one of two artificial languages, composed of either trisyllabic or disyllabic nonsense words, during slow-wave sleep. We used an EEG measure of neural entrainment to assess whether participants became sensitive to the repeating regularities during sleep-exposure to the language. We further probed for long-term memory representations by assessing participants' performance on implicit and explicit tests of statistical learning during subsequent wake. In the disyllabic-but not trisyllabic-language condition, participants' neural entrainment to words increased over time, reflecting a gradual gain in sensitivity to the embedded regularities. However, no significant behavioural effects of sleep-exposure were observed after the nap, for either language. Overall, our results indicate that the sleeping brain can detect simple, repeating pairs of syllables, but not more complex triplet regularities. However, the online detection of these regularities does not appear to produce any durable long-term memory traces that persist into wake - at least none that were revealed by our current measures and sample size. Although some perceptual aspects of statistical learning are preserved during sleep, the lack of memory benefits during wake indicates that exposure to a novel language during sleep may have limited practical value.
Collapse
Affiliation(s)
- Laura J Batterink
- Department of Psychology, Brain and Mind Institute, Western University, London, ON, N6A 5B7, Canada.
| | - Steven Zhang
- Department of Psychology, Brain and Mind Institute, Western University, London, ON, N6A 5B7, Canada
| |
Collapse
|
129
|
Smell-induced gamma oscillations in human olfactory cortex are required for accurate perception of odor identity. PLoS Biol 2022; 20:e3001509. [PMID: 34986157 PMCID: PMC8765613 DOI: 10.1371/journal.pbio.3001509] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/18/2022] [Accepted: 12/08/2021] [Indexed: 11/24/2022] Open
Abstract
Studies of neuronal oscillations have contributed substantial insight into the mechanisms of visual, auditory, and somatosensory perception. However, progress in such research in the human olfactory system has lagged behind. As a result, the electrophysiological properties of the human olfactory system are poorly understood, and, in particular, whether stimulus-driven high-frequency oscillations play a role in odor processing is unknown. Here, we used direct intracranial recordings from human piriform cortex during an odor identification task to show that 3 key oscillatory rhythms are an integral part of the human olfactory cortical response to smell: Odor induces theta, beta, and gamma rhythms in human piriform cortex. We further show that these rhythms have distinct relationships with perceptual behavior. Odor-elicited gamma oscillations occur only during trials in which the odor is accurately perceived, and features of gamma oscillations predict odor identification accuracy, suggesting that they are critical for odor identity perception in humans. We also found that the amplitude of high-frequency oscillations is organized by the phase of low-frequency signals shortly following sniff onset, only when odor is present. Our findings reinforce previous work on theta oscillations, suggest that gamma oscillations in human piriform cortex are important for perception of odor identity, and constitute a robust identification of the characteristic electrophysiological response to smell in the human brain. Future work will determine whether the distinct oscillations we identified reflect distinct perceptual features of odor stimuli. Intracranial recordings from human olfactory cortex reveal a characteristic spectrotemporal response to odors, including theta, beta and gamma oscillations, and show that high-frequency responses are critical for accurate perception of odors.
Collapse
|
130
|
Earle FS, Qi Z. Overnight changes to dual-memory processes reflected in speech-perceptual performance. Atten Percept Psychophys 2022; 84:231-243. [PMID: 34921334 PMCID: PMC10767754 DOI: 10.3758/s13414-021-02418-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 01/05/2023]
Abstract
Adults' ability to attain and retain nonnative speech sound categories vary substantially among individuals. While we know that speech-perceptual skills play a role, we know less about how consolidation-related changes in acoustic-phonetic memory contribute to perceptual tasks. The goal of this investigation was to examine contributions of memory and perceptual skills to the perceptual performance on a trained nonnative speech contrast over two days. Twenty-one adult participants (ages 18-24) completed four different experiments. Three of these assessed learning and memory: visual statistical learning (implicit), visual object recognition (explicit), and nonnative (Hindi dental-retroflex) speech-sound training. Participants completed the learning tasks around 8 p.m., and performance was measured shortly after learning and again 12 hours later. On a separate day, participants completed a categorical perception task on a native (/a/-/e/) vowel continuum. Nonnative speech perception was associated with implicit learning performance when both were assessed shortly after learning, and associated with the retention of explicit memory when both were assessed after an overnight delay. Native speech-sounds were at least marginally associated with nonnative speech perception performance on both days, but with a stronger association observed with performance assessed on Day 2. These findings provide preliminary support for the interpretation that speech-sounds are encoded by at least two memory systems in parallel, but that perceptual performance may reflect acoustic-phonetic knowledge learned by different memory systems over time since exposure. Moreover, performance on speech perception tasks in both native and nonnative speech-sounds may rely on similar retrieval mechanisms for long-term storage of speech-sound information.
Collapse
Affiliation(s)
- F Sayako Earle
- Department of Communication Sciences and Disorders, University of Delaware, 540 S. College Ave. Suite 220BB, Newark, DE, 19713, USA.
| | - Zhenghan Qi
- Department of Communication Sciences and Disorders, Northeastern University, 360 Huntington Ave., Forsyth Building 228A, Boston, MA, 02115, USA
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
- Department of Linguistics and Cognitive Science, University of Delaware, 125 E Main St, Newark, DE, 19716, USA
| |
Collapse
|
131
|
Borghese F, Henckaerts P, Guy F, Perez Mayo C, Delplanque S, Schwartz S, Perogamvros L. Targeted Memory Reactivation During REM Sleep in Patients With Social Anxiety Disorder. Front Psychiatry 2022; 13:904704. [PMID: 35845468 PMCID: PMC9281560 DOI: 10.3389/fpsyt.2022.904704] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Social anxiety disorder (SAD) is characterized by a significant amount of fear when confronted to social situations. Exposure therapy, which is based on fear extinction, does not often lead to full remission. Here, based on evidence showing that rapid eye movement (REM) sleep promotes the consolidation of extinction memory, we used targeted memory reactivation (TMR) during REM sleep to enhance extinction learning in SAD. METHODS Forty-eight subjects with SAD were randomly assigned to two groups: control or TMR group. All patients had two successive exposure therapy sessions in a virtual reality (VR) environment, where they were asked to give a public talk in front of a virtual jury. At the end of each session, and only in the TMR group (N = 24), a sound was paired to the positive feedback phase of therapy (i.e., approval of their performance), which represented the memory to be strengthened during REM sleep. All participants slept at home with a wearable headband device which automatically identified sleep stages and administered the sound during REM sleep. Participants' anxiety level was assessed using measures of parasympathetic (root mean square of successive differences between normal heartbeats, RMSSD) and sympathetic (non-specific skin conductance responses, ns-SCRs) activity, and subjective measures (Subjective Units of Distress Scale, SUDS), during the preparation phase of their talks before (T1) and after (T2) one full-night's sleep and after 1 week at home (T3). Participants also filled in a dream diary. RESULTS We observed an effect of time on subjective measures of anxiety (SUDS). We did not find any difference in the anxiety levels of the two groups after 1 week of TMR at home. Importantly, the longer the total duration of REM sleep and the more stimulations the TMR group had at home, the less anxious (increased RMSSD) these participants were. Finally, fear in dreams correlated positively with ns-SCRs and SUDS at T3 in the TMR group. CONCLUSION TMR during REM sleep did not significantly modulate the beneficial effect of therapy on subjective anxiety. Yet, our results support that REM sleep can contribute to extinction processes and substantiate strong links between emotions in dreams and waking stress levels in these patients.
Collapse
Affiliation(s)
- Francesca Borghese
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pauline Henckaerts
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Fanny Guy
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Coral Perez Mayo
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sylvain Delplanque
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Sophie Schwartz
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland.,Human Neuroscience Platform, Fondation Campus Biotech Geneva, Geneva, Switzerland
| | - Lampros Perogamvros
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland.,Human Neuroscience Platform, Fondation Campus Biotech Geneva, Geneva, Switzerland.,Center for Sleep Medicine, Geneva University Hospitals, Geneva, Switzerland.,Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
132
|
Zhu R, Ni Z, Tao R, Cheng J, Pang L, Zhang S, Zhang Y, Xue Y, Ma Y, Sun W, Lu L, Deng J, Sun H. Exposure to Olfactory Alcohol Cues During Non-rapid Eye Movement Sleep Did Not Decrease Craving in Patients With Alcohol Dependence. Front Psychiatry 2022; 13:837573. [PMID: 35432045 PMCID: PMC9010533 DOI: 10.3389/fpsyt.2022.837573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Cue exposure therapy (CET) has been used to reduce alcohol use, but the effect of CET during sleep on alcohol dependence (AD) is unclear. The present study examined the effect of repeated exposure to an olfactory stimulus during non-rapid eye movement (NREM) sleep on cue reactivity and craving in patients with AD. METHODS Thirty-five patients with AD were enrolled according to the Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV). All the subjects were randomly assigned to the experimental or control group. The experimental group was exposed to alcohol odor for 10 min during NREM sleep. The other group (controls) was exposed to water [control stimulus (CtrS)] for 10 min during NREM sleep. Demographic, alcohol-related, and clinical characteristics were collected at baseline. A cue-reactivity test was conducted before and after exposure to evaluate the effect of memory manipulation on acute response to an alcohol stimulus. RESULTS There were no significant time × group interactions according to the visual analog scale (VAS) score of craving intensity, skin conductance response (SCR), systolic blood pressure (SBP), and diastolic blood pressure (DBP; all p > 0.05). Two-way ANOVA showed significant main effects of time on SCR [F (1,33) = 4.453, p = 0.043], SBP [F (1,33) = 14.532, p = 0.001], DBP [F (1,33) = 8.327, p = 0.007], Craving-VAS [F (1,33) = 1.997, p = 0.167] in two groups. CONCLUSION Exposure to olfactory alcohol cues during NREM sleep had no significant effect on alcohol craving in subjects with AD during hospitalization.
Collapse
Affiliation(s)
- Ran Zhu
- NHC Key Laboratory of Mental Health, Peking University Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Zhaojun Ni
- NHC Key Laboratory of Mental Health, Peking University Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Ran Tao
- NHC Key Laboratory of Mental Health, Peking University Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Jun Cheng
- Anhui Mental Health Center, Hefei, China
| | | | - Shun Zhang
- Kailuan Mental Health Center, Tangshan, China
| | - Yang Zhang
- NHC Key Laboratory of Mental Health, Peking University Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yundong Ma
- NHC Key Laboratory of Mental Health, Peking University Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Wei Sun
- NHC Key Laboratory of Mental Health, Peking University Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Lin Lu
- NHC Key Laboratory of Mental Health, Peking University Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China.,National Institute on Drug Dependence, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jiahui Deng
- NHC Key Laboratory of Mental Health, Peking University Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Hongqiang Sun
- NHC Key Laboratory of Mental Health, Peking University Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
| |
Collapse
|
133
|
Kornmeier J, Sosic-Vasic Z, Joos E. Spacing Learning Units affects both learning and forgetting. Trends Neurosci Educ 2022; 26:100173. [DOI: 10.1016/j.tine.2022.100173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 01/19/2023]
|
134
|
Johnson EG, Mooney L, Graf Estes K, Nordahl CW, Ghetti S. Activation for newly learned words in left medial-temporal lobe during toddlers' sleep is associated with memory for words. Curr Biol 2021; 31:5429-5438.e5. [PMID: 34670113 DOI: 10.1016/j.cub.2021.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/26/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Little is known about the neural substrates underlying early memory functioning. To gain more insight, we examined how toddlers remember newly learned words. Hippocampal and anterior medial-temporal lobe (MTL) processes have been hypothesized to support forming and retaining the association between novel words and their referents, but direct evidence of this connection in early childhood is lacking. We assessed 2-year-olds (n = 38) for their memory of newly learned pseudowords associated with novel objects and puppets. We tested memory for these associations during the same session as learning and after a 1-week delay. We then played these pseudowords, previously known words, and completely novel pseudowords during natural nocturnal sleep, while collecting functional magnetic resonance imaging data. Activation in the left hippocampus and the left anterior MTL for newly learned compared to novel words was associated with same-session memory for these newly learned words only when they were learned as puppet names. Activation for known words was associated with memory for puppet names at the 1-week delay. Activation for newly learned words was also associated with overall productive vocabulary. These results underscore an early developing link between memory mechanisms and word learning in the medial temporal lobe.
Collapse
Affiliation(s)
- Elliott Gray Johnson
- Human Development Graduate Group, University of California, Davis, Davis, CA 95616, USA; Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA.
| | - Lindsey Mooney
- Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, Davis, CA 95616, USA
| | - Katharine Graf Estes
- Human Development Graduate Group, University of California, Davis, Davis, CA 95616, USA; Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, Davis, CA 95616, USA
| | - Christine Wu Nordahl
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA 95817, USA; MIND Institute, University of California, Davis, Sacramento, CA 95817, USA
| | - Simona Ghetti
- Human Development Graduate Group, University of California, Davis, Davis, CA 95616, USA; Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
135
|
Reyes-Resina I, Samer S, Kreutz MR, Oelschlegel AM. Molecular Mechanisms of Memory Consolidation That Operate During Sleep. Front Mol Neurosci 2021; 14:767384. [PMID: 34867190 PMCID: PMC8636908 DOI: 10.3389/fnmol.2021.767384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
The role of sleep for brain function has been in the focus of interest for many years. It is now firmly established that sleep and the corresponding brain activity is of central importance for memory consolidation. Less clear are the underlying molecular mechanisms and their specific contribution to the formation of long-term memory. In this review, we summarize the current knowledge of such mechanisms and we discuss the several unknowns that hinder a deeper appreciation of how molecular mechanisms of memory consolidation during sleep impact synaptic function and engram formation.
Collapse
Affiliation(s)
- Irene Reyes-Resina
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Sebastian Samer
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anja M Oelschlegel
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
136
|
Rakowska M, Abdellahi MEA, Bagrowska P, Navarrete M, Lewis PA. Long term effects of cueing procedural memory reactivation during NREM sleep. Neuroimage 2021; 244:118573. [PMID: 34537384 PMCID: PMC8591408 DOI: 10.1016/j.neuroimage.2021.118573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
A single night of TMR benefits procedural memories up to 10 days later. Spindle density and SO-spindle coupling strength increase immediately upon cue onset. Time spent in N2 but not N3 predicts cueing benefit.
Targeted memory reactivation (TMR) has recently emerged as a promising tool to manipulate and study the sleeping brain. Although the technique is developing rapidly, only a few studies have examined how the effects of TMR develop over time. Here, we use a bimanual serial reaction time task (SRTT) to investigate whether the difference between the cued and un-cued sequence of button presses persists long-term. We further explore the relationship between the TMR benefit and sleep spindles, as well as their coupling with slow oscillations. Our behavioural analysis shows better performance for the dominant hand. Importantly, there was a strong effect of TMR, with improved performance on the cued sequence after sleep. Closer examination revealed a significant benefit of TMR at 10 days post-encoding, but not 24 h or 6 weeks post-encoding. Time spent in stage 2, but not stage 3, of NREM sleep predicted cueing benefit. We also found a significant increase in spindle density and SO-spindle coupling during the cue period, when compared to the no-cue period. Together, our results demonstrate that TMR effects evolve over several weeks post-cueing, as well as emphasising the importance of stage 2, spindles and the SO-spindle coupling in procedural memory consolidation.
Collapse
Affiliation(s)
- Martyna Rakowska
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, UK.
| | - Mahmoud E A Abdellahi
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, UK
| | - Paulina Bagrowska
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, UK
| | - Miguel Navarrete
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, UK
| | - Penelope A Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, UK
| |
Collapse
|
137
|
Ruch S, Alain Züst M, Henke K. Sleep-learning impairs subsequent awake-learning. Neurobiol Learn Mem 2021; 187:107569. [PMID: 34863922 DOI: 10.1016/j.nlm.2021.107569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 09/21/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023]
Abstract
Although we can learn new information while asleep, we usually cannot consciously remember the sleep-formed memories - presumably because learning occurred in an unconscious state. Here, we ask whether sleep-learning expedites the subsequent awake-learning of the same information. To answer this question, we reanalyzed data (Züst et al., 2019, Curr Biol) from napping participants, who learned new semantic associations between pseudowords and translation-words (guga-ship) while in slow-wave sleep. They retrieved sleep-formed associations unconsciously on an implicit memory test following awakening. Then, participants took five runs of paired-associative learning to probe carry-over effects of sleep-learning on awake-learning. Surprisingly, sleep-learning diminished awake-learning when participants learned semantic associations that were congruent to sleep-learned associations (guga-boat). Yet, learning associations that conflicted with sleep-learned associations (guga-coin) was unimpaired relative to learning new associations (resun-table; baseline). We speculate that the impeded wake-learning originated in a deficient synaptic downscaling and resulting synaptic saturation in neurons that were activated during both sleep-learning and awake-learning.
Collapse
Affiliation(s)
- Simon Ruch
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland.
| | - Marc Alain Züst
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Katharina Henke
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| |
Collapse
|
138
|
Grydeland H, Sederevičius D, Wang Y, Bartrés-Faz D, Bertram L, Dobricic V, Düzel S, Ebmeier KP, Lindenberger U, Nyberg L, Pudas S, Sexton CE, Solé-Padullés C, Sørensen Ø, Walhovd KB, Fjell AM. Self-reported sleep relates to microstructural hippocampal decline in ß-amyloid positive Adults beyond genetic risk. Sleep 2021; 44:zsab110. [PMID: 33912975 PMCID: PMC8598196 DOI: 10.1093/sleep/zsab110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/16/2021] [Indexed: 12/01/2022] Open
Abstract
STUDY OBJECTIVES A critical role linking sleep with memory decay and β-amyloid (Aβ) accumulation, two markers of Alzheimer's disease (AD) pathology, may be played by hippocampal integrity. We tested the hypotheses that worse self-reported sleep relates to decline in memory and intra-hippocampal microstructure, including in the presence of Aβ. METHODS Two-hundred and forty-three cognitively healthy participants, aged 19-81 years, completed the Pittsburgh Sleep Quality Index once, and two diffusion tensor imaging sessions, on average 3 years apart, allowing measures of decline in intra-hippocampal microstructure as indexed by increased mean diffusivity. We measured memory decay at each imaging session using verbal delayed recall. One session of positron emission tomography, in 108 participants above 44 years of age, yielded 23 Aβ positive. Genotyping enabled control for APOE ε4 status, and polygenic scores for sleep and AD, respectively. RESULTS Worse global sleep quality and sleep efficiency related to more rapid reduction of hippocampal microstructure over time. Focusing on efficiency (the percentage of time in bed at night spent asleep), the relation was stronger in presence of Aβ accumulation, and hippocampal integrity decline mediated the relation with memory decay. The results were not explained by genetic risk for sleep efficiency or AD. CONCLUSIONS Worse sleep efficiency related to decline in hippocampal microstructure, especially in the presence of Aβ accumulation, and Aβ might link poor sleep and memory decay. As genetic risk did not account for the associations, poor sleep efficiency might constitute a risk marker for AD, although the driving causal mechanisms remain unknown.
Collapse
Affiliation(s)
- Håkon Grydeland
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Donatas Sederevičius
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Yunpeng Wang
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - David Bartrés-Faz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Lars Bertram
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | | | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Lars Nyberg
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Sara Pudas
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | | | - Cristina Solé-Padullés
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Øystein Sørensen
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Kristine B Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, University of Oslo, Oslo, Norway
| | - Anders M Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
139
|
Hubbard RJ, Zadeh I, Jones AP, Robert B, Bryant NB, Clark VP, Pilly PK. Brain connectivity alterations during sleep by closed-loop transcranial neurostimulation predict metamemory sensitivity. Netw Neurosci 2021; 5:734-756. [PMID: 34746625 PMCID: PMC8567828 DOI: 10.1162/netn_a_00201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/15/2021] [Indexed: 12/23/2022] Open
Abstract
Metamemory involves the ability to correctly judge the accuracy of our memories. The retrieval of memories can be improved using transcranial electrical stimulation (tES) during sleep, but evidence for improvements to metamemory sensitivity is limited. Applying tES can enhance sleep-dependent memory consolidation, which along with metamemory requires the coordination of activity across distributed neural systems, suggesting that examining functional connectivity is important for understanding these processes. Nevertheless, little research has examined how functional connectivity modulations relate to overnight changes in metamemory sensitivity. Here, we developed a closed-loop short-duration tES method, time-locked to up-states of ongoing slow-wave oscillations, to cue specific memory replays in humans. We measured electroencephalographic (EEG) coherence changes following stimulation pulses, and characterized network alterations with graph theoretic metrics. Using machine learning techniques, we show that pulsed tES elicited network changes in multiple frequency bands, including increased connectivity in the theta band and increased efficiency in the spindle band. Additionally, stimulation-induced changes in beta-band path length were predictive of overnight changes in metamemory sensitivity. These findings add new insights into the growing literature investigating increases in memory performance through brain stimulation during sleep, and highlight the importance of examining functional connectivity to explain its effects. Numerous studies have demonstrated a clear link between sleep and memory—namely, memories are consolidated during sleep, leading to more stable and long-lasting representations. We have previously shown that tagging episodes with specific patterns of brain stimulation during encoding and replaying those patterns during sleep can enhance this consolidation process to improve confidence and decision-making of memories (metamemory). Here, we extend this work to examine network-level brain changes that occur following stimulation during sleep that predict metamemory improvements. Using graph theoretic and machine-learning methods, we found that stimulation-induced changes in beta-band path length predicted overnight improvements in metamemory. This novel finding sheds new light on the neural mechanisms of memory consolidation and suggests potential applications for improving metamemory.
Collapse
Affiliation(s)
- Ryan J Hubbard
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, USA
| | - Iman Zadeh
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, USA
| | - Aaron P Jones
- Psychology Clinical Neuroscience Center, Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Bradley Robert
- Psychology Clinical Neuroscience Center, Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Natalie B Bryant
- Psychology Clinical Neuroscience Center, Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Praveen K Pilly
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, USA
| |
Collapse
|
140
|
Sanders KEG, Beeman M. Sleep and incubation: Using problem reactivation during sleep to study forgetting fixation and unconscious processing during sleep incubation. JOURNAL OF COGNITIVE PSYCHOLOGY 2021; 33:738-756. [PMID: 34737850 DOI: 10.1080/20445911.2021.1912050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
When people are stuck on a problem, they sometimes benefit from an incubation period -a break from working on the problem. Anecdotes and empirical evidence suggest that sleeping during incubation is useful, but the mechanisms remain poorly understood. We examined how targeted memory reactivation during sleep, which boosts next-day solving, relates to forgetting fixation, a well-supported explanation of awake incubation. In evening sessions, participants attempted puzzles, while a unique sound cue played during each puzzle. Half the time, puzzles included fixating information reinforcing an incorrect representation. Later, during deep sleep, sounds associated with half of participants' previously unsolved puzzles were presented. The sounds should strengthen puzzle memories and reduce forgetting of the fixating information. In morning solving, overnight cueing reliably interacted with fixating information: participants solved numerically more cued than uncued puzzles, but only when puzzles included fixating information. These results suggest that additional processing occurred beyond simple fixation forgetting.
Collapse
Affiliation(s)
| | - Mark Beeman
- Psychology Department, Northwestern University
| |
Collapse
|
141
|
Piber D. The role of sleep disturbance and inflammation for spatial memory. Brain Behav Immun Health 2021; 17:100333. [PMID: 34589818 PMCID: PMC8474561 DOI: 10.1016/j.bbih.2021.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
Spatial memory is a brain function involved in multiple behaviors such as planning a route or recalling an object's location. The formation of spatial memory relies on the homeostasis of various biological systems, including healthy sleep and a well-functioning immune system. While sleep is thought to promote the stabilization and storage of spatial memories, considerable evidence shows that the immune system modulates neuronal processes underlying spatial memory such as hippocampal neuroplasticity, long-term potentiation, and neurogenesis. Conversely, when sleep is disturbed and/or states of heightened immune activation occur, hippocampal regulatory pathways are altered, which - on a behavioral level - may result in spatial memory impairments. In this Brief Review, I summarize how sleep and the immune system contribute to spatial memory processes. In addition, I present emerging evidence suggesting that sleep disturbance and inflammation might jointly impair spatial memory. Finally, potentials of integrated strategies that target sleep disturbance and inflammation to possibly mitigate risk for spatial memory impairment are discussed.
Collapse
Affiliation(s)
- Dominique Piber
- Department of Psychiatry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, USA
| |
Collapse
|
142
|
A Novel EEG Derived Measure of Disrupted Delta Wave Activity during Sleep Predicts All-Cause Mortality Risk. Ann Am Thorac Soc 2021; 19:649-658. [PMID: 34672877 DOI: 10.1513/annalsats.202103-315oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Conventional markers of sleep disturbance, based on manual electroencephalography scoring, may not adequately capture important features of more fundamental electroencephalography-related sleep disturbance. OBJECTIVES This study aimed to determine if more comprehensive power-spectral measures of delta wave activity during sleep are stronger independent predictors of mortality than conventional sleep quality and disturbance metrics. METHODS Power spectral analysis of the delta frequency band and spectral entropy-based markers to quantify disruption of electroencephalography delta power during sleep were performed to examine potential associations with mortality risk in the Sleep Heart Health Study cohort (N = 5804). Adjusted Cox proportional hazard models were used to determine the association between disrupted delta wave activity at baseline and all-cause mortality over an ~11y follow-up period. RESULTS Disrupted delta electroencephalography power during sleep was associated with a 32% increased risk of all-cause mortality compared with no fragmentation (hazard ratios 1.32 [95% confidence interval 1.14, 1.50], after adjusting for total sleep time and other clinical and life-style related covariates including sleep apnea. The association was of similar magnitude to a reduction in total sleep time from 6.5h to 4.25h. Conventional measures of sleep quality, including wake after sleep onset and arousal index were not predictive of all-cause mortality. CONCLUSIONS Delta wave activity disruption during sleep is strongly associated with all-cause mortality risk, independent of traditional potential confounders. Future investigation into the potential role of delta sleep disruption on other specific adverse health consequences such as cardiometabolic, mental health and safety outcomes has considerable potential to provide unique neurophysiological insight.
Collapse
|
143
|
Oesch LT, Adamantidis AR. How REM sleep shapes hypothalamic computations for feeding behavior. Trends Neurosci 2021; 44:990-1003. [PMID: 34663506 DOI: 10.1016/j.tins.2021.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
The electrical activity of diverse brain cells is modulated across states of vigilance, namely wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Enhanced activity of neuronal circuits during NREM sleep impacts on subsequent awake behaviors, yet the significance of their activation, or lack thereof, during REM sleep remains unclear. This review focuses on feeding-promoting cells in the lateral hypothalamus (LH) that express the vesicular GABA and glycine transporter (vgat) as a model to further understand the impact of REM sleep on neural encoding of goal-directed behavior. It emphasizes both spatial and temporal aspects of hypothalamic cell dynamics across awake behaviors and REM sleep, and discusses a role for REM sleep in brain plasticity underlying energy homeostasis and behavioral optimization.
Collapse
Affiliation(s)
- Lukas T Oesch
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland; Department of Neurobiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Antoine R Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
144
|
Solano A, Riquelme LA, Perez-Chada D, Della-Maggiore V. Motor Learning Promotes the Coupling between Fast Spindles and Slow Oscillations Locally over the Contralateral Motor Network. Cereb Cortex 2021; 32:2493-2507. [PMID: 34649283 DOI: 10.1093/cercor/bhab360] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/03/2023] Open
Abstract
Recent studies from us and others suggest that traditionally declarative structures mediate some aspects of the encoding and consolidation of procedural memories. This evidence points to the existence of converging physiological pathways across memory systems. Here, we examined whether the coupling between slow oscillations (SO) and spindles, a mechanism well established in the consolidation of declarative memories, is relevant for the stabilization of human motor memories. To this aim, we conducted an electroencephalography study in which we quantified various parameters of these oscillations during a night of sleep that took place immediately after learning a visuomotor adaptation (VMA) task. We found that VMA increased the overall density of fast (≥12 Hz), but not slow (<12 Hz), spindles during nonrapid eye movement sleep, stage 3 (NREM3). This modulation occurred rather locally over the hemisphere contralateral to the trained hand. Although adaptation learning did not affect the density of SOs, it substantially enhanced the number of fast spindles locked to the active phase of SOs. The fact that only coupled spindles predicted overnight memory retention points to the relevance of this association in motor memory consolidation. Our work provides evidence in favor of a common mechanism at the basis of the stabilization of declarative and motor memories.
Collapse
Affiliation(s)
- Agustín Solano
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, C1121ABG, Argentina
| | - Luis A Riquelme
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, C1121ABG, Argentina
| | - Daniel Perez-Chada
- Department of Internal Medicine, Pulmonary and Sleep Medicine Service, Austral University Hospital, Buenos Aires B1629AHJ, Argentina
| | - Valeria Della-Maggiore
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, C1121ABG, Argentina
| |
Collapse
|
145
|
Roscow EL, Chua R, Costa RP, Jones MW, Lepora N. Learning offline: memory replay in biological and artificial reinforcement learning. Trends Neurosci 2021; 44:808-821. [PMID: 34481635 DOI: 10.1016/j.tins.2021.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Learning to act in an environment to maximise rewards is among the brain's key functions. This process has often been conceptualised within the framework of reinforcement learning, which has also gained prominence in machine learning and artificial intelligence (AI) as a way to optimise decision making. A common aspect of both biological and machine reinforcement learning is the reactivation of previously experienced episodes, referred to as replay. Replay is important for memory consolidation in biological neural networks and is key to stabilising learning in deep neural networks. Here, we review recent developments concerning the functional roles of replay in the fields of neuroscience and AI. Complementary progress suggests how replay might support learning processes, including generalisation and continual learning, affording opportunities to transfer knowledge across the two fields to advance the understanding of biological and artificial learning and memory.
Collapse
Affiliation(s)
| | | | - Rui Ponte Costa
- Bristol Computational Neuroscience Unit, Intelligent Systems Lab, Department of Computer Science, University of Bristol, Bristol, UK
| | - Matt W Jones
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Nathan Lepora
- Department of Engineering Mathematics and Bristol Robotics Laboratory, University of Bristol, Bristol, UK
| |
Collapse
|
146
|
Thiede KI, Born J, Vorster APA. Sleep and conditioning of the siphon withdrawal reflex in Aplysia. J Exp Biol 2021; 224:271187. [PMID: 34346500 DOI: 10.1242/jeb.242431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/30/2021] [Indexed: 11/20/2022]
Abstract
Sleep is essential for memory consolidation after learning as shown in mammals and invertebrates such as bees and flies. Aplysia californica displays sleep, and sleep in this mollusk was also found to support memory for an operant conditioning task. Here, we investigated whether sleep in Aplysia is also required for memory consolidation in a simpler type of learning, i.e. the conditioning of the siphon withdrawal reflex. Two groups of animals (Wake, Sleep, each n=11) were conditioned on the siphon withdrawal reflex, with the training following a classical conditioning procedure where an electrical tail shock served as the unconditioned stimulus (US) and a tactile stimulus to the siphon as the conditioned stimulus (CS). Responses to the CS were tested before (pre-test), and 24 and 48 h after training. While Wake animals remained awake for 6 h after training, Sleep animals had undisturbed sleep. The 24 h test in both groups was combined with extinction training, i.e. the extended presentation of the CS alone over two blocks. At the 24 h test, siphon withdrawal duration in response to the CS was distinctly enhanced in both Sleep and Wake groups with no significant difference between groups, consistent with the view that consolidation of a simple conditioned reflex response does not require post-training sleep. Surprisingly, extinction training did not reverse the enhancement of responses to the CS. On the contrary, at the 48 h test, withdrawal duration in response to the CS was even further enhanced across both groups. This suggests that processes of sensitization, an even simpler non-associative type of learning, contributed to the withdrawal responses. Our study provides evidence for the hypothesis that sleep preferentially benefits consolidation of more complex learning paradigms than conditioning of simple reflexes.
Collapse
Affiliation(s)
- Kathrin I Thiede
- Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative Neuroscience CIN, University of Tübingen, Tübingen 72076, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative Neuroscience CIN, University of Tübingen, Tübingen 72076, Germany.,German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Tübingen 72076, Germany
| | - Albrecht P A Vorster
- Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative Neuroscience CIN, University of Tübingen, Tübingen 72076, Germany.,Training Centre of Neuroscience (GTC)/International Max Planck Research School (IMPRS) at the University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
147
|
Tsai CJ, Nagata T, Liu CY, Suganuma T, Kanda T, Miyazaki T, Liu K, Saitoh T, Nagase H, Lazarus M, Vogt KE, Yanagisawa M, Hayashi Y. Cerebral capillary blood flow upsurge during REM sleep is mediated by A2a receptors. Cell Rep 2021; 36:109558. [PMID: 34407410 DOI: 10.1016/j.celrep.2021.109558] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/05/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Sleep is generally viewed as a period of recovery, but how the supply of cerebral blood flow (CBF) changes across sleep/wake states has remained unclear. Here, we directly observe red blood cells (RBCs) within capillaries, where the actual substance exchange between the blood and neurons/glia occurs, by two-photon microscopy. Across multiple cortical areas, average capillary CBF is largely increased during rapid eye movement (REM) sleep, whereas it does not differ between periods of active wakefulness and non-REM sleep. Capillary RBC flow during REM sleep is further elevated following REM sleep deprivation, suggesting that capillary CBF reflects REM sleep pressure. At the molecular level, signaling via adenosine A2a receptors is crucial; in A2a-KO mice, capillary CBF upsurge during REM sleep is dampened, and effects of REM sleep pressure are abolished. These results provide evidence regarding the dynamics of capillary CBF across sleep/wake states and insights to the underlying mechanisms.
Collapse
Affiliation(s)
- Chia-Jung Tsai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Japan Society for the Promotion of Science (JSPS) International Research Fellow, Tokyo 102-0083, Japan
| | - Takeshi Nagata
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Chih-Yao Liu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takaya Suganuma
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takeshi Kanda
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takehiro Miyazaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kai Liu
- Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kaspar E Vogt
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Life Science Center for Survival Dynamics (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 603-8363, Japan.
| |
Collapse
|
148
|
Tsushima Y, Nishino Y, Ando H. Olfactory Stimulation Modulates Visual Perception Without Training. Front Neurosci 2021; 15:642584. [PMID: 34408620 PMCID: PMC8364961 DOI: 10.3389/fnins.2021.642584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Considerable research shows that olfactory stimulations affect other modalities in high-level cognitive functions such as emotion. However, little known fact is that olfaction modulates low-level perception of other sensory modalities. Although some studies showed that olfaction had influenced on the other low-level perception, all of them required specific experiences like perceptual training. To test the possibility that olfaction modulates low-level perception without training, we conducted a series of psychophysical and neuroimaging experiments. From the results of a visual task in which participants reported the speed of moving dots, we found that participants perceived the slower motions with a lemon smell and the faster motions with a vanilla smell, without any specific training. In functional magnetic resonance imaging (fMRI) studies, brain activities in the visual cortices [V1 and human middle temporal area (hMT)] changed based on the type of olfactory stimulation. Our findings provide us with the first direct evidence that olfaction modulates low-level visual perception without training, thereby indicating that olfactory-visual effect is not an acquired behavior but an innate behavior. The present results show us with a new crossmodal effect between olfaction and vision, and bring a unique opportunity to reconsider some fundamental roles of olfactory function.
Collapse
Affiliation(s)
- Yoshiaki Tsushima
- National Institute of Information and Communications Technology, Center for Information and Neural Networks, Osaka, Japan
| | - Yurie Nishino
- National Institute of Information and Communications Technology, Center for Information and Neural Networks, Osaka, Japan
| | - Hiroshi Ando
- National Institute of Information and Communications Technology, Universal Communication Research Institute, Kyoto, Japan
| |
Collapse
|
149
|
Helfrich RF, Lendner JD, Knight RT. Aperiodic sleep networks promote memory consolidation. Trends Cogn Sci 2021; 25:648-659. [PMID: 34127388 PMCID: PMC9017392 DOI: 10.1016/j.tics.2021.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
Hierarchical synchronization of sleep oscillations establishes communication pathways to support memory reactivation, transfer, and consolidation. From an information-theoretical perspective, oscillations constitute highly structured network states that provide limited information-coding capacity. Recent findings indicate that sleep oscillations occur in transient bursts that are interleaved with aperiodic network states, which were previously considered to be random noise. We argue that aperiodic activity exhibits unique and variable spatiotemporal patterns, providing an ideal information-rich neurophysiological substrate for imprinting new mnemonic patterns onto existing circuits. We discuss novel avenues in conceptualizing and quantifying aperiodic network states during sleep to further understand their relevance and interplay with sleep oscillations in support of memory consolidation.
Collapse
Affiliation(s)
- Randolph F Helfrich
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany.
| | - Janna D Lendner
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA; Department of Psychology, University of California Berkeley, Tolman Hall, Berkeley, CA 94720, USA
| |
Collapse
|
150
|
Harrington MO, Cairney SA. Sounding It Out: Auditory Stimulation and Overnight Memory Processing. CURRENT SLEEP MEDICINE REPORTS 2021; 7:112-119. [PMID: 34722123 PMCID: PMC8550047 DOI: 10.1007/s40675-021-00207-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
Abstract
Purpose of Review
Auditory stimulation is a technique that can enhance neural oscillations linked to overnight memory consolidation. In this review, we evaluate the impacts of auditory stimulation on the neural oscillations of sleep and associated memory processes in a variety of populations.
Recent Findings
Cortical EEG recordings of slow-wave sleep (SWS) are characterised by two cardinal oscillations: slow oscillations (SOs) and sleep spindles. Auditory stimulation delivered in SWS enhances SOs and phase-coupled spindle activity in healthy children and adults, children with ADHD, adults with mild cognitive impairment and patients with major depression. Under certain conditions, auditory stimulation bolsters the benefits of SWS for memory consolidation, although further work is required to fully understand the factors affecting stimulation-related memory gains. Recent work has turned to rapid eye movement (REM) sleep, demonstrating that auditory stimulation can be used to manipulate REM sleep theta oscillations.
Summary
Auditory stimulation enhances oscillations linked to overnight memory processing and shows promise as a technique for enhancing the memory benefits of sleep.
Collapse
|