101
|
Sebastián-Serrano Á, de Diego-García L, Henshall DC, Engel T, Díaz-Hernández M. Haploinsufficient TNAP Mice Display Decreased Extracellular ATP Levels and Expression of Pannexin-1 Channels. Front Pharmacol 2018; 9:170. [PMID: 29551976 PMCID: PMC5841270 DOI: 10.3389/fphar.2018.00170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/15/2018] [Indexed: 12/19/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare heritable metabolic bone disease caused by hypomorphic mutations in the ALPL (in human) or Akp2 (in mouse) gene, encoding the tissue-nonspecific alkaline phosphatase (TNAP) enzyme. In addition to skeletal and dental malformations, severe forms of HPP are also characterized by the presence of spontaneous seizures. Initially, these seizures were attributed to an impairment of GABAergic neurotransmission caused by altered vitamin B6 metabolism. However, recent work by our group using knockout mice null for TNAP (TNAP-/-), a well-described model of infantile HPP, has revealed a deregulation of purinergic signaling contributing to the seizure phenotype. In the present study, we report that adult heterozygous (TNAP+/-) transgenic mice with decreased TNAP activity in the brain are more susceptible to adenosine 5′-triphosphate (ATP)-induced seizures. Interestingly, when we analyzed the extracellular levels of ATP in the cerebrospinal fluid, we found that TNAP+/- mice present lower levels than control mice. To elucidate the underlying mechanism, we evaluated the expression levels of other ectonucleotidases, as well as different proteins involved in ATP release, such as pannexin, connexins, and vesicular nucleotide transporter. Among these, Pannexin-1 (Panx1) was the only one showing diminished levels in the brains of TNAP+/- mice. Altogether, these findings suggest that a physiological regulation of extracellular ATP levels and Panx1 changes may compensate for the reduced TNAP activity in this model of HPP.
Collapse
Affiliation(s)
- Álvaro Sebastián-Serrano
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Laura de Diego-García
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, Dublin, Ireland
| | - Tobías Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, Dublin, Ireland
| | - Miguel Díaz-Hernández
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
102
|
Zhou L, Liu C, Wang Z, Shen H, Wen Z, Chen D, Sun Q, Chen G. Pannexin-1 is involved in neuronal apoptosis and degeneration in experimental intracerebral hemorrhage in rats. Mol Med Rep 2018; 17:5684-5691. [PMID: 29484398 PMCID: PMC5866010 DOI: 10.3892/mmr.2018.8624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 12/12/2016] [Indexed: 01/02/2023] Open
Abstract
Pannexins serve an important role in the regulation of extracellular neuronal regenerative currents and cellular signal transduction of glial cells; however, the effects of pannexins in various cerebrovascular diseases have not been reported. The present study focused on the expression and influence of pannexins in a rat model of intracerebral hemorrhage (ICH), and confirmed that pannexins (including Pannexin‑1, Pannexin‑2 and Pannexin‑3) are expressed in rat brain tissues. However, only the expression of Pannexin‑1 was significantly increased and peaked 48 h post‑ICH. Following treatment with carbenoxolone (CBX), which is an inhibitor of Pannexin‑1, apoptosis and neuronal degeneration in the brain tissues around the ICH hematoma decreased. The extent of secondary brain injury due to ICH was also alleviated. Compared with rats in the ICH‑only group, recovery of neurocognitive functions improved significantly in the CBX‑treated groups. Results from the present study suggested that the upregulation of Pannexin‑1 expression may be involved in apoptosis and degeneration of neurons in the rat brain following ICH, and may contribute to subsequent cognitive dysfunction.
Collapse
Affiliation(s)
- Linqiang Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chenglin Liu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haitao Shen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zunjia Wen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Dongdong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qing Sun
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
103
|
Expression of pannexin 1 and 2 in cortical lesions from intractable epilepsy patients with focal cortical dysplasia. Oncotarget 2018; 8:6883-6895. [PMID: 28036289 PMCID: PMC5351677 DOI: 10.18632/oncotarget.14317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/16/2016] [Indexed: 02/01/2023] Open
Abstract
Focal cortical dysplasia (FCD) is a major cause of intractable epilepsy in children however the mechanisms underlying the pathogenesis of FCD and FCD induced epilepsy remain unclear. Increasing evidence suggests that the large-pore ion channels, pannexin 1 (Panx1) and 2 (Panx2), are involved in epilepsy and brain development. In this study, we investigated the expression of Panx1 and Panx2 in surgical samples from patients with FCD type Ia (FCDIa), type IIa (FCDIIa), and type IIb (FCDIIb) and in age-matched autopsy control samples. We found Panx1 mRNA and protein levels were both increased in all these FCD samples. Immunohistochemical analyses revealed that Panx1 was mainly distributed in microcolumn neurons, dysmorphic neurons (DNs), balloon cells (BCs) and reactive astrocytes. Double-labeled staining showed that the Panx1-positive neurons were mostly glutamatergic DNs and occasionally GABAergic normal-appearing neurons. Importantly, the protein levels of Panx1 positively correlated with the frequency of seizures. Intriguingly, the Panx2 mRNA and protein levels were only upregulated in FCDIIb lesions and characteristically expressed on SOX2-positive multipotential BCs. Immunofluorescent experiments identified that Panx2-positive BCs mainly expressed the neuronal differentiation transcription factor MASH1 but not the immature glial marker vimentin. Taken together, our results established a potential role of the specific expression and cellular distribution patterns of Panx1 and Panx2 in FCD-associated epileptogenesis and pathogenesis.
Collapse
|
104
|
The GluN2A Subunit Regulates Neuronal NMDA receptor-Induced Microglia-Neuron Physical Interactions. Sci Rep 2018; 8:828. [PMID: 29339791 PMCID: PMC5770428 DOI: 10.1038/s41598-018-19205-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/19/2017] [Indexed: 11/11/2022] Open
Abstract
Microglia are known to engage in physical interactions with neurons. However, our understanding of the detailed mechanistic regulation of microglia-neuron interactions is incomplete. Here, using high resolution two photon imaging, we investigated the regulation of NMDA receptor-induced microglia-neuron physical interactions. We found that the GluN2A inhibitor NVPAAM007, but not the GluN2B inhibitor ifenprodil, blocked the occurrence of these interactions. Consistent with the well-known developmental regulation of the GluN2A subunit, these interactions are absent in neonatal tissues. Furthermore, consistent with a preferential synaptic localization of GluN2A subunits, there is a differential sensitivity of their occurrence between denser (stratum radiatum) and less dense (stratum pyramidale) synaptic sub-regions of the CA1. Finally, consistent with differentially expressed GluN2A subunits in the CA1 and DG areas of the hippocampus, these interactions could not be elicited in the DG despite robust microglial chemotactic capabilities. Together, these results enhance our understanding of the mechanistic regulation of NMDA receptor-dependent microglia-neuronal physical interactions phenomena by the GluN2A subunit that may be relevant in the mammalian brain during heightened glutamatergic neurotransmission such as epilepsy and ischemic stroke.
Collapse
|
105
|
Li S, Bjelobaba I, Stojilkovic SS. Interactions of Pannexin1 channels with purinergic and NMDA receptor channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:166-173. [PMID: 28389204 PMCID: PMC5628093 DOI: 10.1016/j.bbamem.2017.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Pannexins are a three-member family of vertebrate plasma membrane spanning molecules that have homology to the invertebrate gap junction forming proteins, the innexins. However, pannexins do not form gap junctions but operate as plasma membrane channels. The best-characterized member of these proteins, Pannexin1 (Panx1) was suggested to be functionally associated with purinergic P2X and N-methyl-D-aspartate (NMDA) receptor channels. Activation of these receptor channels by their endogenous ligands leads to cross-activation of Panx1 channels. This in turn potentiates P2X and NMDA receptor channel signaling. Two potentiation concepts have been suggested: enhancement of the current responses and/or sustained receptor channel activation by ATP released through Panx1 pore and adenosine generated by ectonucleotidase-dependent dephosphorylation of ATP. Here we summarize the current knowledge and hypotheses about interactions of Panx1 channels with P2X and NMDA receptor channels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Ivana Bjelobaba
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 11000 Belgrade, Serbia
| | - Stanko S Stojilkovic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
106
|
York EM, Bernier LP, MacVicar BA. Microglial modulation of neuronal activity in the healthy brain. Dev Neurobiol 2017; 78:593-603. [PMID: 29271125 DOI: 10.1002/dneu.22571] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/06/2023]
Abstract
Investigations on the role of microglia in the brain have traditionally been focused on their contributions to disease states. However, recent observations have now convincingly shown that microglia in the healthy brain are not passive bystanders, but instead play a critical role in both central nervous system development and homeostasis of synaptic circuits in the adult. Here, we review the various mechanisms by which microglia impact neuronal communication in the healthy adult brain, both by sensing nearby synaptic responses and by actively modulating neuronal function. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 593-603, 2018.
Collapse
Affiliation(s)
- Elisa M York
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Louis-Philippe Bernier
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Brian A MacVicar
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| |
Collapse
|
107
|
Vicario N, Zappalà A, Calabrese G, Gulino R, Parenti C, Gulisano M, Parenti R. Connexins in the Central Nervous System: Physiological Traits and Neuroprotective Targets. Front Physiol 2017; 8:1060. [PMID: 29326598 PMCID: PMC5741605 DOI: 10.3389/fphys.2017.01060] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 01/22/2023] Open
Abstract
Cell-to-cell interaction and cell-to-extracellular environment communication are emerging as new therapeutic targets in neurodegenerative disorders. Dynamic expression of connexins leads to distinctive hemichannels and gap junctions, characterized by cell-specific conduction, exchange of stimuli or metabolites, and particular channel functions. Herein, we briefly reviewed classical physiological traits and functions of connexins, hemichannels, and gap junctions, in order to discuss the controversial role of these proteins and their mediated interactions during neuroprotection, with a particular focus on Cx43-based channels. We pointed out the contribution of connexins in neural cells populations during neurodegenerative processes to explore potential neuroprotective therapeutic applications.
Collapse
Affiliation(s)
- Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agata Zappalà
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanna Calabrese
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Gulino
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Massimo Gulisano
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
108
|
Chiu YH, Schappe MS, Desai BN, Bayliss DA. Revisiting multimodal activation and channel properties of Pannexin 1. J Gen Physiol 2017; 150:19-39. [PMID: 29233884 PMCID: PMC5749114 DOI: 10.1085/jgp.201711888] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/09/2017] [Indexed: 12/23/2022] Open
Abstract
Pannexin 1 (Panx1) forms plasma membrane ion channels that are widely expressed throughout the body. Panx1 activation results in the release of nucleotides such as adenosine triphosphate and uridine triphosphate. Thus, these channels have been implicated in diverse physiological and pathological functions associated with purinergic signaling, such as apoptotic cell clearance, blood pressure regulation, neuropathic pain, and excitotoxicity. In light of this, substantial attention has been directed to understanding the mechanisms that regulate Panx1 channel expression and activation. Here we review accumulated evidence for the various activation mechanisms described for Panx1 channels and, where possible, the unitary channel properties associated with those forms of activation. We also emphasize current limitations in studying Panx1 channel function and propose potential directions to clarify the exciting and expanding roles of Panx1 channels.
Collapse
Affiliation(s)
- Yu-Hsin Chiu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Michael S Schappe
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
109
|
Willebrords J, Maes M, Crespo Yanguas S, Vinken M. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol Ther 2017; 180:144-160. [PMID: 28720428 PMCID: PMC5802387 DOI: 10.1016/j.pharmthera.2017.07.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While gap junctions support the exchange of a number of molecules between neighboring cells, connexin hemichannels provide communication between the cytosol and the extracellular environment of an individual cell. The latter equally holds true for channels composed of pannexin proteins, which display an architecture reminiscent of connexin hemichannels. In physiological conditions, gap junctions are usually open, while connexin hemichannels and, to a lesser extent, pannexin channels are typically closed, yet they can be activated by a number of pathological triggers. Several agents are available to inhibit channels built up by connexin and pannexin proteins, including alcoholic substances, glycyrrhetinic acid, anesthetics and fatty acids. These compounds not always strictly distinguish between gap junctions, connexin hemichannels and pannexin channels, and may have effects on other targets as well. An exception lies with mimetic peptides, which reproduce specific amino acid sequences in connexin or pannexin primary protein structure. In this paper, a state-of-the-art overview is provided on inhibitors of cellular channels consisting of connexins and pannexins with specific focus on their mode-of-action and therapeutic potential.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium.
| |
Collapse
|
110
|
Basova LV, Tang X, Umasume T, Gromova A, Zyrianova T, Shmushkovich T, Wolfson A, Hawley D, Zoukhri D, Shestopalov VI, Makarenkova HP. Manipulation of Panx1 Activity Increases the Engraftment of Transplanted Lacrimal Gland Epithelial Progenitor Cells. Invest Ophthalmol Vis Sci 2017; 58:5654-5665. [PMID: 29098296 PMCID: PMC5678547 DOI: 10.1167/iovs.17-22071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Sjögren's syndrome is a systemic chronic autoimmune inflammatory disease that primarily targets the salivary and lacrimal glands (LGs). Currently there is no cure; therefore, cell-based regenerative therapy may be a viable option. LG inflammation is facilitated by extracellular ATP and mediated by the Pannexin-1 (Panx1) membrane channel glycoprotein. We propose that suppression of inflammation through manipulation of Panx1 activity can stimulate epithelial cell progenitor (EPCP) engraftment. Methods The expression of pannexins in the mouse and human LG was assayed by qRT-PCR and immunostaining. Acute LG inflammation was induced by interleukin-1α (IL1α) injection. Prior to EPCP transplantation, IL1α-injured or chronically inflamed LGs of thrombospondin-1–null mice (TSP-1−/−) were treated with the Panx1-specific blocking peptide (10panx) or the self-deliverable RNAi (sdRNAi). The efficacy of cell engraftment and the area of inflammation were analyzed by microscopy. Results Panx1 and Panx2 were detected in the mouse and human LGs. Panx1 and proinflammatory factors were upregulated during acute inflammation at days 1 to 3 after the IL1α injection. The analysis of EPCP engraftment demonstrated a significant and reproducible positive correlation between the 10panx peptide or Panx1 sdRNAi treatment and the number of engrafted cells. Similarly, treatment of the LG of the TSP-1−/− mouse (mouse model of chronic LG inflammation) by either Panx1 or Caspase-4 (also known as Casp11) sdRNAi showed a significant decrease in expression of proinflammatory markers and the lymphocyte infiltration. Conclusions Our results suggest that blocking Panx1 and/or Casp4 activities is a beneficial strategy to enhance donor cell engraftment and LG regeneration through the reduction of inflammation.
Collapse
Affiliation(s)
- Liana V Basova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | - Xin Tang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | - Takeshi Umasume
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | - Anastasia Gromova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | - Tatiana Zyrianova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | | | | | - Dillon Hawley
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Driss Zoukhri
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, Massachusetts, United States.,Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Valery I Shestopalov
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, United States.,Department of Cell Biology, University of Miami School of Medicine, Miami, Florida, United States
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|
111
|
Retamal MA, Riquelme MA, Stehberg J, Alcayaga J. Connexin43 Hemichannels in Satellite Glial Cells, Can They Influence Sensory Neuron Activity? Front Mol Neurosci 2017; 10:374. [PMID: 29200997 PMCID: PMC5696352 DOI: 10.3389/fnmol.2017.00374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022] Open
Abstract
In this review article, we summarize the current insight on the role of Connexin- and Pannexin-based channels as modulators of sensory neurons. The somas of sensory neurons are located in sensory ganglia (i.e., trigeminal and nodose ganglia). It is well known that within sensory ganglia, sensory neurons do not form neither electrical nor chemical synapses. One of the reasons for this is that each soma is surrounded by glial cells, known as satellite glial cells (SGCs). Recent evidence shows that connexin43 (Cx43) hemichannels and probably pannexons located at SGCs have an important role in paracrine communication between glial cells and sensory neurons. This communication may be exerted via the release of bioactive molecules from SGCs and their subsequent action on receptors located at the soma of sensory neurons. The glio-neuronal communication seems to be relevant for the establishment of chronic pain, hyperalgesia and pathologies associated with tissue inflammation. Based on the current literature, it is possible to propose that Cx43 hemichannels expressed in SGCs could be a novel pharmacological target for treating chronic pain, which need to be directly evaluated in future studies.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile.,Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Centro de Investigaciones Biomedicas, Universidad Andres Bello, Santiago, Chile
| | - Julio Alcayaga
- Department of Biology, Cell Physiology Center, University of Chile, Santiago, Chile
| |
Collapse
|
112
|
Bazzigaluppi P, Ebrahim Amini A, Weisspapir I, Stefanovic B, Carlen PL. Hungry Neurons: Metabolic Insights on Seizure Dynamics. Int J Mol Sci 2017; 18:ijms18112269. [PMID: 29143800 PMCID: PMC5713239 DOI: 10.3390/ijms18112269] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Epilepsy afflicts up to 1.6% of the population and the mechanisms underlying the appearance of seizures are still not understood. In past years, many efforts have been spent trying to understand the mechanisms underlying the excessive and synchronous firing of neurons. Traditionally, attention was pointed towards synaptic (dys)function and extracellular ionic species (dys)regulation. Recently, novel clinical and preclinical studies explored the role of brain metabolism (i.e., glucose utilization) of seizures pathophysiology revealing (in most cases) reduced metabolism in the inter-ictal period and increased metabolism in the seconds preceding and during the appearance of seizures. In the present review, we summarize the clinical and preclinical observations showing metabolic dysregulation during epileptogenesis, seizure initiation, and termination, and in the inter-ictal period. Recent preclinical studies have shown that 2-Deoxyglucose (2-DG, a glycolysis blocker) is a novel therapeutic approach to reduce seizures. Furthermore, we present initial evidence for the effectiveness of 2-DG in arresting 4-Aminopyridine induced neocortical seizures in vivo in the mouse.
Collapse
Affiliation(s)
- Paolo Bazzigaluppi
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
- Sunnybrook Research Institute, Medical Biophysics, Toronto, ON M4N 3M5, Canada.
| | - Azin Ebrahim Amini
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
- Institute of Biomaterials & Biomedical Engineering (IBBME), University of Toronto, Toronto, ON M5S 3G9, Canada.
| | - Iliya Weisspapir
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
| | - Bojana Stefanovic
- Sunnybrook Research Institute, Medical Biophysics, Toronto, ON M4N 3M5, Canada.
| | - Peter L Carlen
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
- Department of Medicine & Physiology, and Institute of Biomaterials & Biomedical Engineering (IBBME), University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
113
|
Vicario N, Calabrese G, Zappalà A, Parenti C, Forte S, Graziano ACE, Vanella L, Pellitteri R, Cardile V, Parenti R. Inhibition of Cx43 mediates protective effects on hypoxic/reoxygenated human neuroblastoma cells. J Cell Mol Med 2017; 21:2563-2572. [PMID: 28488330 PMCID: PMC5618696 DOI: 10.1111/jcmm.13177] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
Olfactory ensheathing cells (OECs), a special population of glial cells, are able to synthesise several trophic factors exerting a neuroprotective action and promoting growth and functional recovery in both in vitro and in vivo models. In the present work, we investigated the neuroprotective effects of OEC-conditioned medium (OEC-CM) on two different human neuron-like cell lines, SH-SY5Y and SK-N-SH (neuroblastoma cell lines), under normoxic and hypoxic conditions. In addition, we also focused our attention on the role of connexins (Cxs) in the neuroprotective processes. Our results confirmed OEC-CM mediated neuroprotection as shown by cell adherence, proliferation and cellular viability analyses. Reduced connexin 43 (Cx43) levels in OEC-CM compared to unconditioned cells in hypoxic conditions prompted us to investigate the role of Cx43-Gap junctions (GJs) and Cx43-hemichannels (HCs) in hypoxic/reoxygenation injury using carbenoxolone (non-selective GJ inhibitor), ioxynil octanoato (selective Cx43-GJ inhibitor) and Gap19 (selective Cx43-HC inhibitor). We found that Cx43-GJ and Cx43-HC inhibitors are able to protect SH-SY5Y and allow to these cultures to overcome the injury. Our findings support the hypothesis that both OEC-CM and the inhibition of Cx43-GJs and Cx43-HCs offer a neuroprotective effect by reducing Cx43-mediated cell-to-cell and cell-to-extracellular environment communications.
Collapse
Affiliation(s)
- Nunzio Vicario
- Department of Biomedical and Biotechnological SciencesPhysiology SectionUniversity of CataniaCataniaItaly
| | - Giovanna Calabrese
- Department of Biomedical and Biotechnological SciencesPhysiology SectionUniversity of CataniaCataniaItaly
| | - Agata Zappalà
- Department of Biomedical and Biotechnological SciencesPhysiology SectionUniversity of CataniaCataniaItaly
| | - Carmela Parenti
- Department of Drug SciencesUniversity of CataniaCataniaItaly
| | | | | | - Luca Vanella
- Department of Drug SciencesUniversity of CataniaCataniaItaly
| | | | - Venera Cardile
- Department of Biomedical and Biotechnological SciencesPhysiology SectionUniversity of CataniaCataniaItaly
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological SciencesPhysiology SectionUniversity of CataniaCataniaItaly
| |
Collapse
|
114
|
Lohman AW, Weilinger NL, Santos SM, Bialecki J, Werner AC, Anderson CL, Thompson RJ. Regulation of pannexin channels in the central nervous system by Src family kinases. Neurosci Lett 2017; 695:65-70. [PMID: 28911820 DOI: 10.1016/j.neulet.2017.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/24/2017] [Accepted: 09/10/2017] [Indexed: 02/06/2023]
Abstract
Pannexins form single membrane channels that regulate the passage of ions, small molecules and metabolites between the intra- and extracellular compartments. In the central nervous system, these channels are integrated into numerous signaling cascades that shape brain physiology and pathology. Post-translational modification of pannexins is complex, with phosphorylation emerging as a prominent form of functional regulation. While much is still not known regarding the specific kinases and modified amino acids, recent reports support a role for Src family tyrosine kinases (SFK) in regulating pannexin channel activity. This review outlines the current evidence supporting SFK-dependent pannexin phosphorylation in the CNS and examines the importance of these modifications in the healthy and diseased brain.
Collapse
Affiliation(s)
- Alexander W Lohman
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas L Weilinger
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Silva Mf Santos
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer Bialecki
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Allison C Werner
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Connor L Anderson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
115
|
Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 925:57-73. [PMID: 27518505 DOI: 10.1007/5584_2016_53] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pannexins are newly discovered channels that are now recognized as mediators of adenosine triphosphate release from several cell types allowing communication with the extracellular environment. Pannexins have been associated with various physiological and pathological processes including apoptosis, inflammation, and cancer. However, it is only recently that our work has unveiled a role for Pannexin 1 and Pannexin 3 as novel regulators of skeletal muscle myoblast proliferation and differentiation. Myoblast differentiation is an ordered multistep process that includes withdrawal from the cell cycle and the expression of key myogenic factors leading to myoblast differentiation and fusion into multinucleated myotubes. Eventually, myotubes will give rise to the diverse muscle fiber types that build the complex skeletal muscle architecture essential for body movement, postural behavior, and breathing. Skeletal muscle cell proliferation and differentiation are crucial processes required for proper skeletal muscle development during embryogenesis, as well as for the postnatal skeletal muscle regeneration that is necessary for muscle repair after injury or exercise. However, defects in skeletal muscle cell differentiation and/or deregulation of cell proliferation are involved in various skeletal muscle pathologies. In this review, we will discuss the expression of pannexins and their post-translational modifications in skeletal muscle, their known functions in various steps of myogenesis, including myoblast proliferation and differentiation, as well as their possible roles in skeletal muscle development, regeneration, and diseases such as Duchenne muscular dystrophy.
Collapse
|
116
|
Pannexin-1 channels in epilepsy. Neurosci Lett 2017; 695:71-75. [PMID: 28886985 DOI: 10.1016/j.neulet.2017.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 07/20/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
Abstract
Pannexin-1 (Panx1) expression is raised in several animal seizure models and in resected human epileptic brain tissue, suggesting relevance to epilepsy. Multiple factors that are characteristic of seizures are thought to regulate Panx1 channel opening, including elevated levels of extracellular K+. Panx1, when open, 1) releases ATP, glutamate, and other metabolites into the extracellular medium, and 2) may depolarize the membrane due to a channel reversal potential around 0mV. Resultant ATP release from stimulated Panx1 can activate purinergic receptors, including P2X7 receptors. Glutamate and other signaling molecules released by Panx1 opening may have both excitatory and inhibitory actions on seizure generation. This review examines the critical and complex roles of Panx1 channels in epilepsy, which could provide a basis for future therapeutics.
Collapse
|
117
|
Swayne LA, Boyce AKJ. Regulation of Pannexin 1 Surface Expression by Extracellular ATP: Potential Implications for Nervous System Function in Health and Disease. Front Cell Neurosci 2017; 11:230. [PMID: 28848396 PMCID: PMC5550711 DOI: 10.3389/fncel.2017.00230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/24/2017] [Indexed: 02/02/2023] Open
Abstract
Pannexin 1 (Panx1) channels are widely recognized for their role in ATP release, and as follows, their function is closely tied to that of ATP-activated P2X7 purinergic receptors (P2X7Rs). Our recent work has shown that extracellular ATP induces clustering of Panx1 with P2X7Rs and their subsequent internalization through a non-canonical cholesterol-dependent mechanism. In other words, we have demonstrated that extracellular ATP levels can regulate the cell surface expression of Panx1. Here we discuss two situations in which we hypothesize that ATP modulation of Panx1 surface expression could be relevant for central nervous system function. The first scenario involves the development of new neurons in the ventricular zone. We propose that ATP-induced Panx1 endocytosis could play an important role in regulating the balance of cell proliferation, survival, and differentiation within this neurogenic niche in the healthy brain. The second scenario relates to the spinal cord, in which we posit that an impairment of ATP-induced Panx1 endocytosis could contribute to pathological neuroplasticity. Together, the discussion of these hypotheses serves to highlight important outstanding questions regarding the interplay between extracellular ATP, Panx1, and P2X7Rs in the nervous system in health and disease.
Collapse
Affiliation(s)
- Leigh A Swayne
- Division of Medical Sciences and Island Medical Program, University of Victoria, VictoriaBC, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, VancouverBC, Canada
| | - Andrew K J Boyce
- Division of Medical Sciences and Island Medical Program, University of Victoria, VictoriaBC, Canada
| |
Collapse
|
118
|
Sun MY, Chisari M, Eisenman LN, Zorumski CF, Mennerick SJ. Contributions of space-clamp errors to apparent time-dependent loss of Mg 2+ block induced by NMDA. J Neurophysiol 2017; 118:532-543. [PMID: 28356471 DOI: 10.1152/jn.00106.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 11/22/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) govern synaptic plasticity, development, and neuronal response to insult. Prolonged activation of NMDARs such as during an insult may activate secondary currents or modulate Mg2+ sensitivity, but the conditions under which these occur are not fully defined. We reexamined the effect of prolonged NMDAR activation in juvenile mouse hippocampal slices. NMDA (10 μM) elicited current with the expected negative-slope conductance in the presence of 1.2 mM Mg2+ However, several minutes of continued NMDA exposure elicited additional inward current at -70 mV. A higher concentration of NMDA (100 µM) elicited the current more rapidly. The additional current was not dependent on Ca2+, network activity, or metabotropic NMDAR function and did not persist on agonist removal. Voltage ramps revealed no alteration of either reversal potential or NMDA-elicited conductance between -30 mV and +50 mV. The result was a more linear NMDA current-voltage relationship. The current linearization was also induced in interneurons and in mature dentate granule neurons but not immature dentate granule cells, dissociated cultured hippocampal neurons, or nucleated patches excised from CA1 pyramidal neurons. Comparative simulations of NMDA application to a CA1 pyramidal neuron and to a cultured neuron revealed that linearization can be explained by space-clamp errors arising from gradual recruitment of distal dendritic NMDARs. We conclude that persistent secondary currents do not strongly contribute to NMDAR responses in juvenile mouse hippocampus and careful discernment is needed to exclude contributions of clamp artifacts to apparent secondary currents.NEW & NOTEWORTHY We report that upon sustained activation of NMDARs in juvenile mouse hippocampal neurons there is apparent loss of Mg2+ block at negative membrane potentials. However, the phenomenon is explained by loss of dendritic voltage clamp, leading to a linear current-voltage relationship. Our results give a specific example of how spatial voltage errors in voltage-clamp recordings can readily be misinterpreted as biological modulation.
Collapse
Affiliation(s)
- Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Mariangela Chisari
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Lawrence N Eisenman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri.,Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, Missouri; and
| | - Steven J Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; .,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
119
|
Stierlin FB, Molica F, Reny JL, Kwak BR, Fontana P. Pannexin1 Single Nucleotide Polymorphism and Platelet Reactivity in a Cohort of Cardiovascular Patients. ACTA ACUST UNITED AC 2017; 23:11-15. [PMID: 28142297 DOI: 10.1080/15419061.2017.1282469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pannexin1 (Panx1), a membrane channel-forming protein permitting the passage of small-sized molecules, such as ATP, is expressed in human platelets. Recently, we showed that inhibiting Panx1 affects collagen-induced platelet aggregation but not aggregation triggered by other agonists. We also found that a single nucleotide polymorphism (SNP; rs1138800) in the Panx1 gene encoded for a gain-of-function channel (Panx1-400C) and was associated with enhanced collagen-induced platelet reactivity. Here, we assessed the association of this SNP with platelet reactivity in a cohort of 758 stable cardiovascular patients from the ADRIE study treated with aspirin and/or clopidogrel. We found that presence of the Panx1-400C allele was not associated with platelet reactivity in stable cardiovascular patients, irrespective of the platelet aggregation agonist used (collagen, ADP or arachidonic acid) or the anti-platelet drug regimen. Moreover, the Panx1-400A > C SNP did also not affect the re-occurrence of cardiac ischemic events in the same stable cardiovascular patient cohort.
Collapse
Affiliation(s)
- Florian B Stierlin
- a Department of Pathology and Immunology , University of Geneva , Geneva , Switzerland.,b Department of Medical Specializations - Cardiology , University of Geneva , Geneva , Switzerland.,c Geneva Platelet Group , University of Geneva , Geneva , Switzerland
| | - Filippo Molica
- a Department of Pathology and Immunology , University of Geneva , Geneva , Switzerland.,b Department of Medical Specializations - Cardiology , University of Geneva , Geneva , Switzerland
| | - Jean-Luc Reny
- c Geneva Platelet Group , University of Geneva , Geneva , Switzerland.,d Department of Medical Specializations, Division of Internal Medicine and Rehabilitation , Trois-Chêne Hospital, Geneva University Hospitals , Geneva , Switzerland
| | - Brenda R Kwak
- a Department of Pathology and Immunology , University of Geneva , Geneva , Switzerland.,b Department of Medical Specializations - Cardiology , University of Geneva , Geneva , Switzerland
| | - Pierre Fontana
- c Geneva Platelet Group , University of Geneva , Geneva , Switzerland.,e Department of Medical Specializations, Division of Angiology and Haemostasis , Geneva University Hospitals , Geneva , Switzerland
| |
Collapse
|
120
|
Lapato AS, Tiwari-Woodruff SK. Connexins and pannexins: At the junction of neuro-glial homeostasis & disease. J Neurosci Res 2017; 96:31-44. [PMID: 28580666 DOI: 10.1002/jnr.24088] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/08/2017] [Accepted: 05/01/2017] [Indexed: 12/15/2022]
Abstract
In the central nervous system (CNS), connexin (Cx)s and pannexin (Panx)s are an integral component of homeostatic neuronal excitability and synaptic plasticity. Neuronal Cx gap junctions form electrical synapses across biochemically similar GABAergic networks, allowing rapid and extensive inhibition in response to principle neuron excitation. Glial Cx gap junctions link astrocytes and oligodendrocytes in the pan-glial network that is responsible for removing excitotoxic ions and metabolites. In addition, glial gap junctions help constrain excessive excitatory activity in neurons and facilitate astrocyte Ca2+ slow wave propagation. Panxs do not form gap junctions in vivo, but Panx hemichannels participate in autocrine and paracrine gliotransmission, alongside Cx hemichannels. ATP and other gliotransmitters released by Cx and Panx hemichannels maintain physiologic glutamatergic tone by strengthening synapses and mitigating aberrant high frequency bursting. Under pathological depolarizing and inflammatory conditions, gap junctions and hemichannels become dysregulated, resulting in excessive neuronal firing and seizure. In this review, we present known contributions of Cxs and Panxs to physiologic neuronal excitation and explore how the disruption of gap junctions and hemichannels lead to abnormal glutamatergic transmission, purinergic signaling, and seizures.
Collapse
Affiliation(s)
- Andrew S Lapato
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, 92521.,Center for Glial-Neuronal Interactions, University of California Riverside, Riverside, CA, 92521
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, 92521.,Center for Glial-Neuronal Interactions, University of California Riverside, Riverside, CA, 92521.,Neuroscience Graduate Program, University of California Riverside, Riverside, CA, 92521
| |
Collapse
|
121
|
Sword J, Croom D, Wang PL, Thompson RJ, Kirov SA. Neuronal pannexin-1 channels are not molecular routes of water influx during spreading depolarization-induced dendritic beading. J Cereb Blood Flow Metab 2017; 37:1626-1633. [PMID: 26994044 PMCID: PMC5435276 DOI: 10.1177/0271678x16639328] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spreading depolarization-induced focal dendritic swelling (beading) is an early hallmark of neuronal cytotoxic edema. Pyramidal neurons lack membrane-bound aquaporins posing a question of how water enters neurons during spreading depolarization. Recently, we have identified chloride-coupled transport mechanisms that can, at least in part, participate in dendritic beading. Yet transporter-mediated ion and water fluxes could be paralleled by water entry through additional pathways such as large-pore pannexin-1 channels opened by spreading depolarization. Using real-time in vivo two-photon imaging in mice with pharmacological inhibition or conditional genetic deletion of pannexin-1, we showed that pannexin-1 channels are not required for spreading depolarization-induced focal dendritic swelling.
Collapse
Affiliation(s)
- Jeremy Sword
- 1 Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - Deborah Croom
- 1 Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - Phil L Wang
- 1 Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - Roger J Thompson
- 2 Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Sergei A Kirov
- 1 Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA.,3 Department of Neurosurgery, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
122
|
Maes M, McGill MR, da Silva TC, Abels C, Lebofsky M, Weemhoff JL, Tiburcio T, Veloso Alves Pereira I, Willebrords J, Crespo Yanguas S, Farhood A, Beschin A, Van Ginderachter JA, Penuela S, Jaeschke H, Cogliati B, Vinken M. Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity. Arch Toxicol 2017; 91:2245-2261. [PMID: 27826632 PMCID: PMC5654513 DOI: 10.1007/s00204-016-1885-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023]
Abstract
Pannexins constitute a relatively new family of transmembrane proteins that form channels linking the cytoplasmic compartment with the extracellular environment. The presence of pannexin1 in the liver has been documented previously, where it underlies inflammatory responses, such as those occurring upon ischemia-reperfusion injury. In the present study, we investigated whether pannexin1 plays a role in acute drug-induced liver toxicity. Hepatic expression of pannexin1 was characterized in a mouse model of acetaminophen-induced hepatotoxicity. Subsequently, mice were overdosed with acetaminophen followed by treatment with the pannexin1 channel inhibitor 10Panx1. Sampling was performed 1, 3, 6, 24 and 48 h after acetaminophen administration. Evaluation of the effects of pannexin1 channel inhibition was based on a number of clinically relevant readouts, including protein adduct formation, measurement of aminotransferase activity and histopathological examination of liver tissue as well as on a series of markers of inflammation, oxidative stress and regeneration. Although no significant differences were found in histopathological analysis, pannexin1 channel inhibition reduced serum levels of alanine and aspartate aminotransferase. This was paralleled by a reduced amount of neutrophils recruited to the liver. Furthermore, alterations in the oxidized status were noticed with upregulation of glutathione levels upon suppression of pannexin1 channel opening. Concomitant promotion of regenerative activity was detected as judged on increased proliferating cell nuclear antigen protein quantities in 10Panx1-treated mice. Pannexin1 channels are important actors in liver injury triggered by acetaminophen. Inhibition of pannexin1 channel opening could represent a novel approach for the treatment of drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Chloé Abels
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - James L Weemhoff
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Taynã Tiburcio
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Isabel Veloso Alves Pereira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, Austin, TX, USA
| | - Alain Beschin
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Canada
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
123
|
Murali S, Zhang M, Nurse CA. Evidence that 5-HT stimulates intracellular Ca 2+ signalling and activates pannexin-1 currents in type II cells of the rat carotid body. J Physiol 2017; 595:4261-4277. [PMID: 28332205 DOI: 10.1113/jp273473] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/16/2017] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS 5-HT is a neuromodulator released from carotid body (CB) chemoreceptor (type I) cells and facilitates the sensory discharge following chronic intermittent hypoxia (CIH). In the present study, we show that, in addition to type I cells, adjacent glial-like type II cells express functional, ketanserin-sensitive 5-HT2 receptors, and their stimulation increases cytoplasmic Ca2+ derived from intracellular stores. In type II cells, 5-HT activated a ketanserin-sensitive inward current (I5-HT ) that was similar to that (IUTP ) activated by the P2Y2R agonist, UTP. As previously shown for IUTP , I5-HT was inhibited by BAPTA-AM and carbenoxolone (5 μm), a putative blocker of ATP-permeable pannexin (Panx)-1 channels; IUTP was reversibly inhibited by the specific Panx-1 mimetic peptide channel blocker, 10 Panx peptide. Paracrine stimulation of type II cells by 5-HT, leading to ATP release via Panx-1 channels, may contribute to CB excitability, especially in pathophysiological conditions associated with CIH (e.g. obstructive sleep apnoea). ABSTRACT Carotid body (CB) chemoreceptor (type I) cells can synthesize and release 5-HT and increased autocrine-paracrine 5-HT2 receptor signalling contributes to sensory long-term facilitation during chronic intermittent hypoxia (CIH). However, recent studies suggest that adjacent glial-like type II cells can respond to CB paracrine signals by elevating intracellular calcium (Δ[Ca2+ ]i ) and activating carbenoxolone-sensitive, ATP-permeable, pannexin (Panx)-1-like channels. In the present study, using dissociated rat CB cultures, we found that 5-HT induced Δ[Ca2+ ]i responses in a subpopulation of type I cells, as well as in most (∼67%) type II cells identified by their sensitivity to the P2Y2 receptor agonist, UTP. The 5-HT-induced Ca2+ response in type II cells was dose-dependent (EC50 ∼183 nm) and largely inhibited by the 5-HT2A receptor blocker, ketanserin (1 μm), and also arose mainly from intracellular stores. 5-HT also activated an inward current (I5-HT ) in type II cells (EC50 ∼200 nm) that was reversibly inhibited by ketanserin (1-10 nm), the Ca2+ chelator BAPTA-AM (5 μm), and low concentrations of carbenoxolone (5 μm), a putative Panx-1 channel blocker. I5-HT reversed direction at approximately -11 mV and was indistinguishable from the UTP-activated current (IUTP ). Consistent with a role for Panx-1 channels, IUTP was reversibly inhibited by the specific Panx-1 mimetic peptide blocker 10 Panx (100 μm), although not by its scrambled control peptide (sc Panx). Because ATP is an excitatory CB neurotransmitter, it is possible that the contribution of enhanced 5-HT signalling to the increased sensory discharge during CIH may occur, in part, by a boosting of ATP release from type II cells via Panx-1 channels.
Collapse
Affiliation(s)
| | - Min Zhang
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
124
|
Kim Y, Davidson JO, Green CR, Nicholson LFB, O'Carroll SJ, Zhang J. Connexins and Pannexins in cerebral ischemia. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:224-236. [PMID: 28347700 DOI: 10.1016/j.bbamem.2017.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/24/2017] [Accepted: 03/22/2017] [Indexed: 12/12/2022]
Abstract
A common cause of mortality and long-term adult disability, cerebral ischemia or brain ischemia imposes a significant health and financial burden on communities worldwide. Cerebral ischemia is a condition that arises from a sudden loss of blood flow and consequent failure to meet the high metabolic demands of the brain. The lack of blood flow initiates a sequelae of cell death mechanisms, including the activation of the inflammatory pathway, which can ultimately result in irreversible brain tissue damage. In particular, Connexins and Pannexins are non-selective channels with a large pore that have shown to play time-dependent roles in the perpetuation of ischaemic injury. This review highlights the roles of Connexin and Pannexin channels in cell death mechanisms as a promising therapeutic target in cerebral ischemia, and in particular connexin hemichannels which may contribute most of the ATP release as a result of ischemia as well as during reperfusion. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Yeri Kim
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland
| | - Joanne O Davidson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland
| | - Colin R Green
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland
| | - Louise F B Nicholson
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland
| | - Simon J O'Carroll
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland
| | - Jie Zhang
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland.
| |
Collapse
|
125
|
Scemes E, Velíšková J. Exciting and not so exciting roles of pannexins. Neurosci Lett 2017; 695:25-31. [PMID: 28284836 DOI: 10.1016/j.neulet.2017.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/24/2023]
Abstract
It is the current view that purinergic signaling regulates many physiological functions. Pannexin1 (Panx1), a member of the gap junction family of proteins is an ATP releasing channel that plays important physio-pathological roles in various tissues, including the CNS. Upon binding to purinergic receptors expressed in neural cells, ATP triggers cellular responses including increased cell proliferation, cell morphology changes, release of cytokines, and regulation of neuronal excitability via release of glutamate, GABA and ATP itself. Under pathological conditions such as ischemia, trauma, inflammation, and epilepsy, extracellular ATP concentrations increases drastically but the consequences of this surge is still difficult to characterize due to its rapid metabolism in ADP and adenosine, the latter having inhibitory action on neuronal activity. For seizures, for instance, the excitatory effect of ATP on neuronal activity is mainly related to its action of P2X receptors, while the inhibitory effects are related to activation of P1, adenosine receptors. Here we provide a mini review on the properties of pannexins with a main focus on Panx1 and its involvement in seizure activity. Although there are only few studies implicating Panx1 in seizures, they are illustrative of the dual role that Panx1 has on neuronal excitability.
Collapse
Affiliation(s)
- Eliana Scemes
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Jana Velíšková
- Departments of Cell Biology & Anatomy, Obstetrics & Gynecology and Neurology, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
126
|
Burma NE, Bonin RP, Leduc-Pessah H, Baimel C, Cairncross ZF, Mousseau M, Shankara JV, Stemkowski PL, Baimoukhametova D, Bains JS, Antle MC, Zamponi GW, Cahill CM, Borgland SL, De Koninck Y, Trang T. Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents. Nat Med 2017; 23:355-360. [PMID: 28134928 DOI: 10.1038/nm.4281] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/08/2017] [Indexed: 12/18/2022]
Abstract
Opiates are essential for treating pain, but termination of opiate therapy can cause a debilitating withdrawal syndrome in chronic users. To alleviate or avoid the aversive symptoms of withdrawal, many of these individuals continue to use opiates. Withdrawal is therefore a key determinant of opiate use in dependent individuals, yet its underlying mechanisms are poorly understood and effective therapies are lacking. Here, we identify the pannexin-1 (Panx1) channel as a therapeutic target in opiate withdrawal. We show that withdrawal from morphine induces long-term synaptic facilitation in lamina I and II neurons within the rodent spinal dorsal horn, a principal site of action for opiate analgesia. Genetic ablation of Panx1 in microglia abolished the spinal synaptic facilitation and ameliorated the sequelae of morphine withdrawal. Panx1 is unique in its permeability to molecules up to 1 kDa in size and its release of ATP. We show that Panx1 activation drives ATP release from microglia during morphine withdrawal and that degrading endogenous spinal ATP by administering apyrase produces a reduction in withdrawal behaviors. Conversely, we found that pharmacological inhibition of ATP breakdown exacerbates withdrawal. Treatment with a Panx1-blocking peptide (10panx) or the clinically used broad-spectrum Panx1 blockers, mefloquine or probenecid, suppressed ATP release and reduced withdrawal severity. Our results demonstrate that Panx1-mediated ATP release from microglia is required for morphine withdrawal in rodents and that blocking Panx1 alleviates the severity of withdrawal without affecting opiate analgesia.
Collapse
Affiliation(s)
- Nicole E Burma
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Heather Leduc-Pessah
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Corey Baimel
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Zoe F Cairncross
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael Mousseau
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Patrick L Stemkowski
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dinara Baimoukhametova
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jaideep S Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael C Antle
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Catherine M Cahill
- Department of Anesthesiology and Perioperative Care, University of California Irvine, Irvine, California, USA
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yves De Koninck
- Department of Psychiatry and Neuroscience, Institut Universitaire en santé mentale de Québec, Université Laval, Ville de Québec, Québec, Canada
| | - Tuan Trang
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
127
|
A quantized mechanism for activation of pannexin channels. Nat Commun 2017; 8:14324. [PMID: 28134257 PMCID: PMC5290276 DOI: 10.1038/ncomms14324] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/16/2016] [Indexed: 11/18/2022] Open
Abstract
Pannexin 1 (PANX1) subunits form oligomeric plasma membrane channels that mediate nucleotide release for purinergic signalling, which is involved in diverse physiological processes such as apoptosis, inflammation, blood pressure regulation, and cancer progression and metastasis. Here we explore the mechanistic basis for PANX1 activation by using wild type and engineered concatemeric channels. We find that PANX1 activation involves sequential stepwise sojourns through multiple discrete open states, each with unique channel gating and conductance properties that reflect contributions of the individual subunits of the hexamer. Progressive PANX1 channel opening is directly linked to permeation of ions and large molecules (ATP and fluorescent dyes) and occurs during both irreversible (caspase cleavage-mediated) and reversible (α1 adrenoceptor-mediated) forms of channel activation. This unique, quantized activation process enables fine tuning of PANX1 channel activity and may be a generalized regulatory mechanism for other related multimeric channels. Pannexins are oligomeric plasma membrane channels that allow permeation of ions and large molecules. Here the authors show that human Pannexin 1 activation is a multistep event, where modification of each monomer opens the channel to a unique conductance state and fine tunes its activity.
Collapse
|
128
|
Bazzigaluppi P, Weisspapir I, Stefanovic B, Leybaert L, Carlen PL. Astrocytic gap junction blockade markedly increases extracellular potassium without causing seizures in the mouse neocortex. Neurobiol Dis 2016; 101:1-7. [PMID: 28007587 DOI: 10.1016/j.nbd.2016.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/24/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022] Open
Abstract
Extracellular potassium concentration, [K+]o, is a major determinant of neuronal excitability. In the healthy brain, [K+]o levels are tightly controlled. During seizures, [K+]o increases up to 15mM and is thought to cause seizures due to its depolarizing effect. Although astrocytes have been suggested to play a key role in the redistribution (or spatial buffering) of excess K+ through Connexin-43 (Cx43)-based Gap Junctions (GJs), the relation between this dynamic regulatory process and seizure generation remains unknown. Here we contrasted the role of astrocytic GJs and hemichannels by studying the effect of GJ and hemichannel blockers on [K+]o regulation in vivo. [K+]o was measured by K+-sensitive microelectrodes. Neuronal excitability was estimated by local field potential (LFP) responses to forepaw stimulation and changes in the power of resting state activity. Starting at the baseline [K+]o level of 1.61±0.3mM, cortical microinjection of CBX, a broad spectrum connexin channel blocker, increased [K+]o to 11±3mM, Cx43 GJ/hemichannel blocker Gap27 increased it from 1.9±0.7 to 9±1mM. At these [K+]o levels, no seizures were observed. Cx43 hemichannel blockade with TAT-Gap19 increased [K+]o by only ~1mM. Microinjection of 4-aminopyridine, a known convulsant, increased [K+]o to ~10mM and induced spontaneously recurring seizures, whereas direct application of K+ did not trigger seizure activity. These findings are the first in vivo demonstration that astrocytic GJs are major determinants for the spatial buffering of [K+]o and that an increase in [K+]o alone does not trigger seizures in the neocortex.
Collapse
Affiliation(s)
- Paolo Bazzigaluppi
- Fundamental Neurobiology, Krembil Research Institute, University Health Network, M5T 2S8 Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, M4N 3M5 Toronto, Ontario, Canada.
| | - Iliya Weisspapir
- Fundamental Neurobiology, Krembil Research Institute, University Health Network, M5T 2S8 Toronto, Ontario, Canada
| | - Bojana Stefanovic
- Physical Sciences, Sunnybrook Research Institute, M4N 3M5 Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Luc Leybaert
- Department of Basic Medical Sciences, University of Ghent, 9000 Ghent, Belgium
| | - Peter L Carlen
- Fundamental Neurobiology, Krembil Research Institute, University Health Network, M5T 2S8 Toronto, Ontario, Canada
| |
Collapse
|
129
|
Gajardo-Gómez R, Labra VC, Maturana CJ, Shoji KF, Santibañez CA, Sáez JC, Giaume C, Orellana JA. Cannabinoids prevent the amyloid β-induced activation of astroglial hemichannels: A neuroprotective mechanism. Glia 2016; 65:122-137. [PMID: 27757991 DOI: 10.1002/glia.23080] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 11/06/2022]
Abstract
The mechanisms involved in Alzheimer's disease are not completely understood and how astrocytes and their gliotransmission contribute to this neurodegenerative disease remains to be fully elucidated. Previous studies have shown that amyloid-β peptide (Aβ) induces neuronal death by a mechanism that involves the excitotoxic release of ATP and glutamate associated to astroglial hemichannel opening. We have demonstrated that synthetic and endogenous cannabinoids (CBs) reduce the opening of astrocyte Cx43 hemichannels evoked by activated microglia or inflammatory mediators. Nevertheless, whether CBs could prevent the astroglial hemichannel-dependent death of neurons evoked by Aβ is unknown. Astrocytes as well as acute hippocampal slices were treated with the active fragment of Aβ alone or in combination with the following CBs: WIN, 2-AG, or methanandamide (Meth). Hemichannel activity was monitored by single channel recordings and by time-lapse ethidium uptake while neuronal death was assessed by Fluoro-Jade C staining. We report that CBs fully prevented the hemichannel activity and inflammatory profile evoked by Aβ in astrocytes. Moreover, CBs fully abolished the Aβ-induced release of excitotoxic glutamate and ATP associated to astrocyte Cx43 hemichannel activity, as well as neuronal damage in hippocampal slices exposed to Aβ. Consequently, this work opens novel avenues for alternative treatments that target astrocytes to maintain neuronal function and survival during AD. GLIA 2016 GLIA 2017;65:122-137.
Collapse
Affiliation(s)
- Rosario Gajardo-Gómez
- Departamento de Neurología; Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valeria C Labra
- Departamento de Neurología; Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carola J Maturana
- Departamento de Neurología; Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kenji F Shoji
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile and Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Chile
| | - Cristian A Santibañez
- Departamento de Neurología; Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile and Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Chile
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology, Collège de France/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris Cedex 05, France
| | - Juan A Orellana
- Departamento de Neurología; Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
130
|
Seike S, Takehara M, Kobayashi K, Nagahama M. Role of pannexin 1 in Clostridium perfringens beta-toxin-caused cell death. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3150-3156. [PMID: 27720686 DOI: 10.1016/j.bbamem.2016.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Beta-toxin produced by Clostridium perfringens is a key virulence factor of fatal hemorrhagic enterocolitis and enterotoxemia. This toxin belongs to a family of β-pore-forming toxins (PFTs). We reported recently that the ATP-gated P2X7 receptor interacts with beta-toxin. The ATP-release channel pannexin 1 (Panx1) is an important contributor to P2X7 receptor signaling. Hence, we investigated the involvement of Panx1 in beta-toxin-caused cell death. METHODS We examined the effect of Panx1 in beta-toxin-induced cell death utilizing selective antagonists, knockdown of Panx1, and binding using dot-blot analysis. Localization of Panx1 and the P2X7 receptor after toxin treatment was determined by immunofluorescence staining. RESULTS Selective Panx1 antagonists (carbenoxolone [CBX], probenecid, and Panx1 inhibitory peptide) prevented beta-toxin-caused cell death in THP-1 cells. CBX did not block the binding of the toxin to cells. Small interfering knockdown of Panx1 blocked beta-toxin-mediated cell death through inhibiting the oligomer formation of the toxin. Beta-toxin triggered a transient ATP release from THP-1 cells, but this early ATP release was blocked by CBX. ATP scavengers (apyrase and hexokinase) inhibited beta-toxin-induced cytotoxicity. Furthermore, co-administration of ATP with beta-toxin enhanced the binding and cytotoxicity of the toxin. CONCLUSIONS Based on our results, Panx1 activation is achieved through the interaction of beta-toxin with the P2X7 receptor. Then, ATP released by the Panx1 channel opening promotes oligomer formation of the toxin, leading to cell death. GENERAL SIGNIFICANCE Pannexin 1 is a novel candidate therapeutic target for beta-toxin-mediated disease.
Collapse
Affiliation(s)
- Soshi Seike
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho 180, Tokushima 770-8514, Japan
| | - Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho 180, Tokushima 770-8514, Japan
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho 180, Tokushima 770-8514, Japan
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho 180, Tokushima 770-8514, Japan.
| |
Collapse
|
131
|
Hagos L, Hülsmann S. Unspecific labelling of oligodendrocytes by sulforhodamine 101 depends on astrocytic uptake via the thyroid hormone transporter OATP1C1 (SLCO1C1). Neurosci Lett 2016; 631:13-18. [PMID: 27519929 DOI: 10.1016/j.neulet.2016.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
The red fluorescent dye Sulforhodamine 101 (SR101) is often used as a marker for astrocytes, although variations of the staining protocol have been shown to influence the preferentially labeled cell type. Here we analyzed SR101-labeling of oligodendrocytes in the hippocampal slices preparation of PLP-EGFP mice. Using different staining protocols, we found robust SR101-labeled oligodendrocytes in the CA1 stratum radiatum of the hippocampus. Application of L-thyroxin, which is known to block SR101 transport into astrocytes via competitive inhibition of the multi-specific OATP1C1 (SLCO1C1) transporter, significantly reduced oligodendrocyte labeling. Since OATP1C1 is not expressed in oligodendrocytes, we conclude that oligodendrocyte labeling with SR101 requires SR101-uptake by astrocytes, which then diffuses to oligodendrocytes via heterotypic gap junctions of the pan-glial network. In summary, unequivocal identification of a particular cell type is not possible by SR101 only, hence caution is recommended when using SR101 in future studies.
Collapse
Affiliation(s)
- Liya Hagos
- Clinic for Anesthesiology, University Medical Center, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Germany
| | - Swen Hülsmann
- Clinic for Anesthesiology, University Medical Center, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Germany.
| |
Collapse
|
132
|
Commemorating John F. MacDonald and the Art of Being a Mentor. Can J Neurol Sci 2016; 43:735-44. [PMID: 27488619 DOI: 10.1017/cjn.2016.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
John F. MacDonald was a close friend and mentor whose life was ended far too soon on April 22, 2014. To those who knew him, John was an endearing blend of fiery Scotsman, compassionate socialist, dedicated family man, and tireless investigator. Those close to him valued his loyalty and friendship, relished his biting wit, and puzzled at his self-deprecating manner. His career spanned a remarkable period of discovery from the early identification of excitatory amino acid, to the molecular cloning and characterization of glutamate receptors and the elucidation of mechanisms responsible for regulating their function. A true pioneer in each of these areas, John's research has had a lasting impact on our understanding of excitatory synaptic transmission and its plasticity. Our intent in commemorating John's work is to focus on some notable discoveries that highlight the impact and innovative aspects of John's work. In doing so, we also wish to highlight just how greatly our understanding of the glutamate transmitter systems has advanced since the late 1970s, when John first launched his independent neuroscience career.
Collapse
|
133
|
Gawlik M, Wagner M, Pfuhlmann B, Stöber G. The role of Pannexin gene variants in schizophrenia: systematic analysis of phenotypes. Eur Arch Psychiatry Clin Neurosci 2016. [PMID: 26223428 DOI: 10.1007/s00406-015-0619-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pannexins are a group of brain-expressed channel proteins thought to be regulators of schizophrenia-linked pathways including glutamate release, synaptic plasticity and neural stem proliferation. We got evidence for linkage of a catatonic phenotype to the PANX2 locus in a family study. Aim of our study was to evaluate the role of Pannexins in schizophrenia and clinical phenotypes, particularly with regard to periodic catatonia. We genotyped six single-nucleotide polymorphisms at PANX1, five at PANX2 and three at PANX3 in 1173 German cases with schizophrenia according to DSM-5 and 480 controls. Our sample included 338 cases with periodic catatonia corresponding to Leonhard's classification. Association with schizophrenia according to DSM-5 was limited to genotype rs4838858-TT [p = 0.02, odds ratio (OR) 3.1] and haplotype rs4838858T-rs5771206G (p = 0.02, OR 2.7) at PANX2. We found no significant association with clinical phenotypes. Our limited findings do not support a major contribution of PANX1-3 to disease risk of schizophrenia according to DSM-5. We cannot confirm an association of the PANX2 loci at chromosome 22q13 with periodic catatonia.
Collapse
Affiliation(s)
- Micha Gawlik
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Füchsleinstraße 15, 97080, Würzburg, Germany.
| | - Martin Wagner
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Füchsleinstraße 15, 97080, Würzburg, Germany
| | - Bruno Pfuhlmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Füchsleinstraße 15, 97080, Würzburg, Germany
| | - Gerald Stöber
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Füchsleinstraße 15, 97080, Würzburg, Germany
| |
Collapse
|
134
|
Dore K, Aow J, Malinow R. The Emergence of NMDA Receptor Metabotropic Function: Insights from Imaging. Front Synaptic Neurosci 2016; 8:20. [PMID: 27516738 PMCID: PMC4963461 DOI: 10.3389/fnsyn.2016.00020] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/06/2016] [Indexed: 01/19/2023] Open
Abstract
The NMDA receptor (R) participates in many important physiological and pathological processes. For example, its activation is required for both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission, cellular models of learning and memory. Furthermore, it may play a role in the actions of amyloid-beta on synapses as well as in the signaling leading to cell death following stroke. Until recently, these processes were thought to be mediated by ion-flux through the receptor. Using a combination of imaging and electrophysiological approaches, ion-flux independent functions of the NMDAR were recently examined. In this review, we will discuss the role of metabotropic NMDAR function in LTD and synaptic dysfunction.
Collapse
Affiliation(s)
- Kim Dore
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego San Diego, CA, USA
| | - Jonathan Aow
- Genome Institute of Singapore Singapore, Singapore
| | - Roberto Malinow
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego San Diego, CA, USA
| |
Collapse
|
135
|
The earliest neuronal responses to hypoxia in the neocortical circuit are glutamate-dependent. Neurobiol Dis 2016; 95:158-67. [PMID: 27443966 DOI: 10.1016/j.nbd.2016.07.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/11/2016] [Accepted: 07/17/2016] [Indexed: 11/23/2022] Open
Abstract
Soon after exposure to hypoxia or ischemia, neurons in cortical tissues undergo massive anoxic depolarization (AD). This precipitous event is preceded by more subtle neuronal changes, including enhanced excitatory and inhibitory synaptic transmitter release. Here, we have used patch-in-slice techniques to identify the earliest effects of acute hypoxia on the synaptic and intrinsic properties of Layer 5 neurons, to determine their time course and to evaluate the role of glutamate receptors in their generation. Coronal slices of mouse somatosensory cortex were maintained at 36°C in an interface chamber and challenged with episodes of hypoxia. In recordings with cell-attached electrodes, the open probability of Ca(2+)-dependent BK channels began to increase within seconds of hypoxia onset, indicating a sharp rise in [Ca(2+)]i just beneath the membrane. By using a high concentration of K(+) in the pipette, we simultaneously monitored the membrane potential and showed that the [Ca(2+)]i rise was not associated with membrane depolarization. The earliest hypoxia-induced synaptic disturbance was a marked increase in the frequency of sPSCs, which also began soon after the removal of oxygen and long before AD. This synaptic effect was accompanied by depletion of the readily releasable transmitter pools, as demonstrated by a decreased response to hyperosmotic solutions. The early [Ca(2+)]i rise, the early increase in transmitter release and the subsequent AD itself were all prevented by bathing in a cocktail containing blockers of ionotropic glutamate receptors. We found no evidence for involvement of pannexin hemichannels or TRPM7 channels in the early responses to hypoxia in this experimental preparation. Our data indicate that the earliest cellular consequences of cortical hypoxia are triggered by activation of glutamate-gated channels.
Collapse
|
136
|
Xiong Y, Zhang Y, Zheng F, Yang Y, Xu X, Wang W, Zhu B, Wang X. Expression of Glypican-4 in the brains of epileptic patients and epileptic animals and its effects on epileptic seizures. Biochem Biophys Res Commun 2016; 478:241-246. [PMID: 27425250 DOI: 10.1016/j.bbrc.2016.07.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/12/2016] [Indexed: 12/12/2022]
Abstract
Glypican-4 (Gpc4) has been found to play an important role in enhancing miniature excitatory postsynaptic currents (mEPSCs). But, the relationship between Gpc4 and epilepsy is still a mystery. In this study, we investigated the expression patterns of Gpc4 in patients with epilepsy and in a pilocarpine-induced rat model of epilepsy. We also determined if altered Gpc4 expression resulted in increased susceptibility to seizures. Western blotting and immunofluorescent methods were utilized. Gpc4 was significantly increased in patients and epileptic rats induced by pilocarpine injection. According to behavioral studies, downregulation of Gpc4 by Gpc4 siRNA decreased spontaneous seizure frequency, while upregulation of Gpc4 by recombinant Gpc4 overexpression led to a converse result. These findings support the hypothesis that increased expression of Gpc4 in the brain is associated with epileptic seizures.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
| | - Yanke Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
| | - Fangshuo Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
| | - Yong Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
| | - Xin Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
| | - Wei Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
| | - Binglin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China; Chongqing Key Laboratory of Neurology, Chongqing, China; Center of Epilepsy, Beijing Institute for Brain Disorders, China.
| |
Collapse
|
137
|
Plotkin LI, Laird DW, Amedee J. Role of connexins and pannexins during ontogeny, regeneration, and pathologies of bone. BMC Cell Biol 2016; 17 Suppl 1:19. [PMID: 27230612 PMCID: PMC4896274 DOI: 10.1186/s12860-016-0088-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Electron micrographs revealed the presence of gap junctions in osteoblastic cells over 40 years ago. These intercellular channels formed from connexins are present in bone forming osteoblasts, bone resorbing osteoclasts, and osteocytes (mature osteoblasts embedded in the mineralized bone matrix). More recently, genetic and pharmacologic studies revealed the role of connexins, and in particular Cx43, in the differentiation and function of all bone types. Furthermore, mutations in the gene encoding Cx43 were found to be causally linked to oculodentodigital dysplasia, a condition that results in an abnormal skeleton. Pannexins, molecules with similar structure and single-membrane channel forming potential as connexins when organized as hemichannels, are also expressed in osteoblastic cells. The function of pannexins in bone and cartilage is beginning to be uncovered, but more research is needed to determine the role of pannexins in bone development, adult bone mass and skeletal homeostasis. We describe here the current knowledge on the role of connexins and pannexins on skeletal health and disease.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Roudebush Veterans Administration Medical Center Indiana, Indianapolis, IN, 46202, USA.
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A-5C1, Canada
| | - Joelle Amedee
- INSERM U1026, Tissue Bioengineering, Université Bordeaux, Bordeaux, F-33076, France
| |
Collapse
|
138
|
Abstract
Communication among cells via direct cell-cell contact by connexin gap junctions, or between cell and extracellular environment via pannexin channels or connexin hemichannels, is a key factor in cell function and tissue homeostasis. Upon malignant transformation in different cancer types, the dysregulation of these connexin and pannexin channels and their effect in cellular communication, can either enhance or suppress tumorigenesis and metastasis. In this review, we will highlight the latest reports on the role of the well characterized connexin family and its ability to form gap junctions and hemichannels in cancer. We will also introduce the more recently discovered family of pannexin channels and our current knowledge about their involvement in cancer progression.
Collapse
Affiliation(s)
- Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A5C1, Canada.
| |
Collapse
|
139
|
Shao Q, Lindstrom K, Shi R, Kelly J, Schroeder A, Juusola J, Levine KL, Esseltine JL, Penuela S, Jackson MF, Laird DW. A Germline Variant in the PANX1 Gene Has Reduced Channel Function and Is Associated with Multisystem Dysfunction. J Biol Chem 2016; 291:12432-12443. [PMID: 27129271 DOI: 10.1074/jbc.m116.717934] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/20/2022] Open
Abstract
Pannexin1 (PANX1) is probably best understood as an ATP release channel involved in paracrine signaling. Given its ubiquitous expression, PANX1 pathogenic variants would be expected to lead to disorders involving multiple organ systems. Using whole exome sequencing, we discovered the first patient with a homozygous PANX1 variant (c.650G→A) resulting in an arginine to histidine substitution at position 217 (p.Arg217His). The 17-year-old female has intellectual disability, sensorineural hearing loss requiring bilateral cochlear implants, skeletal defects, including kyphoscoliosis, and primary ovarian failure. Her consanguineous parents are each heterozygous for this variant but are not affected by the multiorgan syndromes noted in the proband. Expression of the p.Arg217His mutant in HeLa, N2A, HEK293T, and Ad293 cells revealed normal PANX1 glycosylation and cell surface trafficking. Dye uptake, ATP release, and electrophysiological measurements revealed p.Arg217His to be a loss-of-function variant. Co-expression of the mutant with wild-type PANX1 suggested the mutant was not dominant-negative to PANX1 channel function. Collectively, we demonstrate a PANX1 missense change associated with human disease in the first report of a "PANX1-related disorder."
Collapse
Affiliation(s)
- Qing Shao
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, Arizona 85016
| | - Ruoyang Shi
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba R3E 0Z3, Canada,; Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba R3E 0Z3, Canada
| | - John Kelly
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Audrey Schroeder
- Division of Genetics, University of Rochester Medical Center, Rochester, New York 14642
| | | | | | - Jessica L Esseltine
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Michael F Jackson
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba R3E 0Z3, Canada,; Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba R3E 0Z3, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
140
|
Dahl G. ATP release through pannexon channels. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0191. [PMID: 26009770 DOI: 10.1098/rstb.2014.0191] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Extracellular adenosine triphosphate (ATP) serves as a signal for diverse physiological functions, including spread of calcium waves between astrocytes, control of vascular oxygen supply and control of ciliary beat in the airways. ATP can be released from cells by various mechanisms. This review focuses on channel-mediated ATP release and its main enabler, Pannexin1 (Panx1). Six subunits of Panx1 form a plasma membrane channel termed 'pannexon'. Depending on the mode of stimulation, the pannexon has large conductance (500 pS) and unselective permeability to molecules less than 1.5 kD or is a small (50 pS), chloride-selective channel. Most physiological and pathological stimuli induce the large channel conformation, whereas the small conformation so far has only been observed with exclusive voltage activation of the channel. The interaction between pannexons and ATP is intimate. The pannexon is not only the conduit for ATP, permitting ATP efflux from cells down its concentration gradient, but the pannexon is also modulated by ATP. The channel can be activated by ATP through both ionotropic P2X as well as metabotropic P2Y purinergic receptors. In the absence of a control mechanism, this positive feedback loop would lead to cell death owing to the linkage of purinergic receptors with apoptotic processes. A control mechanism preventing excessive activation of the purinergic receptors is provided by ATP binding (with low affinity) to the Panx1 protein and gating the channel shut.
Collapse
Affiliation(s)
- Gerhard Dahl
- School of Medicine, University of Miami, 1600 NW 10th Avenue, Miami, FL 33136, USA
| |
Collapse
|
141
|
Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat Neurosci 2016; 19:432-42. [PMID: 26854804 DOI: 10.1038/nn.4236] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/07/2016] [Indexed: 02/07/2023]
Abstract
Overactivation of neuronal N-methyl-D-aspartate receptors (NMDARs) causes excitotoxicity and is necessary for neuronal death. In the classical view, these ligand-gated Ca(2+)-permeable ionotropic receptors require co-agonists and membrane depolarization for activation. We report that NMDARs signal during ligand binding without activation of their ion conduction pore. Pharmacological pore block with MK-801, physiological pore block with Mg(2+) or a Ca(2+)-impermeable NMDAR variant prevented NMDAR currents, but did not block excitotoxic dendritic blebbing and secondary currents induced by exogenous NMDA. NMDARs, Src kinase and Panx1 form a signaling complex, and activation of Panx1 required phosphorylation at Y308. Disruption of this NMDAR-Src-Panx1 signaling complex in vitro or in vivo by administration of an interfering peptide either before or 2 h after ischemia or stroke was neuroprotective. Our observations provide insights into a new signaling modality of NMDARs that has broad-reaching implications for brain physiology and pathology.
Collapse
|
142
|
Amhaoul H, Ali I, Mola M, Van Eetveldt A, Szewczyk K, Missault S, Bielen K, Kumar-Singh S, Rech J, Lord B, Ceusters M, Bhattacharya A, Dedeurwaerdere S. P2X7 receptor antagonism reduces the severity of spontaneous seizures in a chronic model of temporal lobe epilepsy. Neuropharmacology 2016; 105:175-185. [PMID: 26775823 DOI: 10.1016/j.neuropharm.2016.01.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND The available pharmacotherapy for patients with epilepsy primarily address the symptoms and are ineffective in about 40% of patients. Brain inflammation gained support as potential target for developing new therapies, especially the P2X7 receptor (P2X7R), involved in processing of IL-1β, might be an interesting candidate. This study was designed to investigate the effect of a novel P2X7R antagonist on the severity and on the number of chronic spontaneous recurrent seizures (SRS), which was unexplored until now. METHODS After one-week of vehicle treatment (20% HP-β-cyclodextrin), JNJ-42253432 was administered subcutaneously for another week under continuous video-electroencephalography monitoring (n = 17) in Sprague Dawley rats 3 months after kainic acid-induced status epilepticus. The proportion of different seizure classes, as well as the number of SRS/day were calculated for the vehicle and treatment period. In addition, post-mortem microglial activation and astrogliosis were assessed. RESULTS A significant decrease of the proportion of type 4-5 SRS (p < 0.05), while an increase of type 1-3 was demonstrated (p < 0.05) from the vehicle to the treatment period. There was no effect of the P2X7R antagonist on the number of SRS/day or the glial markers. CONCLUSIONS The P2X7R antagonist gave rise to a less severe profile of the chronic seizure burden without suppressing the SRS frequency. More studies are needed to unravel the underlying mechanisms of the beneficial effect on seizure severity and whether the administration of the compound during early epileptogenesis could induce long-term disease-modifying effects.
Collapse
Affiliation(s)
- Halima Amhaoul
- Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Idrish Ali
- Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Marco Mola
- Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Annemie Van Eetveldt
- Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Krystyna Szewczyk
- Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Stephan Missault
- Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Kenny Bielen
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Samir Kumar-Singh
- Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium; Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Jason Rech
- Neuroscience Therapeutic Area, Janssen Research & Development, San Diego, USA
| | - Brian Lord
- Neuroscience Therapeutic Area, Janssen Research & Development, San Diego, USA
| | - Marc Ceusters
- Neuroscience Therapeutic Area, Janssen Research & Development, Beerse, Belgium
| | | | | |
Collapse
|
143
|
Michalski K, Kawate T. Carbenoxolone inhibits Pannexin1 channels through interactions in the first extracellular loop. ACTA ACUST UNITED AC 2016; 147:165-74. [PMID: 26755773 PMCID: PMC4727946 DOI: 10.1085/jgp.201511505] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022]
Abstract
A chimeric approach combined with extensive site-directed mutagenesis reveals new information about the interaction of the toxin carbenoxolone with the ATP release channel Pannexin1 and the role of the first extracellular loop in channel gating. Pannexin1 (Panx1) is an ATP release channel important for controlling immune responses and synaptic strength. Various stimuli including C-terminal cleavage, a high concentration of extracellular potassium, and voltage have been demonstrated to activate Panx1. However, it remains unclear how Panx1 senses and integrates such diverse stimuli to form an open channel. To provide a clue on the mechanism underlying Panx1 channel gating, we investigated the action mechanism of carbenoxolone (CBX), the most commonly used small molecule for attenuating Panx1 function triggered by a wide range of stimuli. Using a chimeric approach, we discovered that CBX reverses its action polarity and potentiates the voltage-gated channel activity of Panx1 when W74 in the first extracellular loop is mutated to a nonaromatic residue. A systematic mutagenesis study revealed that conserved residues in this loop also play important roles in CBX function, potentially by mediating CBX binding. We extended our experiments to other Panx1 inhibitors such as probenecid and ATP, which also potentiate the voltage-gated channel activity of a Panx1 mutant at position 74. Notably, probenecid alone can activate this mutant at a resting membrane potential. These data suggest that CBX and other inhibitors, including probenecid, attenuate Panx1 channel activity through modulation of the first extracellular loop. Our experiments are the first step toward identifying a previously unknown mode of CBX action, which provide insight into the role of the first extracellular loop in Panx1 channel gating.
Collapse
Affiliation(s)
- Kevin Michalski
- Department of Molecular Medicine, Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| | - Toshimitsu Kawate
- Department of Molecular Medicine, Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
144
|
Kim Y, Davidson JO, Gunn KC, Phillips AR, Green CR, Gunn AJ. Role of Hemichannels in CNS Inflammation and the Inflammasome Pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 104:1-37. [DOI: 10.1016/bs.apcsb.2015.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
145
|
Lietsche J, Imran I, Klein J. Extracellular levels of ATP and acetylcholine during lithium-pilocarpine induced status epilepticus in rats. Neurosci Lett 2015; 611:69-73. [PMID: 26610905 DOI: 10.1016/j.neulet.2015.11.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 01/23/2023]
Abstract
Acetylcholine (ACh) and ATP are rapidly acting neurotransmitters with a putative role in epileptic seizures. In the present study we investigated extracellular concentrations of both neurotransmitters in parallel by microdialysis in rat hippocampus. We found that infusion of neostigmine increases, while calcium-free perfusion and infusion of tetrodotoxin (TTX) decreases, ACh levels. Calcium-free perfusion also decreased ATP levels which were, however, not affected by neostigmine or TTX. During status epilepticus, ACh levels were increased threefold but returned to baseline after the termination of seizures by diazepam. ATP levels were unchanged during status epilepticus but a several-fold increase was seen when AOPCP, an inhibitor of 5'-endonucleotidase, was infused. The results demonstrate an increase of ATP levels during epileptic seizures which, however, was not of neuronal origin.
Collapse
Affiliation(s)
- Jana Lietsche
- Department of Pharmacology, College of Pharmacy, Goethe University of Frankfurt, Germany
| | - Imran Imran
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Jochen Klein
- Department of Pharmacology, College of Pharmacy, Goethe University of Frankfurt, Germany.
| |
Collapse
|
146
|
Abstract
Neuroglia, the "glue" that fills the space between neurons in the central nervous system, takes active part in nerve cell signaling. Neuroglial cells, astroglia, oligodendroglia, and microglia, are together about as numerous as neurons in the brain as a whole, and in the cerebral cortex grey matter, but the proportion varies widely among brain regions. Glial volume, however, is less than one-fifth of the tissue volume in grey matter. When stimulated by neurons or other cells, neuroglial cells release gliotransmitters by exocytosis, similar to neurotransmitter release from nerve endings, or by carrier-mediated transport or channel flux through the plasma membrane. Gliotransmitters include the common neurotransmitters glutamate and GABA, the nonstandard amino acid d-serine, the high-energy phosphate ATP, and l-lactate. The latter molecule is a "buffer" between glycolytic and oxidative metabolism as well as a signaling substance recently shown to act on specific lactate receptors in the brain. Complementing neurotransmission at a synapse, neuroglial transmission often implies diffusion of the transmitter over a longer distance and concurs with the concept of volume transmission. Transmission from glia modulates synaptic neurotransmission based on energetic and other local conditions in a volume of tissue surrounding the individual synapse. Neuroglial transmission appears to contribute significantly to brain functions such as memory, as well as to prevalent neuropathologies.
Collapse
Affiliation(s)
- Vidar Gundersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Jon Storm-Mathisen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Linda Hildegard Bergersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
147
|
Wei R, Wang J, Xu Y, Yin B, He F, Du Y, Peng G, Luo B. Probenecid protects against cerebral ischemia/reperfusion injury by inhibiting lysosomal and inflammatory damage in rats. Neuroscience 2015; 301:168-77. [PMID: 26047730 DOI: 10.1016/j.neuroscience.2015.05.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/14/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Probenecid has been used for decades to treat gout, and recent studies have revealed it is also a specific inhibitor of the pannexin-1 channel. It has been reported that the pannexin-1 channel is involved in ischemic injury. Here, we investigated the neuroprotective effect and the possible mechanisms of action of probenecid in global cerebral ischemia/reperfusion (I/R) injury in rats. Twenty minutes of transient global cerebral I/R injury was induced using the four-vessel occlusion (4-VO) method in male Sprague-Dawley rats. Different doses of probenecid were administered intravenously, intraperitoneally, or by gavage before or after reperfusion. Probenecid via all three routes protected against CA1 neuronal death when given before reperfusion. This protective effect continued when probenecid was given at 2h after reperfusion, but not at 6h. Interestingly, the protective effect regained if probenecid was given continuously for 7days after reperfusion. The release of cathepsin B and overexpression of calpain-1 after reperfusion were inhibited, while the upregulation of Hsp70 was strengthened by probenecid pre-treatment. Furthermore, the activation and proliferation of microglia and astrocytes after I/R injury were suppressed by continuous given for 7days, but only partly by a single dose at 6h of reperfusion. Thus, our data indicate that probenecid protects against transient global cerebral I/R injury probably by inhibiting calpain-cathepsin pathway and the inflammatory reaction.
Collapse
Affiliation(s)
- R Wei
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - J Wang
- Department of Neurology, The First Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Y Xu
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - B Yin
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan 430000, China
| | - F He
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Y Du
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - G Peng
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - B Luo
- The Brain Medical Center and the Collaborative Innovation Center for Brain Science, Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
148
|
Bowie D, Attwell D. Coupling cellular metabolism to neuronal signalling. J Physiol 2015; 593:3413-5. [PMID: 26272625 DOI: 10.1113/jp271075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/19/2015] [Indexed: 01/15/2023] Open
Affiliation(s)
- Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| |
Collapse
|
149
|
Decrock E, De Bock M, Wang N, Bultynck G, Giaume C, Naus CC, Green CR, Leybaert L. Connexin and pannexin signaling pathways, an architectural blueprint for CNS physiology and pathology? Cell Mol Life Sci 2015; 72:2823-51. [PMID: 26118660 PMCID: PMC11113968 DOI: 10.1007/s00018-015-1962-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023]
Abstract
The central nervous system (CNS) is composed of a highly heterogeneous population of cells. Dynamic interactions between different compartments (neuronal, glial, and vascular systems) drive CNS function and allow to integrate and process information as well as to respond accordingly. Communication within this functional unit, coined the neuro-glio-vascular unit (NGVU), typically relies on two main mechanisms: direct cell-cell coupling via gap junction channels (GJCs) and paracrine communication via the extracellular compartment, two routes to which channels composed of transmembrane connexin (Cx) or pannexin (Panx) proteins can contribute. Multiple isoforms of both protein families are present in the CNS and each CNS cell type is characterized by a unique Cx/Panx portfolio. Over the last two decades, research has uncovered a multilevel platform via which Cxs and Panxs can influence different cellular functions within a tissue: (1) Cx GJCs enable a direct cell-cell communication of small molecules, (2) Cx hemichannels and Panx channels can contribute to autocrine/paracrine signaling pathways, and (3) different structural domains of these proteins allow for channel-independent functions, such as cell-cell adhesion, interactions with the cytoskeleton, and the activation of intracellular signaling pathways. In this paper, we discuss current knowledge on their multifaceted contribution to brain development and to specific processes in the NGVU, including synaptic transmission and plasticity, glial signaling, vasomotor control, and blood-brain barrier integrity in the mature CNS. By highlighting both physiological and pathological conditions, it becomes evident that Cxs and Panxs can play a dual role in the CNS and that an accurate fine-tuning of each signaling mechanism is crucial for normal CNS physiology.
Collapse
Affiliation(s)
- Elke Decrock
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| | - Marijke De Bock
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| | - Nan Wang
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium
| | - Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, 75231 Paris Cedex 05, France
- University Pierre et Marie
Curie, ED, N°158, 75005 Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005 Paris, France
| | - Christian C. Naus
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Colin R. Green
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| |
Collapse
|
150
|
Bravo D, Maturana CJ, Pelissier T, Hernández A, Constandil L. Interactions of pannexin 1 with NMDA and P2X7 receptors in central nervous system pathologies: Possible role on chronic pain. Pharmacol Res 2015. [PMID: 26211949 DOI: 10.1016/j.phrs.2015.07.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pannexin 1 (Panx1) is a glycoprotein that acts as a membrane channel in a wide variety of tissues in mammals. In the central nervous system (CNS) Panx1 is expressed in neurons, astrocytes and microglia, participating in the pathophysiology of some CNS diseases, such as epilepsy, anoxic depolarization after stroke and neuroinflammation. In these conditions Panx1 acts as an important modulator of the neuroinflammatory response, by secreting ATP, by interacting with the P2X7 receptor (P2X7R), and as an amplifier of NMDA receptor (NMDAR) currents, particularly in conditions of pathological neuronal hyperexcitability. Here, we briefly reviewed the current evidences that support the interaction of Panx1 with NMDAR and P2X7R in pathological contexts of the CNS, with special focus in recent data supporting that Panx1 is involved in chronic pain signaling by interacting with NMDAR in neurons and with P2X7R in glia. The participation of Panx1 in chronic pain constitutes a novel topic for research in the field of clinical neurosciences and a potential target for pharmacological interventions in chronic pain.
Collapse
Affiliation(s)
- D Bravo
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Chile; School of Kinesiology, Faculty of Sport, Health and Recreation, University Bernardo O'Higgins, Chile.
| | - C J Maturana
- Departamento de Fisiología, Pontificia Universidad Católica De Chile, Chile
| | - T Pelissier
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Chile
| | - A Hernández
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Chile
| | - L Constandil
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Chile
| |
Collapse
|