101
|
Lu D, Pang G, Xie J. A new phosphothreonine lyase electrochemical immunosensor for detecting Salmonella based on horseradish peroxidase/GNPs-thionine/chitosan. Biomed Microdevices 2017; 19:12. [PMID: 28194610 DOI: 10.1007/s10544-017-0149-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the current study, a novel double-layer gold nanoparticles- electrochemical immunosensor electrode (DGN-EIE) immobilized with Salmonella plasmid virulence C (SpvC) antibody was developed. To increase the fixed quantity of antibodies and electrochemical signal, an electrochemical biosensing signal amplification system was utilized with gold nanoparticles-thionine-chitosan absorbing horseradish peroxidase (HRP). In addition, the SpvC monoclonal antibodies (derived from Balb/c mice) were prepared and screened with a high affinity to SpvC. To evaluate the quality of DGN-EIE, the amperometric I-t curve method was applied to determine Salmonella in PBS. The results showed that the response current had a good linear correlation with the bacterial quantity ranged from 1.0 × 101-5.0 × 104 cfu/mL. The lowest detection limit was found at 5 cfu/mL. Furthermore, the proposed immunosensor has been demonstrated with high sensitivity, good selectivity and reproducibility. Apparently, DGN-EIE may be a very useful tool for monitoring the bacteria.
Collapse
Affiliation(s)
- Dingqiang Lu
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin, 300314, China
| | - Guangchang Pang
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin, 300314, China. .,Tianjin Key Laboratory of Food Biotechnology, Tianjin, 300314, China.
| | - Junbo Xie
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin, 300314, China. .,Tianjin Key Laboratory of Food Biotechnology, Tianjin, 300314, China.
| |
Collapse
|
102
|
Zhang X, Liu W, Li Y, Li G, Xu JR. Expression of HopAI interferes with MAP kinase signalling in Magnaporthe oryzae. Environ Microbiol 2017; 19:4190-4204. [PMID: 28799700 DOI: 10.1111/1462-2920.13884] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/27/2022]
Abstract
The Pmk1 and Mps1 MAP kinases are essential for appressorium formation and plant infection in Magnaporthe oryzae. However, their exact roles during invasive growth are not clear because pmk1 and mps1 mutants are defective in penetration. To further characterize their functions after penetration, in this study we expressed the Pseudomonas syringae effector HopAI known to inactivate plant MAP kinases in M. oryzae. Constitutive expression of HopAI with the RP27 or TrpC promoter resulted in defects in hyphal growth, conidiation, appressorium penetration and pathogenicity, which is similar to the phenotype of the mps1 mutant. HopAI interacted strongly with Mps1 in vivo and expression of dominant active MKK2 partially suppressed the defects of PRP27 -HopAI transformants, which were significantly reduced in Mps1 phosphorylation. When the infection-specific MIR1 (Magnaporthe-infection-related gene-1) promoter was used to express HopAI, PMIR1 -HopAI transformants were defective in the spreading of invasive hyphae and elicited strong defense responses in penetrated plant cells. Expression of HopAI in Fusarium graminearum also mainly affected the activation of Mgv1, an Mps1 orthologue. Taken together, our results showed that Mps1 is the major intracellular target of HopAI when it is overexpressed, and MAP kinase signalling is important for cell-to-cell movement of invasive hyphae in M. oryzae.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.,College of Plant Protection, Purdue-NWAFU Joint Research Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wende Liu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Guotian Li
- College of Plant Protection, Purdue-NWAFU Joint Research Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.,College of Plant Protection, Purdue-NWAFU Joint Research Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
103
|
The role of mass spectrometry analysis in bacterial effector characterization. Biochem J 2017; 474:2779-2784. [DOI: 10.1042/bcj20160797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022]
Abstract
Many secreted bacterial effector proteins play a critical role in host–pathogen interactions by mediating a variety of post-translational modifications, some of which do not occur natively within the eukaryotic proteome. The characterization of bacterial effector protein activity remains an important step to understanding the subversion of host cell biology during pathogen infection and although molecular biology and immunochemistry remain critical tools for gaining insights into bacterial effector functions, increasingly mass spectrometry (MS) and proteomic approaches are also playing an indispensable role. The focus of this editorial is to highlight the strengths of specific MS approaches and their utility for the characterization of bacterial effector activity. With the capability of new generation MS instrumentation, MS-based technologies can provide information that is inaccessible using traditional molecular or immunochemical approaches.
Collapse
|
104
|
Hannemann S, Galán JE. Salmonella enterica serovar-specific transcriptional reprogramming of infected cells. PLoS Pathog 2017; 13:e1006532. [PMID: 28742135 PMCID: PMC5549772 DOI: 10.1371/journal.ppat.1006532] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/08/2017] [Accepted: 07/13/2017] [Indexed: 01/18/2023] Open
Abstract
Despite their high degree of genomic similarity, different Salmonella enterica serovars are often associated with very different clinical presentations. In humans, for example, the typhoidal S. enterica serovar Typhi causes typhoid fever, a life-threatening systemic disease. In contrast, the non-typhoidal S. enterica serovar Typhimurium causes self-limiting gastroenteritis. The molecular bases for these different clinical presentations are incompletely understood. The ability to re-program gene expression in host cells is an essential virulence factor for typhoidal and non-typhoidal S. enterica serovars. Here, we have compared the transcriptional profile of cultured epithelial cells infected with S. Typhimurium or S. Typhi. We found that both serovars stimulated distinct transcriptional responses in infected cells that are associated with the stimulation of specific signal transduction pathways. These specific responses were associated with the presence of a distinct repertoire of type III secretion effector proteins. These observations provide major insight into the molecular bases for potential differences in the pathogenic mechanisms of typhoidal and non-typhoidal S. enterica serovars. Salmonella Typhimurium and Salmonella Typhi are associated with very different clinical presentations. While S. Typhimurium causes self-limiting gastroenteritis (i. e. “food poisoning”), S. Typhi causes typhoid fever, a systemic, life-threatening disease. The bases for these major differences are not fully understood but are likely to involve many factors. We have compared the transcriptional responses of cultured cells infected with S. Typhimurium or S. Typhi. We found that these Salmonella serovars stimulated distinct transcriptional responses, which could be correlated with their ability to stimulate serovar-specific signal transduction pathways. Importantly, the ability to stimulate these cellular responses was correlated with the presence or absence of specific type III secretion effector proteins. These observations provide major insight into the molecular bases for the differences in the pathogenic mechanisms of typhoidal and non-typhoidal S. enterica serovars.
Collapse
Affiliation(s)
- Sebastian Hannemann
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
105
|
Tumor Necrosis Factor Receptor-Associated Factor 6 (TRAF6) Mediates Ubiquitination-Dependent STAT3 Activation upon Salmonella enterica Serovar Typhimurium Infection. Infect Immun 2017; 85:IAI.00081-17. [PMID: 28507064 DOI: 10.1128/iai.00081-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/05/2017] [Indexed: 01/15/2023] Open
Abstract
Salmonella enterica serovar Typhimurium can inject effector proteins into host cells via type III secretion systems (T3SSs). These effector proteins modulate a variety of host transcriptional responses to facilitate bacterial growth and survival. Here we show that infection of host cells with S Typhimurium specifically induces the ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6). This TRAF6 ubiquitination is triggered by the Salmonella pathogenicity island 1 (SPI-1) T3SS effectors SopB and SopE2. We also demonstrate that TRAF6 is involved in the SopB/SopE2-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3), a signaling event conducive to the intracellular growth of S Typhimurium. Specifically, TRAF6 mediates lysine-63 ubiquitination within the Src homology 2 (SH2) domain of STAT3, which is an essential step for STAT3 membrane recruitment and subsequent phosphorylation in response to S Typhimurium infection. TRAF6 ubiquitination participates in STAT3 phosphorylation rather than serving as only a hallmark of E3 ubiquitin ligase activation. Our results reveal a novel strategy in which S Typhimurium T3SS effectors broaden their functions through the activation of host proteins in a ubiquitination-dependent manner to manipulate host cells into becoming a Salmonella-friendly zone.
Collapse
|
106
|
|
107
|
Mattock E, Blocker AJ. How Do the Virulence Factors of Shigella Work Together to Cause Disease? Front Cell Infect Microbiol 2017; 7:64. [PMID: 28393050 PMCID: PMC5364150 DOI: 10.3389/fcimb.2017.00064] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 01/01/2023] Open
Abstract
Shigella is the major cause of bacillary dysentery world-wide. It is divided into four species, named S. flexneri, S. sonnei, S. dysenteriae, and S. boydii, which are distinct genomically and in their ability to cause disease. Shigellosis, the clinical presentation of Shigella infection, is characterized by watery diarrhea, abdominal cramps, and fever. Shigella's ability to cause disease has been attributed to virulence factors, which are encoded on chromosomal pathogenicity islands and the virulence plasmid. However, information on these virulence factors is not often brought together to create a detailed picture of infection, and how this translates into shigellosis symptoms. Firstly, Shigella secretes virulence factors that induce severe inflammation and mediate enterotoxic effects on the colon, producing the classic watery diarrhea seen early in infection. Secondly, Shigella injects virulence effectors into epithelial cells via its Type III Secretion System to subvert the host cell structure and function. This allows invasion of epithelial cells, establishing a replicative niche, and causes erratic destruction of the colonic epithelium. Thirdly, Shigella produces effectors to down-regulate inflammation and the innate immune response. This promotes infection and limits the adaptive immune response, causing the host to remain partially susceptible to re-infection. Combinations of these virulence factors may contribute to the different symptoms and infection capabilities of the diverse Shigella species, in addition to distinct transmission patterns. Further investigation of the dominant species causing disease, using whole-genome sequencing and genotyping, will allow comparison and identification of crucial virulence factors and may contribute to the production of a pan-Shigella vaccine.
Collapse
Affiliation(s)
- Emily Mattock
- Faculty of Biomedical Sciences, Schools of Cellular and Molecular Medicine and Biochemistry, University of Bristol Bristol, UK
| | - Ariel J Blocker
- Faculty of Biomedical Sciences, Schools of Cellular and Molecular Medicine and Biochemistry, University of Bristol Bristol, UK
| |
Collapse
|
108
|
Meijer BM, Jang SM, Guerrera IC, Chhuon C, Lipecka J, Reisacher C, Baleux F, Sansonetti PJ, Muchardt C, Arbibe L. Threonine eliminylation by bacterial phosphothreonine lyases rapidly causes cross-linking of mitogen-activated protein kinase (MAPK) in live cells. J Biol Chem 2017; 292:7784-7794. [PMID: 28325837 DOI: 10.1074/jbc.m117.775940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/21/2017] [Indexed: 11/06/2022] Open
Abstract
Old long-lived proteins contain dehydroalanine (Dha) and dehydrobutyrine (Dhb), two amino acids engendered by dehydration of serines and threonines, respectively. Although these residues have a suspected role in protein cross-linking and aggregation, their direct implication has yet to be determined. Here, we have taken advantage of the ability of the enteropathogen Shigella to convert the phosphothreonine residue of the pT-X-pY consensus sequence of ERK and p38 into Dhb and followed the impact of dehydration on the fate of the two MAPKs. To that end, we have generated the first antibodies recognizing Dhb-modified proteins and allowing tracing them as they form. We showed that Dhb modifications accumulate in a long-lasting manner in Shigella-infected cells, causing subsequent formation of covalent cross-links of MAPKs. Moreover, the Dhb signal correlates precisely with the activation of the Shigella type III secretion apparatus, thus evidencing injectisome activity. This observation is the first to document a causal link between Dhb formation and protein cross-linking in live cells. Detection of eliminylation is a new avenue to phosphoproteome regulation in eukaryotes that will be instrumental for the development of type III secretion inhibitors.
Collapse
Affiliation(s)
- Benoit M Meijer
- From the Team genomic plasticity and infection, Department of Immunology, Infectiology and Hematology, Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, 75993 Paris CEDEX 14, France.,the Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur UPMC, 75724 Paris, France
| | - Suk Min Jang
- Institut Pasteur, Department of Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, 75724 Paris CEDEX 15, France.,UMR3738 CNRS, 75732 Paris CEDEX 15, France
| | - Ida C Guerrera
- the Proteomic Platform Necker, PPN-3P5, Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France
| | - Cerina Chhuon
- the Proteomic Platform Necker, PPN-3P5, Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France
| | - Joanna Lipecka
- the Proteomic Platform Necker, PPN-3P5, Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France.,the CPN Proteomics Facility-3P5, Center of Psychiatry and Neuroscience, UMR INSERM 894, 75014 Paris, France
| | - Caroline Reisacher
- From the Team genomic plasticity and infection, Department of Immunology, Infectiology and Hematology, Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, 75993 Paris CEDEX 14, France
| | - Françoise Baleux
- the Unité de Chimie des Biomolécules, Institut Pasteur, 75015 Paris, France, and
| | - Philippe J Sansonetti
- the Unité de Pathogénie Microbienne Moléculaire, Unité INSERM U1202, Institut Pasteur, 75015 Paris, France
| | - Christian Muchardt
- Institut Pasteur, Department of Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, 75724 Paris CEDEX 15, France.,UMR3738 CNRS, 75732 Paris CEDEX 15, France
| | - Laurence Arbibe
- From the Team genomic plasticity and infection, Department of Immunology, Infectiology and Hematology, Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, 75993 Paris CEDEX 14, France, .,Université Paris Descartes,75270 Paris CEDEX 06, France
| |
Collapse
|
109
|
Milivojevic M, Dangeard AS, Kasper CA, Tschon T, Emmenlauer M, Pique C, Schnupf P, Guignot J, Arrieumerlou C. ALPK1 controls TIFA/TRAF6-dependent innate immunity against heptose-1,7-bisphosphate of gram-negative bacteria. PLoS Pathog 2017; 13:e1006224. [PMID: 28222186 PMCID: PMC5336308 DOI: 10.1371/journal.ppat.1006224] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/03/2017] [Accepted: 02/07/2017] [Indexed: 12/30/2022] Open
Abstract
During infection by invasive bacteria, epithelial cells contribute to innate immunity via the local secretion of inflammatory cytokines. These are directly produced by infected cells or by uninfected bystanders via connexin-dependent cell-cell communication. However, the cellular pathways underlying this process remain largely unknown. Here we perform a genome-wide RNA interference screen and identify TIFA and TRAF6 as central players of Shigella flexneri and Salmonella typhimurium-induced interleukin-8 expression. We show that threonine 9 and the forkhead-associated domain of TIFA are necessary for the oligomerization of TIFA in both infected and bystander cells. Subsequently, this process triggers TRAF6 oligomerization and NF-κB activation. We demonstrate that TIFA/TRAF6-dependent cytokine expression is induced by the bacterial metabolite heptose-1,7-bisphosphate (HBP). In addition, we identify alpha-kinase 1 (ALPK1) as the critical kinase responsible for TIFA oligomerization and IL-8 expression in response to infection with S. flexneri and S. typhimurium but also to Neisseria meningitidis. Altogether, these results clearly show that ALPK1 is a master regulator of innate immunity against both invasive and extracellular gram-negative bacteria. Epithelial cells line internal body cavities of multicellular organisms. They represent the first line of defense against various pathogens including bacteria and viruses. They can sense the presence of invasive pathogens and initiate the recruitment of immune cells to infected tissues via the local secretion of soluble factors, called chemokines. Although this phenomenon is essential for the development of an efficient immune response, the molecular mechanism underlying this process remains largely unknown. Here we demonstrate that the host proteins ALPK1, TIFA and TRAF6 act sequentially to activate the transcription factor NF-κB and regulate the production of chemokines in response to infection by the pathogens Shigella flexneri, Salmonella typhimurium and Neisseria meningitidis. In addition, we show that the production of chemokines is triggered after detection of the bacterial monosaccharide heptose-1,7-bisphosphate, found in gram-negative bacteria. In conclusion, our study uncovers a new molecular mechanism controlling inflammation during infection by gram-negative bacteria and identifies potential targets for treatments aiming at modulating inflammation during infection.
Collapse
Affiliation(s)
- Milica Milivojevic
- INSERM, U1016, Institut Cochin, Paris, France, CNRS, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, France
| | - Anne-Sophie Dangeard
- INSERM, U1016, Institut Cochin, Paris, France, CNRS, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, France
| | | | | | | | - Claudine Pique
- INSERM, U1016, Institut Cochin, Paris, France, CNRS, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, France
| | | | - Julie Guignot
- INSERM, U1016, Institut Cochin, Paris, France, CNRS, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, France
| | - Cécile Arrieumerlou
- INSERM, U1016, Institut Cochin, Paris, France, CNRS, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, France
- * E-mail:
| |
Collapse
|
110
|
Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev 2017; 117:5457-5520. [PMID: 28135077 PMCID: PMC5408752 DOI: 10.1021/acs.chemrev.6b00591] [Citation(s) in RCA: 370] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Lanthipeptides
are ribosomally synthesized and post-translationally
modified peptides (RiPPs) that display a wide variety of biological
activities, from antimicrobial to antiallodynic. Lanthipeptides that
display antimicrobial activity are called lantibiotics. The post-translational
modification reactions of lanthipeptides include dehydration of Ser
and Thr residues to dehydroalanine and dehydrobutyrine, a transformation
that is carried out in three unique ways in different classes of lanthipeptides.
In a cyclization process, Cys residues then attack the dehydrated
residues to generate the lanthionine and methyllanthionine thioether
cross-linked amino acids from which lanthipeptides derive their name.
The resulting polycyclic peptides have constrained conformations that
confer their biological activities. After installation of the characteristic
thioether cross-links, tailoring enzymes introduce additional post-translational
modifications that are unique to each lanthipeptide and that fine-tune
their activities and/or stability. This review focuses on studies
published over the past decade that have provided much insight into
the mechanisms of the enzymes that carry out the post-translational
modifications.
Collapse
Affiliation(s)
- Lindsay M Repka
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan R Chekan
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Satish K Nair
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
111
|
De Luca M, Pels K, Moleirinho S, Curtale G. The epigenetic landscape of innate immunity. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.1.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
112
|
Zhang Z, Liu Y, Huang H, Gao M, Wu D, Kong Q, Zhang Y. The NLR protein SUMM2 senses the disruption of an immune signaling MAP kinase cascade via CRCK3. EMBO Rep 2016; 18:292-302. [PMID: 27986791 DOI: 10.15252/embr.201642704] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/25/2016] [Accepted: 11/04/2016] [Indexed: 02/02/2023] Open
Abstract
MAP kinase signaling is an integral part of plant immunity. Disruption of the MEKK1-MKK1/2-MPK4 kinase cascade results in constitutive immune responses mediated by the NLR protein SUMM2, but the molecular mechanism is so far poorly characterized. Here, we report that SUMM2 monitors a substrate protein of MPK4, CALMODULIN-BINDING RECEPTOR-LIKE CYTOPLASMIC KINASE 3 (CRCK3). Similar to SUMM2, CRCK3 was isolated from a suppressor screen of mkk1 mkk2 and is required for the autoimmunity phenotypes in mekk1, mkk1 mkk2, and mpk4 mutants. In wild-type plants, CRCK3 is mostly phosphorylated. MPK4 interacts with CRCK3 and can phosphorylate CRCK3 in vitro In mpk4 mutant plants, phosphorylation of CRCK3 is substantially reduced, suggesting that MPK4 phosphorylates CRCK3 in vivo Further, CRCK3 associates with SUMM2 in planta, suggesting SUMM2 senses the disruption of the MEKK1-MKK1/2-MPK4 kinase cascade through CRCK3. Our study suggests that a MAP kinase substrate is used as a guardee or decoy for monitoring the integrity of MAP kinase signaling.
Collapse
Affiliation(s)
- Zhibin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Yanan Liu
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Hao Huang
- National Institute of Biological Sciences, Beijing, China
| | - Minghui Gao
- National Institute of Biological Sciences, Beijing, China
| | - Di Wu
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Qing Kong
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
113
|
Ge Y, Fan X, Chen PR. A genetically encoded multifunctional unnatural amino acid for versatile protein manipulations in living cells. Chem Sci 2016; 7:7055-7060. [PMID: 28451140 PMCID: PMC5355830 DOI: 10.1039/c6sc02615j] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/01/2016] [Indexed: 01/20/2023] Open
Abstract
The genetic code expansion strategy allowed incorporation of unnatural amino acids (UAAs) bearing diverse functional groups into proteins, providing a powerful toolkit for protein manipulation in living cells. We report a multifunctional UAA, Nε-p-azidobenzyloxycarbonyl lysine (PABK), that possesses a panel of unique properties capable of fulfilling various protein manipulation purposes. In addition to being used as a bioorthogonal ligation handle, an infrared probe and a photo-affinity reagent, PABK was shown to be chemically decaged by trans-cyclooctenols via a strain-promoted 1,3-dipolar cycloaddition, which provides a new bioorthogonal cleavage strategy for intracellular protein activation. The biocompatibility and efficiency of this method were demonstrated by decaging of a PABK-caged firefly luciferase under living conditions. We further extended this method to chemically rescue a bacterial toxin OspF inside mammalian host cells.
Collapse
Affiliation(s)
- Yun Ge
- Beijing National Laboratory for Molecular Sciences , Synthetic and Functional Biomolecules Center , Department of Chemical Biology , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China .
| | - Xinyuan Fan
- Beijing National Laboratory for Molecular Sciences , Synthetic and Functional Biomolecules Center , Department of Chemical Biology , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China .
- Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China
| | - Peng R Chen
- Beijing National Laboratory for Molecular Sciences , Synthetic and Functional Biomolecules Center , Department of Chemical Biology , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China .
- Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China
| |
Collapse
|
114
|
Sanchez-Villamil J, Tapia-Pastrana G, Navarro-Garcia F. Pathogenic Lifestyles of E. coli Pathotypes in a Standardized Epithelial Cell Model Influence Inflammatory Signaling Pathways and Cytokines Secretion. Front Cell Infect Microbiol 2016; 6:120. [PMID: 27774437 PMCID: PMC5054702 DOI: 10.3389/fcimb.2016.00120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
Inflammatory response is key for the host defense against diarrheagenic Escherichia coli and contributes to the pathogenesis of the disease but there is not a comparative study among different diarrheagenic pathotypes. We analyzed the inflammatory response induced by five diarrheagenic pathotypes in a HT-29 cell infection model. The model was unified to reproduce the pathogenesis of each pathotype. To compare the inflammatory responses we evaluated: (i) nuclear NF-κB and ERK1/2 translocation by confocal microscopy; (ii) kinetics of activation by each pathway detecting p65 and ERK1/2 phosphorylation by Western blotting; (iii) pathways modulation through bacterial infections with or without co-stimulation with TNF-α or EGF; (iv) cytokine profile induced by each pathotype with and without inhibitors of each pathway. EHEC but mainly EPEC inhibited translocation and activation of p65 and ERK1/2 pathways, as well as cytokines secretion; inhibition of p65 and ERK1/2 phosphorylation prevailed in the presence of TNF-α and EGF, respectively. Intracellular strains, EIEC/Shigella flexneri, caused a strong translocation, activation, and cytokines secretion but they could not inhibit TNF-α and EGF stimulation. ETEC and mainly EAEC caused a moderate translocation, but a differential activation, and high cytokines secretion; interestingly TNF-α and EGF stimulation did no modify p65 and ERK1/2 activation. The use of inhibitors of NF-κB and/or ERK1/2 showed that NF-κB is crucial for cytokine induction by the different pathotypes; only partially depended on ERK1/2 activation. Thus, in spite of their differences, the pathotypes can also be divided in three groups according to their inflammatory response as those (i) that inject effectors to cause A/E lesion, which are able to inhibit NF-κB and ERK1/2 pathways, and cytokine secretion; (ii) with fimbrial adherence and toxin secretion with a moderate inhibition of both pathways but high cytokines secretion through autocrine cytokine regulation; and (iii) the intracellular bacteria that induce the highest pathways activation and cytokines secretion by using different activation mechanisms. This study provides a comprehensive analysis of how the different pathogenesis schemes of E. coli pathotypes manipulate inflammatory signaling pathways, which leads to a specific proinflammatory cytokine secretion in a cell model infection that reproduce the hallmarks of infection of each pathotype.
Collapse
Affiliation(s)
- Javier Sanchez-Villamil
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Gabriela Tapia-Pastrana
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| |
Collapse
|
115
|
Outrunning the Red Queen: bystander activation as a means of outpacing innate immune subversion by intracellular pathogens. Cell Mol Immunol 2016; 14:14-21. [PMID: 27545071 PMCID: PMC5214943 DOI: 10.1038/cmi.2016.36] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 12/15/2022] Open
Abstract
Originally described by the late evolutionary biologist Leigh Van Valen, the Red Queen hypothesis posits that the evolutionary arms race between hosts and their pathogens selects for discrete, genetically encoded events that lead to competitive advantages over the other species. Examples of immune evasion strategies are seen throughout the co-evolution of the mammalian immune system and pathogens, such as the enzymatic inactivation of nuclear factor-κB signaling or host translation by pathogen-encoded virulence factors. Such immunoevasive maneuvers would be expected to select for the evolution of innate immune counterstrategies. Recent advances in our understanding of host immunity and microbial pathogenesis have provided insight into a particular innate immune adaptation, termed bystander activation. Bystander activation occurs as a consequence of infected cells alerting and instructing neighboring uninfected cells to produce inflammatory mediators, either through direct cell contact or paracrine signals. Thus, bystander activation can allow the immune system to overcome the ability of pathogens to disarm immune signaling in directly infected cells. This review presents an overview of the general hallmarks of bystander activation and their emerging role in innate immunity to intracellular pathogens, as well as examples of recent mechanistic discoveries relating to the bystander activation during infection with specific pathogens relevant to human health and disease.
Collapse
|
116
|
JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol Mol Biol Rev 2016; 80:793-835. [PMID: 27466283 DOI: 10.1128/mmbr.00043-14] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states.
Collapse
|
117
|
Ruan H, Zhang Z, Tian L, Wang S, Hu S, Qiao JJ. The Salmonella effector SopB prevents ROS-induced apoptosis of epithelial cells by retarding TRAF6 recruitment to mitochondria. Biochem Biophys Res Commun 2016; 478:618-23. [PMID: 27473656 DOI: 10.1016/j.bbrc.2016.07.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 11/18/2022]
Abstract
Microbial pathogens enter host cells by injecting effector proteins of the Type III secretion system (T3SS), which facilitate pathogen translocation across the host cell membrane. These effector proteins exert their effects by modulating a variety of host innate immune responses, thereby facilitating bacterial replication and systemic infection. Salmonella enterica serovar typhimurium (S.typhimurium) is a clinically important pathogen that causes food poisoning and gastroenteritis. The SopB effector protein of S. typhimurium, encoded by Salmonella pathogenicity islands (SPI)-1 T3SS, protects host epithelial cells from infection-induced apoptosis. However, how SopB influences apoptosis induction remains unclear. Here, we investigated the mechanism of SopB action in host cells. We found that SopB inhibits infection-induced apoptosis by attenuating the production of reactive oxygen species (ROS) in mitochondria, the crucial organelles for apoptosis initiation. Further investigation revealed that SopB binds to cytosolic tumor necrosis factor receptor associated factor 6 (TRAF6) and forms a trap preventing the mitochondrial recruitment of TRAF6, an essential event for ROS generation within mitochondria. By studying the response of Traf6(+/+) and Traf6(-/-)mouse embryonic fibroblasts to S. typhimurium infection, we found that TRAF6 promoted apoptosis by increasing ROS accumulation, which led to increased Bax/Bcl-2 ratio, Bax recruitment to mitochondrial membrane, and release of Cyt c into the cytoplasm. These findings show that SopB suppresses host cell apoptosis by binding to TRAF6 and preventing mitochondrial ROS generation.
Collapse
Affiliation(s)
- Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China.
| | - Zhen Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Li Tian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300192, China
| | - Suying Wang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Shuangyan Hu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Jian-Jun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300192, China.
| |
Collapse
|
118
|
Hou M, Chen R, Yang D, Núñez G, Wang Z, Wang Q, Zhang Y, Liu Q. Identification and functional characterization of EseH, a new effector of the type III secretion system ofEdwardsiella piscicida. Cell Microbiol 2016; 19. [DOI: 10.1111/cmi.12638] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/30/2016] [Accepted: 06/17/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Mingyu Hou
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Ran Chen
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing; Shanghai 200237 China
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center; University of Michigan; Ann Arbor MI 48109 USA
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing; Shanghai 200237 China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing; Shanghai 200237 China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing; Shanghai 200237 China
| |
Collapse
|
119
|
Li J, Chen PR. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat Chem Biol 2016; 12:129-37. [PMID: 26881764 DOI: 10.1038/nchembio.2024] [Citation(s) in RCA: 380] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/07/2016] [Indexed: 01/10/2023]
Abstract
Bioorthogonal chemical reactions are a thriving area of chemical research in recent years as an unprecedented technique to dissect native biological processes through chemistry-enabled strategies. However, current concepts of bioorthogonal chemistry have largely centered on 'bond formation' reactions between two mutually reactive bioorthogonal handles. Recently, in a reverse strategy, a collection of 'bond cleavage' reactions has emerged with excellent biocompatibility. These reactions have expanded our bioorthogonal chemistry repertoire, enabling an array of exciting new biological applications that range from the chemically controlled spatial and temporal activation of intracellular proteins and small-molecule drugs to the direct manipulation of intact cells under physiological conditions. Here we highlight the development and applications of these bioorthogonal cleavage reactions. Furthermore, we lay out challenges and propose future directions along this appealing avenue of research.
Collapse
Affiliation(s)
- Jie Li
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
120
|
Rosenshine I. Bacterial pathogenesis: Cooperative immunomodulation. Nat Microbiol 2016; 1:16099. [PMID: 27572979 DOI: 10.1038/nmicrobiol.2016.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, 9112102 Israel
| |
Collapse
|
121
|
Reimer-Michalski EM, Conrath U. Innate immune memory in plants. Semin Immunol 2016; 28:319-27. [PMID: 27264335 DOI: 10.1016/j.smim.2016.05.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
Abstract
The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates.
Collapse
Affiliation(s)
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen 52056, Germany.
| |
Collapse
|
122
|
Inhibition of Nuclear Transport of NF-ĸB p65 by the Salmonella Type III Secretion System Effector SpvD. PLoS Pathog 2016; 12:e1005653. [PMID: 27232334 PMCID: PMC4883751 DOI: 10.1371/journal.ppat.1005653] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/02/2016] [Indexed: 11/25/2022] Open
Abstract
Salmonella enterica replicates in macrophages through the action of effector proteins translocated across the vacuolar membrane by a type III secretion system (T3SS). Here we show that the SPI-2 T3SS effector SpvD suppresses proinflammatory immune responses. SpvD prevented activation of an NF-ĸB-dependent promoter and caused nuclear accumulation of importin-α, which is required for nuclear import of p65. SpvD interacted specifically with the exportin Xpo2, which mediates nuclear-cytoplasmic recycling of importins. We propose that interaction between SpvD and Xpo2 disrupts the normal recycling of importin-α from the nucleus, leading to a defect in nuclear translocation of p65 and inhibition of activation of NF-ĸB regulated promoters. SpvD down-regulated pro-inflammatory responses and contributed to systemic growth of bacteria in mice. This work shows that a bacterial pathogen can manipulate host cell immune responses by interfering with the nuclear transport machinery. Salmonella Typhimurium replicates in macrophages through the action of effector proteins translocated into host cells by a type III secretion system (T3SS). We show that the T3SS effector SpvD targets the NF-ĸB pathway by interfering with nuclear translocation of p65. SpvD interacts with the exportin Xpo2. Perturbation of Xpo2 disrupts recycling of importin-α from the nucleus, leading to abrogation of p65 nuclear translocation. These data show that a bacterial pathogen manipulates host cell immune responses by interfering with nuclear transport machinery.
Collapse
|
123
|
Zhang G, Li J, Xie R, Fan X, Liu Y, Zheng S, Ge Y, Chen PR. Bioorthogonal Chemical Activation of Kinases in Living Systems. ACS CENTRAL SCIENCE 2016; 2:325-31. [PMID: 27280167 PMCID: PMC4882735 DOI: 10.1021/acscentsci.6b00024] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 05/06/2023]
Abstract
Selective manipulation of protein kinases under living conditions is highly desirable yet extremely challenging, particularly in a gain-of-function fashion. Here we employ our recently developed bioorthogonal cleavage reaction as a general strategy for intracellular activation of individual kinases. Site-specific incorporation of trans-cyclooctene-caged lysine in place of the conserved catalytic lysine, in conjunction with the cleavage partner dimethyl-tetrazine, allowed efficient lysine decaging with the kinase activity chemically rescued in living systems.
Collapse
Affiliation(s)
- Gong Zhang
- Academy
for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua
Center for Life Sciences, Beijing, China
| | - Jie Li
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Department of Chemical Biology, College of Chemistry
and Molecular Engineering, Peking University, Beijing, China
| | - Ran Xie
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Department of Chemical Biology, College of Chemistry
and Molecular Engineering, Peking University, Beijing, China
| | - Xinyuan Fan
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Department of Chemical Biology, College of Chemistry
and Molecular Engineering, Peking University, Beijing, China
| | - Yanjun Liu
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Department of Chemical Biology, College of Chemistry
and Molecular Engineering, Peking University, Beijing, China
| | - Siqi Zheng
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Department of Chemical Biology, College of Chemistry
and Molecular Engineering, Peking University, Beijing, China
| | - Yun Ge
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Department of Chemical Biology, College of Chemistry
and Molecular Engineering, Peking University, Beijing, China
| | - Peng R. Chen
- Beijing
National Laboratory for Molecular Sciences, Synthetic and Functional
Biomolecules Center, Department of Chemical Biology, College of Chemistry
and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua
Center for Life Sciences, Beijing, China
- E-mail:
| |
Collapse
|
124
|
Identification and Characterization of Putative Translocated Effector Proteins of the Edwardsiella ictaluri Type III Secretion System. mSphere 2016; 1:mSphere00039-16. [PMID: 27303737 PMCID: PMC4888880 DOI: 10.1128/msphere.00039-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/25/2016] [Indexed: 01/12/2023] Open
Abstract
The bacterial pathogen Edwardsiella ictaluri causes enteric septicemia of catfish (ESC), an economically significant disease of farm-raised channel catfish. Commercial catfish production accounts for the majority of the total fin fish aquaculture in the United States, with almost 300,000 tons produced annually, and ESC is the leading cause of disease loss in the industry. We have demonstrated the survival and replication of E. ictaluri within channel catfish cells and identified a secretion system that is essential for E. ictaluri intracellular replication and virulence. We have also identified nine proteins encoded in the E. ictaluri genome that we believe are actively transferred from the bacterium to the cytoplasm of the host cell and act to manipulate host cell physiology to the advantage of the bacterium. The data presented here confirm that the proteins are actually transferred during an infection, which will lead to further work on approaches to preventing or controlling ESC. Edwardsiella ictaluri, a major pathogen in channel catfish aquaculture, encodes a type III secretion system (T3SS) that is essential for intracellular replication and virulence. Previous work identified three putative T3SS effectors in E. ictaluri, and in silico analysis of the E. ictaluri genome identified six additional putative effectors, all located on the chromosome outside the T3SS pathogenicity island. To establish active translocation by the T3SS, we constructed translational fusions of each effector to the amino-terminal adenylate cyclase (AC) domain of the Bordetella pertussis adenylate cyclase toxin CyaA. When translocated through the membrane of the Edwardsiella-containing vacuole (ECV), the cyclic AMP produced by the AC domain in the presence of calmodulin in the host cell cytoplasm can be measured. Results showed that all nine effectors were translocated from E. ictaluri in the ECV to the cytoplasm of the host cells in the wild-type strain but not in a T3SS mutant, indicating that translocation is dependent on the T3SS machinery. This confirms that the E. ictaluri T3SS is similar to the Salmonella pathogenicity island 2 T3SS in that it translocates effectors through the membrane of the bacterial vacuole directly into the host cell cytoplasm. Additional work demonstrated that both initial acidification and subsequent neutralization of the ECV were necessary for effector translocation, except for two of them that did not require neutralization. Single-gene mutants constructed for seven of the individual effectors were all attenuated for replication in CCO cells, but only three were replication deficient in head kidney-derived macrophages (HKDM). IMPORTANCE The bacterial pathogen Edwardsiella ictaluri causes enteric septicemia of catfish (ESC), an economically significant disease of farm-raised channel catfish. Commercial catfish production accounts for the majority of the total fin fish aquaculture in the United States, with almost 300,000 tons produced annually, and ESC is the leading cause of disease loss in the industry. We have demonstrated the survival and replication of E. ictaluri within channel catfish cells and identified a secretion system that is essential for E. ictaluri intracellular replication and virulence. We have also identified nine proteins encoded in the E. ictaluri genome that we believe are actively transferred from the bacterium to the cytoplasm of the host cell and act to manipulate host cell physiology to the advantage of the bacterium. The data presented here confirm that the proteins are actually transferred during an infection, which will lead to further work on approaches to preventing or controlling ESC.
Collapse
|
125
|
Hu Y, Duan S, Zhang Y, Shantharaj D, Jones JB, Wang N. Temporal Transcription Profiling of Sweet Orange in Response to PthA4-Mediated Xanthomonas citri subsp. citri Infection. PHYTOPATHOLOGY 2016; 106:442-451. [PMID: 26780431 DOI: 10.1094/phyto-09-15-0201-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri, is a devastating disease of most commercial citrus varieties. In our previous study, we analyzed the transcriptional response of 'Valencia' sweet orange to X. citri subsp. citri wild-type and pthA4 mutant infection at 48 h postinoculation (hpi). Using microarray analysis, two PthA4 targets, CsLOB1 and CsSWEET1, were identified. We have shown that PthA4 binds to the effector binding element (EBE) of CsLOB1 and activates gene expression of this susceptibility gene. However, how PthA4 modulates host genes at different stages of infection remains to be determined. In this study, we compared the transcriptional profiles between citrus leaf tissue inoculated with Xcc306 and those inoculated with a pthA4-deletion mutant strain (Xcc306∆pthA4) at 6, 48, and 120 hpi. At both 48 and 120 hpi, the PthA4-mediated infection significantly upregulated expression of a variety of genes involved in cell-wall degradation and modification, DNA packaging, G-protein, protein synthesis, sucrose metabolism, and cell division functions, while the downregulated genes were mainly enriched in photosynthesis, transport, secondary metabolism, cytochrome P450, and various plant defense-associated mechanisms. To validate microarray results, gene expression of 26 genes representing genes associated with cell-wall-associated, immunity system, and carbohydrate metabolism was confirmed using quantitative reverse-transcription polymerase chain reaction. Expression patterns of these genes at 48 and 120 hpi were consistent with the microarray results. We also identified putative EBE for PthA4 (EBEPthA4) in the promoter regions of multiple genes upregulated by PthA4, to which PthA4 might bind directly to control their gene expression. Our study provided a dynamic picture of citrus genes regulated by PthA4 during the X. citri subsp. citri infection of citrus leaves at different stages. This study will be useful in further understanding the virulence mechanism of X. citri subsp. citri and identifying potential targets of PthA4.
Collapse
Affiliation(s)
- Yang Hu
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| | - Shuo Duan
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| | - Yunzeng Zhang
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| | - Deepak Shantharaj
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| | - Jeffrey B Jones
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| | - Nian Wang
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| |
Collapse
|
126
|
Ge YY, Xiang QW, Wagner C, Zhang D, Xie ZP, Staehelin C. The type 3 effector NopL of Sinorhizobium sp. strain NGR234 is a mitogen-activated protein kinase substrate. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2483-94. [PMID: 26931172 DOI: 10.1093/jxb/erw065] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pathogenic bacteria utilize type 3 secretion systems to inject type 3 effectors (T3Es) into host cells, thereby subverting host defense reactions. Similarly, T3Es of symbiotic nitrogen-fixing rhizobia can affect nodule formation on roots of legumes. Previous work showed that NopL (nodulation outer protein L) of Sinorhizobium(Ensifer) sp. strain NGR234 is multiply phosphorylated in eukaryotic cells and that this T3E suppresses responses mediated by mitogen-activated protein (MAP) kinase signaling in yeast (mating pheromone signaling) and plant cells (expression of pathogenesis-related defense proteins). Here, we show that NopL is a MAP kinase substrate. Microscopic observations of fluorescent fusion proteins and bimolecular fluorescence complementation analysis in onion cells indicated that NopL is targeted to the nucleus and forms a complex with SIPK (salicylic acid-induced protein kinase), a MAP kinase of tobacco. In vitro experiments demonstrated that NopL is phosphorylatyed by SIPK. At least nine distinct spots were observed after two-dimensional gel electrophoresis, indicating that NopL can be hyperphosphorylated by MAP kinases. Senescence symptoms in nodules of beans (Phaseolus vulgaris cv. Tendergreen) were analyzed to determine the symbiotic effector activity of different NopL variants with serine to alanine substitutions at identified and predicted phosphorylation sites (serine-proline motif). NopL variants with six or eight serine to alanine substitutions were partially active, whereas NopL forms with 10 or 12 substituted serine residues were inactive. In conclusion, our findings provide evidence that NopL interacts with MAP kinases and reveals the importance of serine-proline motifs for effector activity during symbiosis.
Collapse
Affiliation(s)
- Ying-Ying Ge
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Wang Xiang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Christian Wagner
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Di Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China Shenzhen Research and Development Center of State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Baoan, Shenzhen, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China Shenzhen Research and Development Center of State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Baoan, Shenzhen, China
| |
Collapse
|
127
|
Killackey SA, Sorbara MT, Girardin SE. Cellular Aspects of Shigella Pathogenesis: Focus on the Manipulation of Host Cell Processes. Front Cell Infect Microbiol 2016; 6:38. [PMID: 27066460 PMCID: PMC4814626 DOI: 10.3389/fcimb.2016.00038] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/17/2016] [Indexed: 01/11/2023] Open
Abstract
Shigella is a Gram-negative bacterium that is responsible for shigellosis. Over the years, the study of Shigella has provided a greater understanding of how the host responds to bacterial infection, and how bacteria have evolved to effectively counter the host defenses. In this review, we provide an update on some of the most recent advances in our understanding of pivotal processes associated with Shigella infection, including the invasion into host cells, the metabolic changes that occur within the bacterium and the infected cell, cell-to-cell spread mechanisms, autophagy and membrane trafficking, inflammatory signaling and cell death. This recent progress sheds a new light into the mechanisms underlying Shigella pathogenesis, and also more generally provides deeper understanding of the complex interplay between host cells and bacterial pathogens in general.
Collapse
Affiliation(s)
- Samuel A Killackey
- Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, ON, Canada
| | | | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada; Department of Immunology, University of TorontoToronto, ON, Canada
| |
Collapse
|
128
|
Ittig SJ, Schmutz C, Kasper CA, Amstutz M, Schmidt A, Sauteur L, Vigano MA, Low SH, Affolter M, Cornelis GR, Nigg EA, Arrieumerlou C. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J Cell Biol 2016; 211:913-31. [PMID: 26598622 PMCID: PMC4657163 DOI: 10.1083/jcb.201502074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Methods enabling the delivery of proteins into eukaryotic cells are essential to address protein functions. Here we propose broad applications to cell biology for a protein delivery tool based on bacterial type III secretion (T3S). We show that bacterial, viral, and human proteins, fused to the N-terminal fragment of the Yersinia enterocolitica T3S substrate YopE, are effectively delivered into target cells in a fast and controllable manner via the injectisome of extracellular bacteria. This method enables functional interaction studies by the simultaneous injection of multiple proteins and allows the targeting of proteins to different subcellular locations by use of nanobody-fusion proteins. After delivery, proteins can be freed from the YopE fragment by a T3S-translocated viral protease or fusion to ubiquitin and cleavage by endogenous ubiquitin proteases. Finally, we show that this delivery tool is suitable to inject proteins in living animals and combine it with phosphoproteomics to characterize the systems-level impact of proapoptotic human truncated BID on the cellular network.
Collapse
Affiliation(s)
- Simon J Ittig
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | | | | | - Loïc Sauteur
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Shyan Huey Low
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Guy R Cornelis
- Research Unit in Biology of Microorganisms, Department of Biology, University of Namur, 5000 Namur, Belgium
| | - Erich A Nigg
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Cécile Arrieumerlou
- Biozentrum, University of Basel, 4056 Basel, Switzerland Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, 75014 Paris, France Centre National de la Recherche Scientifique, UMR8104, 75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| |
Collapse
|
129
|
Campbell-Valois FX, Pontier SM. Implications of Spatiotemporal Regulation of Shigella flexneri Type Three Secretion Activity on Effector Functions: Think Globally, Act Locally. Front Cell Infect Microbiol 2016; 6:28. [PMID: 27014638 PMCID: PMC4783576 DOI: 10.3389/fcimb.2016.00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/23/2016] [Indexed: 11/13/2022] Open
Abstract
Shigella spp. are Gram-negative bacterial pathogens that infect human colonic epithelia and cause bacterial dysentery. These bacteria express multiple copies of a syringe-like protein complex, the Type Three Secretion apparatus (T3SA), which is instrumental in the etiology of the disease. The T3SA triggers the plasma membrane (PM) engulfment of the bacteria by host cells during the initial entry process. It then enables bacteria to escape the resulting phagocytic-like vacuole. Freed bacteria form actin comets to move in the cytoplasm, which provokes bacterial collision with the inner leaflet of the PM. This phenomenon culminates in T3SA-dependent secondary uptake and vacuolar rupture in neighboring cells in a process akin to what is observed during entry and named cell-to-cell spread. The activity of the T3SA of Shigella flexneri was recently demonstrated to display an on/off regulation during the infection. While the T3SA is active when bacteria are in contact with PM-derived compartments, it switches to an inactive state when bacteria are released within the cytosol. These observations indicate that effector proteins transiting through the T3SA are therefore translocated in a highly time and space constrained fashion, likely impacting on their cellular distribution. Herein, we present what is currently known about the composition, the assembly and the regulation of the T3SA activity and discuss the consequences of the on/off regulation of T3SA on Shigella effector properties and functions during the infection. Specific examples that will be developed include the role of effectors IcsB and VirA in the escape from LC3/ATG8-positive vacuoles formed during cell-to-cell spread and of IpaJ protease activity against N-miristoylated proteins. The conservation of a similar regulation of T3SA activity in other pathogens such as Salmonella or Enteropathogenic Escherichia coli will also be briefly discussed.
Collapse
Affiliation(s)
- F-X Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa, ON, Canada
| | | |
Collapse
|
130
|
Zhao Y, Shao F. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunol Rev 2016; 265:85-102. [PMID: 25879286 DOI: 10.1111/imr.12293] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial flagella and type III secretion system (T3SS) are evolutionarily related molecular transport machineries. Flagella mediate bacterial motility; the T3SS delivers virulence effectors to block host defenses. The inflammasome is a cytosolic multi-protein complex that activates caspase-1. Active caspase-1 triggers interleukin-1β (IL-1β)/IL-18 maturation and macrophage pyroptotic death to mount an inflammatory response. Central to the inflammasome is a pattern recognition receptor that activates caspase-1 either directly or through an adapter protein. Studies in the past 10 years have established a NAIP-NLRC4 inflammasome, in which NAIPs are cytosolic receptors for bacterial flagellin and T3SS rod/needle proteins, while NLRC4 acts as an adapter for caspase-1 activation. Given the wide presence of flagella and the T3SS in bacteria, the NAIP-NLRC4 inflammasome plays a critical role in anti-bacteria defenses. Here, we review the discovery of the NAIP-NLRC4 inflammasome and further discuss recent advances related to its biochemical mechanism and biological function as well as its connection to human autoinflammatory disease.
Collapse
Affiliation(s)
- Yue Zhao
- National Institute of Biological Sciences, Beijing, China
| | | |
Collapse
|
131
|
Boal F, Puhar A, Xuereb JM, Kunduzova O, Sansonetti PJ, Payrastre B, Tronchère H. PI5P Triggers ICAM-1 Degradation in Shigella Infected Cells, Thus Dampening Immune Cell Recruitment. Cell Rep 2016; 14:750-759. [PMID: 26776508 DOI: 10.1016/j.celrep.2015.12.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/19/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022] Open
Abstract
Shigella flexneri, the pathogen responsible for bacillary dysentery, has evolved multiple strategies to control the inflammatory response. Here, we show that Shigella subverts the subcellular trafficking of the intercellular adhesion molecule-1 (ICAM-1), a key molecule in immune cell recruitment, in a mechanism dependent on the injected bacterial enzyme IpgD and its product, the lipid mediator PI5P. Overexpression of IpgD, but not a phosphatase dead mutant, induced the internalization and the degradation of ICAM-1 in intestinal epithelial cells. Remarkably, addition of permeant PI5P reproduced IpgD effects and led to the inhibition of neutrophil recruitment. Finally, these results were confirmed in an in vivo model of Shigella infection where IpgD-dependent ICAM-1 internalization reduced neutrophil adhesion. In conclusion, we describe here an immune evasion mechanism used by the pathogen Shigella to divert the host cell trafficking machinery in order to reduce immune cell recruitment.
Collapse
Affiliation(s)
- Frédéric Boal
- INSERM U1048, I2MC and Université Paul Sabatier, 31432 Toulouse, France
| | - Andrea Puhar
- INSERM U1202, Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris Cedex 15, France; The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR) and Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Jean-Marie Xuereb
- INSERM U1048, I2MC and Université Paul Sabatier, 31432 Toulouse, France
| | - Oksana Kunduzova
- INSERM U1048, I2MC and Université Paul Sabatier, 31432 Toulouse, France
| | - Philippe J Sansonetti
- INSERM U1202, Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Bernard Payrastre
- INSERM U1048, I2MC and Université Paul Sabatier, 31432 Toulouse, France; CHU de Toulouse, Laboratoire d'Hématologie, 31059 Toulouse Cedex 03, France
| | - Hélène Tronchère
- INSERM U1048, I2MC and Université Paul Sabatier, 31432 Toulouse, France.
| |
Collapse
|
132
|
Ashida H, Sasakawa C. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria. Front Cell Infect Microbiol 2016; 5:100. [PMID: 26779450 PMCID: PMC4701945 DOI: 10.3389/fcimb.2015.00100] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/14/2015] [Indexed: 02/03/2023] Open
Abstract
Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo Tokyo, Japan
| | - Chihiro Sasakawa
- Division of Bacterial Infection Biology, Institute of Medical Science, University of TokyoTokyo, Japan; Nippon Institute for Biological ScienceTokyo, Japan; Medical Mycology Research Center, Chiba UniversityChiba, Japan
| |
Collapse
|
133
|
McGuire VA, Arthur JSC. Subverting Toll-Like Receptor Signaling by Bacterial Pathogens. Front Immunol 2015; 6:607. [PMID: 26648936 PMCID: PMC4664646 DOI: 10.3389/fimmu.2015.00607] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/13/2015] [Indexed: 12/26/2022] Open
Abstract
Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection.
Collapse
Affiliation(s)
- Victoria A McGuire
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee , Dundee , UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee , Dundee , UK
| |
Collapse
|
134
|
Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. Nat Rev Microbiol 2015; 14:5-19. [PMID: 26594043 DOI: 10.1038/nrmicro.2015.1] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many bacterial pathogens have evolved the ability to subvert and exploit host functions in order to enter and replicate in eukaryotic cells. For example, bacteria have developed specific mechanisms to target eukaryotic organelles such as the nucleus, the mitochondria, the endoplasmic reticulum and the Golgi apparatus. In this Review, we highlight the most recent advances in our understanding of the mechanisms that bacterial pathogens use to target these organelles. We also discuss how these strategies allow bacteria to manipulate host functions and to ultimately enable bacterial infection.
Collapse
|
135
|
Khan S, Nadir S, Lihua G, Xu J, Holmes KA, Dewen Q. Identification and characterization of an insect toxin protein, Bb70p, from the entomopathogenic fungus, Beauveria bassiana, using Galleria mellonella as a model system. J Invertebr Pathol 2015; 133:87-94. [PMID: 26592942 DOI: 10.1016/j.jip.2015.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 11/29/2022]
Abstract
An insect-toxic protein, Bb70p, was purified from Beauveria bassiana 70 using ammonium sulfate precipitation, ion exchange chromatography, and gel filtration. Bb70p has a high affinity for anion exchangers and 2D electrophoresis results revealed a single spot with a molecular weight of 35.5 kDa and an iso-electric point of ∼4.5. Bb70p remains active from 4 to 60°C, within a pH range of 4-10, but is more active in slightly acidic pH. A pure protein, Bb70p does not have any carbohydrate side chains. The protein caused high mortality by intra-haemocelic injection into Galleria mellonella with LD50 of 334.4 μg/g body weight and activates the phenol oxidase cascade. With a partial amino acid sequence comparison using the NCBI database, we showed no homology to known toxin proteins of entomopathogenic fungi. Thus, Bb70p appears to be an insect toxin protein, demonstrating novelty. Identification of this insect-toxic protein presents potential to enhance the virulence of B. bassiana through genetic manipulation.
Collapse
Affiliation(s)
- Sehroon Khan
- The World Agroforestry Centre, East and Central Asia, 132 Lanhei Rd, Heilongtan, Kunming 650201, Yunnan, China; Centre for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guancun South Street, Beijing 100081, People's Republic of China
| | - Sadia Nadir
- Rice Research Institute, Yunnan Agriculture University, Heilongtan, Kunming 650201, Yunnan, China; Department of Chemistry, Faculty of Sciences, University of Science and Technology Bannu, Khyber Pakhtunkhwa, 28100 Bannu, Pakistan
| | - Guo Lihua
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guancun South Street, Beijing 100081, People's Republic of China
| | - Jianchu Xu
- The World Agroforestry Centre, East and Central Asia, 132 Lanhei Rd, Heilongtan, Kunming 650201, Yunnan, China; Centre for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - Qiu Dewen
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guancun South Street, Beijing 100081, People's Republic of China.
| |
Collapse
|
136
|
Holla S, Balaji KN. Epigenetics and miRNA during bacteria-induced host immune responses. Epigenomics 2015; 7:1197-212. [PMID: 26585338 DOI: 10.2217/epi.15.75] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Various cellular processes including the pathogen-specific immune responses, host-pathogen interactions and the related evasion mechanisms rely on the ability of the immune cells to be reprogrammed accurately and in many cases instantaneously. In this context, the exact functions of epigenetic and miRNA-mediated regulation of genes, coupled with recent advent in techniques that aid such studies, make it an attractive field for research. Here, we review examples that involve the epigenetic and miRNA control of the host immune system during infection with bacteria. Interestingly, many pathogens utilize the epigenetic and miRNA machinery to modify and evade the host immune responses. Thus, we believe that global epigenetic and miRNA mapping of such host-pathogen interactions would provide key insights into their cellular functions and help to identify various determinants for therapeutic value.
Collapse
Affiliation(s)
- Sahana Holla
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | |
Collapse
|
137
|
Ravikumar V, Jers C, Mijakovic I. Elucidating Host-Pathogen Interactions Based on Post-Translational Modifications Using Proteomics Approaches. Front Microbiol 2015; 6:1313. [PMID: 26635773 PMCID: PMC4653285 DOI: 10.3389/fmicb.2015.01312] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
Microbes with the capability to survive in the host tissue and efficiently subvert its innate immune responses can cause various health hazards. There is an inherent need to understand microbial infection patterns and mechanisms in order to develop efficient therapeutics. Microbial pathogens display host specificity through a complex network of molecular interactions that aid their survival and propagation. Co-infection states further lead to complications by increasing the microbial burden and risk factors. Quantitative proteomics based approaches and post-translational modification analysis can be efficiently applied to gain an insight into the molecular mechanisms involved. The measurement of the proteome and post-translationally modified proteome dynamics using mass spectrometry, results in a wide array of information, such as significant changes in protein expression, protein abundance, the modification status, the site occupancy level, interactors, functional significance of key players, potential drug targets, etc. This mini review discusses the potential of proteomics to investigate the involvement of post-translational modifications in bacterial pathogenesis and host-pathogen interactions.
Collapse
Affiliation(s)
- Vaishnavi Ravikumar
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology , Gothenburg, Sweden
| | - Carsten Jers
- Department of Systems Biology, Technical University of Denmark , Lyngby, Denmark
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology , Gothenburg, Sweden ; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , Hørsholm, Denmark
| |
Collapse
|
138
|
Iftime D, Jasyk M, Kulik A, Imhoff JF, Stegmann E, Wohlleben W, Süssmuth RD, Weber T. Streptocollin, a Type IV Lanthipeptide Produced by Streptomyces collinus Tü 365. Chembiochem 2015; 16:2615-23. [PMID: 26437689 DOI: 10.1002/cbic.201500377] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 11/10/2022]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified microbial secondary metabolites. Here, we report the identification and isolation of streptocollin from Streptomyces collinus Tü 365, a new member of class IV lanthipeptides. Insertion of the constitutive ermE* promoter upstream of the lanthipeptide synthetase gene stcL resulted in peptide production. The streptocollin gene cluster was heterologously expressed in S. coelicolor M1146 and M1152 with 3.5- and 5.5-fold increased yields, respectively. The structure and ring topology of streptocollin were determined by high resolution MS/MS analysis. Streptocollin contains four macrocyclic rings, with one lanthionine and three methyllanthionine residues. To the best of our knowledge, this is the first report on the isolation of a class IV lanthipeptide in preparative amounts, and on the successful heterologous expression of a class IV lanthipeptide gene cluster.
Collapse
Affiliation(s)
- Dumitrita Iftime
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Martin Jasyk
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Andreas Kulik
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Johannes F Imhoff
- GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Evi Stegmann
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.,Deutsches Zentrum für Infektionsforschung, Partner Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Wolfgang Wohlleben
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.,Deutsches Zentrum für Infektionsforschung, Partner Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Tilmann Weber
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany. .,Deutsches Zentrum für Infektionsforschung, Partner Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany. .,The Novo Nordisk foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, 2970, Hørsholm, Denmark.
| |
Collapse
|
139
|
Zhang Y, Yang R, Huang J, Liang Q, Guo Y, Bian W, Luo L, Li H. Michael addition of dehydroalanine-containing MAPK peptides to catalytic lysine inhibits the activity of phosphothreonine lyase. FEBS Lett 2015; 589:3648-53. [PMID: 26519561 DOI: 10.1016/j.febslet.2015.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
The phosphothreonine lyases OspF and SpvC irreversibly inactivate host dual-phosphorylated mitogen-activated protein kinases (MAPKs) [pThr-X-pTyr motif] through β-elimination. We found that dual-phosphorylated (pSer-X-pTyr) MAPK substrate peptides and their resulting catalytic products cross-link to OspF and SpvC. Mass spectrometry results revealed that these linkages form between lysine, which acts as a general base, and dehydroalanine (Dha) on catalytic products. The nucleophilic addition efficiency is dependent on the K136 residue being in a deprotonated state. Peptide cross-linking inhibits the activity of SpvC and blocks the inactivation of MAPK signaling by SpvC. Small compounds mimicking these sequences may act as phosphothreonine lyase inhibitors.
Collapse
Affiliation(s)
- Yuan Zhang
- The State Key Laboratory Breeding Base of Bioresources and Eco-environments, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Ru Yang
- The State Key Laboratory Breeding Base of Bioresources and Eco-environments, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Juan Huang
- The State Key Laboratory Breeding Base of Bioresources and Eco-environments, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Qiujin Liang
- The State Key Laboratory Breeding Base of Bioresources and Eco-environments, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Yanmin Guo
- The State Key Laboratory Breeding Base of Bioresources and Eco-environments, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Weixiang Bian
- The State Key Laboratory Breeding Base of Bioresources and Eco-environments, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Lingfei Luo
- The State Key Laboratory Breeding Base of Bioresources and Eco-environments, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Hongtao Li
- The State Key Laboratory Breeding Base of Bioresources and Eco-environments, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China.
| |
Collapse
|
140
|
Lu R, Herrera BB, Eshleman HD, Fu Y, Bloom A, Li Z, Sacks DB, Goldberg MB. Shigella Effector OspB Activates mTORC1 in a Manner That Depends on IQGAP1 and Promotes Cell Proliferation. PLoS Pathog 2015; 11:e1005200. [PMID: 26473364 PMCID: PMC4608727 DOI: 10.1371/journal.ppat.1005200] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/10/2015] [Indexed: 12/12/2022] Open
Abstract
The intracellular bacterial pathogen Shigella infects and spreads through the human intestinal epithelium. Effector proteins delivered by Shigella into cells promote infection by modulating diverse host functions. We demonstrate that the effector protein OspB interacts directly with the scaffolding protein IQGAP1, and that the absence of either OspB or IQGAP1 during infection leads to larger areas of S. flexneri spread through cell monolayers. We show that the effect on the area of bacterial spread is due to OspB triggering increased cell proliferation at the periphery of infected foci, thereby replacing some of the cells that die within infected foci and restricting the area of bacterial spread. We demonstrate that OspB enhancement of cell proliferation results from activation of mTORC1, a master regulator of cell growth, and is blocked by the mTORC1-specific inhibitor rapamycin. OspB activation of mTORC1, and its effects on cell proliferation and bacterial spread, depends on IQGAP1. Our results identify OspB as a regulator of mTORC1 and mTORC1-dependent cell proliferation early during S. flexneri infection and establish a role for IQGAP1 in mTORC1 signaling. They also raise the possibility that IQGAP1 serves as a scaffold for the assembly of an OspB-mTORC1 signaling complex. During infection, Shigella spp. deliver into the cytoplasm of cells effector proteins that manipulate host cell processes in ways that promote infection and bacterial spread. We have discovered that the Shigella effector protein OspB interacts with the cellular scaffolding protein IQGAP1. OspB induces increased cell proliferation by activating mTORC1 kinase, a master regulator of cellular growth, in a manner that depends on IQGAP1. As IQGAP1 has been shown to interact with mTOR and with the mTORC1 activators ERK1/2, we propose that IQGAP1 serves as a scaffold for OspB activation of mTORC1. The presence of OspB and IQGAP1 lead to restricting the area of spread of S. flexneri in cell monolayers; our data support a model in which the effect of OspB and IQGAP1 on the area of S. flexneri spread is due to effects on cell proliferation locally within infected foci. As infection of cells and tissue by Shigella spp. leads to cell death, increased local cellular proliferation may serve to provide additional protective intracellular niches for the organism within infected tissue.
Collapse
Affiliation(s)
- Richard Lu
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bobby Brooke Herrera
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
| | - Heather D. Eshleman
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yang Fu
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
| | - Alexander Bloom
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcia B. Goldberg
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
141
|
Dong SH, Tang W, Lukk T, Yu Y, Nair SK, van der Donk WA. The enterococcal cytolysin synthetase has an unanticipated lipid kinase fold. eLife 2015; 4. [PMID: 26226635 PMCID: PMC4550811 DOI: 10.7554/elife.07607] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 07/29/2015] [Indexed: 11/13/2022] Open
Abstract
The enterococcal cytolysin is a virulence factor consisting of two post-translationally modified peptides that synergistically kill human immune cells. Both peptides are made by CylM, a member of the LanM lanthipeptide synthetases. CylM catalyzes seven dehydrations of Ser and Thr residues and three cyclization reactions during the biosynthesis of the cytolysin large subunit. We present here the 2.2 Å resolution structure of CylM, the first structural information on a LanM. Unexpectedly, the structure reveals that the dehydratase domain of CylM resembles the catalytic core of eukaryotic lipid kinases, despite the absence of clear sequence homology. The kinase and phosphate elimination active sites that affect net dehydration are immediately adjacent to each other. Characterization of mutants provided insights into the mechanism of the dehydration process. The structure is also of interest because of the interactions of human homologs of lanthipeptide cyclases with kinases such as mammalian target of rapamycin.
Collapse
Affiliation(s)
- Shi-Hui Dong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Weixin Tang
- Roger Adams Laboratory, Department of Chemistry, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Tiit Lukk
- Cornell High Energy Synchrotron Source, Ithaca, United States
| | - Yi Yu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
142
|
Chandrasekar J, Wylder AC, Silverman SK. Phosphoserine Lyase Deoxyribozymes: DNA-Catalyzed Formation of Dehydroalanine Residues in Peptides. J Am Chem Soc 2015. [PMID: 26200899 DOI: 10.1021/jacs.5b06308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dehydroalanine (Dha) is a nonproteinogenic electrophilic amino acid that is a synthetic intermediate or product in the biosynthesis of several bioactive cyclic peptides such as lantibiotics, thiopeptides, and microcystins. Dha also enables labeling of proteins and synthesis of post-translationally modified proteins and their analogues. However, current chemical approaches to introducing Dha into peptides have substantial limitations. Using in vitro selection, here we show that DNA can catalyze Zn(2+) or Zn(2+)/Mn(2+)-dependent formation of Dha from phosphoserine (pSer), i.e., exhibit pSer lyase activity, a fundamentally new DNA-catalyzed reaction. Two new pSer lyase deoxyribozymes, named Dha-forming deoxyribozymes 1 and 2 (DhaDz1 and DhaDz2), each function with multiple turnover on the model hexapeptide substrate that was used during selection. Using DhaDz1, we generated Dha from pSer within an unrelated linear 13-mer peptide. Subsequent base-promoted intramolecular cyclization of homocysteine into Dha formed a stable cystathionine (thioether) analogue of the complement inhibitor compstatin. These findings establish the fundamental catalytic ability of DNA to eliminate phosphate from pSer to form Dha and suggest that with further development, pSer lyase deoxyribozymes will have broad practical utility for site-specific enzymatic synthesis of Dha from pSer in peptide substrates.
Collapse
Affiliation(s)
- Jagadeeswaran Chandrasekar
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Adam C Wylder
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
143
|
Shao F, Sedwick C. Feng Shao: Getting a sense for the defense. ACTA ACUST UNITED AC 2015. [PMID: 26195661 PMCID: PMC4508893 DOI: 10.1083/jcb.2102pi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shao studies pathogenic bacteria and their hosts’ innate immune mechanisms.
Collapse
|
144
|
Bacterial Internalization, Localization, and Effectors Shape the Epithelial Immune Response during Shigella flexneri Infection. Infect Immun 2015; 83:3624-37. [PMID: 26123804 DOI: 10.1128/iai.00574-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/26/2015] [Indexed: 01/28/2023] Open
Abstract
Intracellular pathogens are differentially sensed by the compartmentalized host immune system. Nevertheless, gene expression studies of infected cells commonly average the immune responses, neglecting the precise pathogen localization. To overcome this limitation, we dissected the transcriptional immune response to Shigella flexneri across different infection stages in bulk and single cells. This identified six distinct transcriptional profiles characterizing the dynamic, multilayered host response in both bystander and infected cells. These profiles were regulated by external and internal danger signals, as well as whether bacteria were membrane bound or cytosolic. We found that bacterial internalization triggers a complex, effector-independent response in bystander cells, possibly to compensate for the undermined host gene expression in infected cells caused by bacterial effectors, particularly OspF. Single-cell analysis revealed an important bacterial strategy to subvert host responses in infected cells, demonstrating that OspF disrupts concomitant gene expression of proinflammatory, apoptosis, and stress pathways within cells. This study points to novel mechanisms through which bacterial internalization, localization, and injected effectors orchestrate immune response transcriptional signatures.
Collapse
|
145
|
Dong X, Lu X, Zhang Z. BEAN 2.0: an integrated web resource for the identification and functional analysis of type III secreted effectors. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav064. [PMID: 26120140 PMCID: PMC4483310 DOI: 10.1093/database/bav064] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/02/2015] [Indexed: 11/13/2022]
Abstract
Gram-negative pathogenic bacteria inject type III secreted effectors (T3SEs) into host cells to sabotage their immune signaling networks. Because T3SEs constitute a meeting-point of pathogen virulence and host defense, they are of keen interest to host-pathogen interaction research community. To accelerate the identification and functional understanding of T3SEs, we present BEAN 2.0 as an integrated web resource to predict, analyse and store T3SEs. BEAN 2.0 includes three major components. First, it provides an accurate T3SE predictor based on a hybrid approach. Using independent testing data, we show that BEAN 2.0 achieves a sensitivity of 86.05% and a specificity of 100%. Second, it integrates a set of online sequence analysis tools. Users can further perform functional analysis of putative T3SEs in a seamless way, such as subcellular location prediction, functional domain scan and disorder region annotation. Third, it compiles a database covering 1215 experimentally verified T3SEs and constructs two T3SE-related networks that can be used to explore the relationships among T3SEs. Taken together, by presenting a one-stop T3SE bioinformatics resource, we hope BEAN 2.0 can promote comprehensive understanding of the function and evolution of T3SEs.
Collapse
Affiliation(s)
- Xiaobao Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaotian Lu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
146
|
Sanchez-Villamil J, Navarro-Garcia F. Role of virulence factors on host inflammatory response induced by diarrheagenic Escherichia coli pathotypes. Future Microbiol 2015; 10:1009-33. [DOI: 10.2217/fmb.15.17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ABSTRACT Pathogens are able to breach the intestinal barrier, and different bacterial species can display different abilities to colonize hosts and induce inflammation. Inflammatory response studies induced by enteropathogens as Escherichia coli are interesting since it has acquired diverse genetic mobile elements, leading to different E. coli pathotypes. Diarrheagenic E. coli secrete toxins, effectors and virulence factors that exploit the host cell functions to facilitate the bacterial colonization. Many bacterial proteins are delivered to the host cell for subverting the inflammatory response. Hereby, we have highlighted the specific processes used by E. coli pathotypes, by that subvert the inflammatory pathways. These mechanisms include an arrangement of pro- and anti-inflammatory responses to favor the appropriate environmental niche for the bacterial survival and growth.
Collapse
Affiliation(s)
- Javier Sanchez-Villamil
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ap. Postal 14–740, 07000, México DF, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ap. Postal 14–740, 07000, México DF, Mexico
| |
Collapse
|
147
|
Ashida H, Mimuro H, Sasakawa C. Shigella manipulates host immune responses by delivering effector proteins with specific roles. Front Immunol 2015; 6:219. [PMID: 25999954 PMCID: PMC4423471 DOI: 10.3389/fimmu.2015.00219] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/22/2015] [Indexed: 11/30/2022] Open
Abstract
The intestinal epithelium deploys multiple defense systems against microbial infection to sense bacterial components and danger alarms, as well as to induce intracellular signal transduction cascades that trigger both the innate and the adaptive immune systems, which are pivotal for bacterial elimination. However, many enteric bacterial pathogens, including Shigella, deliver a subset of virulence proteins (effectors) via the type III secretion system (T3SS) that enable bacterial evasion from host immune systems; consequently, these pathogens are able to efficiently colonize the intestinal epithelium. In this review, we present and select recently discovered examples of interactions between Shigella and host immune responses, with particular emphasis on strategies that bacteria use to manipulate inflammatory outputs of host-cell responses such as cell death, membrane trafficking, and innate and adaptive immune responses.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan
| | - Hitomi Mimuro
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo , Tokyo , Japan
| | - Chihiro Sasakawa
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan ; Nippon Institute for Biological Science , Tokyo , Japan ; Medical Mycology Research Center, Chiba University , Chiba , Japan
| |
Collapse
|
148
|
Scholz R, Imami K, Scott NE, Trimble WS, Foster LJ, Finlay BB. Novel Host Proteins and Signaling Pathways in Enteropathogenic E. coli Pathogenesis Identified by Global Phosphoproteome Analysis. Mol Cell Proteomics 2015; 14:1927-45. [PMID: 25944883 DOI: 10.1074/mcp.m114.046847] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Indexed: 12/21/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system (T3SS) to directly translocate effector proteins into host cells where they play a pivotal role in subverting host cell signaling needed for disease. However, our knowledge of how EPEC affects host protein phosphorylation is limited to a few individual protein studies. We employed a quantitative proteomics approach to globally map alterations in the host phosphoproteome during EPEC infection. By characterizing host phosphorylation events at various time points throughout infection, we examined how EPEC dynamically impacts the host phosphoproteome over time. This experimental setup also enabled identification of T3SS-dependent and -independent changes in host phosphorylation. Specifically, T3SS-regulated events affected various cellular processes that are known EPEC targets, including cytoskeletal organization, immune signaling, and intracellular trafficking. However, the involvement of phosphorylation in these events has thus far been poorly studied. We confirmed the MAPK family as an established key host player, showed its central role in signal transduction during EPEC infection, and extended the repertoire of known signaling hubs with previously unrecognized proteins, including TPD52, CIN85, EPHA2, and HSP27. We identified altered phosphorylation of known EPEC targets, such as cofilin, where the involvement of phosphorylation has so far been undefined, thus providing novel mechanistic insights into the roles of these proteins in EPEC infection. An overlap of regulated proteins, especially those that are cytoskeleton-associated, was observed when compared with the phosphoproteome of Shigella-infected cells. We determined the biological relevance of the phosphorylation of a novel protein in EPEC pathogenesis, septin-9 (SEPT9). Both siRNA knockdown and a phosphorylation-impaired SEPT9 mutant decreased bacterial adherence and EPEC-mediated cell death. In contrast, a phosphorylation-mimicking SEPT9 mutant rescued these effects. Collectively, this study provides the first global analysis of phosphorylation-mediated processes during infection with an extracellular, diarrheagenic bacterial pathogen.
Collapse
Affiliation(s)
| | - Koshi Imami
- §Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Nichollas E Scott
- §Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - William S Trimble
- ¶Cell Biology Program, Hospital for Sick Children and ‖Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Leonard J Foster
- §Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, **Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, and
| | - B Brett Finlay
- From the ‡Michael Smith Laboratories and **Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, and ¶¶Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
149
|
Khater S, Mohanty D. novPTMenzy: a database for enzymes involved in novel post-translational modifications. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav039. [PMID: 25931459 PMCID: PMC4414956 DOI: 10.1093/database/bav039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/01/2015] [Indexed: 12/03/2022]
Abstract
With the recent discoveries of novel post-translational modifications (PTMs) which play important roles in signaling and biosynthetic pathways, identification of such PTM catalyzing enzymes by genome mining has been an area of major interest. Unlike well-known PTMs like phosphorylation, glycosylation, SUMOylation, no bioinformatics resources are available for enzymes associated with novel and unusual PTMs. Therefore, we have developed the novPTMenzy database which catalogs information on the sequence, structure, active site and genomic neighborhood of experimentally characterized enzymes involved in five novel PTMs, namely AMPylation, Eliminylation, Sulfation, Hydroxylation and Deamidation. Based on a comprehensive analysis of the sequence and structural features of these known PTM catalyzing enzymes, we have created Hidden Markov Model profiles for the identification of similar PTM catalyzing enzymatic domains in genomic sequences. We have also created predictive rules for grouping them into functional subfamilies and deciphering their mechanistic details by structure-based analysis of their active site pockets. These analytical modules have been made available as user friendly search interfaces of novPTMenzy database. It also has a specialized analysis interface for some PTMs like AMPylation and Eliminylation. The novPTMenzy database is a unique resource that can aid in discovery of unusual PTM catalyzing enzymes in newly sequenced genomes. Database URL: http://www.nii.ac.in/novptmenzy.html
Collapse
Affiliation(s)
- Shradha Khater
- Bioinformatics Centre, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasisa Mohanty
- Bioinformatics Centre, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
150
|
Sellge G, Kufer TA. PRR-signaling pathways: Learning from microbial tactics. Semin Immunol 2015; 27:75-84. [PMID: 25911384 DOI: 10.1016/j.smim.2015.03.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 03/13/2015] [Indexed: 12/13/2022]
Abstract
Recognition of bacterial pathogens by the mammalian host relies on the induction of early innate immune responses initiated by the activation of pattern-recognition receptors (PRRs) upon sensing of their cognate microbe-associated-patterns (MAMPs). Successful pathogens have evolved to intercept PRR activation and signaling at multiple steps. The molecular dissection of the underlying mechanisms revealed many of the basic mechanisms used by the immune system. Here we provide an overview of the different strategies used by bacterial pathogens and commensals to subvert and reprogram PPR-mediated innate immune responses. A particular attention is given to recent discoveries highlighting novel molecular details of the host inflammatory response in mammalian cells and current advances in our understanding of the interaction of commensals with PRR-mediated responses.
Collapse
Affiliation(s)
- Gernot Sellge
- Department of Medicine III, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany.
| |
Collapse
|