101
|
Inderbitzin A, Loosli T, Kouyos RD, Metzner KJ. Quantification of transgene expression in GSH AAVS1 with a novel CRISPR/Cas9-based approach reveals high transcriptional variation. Mol Ther Methods Clin Dev 2022; 26:107-118. [PMID: 35795775 PMCID: PMC9234542 DOI: 10.1016/j.omtm.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022]
Abstract
Genomic safe harbors (GSH) are defined as sites in the host genome that allow stable expression of inserted transgenes while having no adverse effects on the host cell, making them ideal for use in basic research and therapeutic applications. Silencing and fluctuations in transgene expression would be highly undesirable effects. We have previously shown that transgene expression in Jurkat T cells is not silenced for up to 160 days after CRISPR-Cas9-mediated insertion of reporter genes into the adeno-associated virus site 1 (AAVS1), a commonly used GSH. Here, we studied fluctuations in transgene expression upon targeted insertion into the GSH AAVS1. We have developed an efficient method to generate and validate highly complex barcoded plasmid libraries to study transgene expression on the single-cell level. Its applicability is demonstrated by inserting the barcoded transgene Cerulean into the AAVS1 locus in Jurkat T cells via the CRISPR-Cas9 technology followed by next-generation sequencing of the transcribed barcodes. We observed large transcriptional variations over two logs for transgene expression in the GSH AAVS1. This barcoded transgene insertion model is a powerful tool to investigate fluctuations in transgene expression at any GSH site.
Collapse
Affiliation(s)
- Anne Inderbitzin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Tom Loosli
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
102
|
Rybarikova M, Almacellas Barbanoj A, Schorge S, Déglon N. CNS gene therapy: present developments and emerging trends accelerating industry-academia pathways. Hum Gene Ther 2022; 33:913-922. [PMID: 36070435 DOI: 10.1089/hum.2022.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The recent success of first central nervous system gene therapies has reinvigorated the growing community of gene therapy researchers and strengthened the field's market position. We are witnessing an increase of clinical trials with long-term efficiency mainly for neurometabolic, neurodegenerative and neurodevelopmental diseases caused by loss-of-function mutations. The ever-expanding knowledge and accessibility to the most advanced tools allow enrichment of applications to more complex diseases. This gradually contributes towards sealing the gap between top diseases impacting current global health and those towards which gene therapy development is currently aimed. Here, we highlight innovative therapeutic approaches that have reached the clinics and outline the latest improvements of vector design and targeting. Finally, we address the pressing challenges faced by clinical trials and the direction they are heading.
Collapse
Affiliation(s)
- Margareta Rybarikova
- Lausanne University Hospital, Department of Clinical Neurosciences, Lausanne, Vaud, Switzerland.,Lausanne University Hospital, Neuroscience Research Center , Lausanne, Vaud, Switzerland;
| | - Amanda Almacellas Barbanoj
- University College London, Institute of Neurology (IoN), Department of Clinical and Experimental Epilepsy (DCEE), London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Stephanie Schorge
- University College London, Institute of Neurology (IoN), Department of Clinical and Experimental Epilepsy (DCEE), London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Nicole Déglon
- Lausanne University Hospital, Department of Clinical Neurosciences, Lausanne, Vaud, Switzerland.,Lausanne University Hospital, Neuroscience Research Center, Lausanne, Vaud, Switzerland;
| |
Collapse
|
103
|
Sabatino DE, Bushman FD, Chandler RJ, Crystal RG, Davidson BL, Dolmetsch R, Eggan KC, Gao G, Gil-Farina I, Kay MA, McCarty DM, Montini E, Ndu A, Yuan J. Evaluating the state of the science for adeno-associated virus integration: An integrated perspective. Mol Ther 2022; 30:2646-2663. [PMID: 35690906 PMCID: PMC9372310 DOI: 10.1016/j.ymthe.2022.06.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
On August 18, 2021, the American Society of Gene and Cell Therapy (ASGCT) hosted a virtual roundtable on adeno-associated virus (AAV) integration, featuring leading experts in preclinical and clinical AAV gene therapy, to further contextualize and understand this phenomenon. Recombinant AAV (rAAV) vectors are used to develop therapies for many conditions given their ability to transduce multiple cell types, resulting in long-term expression of transgenes. Although most rAAV DNA typically remains episomal, some rAAV DNA becomes integrated into genomic DNA at a low frequency, and rAAV insertional mutagenesis has been shown to lead to tumorigenesis in neonatal mice. Currently, the risk of rAAV-mediated oncogenesis in humans is theoretical because no confirmed genotoxic events have been reported to date. However, because insertional mutagenesis has been reported in a small number of murine studies, there is a need to characterize this genotoxicity to inform research, regulatory needs, and patient care. The purpose of this white paper is to review the evidence of rAAV-related host genome integration in animal models and possible risks of insertional mutagenesis in patients. In addition, technical considerations, regulatory guidance, and bioethics are discussed.
Collapse
Affiliation(s)
- Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randy J Chandler
- National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | | | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adora Ndu
- BridgeBio Pharma, Inc., Palo Alto, CA, USA
| | - Jing Yuan
- Drug Safety Research and Development, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
104
|
Mallack EJ, Van Haren KP, Torrey A, van de Stadt S, Engelen M, Raymond GV, Fatemi A, Eichler FS. Presymptomatic Lesion in Childhood Cerebral Adrenoleukodystrophy: Timing and Treatment. Neurology 2022; 99:e512-e520. [PMID: 35609989 PMCID: PMC9421600 DOI: 10.1212/wnl.0000000000200571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES We sought to characterize the natural history and standard-of-care practices between the radiologic appearance of brain lesions, the appearance of lesional enhancement, and treatment with hematopoietic stem-cell transplant or gene therapy among boys diagnosed with presymptomatic childhood-onset cerebral adrenoleukodystrophy (CCALD). METHODS We analyzed a multicenter, mixed retrospective/prospective cohort of patients diagnosed with presymptomatic CCALD (Neurologic Function Score = 0, Loes Score [LS] = 0.5-9.0, and age <13 years). Two time-to-event survival analyses were conducted: (1) time from CCALD lesion onset-to-lesional enhancement and (2) time from enhancement-to-treatment. The analysis was repeated in the subset of patients with (1) the earliest evidence of CCALD, defined as an MRI LS ≤ 1, and (2) patients diagnosed between 2016 and 2021. RESULTS Seventy-one boys were diagnosed with presymptomatic cerebral lesions at a median age of 6.4 years [2.4-12.1] with a LS of 1.5 [0.5-9.0]. Fifty percent of patients had lesional enhancement at diagnosis. In the remaining 50%, the median Kaplan-Meier (KM)-estimate of time from diagnosis-to-lesional enhancement was 6.0 months (95% CI 3.6-17.8). The median KM-estimate of time from enhancement-to-treatment is 3.8 months (95% CI 2.8-5.9); 2 patients (4.2%) developed symptoms before treatment. Patients with a diagnostic LS ≤ 1 were younger (5.8 years [2.4-11.5]), had a time-to-enhancement of 4.7 months (95% CI 2.7-9.30), and were treated in 3.8 months (95% CI 3.1-7.1); no patients developed symptoms before treatment. Time from CCALD diagnosis-to-treatment decreased over the course of the study (ρ = -0.401, p = 0.003). DISCUSSION Our findings offer a more refined understanding of the timing of lesion formation, enhancement, and treatment among boys with presymptomatic CCALD. These data offer benchmarks for standardizing clinical care and designing future clinical trials.
Collapse
Affiliation(s)
- Eric James Mallack
- From the Department of Pediatrics (E.J.M., A.T.), Division of Child Neurology, Weill Cornell Medical College, New York-Presbyterian Hospital; Department of Pediatrics (E.J.M.), Memorial Sloan Kettering Cancer Center, New York, NY; Department of Neurology (K.P.V.H.), Stanford University Schoolds of Medicine, Lucile Packard Children's Hospital, CA; Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, the Netherlands; Department of Genetic Medicine (G.V.R.), Johns Hopkins University, Baltimore, MD; The Moser Center for Leukodystrophies (A.F.), Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD; and Department of Neurology (F.S.E.), Harvard Medical School, Massachusetts General Hospital, Boston.
| | - Keith P Van Haren
- From the Department of Pediatrics (E.J.M., A.T.), Division of Child Neurology, Weill Cornell Medical College, New York-Presbyterian Hospital; Department of Pediatrics (E.J.M.), Memorial Sloan Kettering Cancer Center, New York, NY; Department of Neurology (K.P.V.H.), Stanford University Schoolds of Medicine, Lucile Packard Children's Hospital, CA; Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, the Netherlands; Department of Genetic Medicine (G.V.R.), Johns Hopkins University, Baltimore, MD; The Moser Center for Leukodystrophies (A.F.), Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD; and Department of Neurology (F.S.E.), Harvard Medical School, Massachusetts General Hospital, Boston
| | - Anna Torrey
- From the Department of Pediatrics (E.J.M., A.T.), Division of Child Neurology, Weill Cornell Medical College, New York-Presbyterian Hospital; Department of Pediatrics (E.J.M.), Memorial Sloan Kettering Cancer Center, New York, NY; Department of Neurology (K.P.V.H.), Stanford University Schoolds of Medicine, Lucile Packard Children's Hospital, CA; Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, the Netherlands; Department of Genetic Medicine (G.V.R.), Johns Hopkins University, Baltimore, MD; The Moser Center for Leukodystrophies (A.F.), Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD; and Department of Neurology (F.S.E.), Harvard Medical School, Massachusetts General Hospital, Boston
| | - Stephanie van de Stadt
- From the Department of Pediatrics (E.J.M., A.T.), Division of Child Neurology, Weill Cornell Medical College, New York-Presbyterian Hospital; Department of Pediatrics (E.J.M.), Memorial Sloan Kettering Cancer Center, New York, NY; Department of Neurology (K.P.V.H.), Stanford University Schoolds of Medicine, Lucile Packard Children's Hospital, CA; Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, the Netherlands; Department of Genetic Medicine (G.V.R.), Johns Hopkins University, Baltimore, MD; The Moser Center for Leukodystrophies (A.F.), Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD; and Department of Neurology (F.S.E.), Harvard Medical School, Massachusetts General Hospital, Boston
| | - Marc Engelen
- From the Department of Pediatrics (E.J.M., A.T.), Division of Child Neurology, Weill Cornell Medical College, New York-Presbyterian Hospital; Department of Pediatrics (E.J.M.), Memorial Sloan Kettering Cancer Center, New York, NY; Department of Neurology (K.P.V.H.), Stanford University Schoolds of Medicine, Lucile Packard Children's Hospital, CA; Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, the Netherlands; Department of Genetic Medicine (G.V.R.), Johns Hopkins University, Baltimore, MD; The Moser Center for Leukodystrophies (A.F.), Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD; and Department of Neurology (F.S.E.), Harvard Medical School, Massachusetts General Hospital, Boston
| | - Gerald V Raymond
- From the Department of Pediatrics (E.J.M., A.T.), Division of Child Neurology, Weill Cornell Medical College, New York-Presbyterian Hospital; Department of Pediatrics (E.J.M.), Memorial Sloan Kettering Cancer Center, New York, NY; Department of Neurology (K.P.V.H.), Stanford University Schoolds of Medicine, Lucile Packard Children's Hospital, CA; Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, the Netherlands; Department of Genetic Medicine (G.V.R.), Johns Hopkins University, Baltimore, MD; The Moser Center for Leukodystrophies (A.F.), Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD; and Department of Neurology (F.S.E.), Harvard Medical School, Massachusetts General Hospital, Boston
| | - Ali Fatemi
- From the Department of Pediatrics (E.J.M., A.T.), Division of Child Neurology, Weill Cornell Medical College, New York-Presbyterian Hospital; Department of Pediatrics (E.J.M.), Memorial Sloan Kettering Cancer Center, New York, NY; Department of Neurology (K.P.V.H.), Stanford University Schoolds of Medicine, Lucile Packard Children's Hospital, CA; Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, the Netherlands; Department of Genetic Medicine (G.V.R.), Johns Hopkins University, Baltimore, MD; The Moser Center for Leukodystrophies (A.F.), Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD; and Department of Neurology (F.S.E.), Harvard Medical School, Massachusetts General Hospital, Boston
| | - Florian S Eichler
- From the Department of Pediatrics (E.J.M., A.T.), Division of Child Neurology, Weill Cornell Medical College, New York-Presbyterian Hospital; Department of Pediatrics (E.J.M.), Memorial Sloan Kettering Cancer Center, New York, NY; Department of Neurology (K.P.V.H.), Stanford University Schoolds of Medicine, Lucile Packard Children's Hospital, CA; Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, the Netherlands; Department of Genetic Medicine (G.V.R.), Johns Hopkins University, Baltimore, MD; The Moser Center for Leukodystrophies (A.F.), Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD; and Department of Neurology (F.S.E.), Harvard Medical School, Massachusetts General Hospital, Boston
| |
Collapse
|
105
|
Activating cannabinoid receptor 2 preserves axonal health through GSK-3β/NRF2 axis in adrenoleukodystrophy. Acta Neuropathol 2022; 144:241-258. [PMID: 35778568 DOI: 10.1007/s00401-022-02451-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 11/01/2022]
Abstract
Aberrant endocannabinoid signaling accompanies several neurodegenerative disorders, including multiple sclerosis. Here, we report altered endocannabinoid signaling in X-linked adrenoleukodystrophy (X-ALD), a rare neurometabolic demyelinating syndrome caused by malfunction of the peroxisomal ABCD1 transporter, resulting in the accumulation of very long-chain fatty acids (VLCFAs). We found abnormal levels of cannabinoid receptor 2 (CB2r) and related endocannabinoid enzymes in the brain and peripheral blood mononuclear cells (PBMCs) of X-ALD patients and in the spinal cord of a murine model of X-ALD. Preclinical treatment with a selective agonist of CB2r (JWH133) halted axonal degeneration and associated locomotor deficits, along with normalization of microgliosis. Moreover, the drug improved the main metabolic disturbances underlying this model, particularly in redox and lipid homeostatic pathways, including increased lipid droplets in motor neurons, through the modulation of the GSK-3β/NRF2 axis. JWH133 inhibited Reactive Oxygen Species elicited by excess VLCFAs in primary microglial cultures of Abcd1-null mice. Furthermore, we uncovered intertwined redox and CB2r signaling in the murine spinal cords and in patient PBMC samples obtained from a phase II clinical trial with antioxidants (NCT01495260). These findings highlight CB2r signaling as a potential therapeutic target for X-ALD and perhaps other neurodegenerative disorders that present with dysregulated redox and lipid homeostasis.
Collapse
|
106
|
Bashyal N, Lee TY, Chang DY, Jung JH, Kim MG, Acharya R, Kim SS, Oh IH, Suh-Kim H. Improving the Safety of Mesenchymal Stem Cell-Based Ex Vivo Therapy Using Herpes Simplex Virus Thymidine Kinase. Mol Cells 2022; 45:479-494. [PMID: 35356894 PMCID: PMC9260133 DOI: 10.14348/molcells.2022.5015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) are multipotent stem cells that have been intensively studied as therapeutic tools for a variety of disorders. To enhance the efficacy of MSCs, therapeutic genes are introduced using retroviral and lentiviral vectors. However, serious adverse events (SAEs) such as tumorigenesis can be induced by insertional mutagenesis. We generated lentiviral vectors encoding the wild-type herpes simplex virus thymidine kinase (HSV-TK) gene and a gene containing a point mutation that results in an alanine to histidine substitution at residue 168 (TK(A168H)) and transduced expression in MSCs (MSC-TK and MSC-TK(A168H)). Transduction of lentiviral vectors encoding the TK(A168H) mutant did not alter the proliferation capacity, mesodermal differentiation potential, or surface antigenicity of MSCs. The MSC-TK(A168H) cells were genetically stable, as shown by karyotyping. MSC-TK(A168H) responded to ganciclovir (GCV) with an half maximal inhibitory concentration (IC50) value 10-fold less than that of MSC-TK. Because MSC-TK(A168H) cells were found to be non-tumorigenic, a U87-TK(A168H) subcutaneous tumor was used as a SAE-like condition and we evaluated the effect of valganciclovir (vGCV), an oral prodrug for GCV. U87-TK(A168H) tumors were more efficiently ablated by 200 mg/kg vGCV than U87-TK tumors. These results indicate that MSC-TK(A168H) cells appear to be pre-clinically safe for therapeutic use. We propose that genetic modification with HSV-TK(A168H) makes allogeneic MSC-based ex vivo therapy safer by eliminating transplanted cells during SAEs such as uncontrolled cell proliferation.
Collapse
Affiliation(s)
- Narayan Bashyal
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | - Tae-Young Lee
- Research Center, Cell&Brain Co., Ltd., Jeonju 54871, Korea
| | - Da-Young Chang
- Research Center, Cell&Brain Co., Ltd., Jeonju 54871, Korea
| | - Jin-Hwa Jung
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Min Gyeong Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | - Rakshya Acharya
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sung-Soo Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | - Il-Hoan Oh
- Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul 06591, Korea
| | - Haeyoung Suh-Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
- Research Center, Cell&Brain Co., Ltd., Jeonju 54871, Korea
| |
Collapse
|
107
|
Aigrot MS, Barthelemy C, Moyon S, Dufayet-Chaffaud G, Izagirre-Urizar L, Gillet-Legrand B, Tada S, Bayón-Cordero L, Chara JC, Matute C, Cartier N, Lubetzki C, Tepavčević V. Genetically modified macrophages accelerate myelin repair. EMBO Mol Med 2022; 14:e14759. [PMID: 35822550 PMCID: PMC9358396 DOI: 10.15252/emmm.202114759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Preventing neurodegeneration‐associated disability progression in patients with multiple sclerosis (MS) remains an unmet therapeutic need. As remyelination prevents axonal degeneration, promoting this process in patients might enhance neuroprotection. In demyelinating mouse lesions, local overexpression of semaphorin 3F (Sema3F), an oligodendrocyte progenitor cell (OPC) attractant, increases remyelination. However, molecular targeting to MS lesions is a challenge. A clinically relevant paradigm for delivering Sema3F to demyelinating lesions could be to use blood‐derived macrophages as vehicles. Thus, we chose transplantation of genetically modified hematopoietic stem cells (HSCs) as means of obtaining chimeric mice with circulating Sema3F‐overexpressing monocytes. We demonstrated that Sema3F‐transduced HSCs stimulate OPC migration in a neuropilin 2 (Nrp2, Sema3F receptor)‐dependent fashion, which was conserved in middle‐aged OPCs. While demyelinating lesions induced in mice with Sema3F‐expressing blood cells showed no changes in inflammation and OPC survival, OPC recruitment was enhanced which accelerated the onset of remyelination. Our results provide a proof of concept that blood cells, particularly monocytes/macrophages, can be used to deliver pro‐remyelinating agents “at the right time and place,” suggesting novel means for remyelination‐promoting strategies in MS.
Collapse
Affiliation(s)
| | - Clara Barthelemy
- INSERM UMR1127 Sorbonne Université, Paris Brain Institute (ICM), Paris, France
| | - Sarah Moyon
- NYU Langone Health, Neuroscience Institute, New York City, NY, USA
| | | | - Leire Izagirre-Urizar
- Achucarro Basque Center for Neuroscience/Department of Neuroscience, School of Medicine University of the Basque Country, Leioa, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Satoru Tada
- INSERM UMR1127 Sorbonne Université, Paris Brain Institute (ICM), Paris, France
| | - Laura Bayón-Cordero
- Achucarro Basque Center for Neuroscience/Department of Neuroscience, School of Medicine University of the Basque Country, Leioa, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan-Carlos Chara
- Achucarro Basque Center for Neuroscience/Department of Neuroscience, School of Medicine University of the Basque Country, Leioa, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience/Department of Neuroscience, School of Medicine University of the Basque Country, Leioa, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Nathalie Cartier
- Asklepios Biopharmaceutical, Inc., Institut du Cerveau (ICM), Paris, France
| | - Catherine Lubetzki
- INSERM UMR1127 Sorbonne Université, Paris Brain Institute (ICM), Paris, France.,AP-HP, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Vanja Tepavčević
- Achucarro Basque Center for Neuroscience/Department of Neuroscience, School of Medicine University of the Basque Country, Leioa, Spain
| |
Collapse
|
108
|
Jimenez-Kurlander L, Duncan CN. Gene Therapy for Pediatric Neurologic Disease. Hematol Oncol Clin North Am 2022; 36:853-864. [PMID: 35760664 DOI: 10.1016/j.hoc.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pediatric lysosomal and peroxisomal storage disorders, leukodystrophies, and motor neuron diseases can have devastating neurologic manifestations. Despite efforts to exploit cross-correction to treat these monogenic disorders for several decades, definitive treatment has yet to be identified. This review explores recent attempts to transduce autologous hematopoietic stem cells with functional gene or provide therapeutic gene in vivo. Specifically, we discuss the rationale behind efforts to treat pediatric neurologic disorders with gene therapy, outline the specific disorders that have been targeted at this time, and review recent and current clinical investigations with attention to the future direction of therapy efforts.
Collapse
Affiliation(s)
- Lauren Jimenez-Kurlander
- Department of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Christine N Duncan
- Department of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
109
|
Meng J, Moore M, Counsell J, Muntoni F, Popplewell L, Morgan J. Optimized lentiviral vector to restore full-length dystrophin via a cell-mediated approach in a mouse model of Duchenne muscular dystrophy. Mol Ther Methods Clin Dev 2022; 25:491-507. [PMID: 35615709 PMCID: PMC9121076 DOI: 10.1016/j.omtm.2022.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle wasting disorder caused by mutations in the DMD gene. Restoration of full-length dystrophin protein in skeletal muscle would have therapeutic benefit, but lentivirally mediated delivery of such a large gene in vivo has been hindered by lack of tissue specificity, limited transduction, and insufficient transgene expression. To address these problems, we developed a lentiviral vector, which contains a muscle-specific promoter and sequence-optimized full-length dystrophin, to constrain dystrophin expression to differentiated myotubes/myofibers and enhance the transgene expression. We further explored the efficiency of restoration of full-length dystrophin in vivo, by grafting DMD myoblasts that had been corrected by this optimized lentiviral vector intramuscularly into an immunodeficient DMD mouse model. We show that these lentivirally corrected DMD myoblasts effectively reconstituted full-length dystrophin expression in 93.58% ± 2.17% of the myotubes in vitro. Moreover, dystrophin was restored in 64.4% ± 2.87% of the donor-derived regenerated muscle fibers in vivo, which were able to recruit members of the dystrophin-glycoprotein complex at the sarcolemma. This study represents a significant advance over existing cell-mediated gene therapy strategies for DMD that aim to restore full-length dystrophin expression in skeletal muscle.
Collapse
Affiliation(s)
- Jinhong Meng
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Marc Moore
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham TW20 0EX, UK
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - John Counsell
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- UCL Division of Surgery and Interventional Science, Charles Bell House, 43-45 Foley Street, London W1W 7TY, UK
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham TW20 0EX, UK
| | - Jennifer Morgan
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| |
Collapse
|
110
|
Improved engraftment and therapeutic efficacy by human genome-edited hematopoietic stem cells with Busulfan-based myeloablation. Mol Ther Methods Clin Dev 2022; 25:392-409. [PMID: 35573043 PMCID: PMC9065050 DOI: 10.1016/j.omtm.2022.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/14/2022] [Indexed: 12/26/2022]
Abstract
Autologous hematopoietic stem cell transplantation using genome-edited cells can become a definitive therapy for hematological and non-hematological disorders with neurological involvement. Proof-of-concept studies using human genome-edited hematopoietic stem cells have been hindered by the low efficiency of engraftment of the edited cells in the bone marrow and their modest efficacy in the CNS. To address these challenges, we tested a myeloablative conditioning regimen based on Busulfan in an immunocompromised model of mucopolysaccharidosis type 1. Compared with sub-lethal irradiation, Busulfan conditioning enhanced the engraftment of edited CD34+ cells in the bone marrow, as well the long-term homing and survival of bone-marrow-derived cells in viscera, and in the CNS, resulting in higher transgene expression and biochemical correction in these organs. Edited cell selection using a clinically compatible marker resulted in a population with low engraftment potential. We conclude that conditioning can impact the engraftment of edited hematopoietic stem cells. Furthermore, Busulfan-conditioned recipients have a higher expression of therapeutic proteins in target organs, particularly in the CNS, constituting a better conditioning approach for non-hematological diseases with neurological involvement.
Collapse
|
111
|
Chiesa R, Bernardo ME. Haematopoietic stem cell gene therapy in inborn errors of metabolism. Br J Haematol 2022; 198:227-243. [PMID: 35535965 DOI: 10.1111/bjh.18179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 03/06/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
Over the last 30 years, allogeneic haematopoietic stem cell transplantation (allo-HSCT) has been adopted as a therapeutic strategy for many inborn errors of metabolism (IEM), due to the ability of donor-derived cells to provide life-long enzyme delivery to deficient tissues and organs. However, (a) the clinical benefit of allo-HSCT is limited to a small number of IEM, (b) patients are left with a substantial residual disease burden and (c) allo-HSCT is still associated with significant short- and long-term toxicities and transplant-related mortality. Haematopoietic stem/progenitor cell gene therapy (HSPC-GT) was established in the 1990s for the treatment of selected monogenic primary immunodeficiencies and over the past few years, its use has been extended to a number of IEM. HSPC-GT is particularly attractive in neurodegenerative IEM, as gene corrected haematopoietic progenitors can deliver supra-physiological enzyme levels to difficult-to-reach areas, such as the brain and the skeleton, with potential increased clinical benefit. Moreover, HSPC-GT is associated with reduced morbidity and mortality compared to allo-HSCT, although this needs to be balanced against the potential risk of insertional mutagenesis. The number of clinical trials in the IEM field is rapidly increasing and some HSPC-GT products recently received market approval. This review describes the development of ex vivo HSPC-GT in a number of IEM, with a focus on recent results from GT clinical trials and risks versus benefits considerations, when compared to established therapeutic strategies, such as allo-HSCT.
Collapse
Affiliation(s)
- Robert Chiesa
- Bone Marrow Transplantation Department, Great Ormond Street Hospital for Sick Children NHS Foundation Trust, London, UK
| | - Maria Ester Bernardo
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,"Vita Salute" San Raffaele University, Milan, Italy
| |
Collapse
|
112
|
Caruso SM, Quinn PM, da Costa BL, Tsang SH. CRISPR/Cas therapeutic strategies for autosomal dominant disorders. J Clin Invest 2022; 132:158287. [PMID: 35499084 PMCID: PMC9057583 DOI: 10.1172/jci158287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Salvatore Marco Caruso
- Department of Biomedical Engineering and
- Jonas Children’s Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York, New York, USA
- Edward S. Harkness Eye Institute, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Peter M.J. Quinn
- Jonas Children’s Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York, New York, USA
- Edward S. Harkness Eye Institute, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Bruna Lopes da Costa
- Department of Biomedical Engineering and
- Jonas Children’s Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York, New York, USA
- Edward S. Harkness Eye Institute, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Stephen H. Tsang
- Department of Biomedical Engineering and
- Jonas Children’s Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York, New York, USA
- Edward S. Harkness Eye Institute, NewYork-Presbyterian Hospital, New York, New York, USA
- Institute of Human Nutrition, Department of Ophthalmology and Department of Pathology and Cell Biology
- Columbia Stem Cell Initiative, and
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
113
|
Konturek-Ciesla A, Bryder D. Stem Cells, Hematopoiesis and Lineage Tracing: Transplantation-Centric Views and Beyond. Front Cell Dev Biol 2022; 10:903528. [PMID: 35573680 PMCID: PMC9091331 DOI: 10.3389/fcell.2022.903528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
An appropriate production of mature blood cells, or hematopoiesis, is essential for organismal health and homeostasis. In this developmental cascade, hematopoietic stem cells (HSCs) differentiate into intermediate progenitor types, that subsequently give rise to the many distinct blood cell lineages. Here, we describe tools and methods that permit for temporal and native clonal-level HSC lineage tracing in the mouse, and that can now be combined with emerging single-cell molecular analyses. We integrate new insights derived from such experimental paradigms with past knowledge, which has predominantly been derived from transplantation-based approaches. Finally, we outline current knowledge and novel strategies derived from studies aimed to trace human HSC-derived hematopoiesis.
Collapse
|
114
|
Baker CV, Cady Keller A, Lutz R, Eveans K, Baumert K, DiPerna JC, Rizzo WB. Newborn Screening for X-Linked Adrenoleukodystrophy in Nebraska: Initial Experiences and Challenges. Int J Neonatal Screen 2022; 8:ijns8020029. [PMID: 35645283 PMCID: PMC9149921 DOI: 10.3390/ijns8020029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disease caused by pathogenic variants in ABCD1 resulting in defective peroxisomal oxidation of very long-chain fatty acids. Most male patients develop adrenal insufficiency and one of two neurologic phenotypes: a rapidly progressive demyelinating disease in mid-childhood (childhood cerebral X-ALD, ccALD) or an adult-onset spastic paraparesis (adrenomyeloneuropathy, AMN). The neurodegenerative course of ccALD can be halted if patients are treated with hematopoietic stem cell transplantation at the earliest onset of white matter disease. Newborn screening for X-ALD can be accomplished by measuring C26:0-lysophosphatidylcholine in dried blood spots. In Nebraska, X-ALD newborn screening was instituted in July 2018. Over a period of 3.3 years, 82,920 newborns were screened with 13 positive infants detected (4 males, 9 females), giving a birth prevalence of 1:10,583 in males and 1:4510 in females. All positive newborns had DNA variants in ABCD1. Lack of genotype-phenotype correlations, absence of predictive biomarkers for ccALD or AMN, and a high proportion of ABCD1 variants of uncertain significance are unique challenges in counseling families. Surveillance testing for adrenal and neurologic disease in presymptomatic X-ALD males will improve survival and overall quality of life.
Collapse
Affiliation(s)
- Craig V. Baker
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.V.B.); (A.C.K.); (R.L.)
| | - Alyssa Cady Keller
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.V.B.); (A.C.K.); (R.L.)
| | - Richard Lutz
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.V.B.); (A.C.K.); (R.L.)
| | - Karen Eveans
- Nebraska Newborn Screening Program, Department of Health and Human Services, Lincoln, NE 68509, USA; (K.E.); (K.B.)
| | - Krystal Baumert
- Nebraska Newborn Screening Program, Department of Health and Human Services, Lincoln, NE 68509, USA; (K.E.); (K.B.)
| | | | - William B. Rizzo
- Department of Pediatrics and Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-402-559-2560
| |
Collapse
|
115
|
Teber TA, Conti BJ, Haynes CA, Hietala A, Baker MW. Newborn Screen for X-Linked Adrenoleukodystrophy Using Flow Injection Tandem Mass Spectrometry in Negative Ion Mode. Int J Neonatal Screen 2022; 8:ijns8020027. [PMID: 35466198 PMCID: PMC9036197 DOI: 10.3390/ijns8020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder caused by pathogenic variants in the ATP-binding cassette subfamily D member 1 gene (ABCD1) that encodes the adrenoleukodystrophy protein (ALDP). Defects in ALDP result in elevated cerotic acid, and lead to C26:0-lysophosphatidylcholine (C26:0-LPC) accumulation, which is the primary biomarker used in newborn screening (NBS) for X-ALD. C26:0-LPC levels were measured in dried blood spot (DBS) NBS specimens using a flow injection analysis (FIA) coupled with electrospray ionization (ESI) tandem mass spectrometry (MS/MS) performed in negative ion mode. The method was validated by assessing and confirming linearity, accuracy, and precision. We have also established C26:0-LPC cutoff values that identify newborns at risk for X-ALD. The mean concentration of C26:0-LPC in 5881 de-identified residual routine NBS specimens was 0.07 ± 0.02 µM (mean + 1 standard deviation (SD)). All tested true X-ALD positive and negative samples were correctly identified based on C26:0-LPC cutoff concentrations for borderline between 0.15 µM and 0.22 µM (mean + 4 SD) and presumptive screening positive at ≥0.23 µM (mean + 8 SD). The presented FIA method shortens analysis run-time to 1.7 min, while maintaining the previously established advantage of utilizing negative mode MS to eliminate isobaric interferences that could lead to screening false positives.
Collapse
Affiliation(s)
- Tarek A. Teber
- Newborn Screening Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin School of Medicine and Public Health, 465 Henry Mall, Madison, WI 53706, USA; (T.A.T.); (B.J.C.)
| | - Brian J. Conti
- Newborn Screening Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin School of Medicine and Public Health, 465 Henry Mall, Madison, WI 53706, USA; (T.A.T.); (B.J.C.)
| | - Christopher A. Haynes
- Newborn Screening and Molecular Biology Branch, Centers for Disease Control and Prevention, 4770 Buford Hwy. NE, Atlanta, GA 30341, USA;
| | - Amy Hietala
- Newborn Screening Laboratory, Minnesota Department of Health, St. Paul, MN 55164, USA;
| | - Mei W. Baker
- Newborn Screening Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin School of Medicine and Public Health, 465 Henry Mall, Madison, WI 53706, USA; (T.A.T.); (B.J.C.)
- Genetics and Metabolism Division, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, 1500 Highland Avenue, Madison, WI 53705, USA
- Center for Human Genomics and Precision Medicine, University of Wisconsin School of Medicine and Public Health, Madison, 1111 Highland Avenue, Madison, WI 53705, USA
- Correspondence: ; Tel.: +1-608-890-1796
| |
Collapse
|
116
|
Habu T, Ishikawa H, Kim J. Gulo gene locus, a new Gene Editing locus for mammalian cells. Biotechnol J 2022; 17:e2100493. [PMID: 35416422 DOI: 10.1002/biot.202100493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022]
Abstract
Transgene technology is valuable and helpful in many fields, including basic medical and biological research, biotechnology, and therapy. Recent advances in targeting technology accelerate the production of transgenic plants and animals and the application for gene therapy. To develop the technology, we examine the utility as the new safe harbor locus, L-Gulono-γ-lactone oxidase (Gulo) locus in human and mice. We performed experiments in vitro and in vivo knockout and knockin mouse and cell lines to validate their applicability using these loci. The Gulo locus might be good candidates for safe harbor loci for transgenic research. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Toshiyuki Habu
- Department of Food Sciences and Nutrition, School of Food Sciences and Nutrition, Mukogawa Women's University, Hyogo, Nishinomiya, 663-8558, Japan
| | - Honoka Ishikawa
- Department of Food Sciences and Nutrition, School of Food Sciences and Nutrition, Mukogawa Women's University, Hyogo, Nishinomiya, 663-8558, Japan
| | - Jiyeong Kim
- Department of Food Sciences and Nutrition, School of Food Sciences and Nutrition, Mukogawa Women's University, Hyogo, Nishinomiya, 663-8558, Japan
| |
Collapse
|
117
|
Vojnits K, Nakanishi M, Porras D, Kim Y, Feng Z, Golubeva D, Bhatia M. Developing CRISPR/Cas9-Mediated Fluorescent Reporter Human Pluripotent Stem-Cell Lines for High-Content Screening. Molecules 2022; 27:molecules27082434. [PMID: 35458632 PMCID: PMC9025795 DOI: 10.3390/molecules27082434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022] Open
Abstract
Application of the CRISPR/Cas9 system to knock in fluorescent proteins to endogenous genes of interest in human pluripotent stem cells (hPSCs) has the potential to facilitate hPSC-based disease modeling, drug screening, and optimization of transplantation therapy. To evaluate the capability of fluorescent reporter hPSC lines for high-content screening approaches, we targeted EGFP to the endogenous OCT4 locus. Resulting hPSC–OCT4–EGFP lines generated expressed EGFP coincident with pluripotency markers and could be adapted to multi-well formats for high-content screening (HCS) campaigns. However, after long-term culture, hPSCs transiently lost their EGFP expression. Alternatively, through EGFP knock-in to the AAVS1 locus, we established a stable and consistent EGFP-expressing hPSC–AAVS1–EGFP line that maintained EGFP expression during in vitro hematopoietic and neural differentiation. Thus, hPSC–AAVS1–EGFP-derived sensory neurons could be adapted to a high-content screening platform that can be applied to high-throughput small-molecule screening and drug discovery campaigns. Our observations are consistent with recent findings indicating that high-frequency on-target complexities appear following CRISPR/Cas9 genome editing at the OCT4 locus. In contrast, we demonstrate that the AAVS1 locus is a safe genomic location in hPSCs with high gene expression that does not impact hPSC quality and differentiation. Our findings suggest that the CRISPR/Cas9-integrated AAVS1 system should be applied for generating stable reporter hPSC lines for long-term HCS approaches, and they underscore the importance of careful evaluation and selection of the applied reporter cell lines for HCS purposes.
Collapse
|
118
|
Tucci F, Galimberti S, Naldini L, Valsecchi MG, Aiuti A. A systematic review and meta-analysis of gene therapy with hematopoietic stem and progenitor cells for monogenic disorders. Nat Commun 2022; 13:1315. [PMID: 35288539 PMCID: PMC8921234 DOI: 10.1038/s41467-022-28762-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Ex-vivo gene therapy (GT) with hematopoietic stem and progenitor cells (HSPCs) engineered with integrating vectors is a promising treatment for monogenic diseases, but lack of centralized databases is hampering an overall outcomes assessment. Here we aim to provide a comprehensive assessment of the short and long term safety of HSPC-GT from trials using different vector platforms. We review systematically the literature on HSPC-GT to describe survival, genotoxicity and engraftment of gene corrected cells. From 1995 to 2020, 55 trials for 14 diseases met inclusion criteria and 406 patients with primary immunodeficiencies (55.2%), metabolic diseases (17.0%), haemoglobinopathies (24.4%) and bone marrow failures (3.4%) were treated with gammaretroviral vector (γRV) (29.1%), self-inactivating γRV (2.2%) or lentiviral vectors (LV) (68.7%). The pooled overall incidence rate of death is 0.9 per 100 person-years of observation (PYO) (95% CI = 0.37-2.17). There are 21 genotoxic events out of 1504.02 PYO, which occurred in γRV trials (0.99 events per 100 PYO, 95% CI = 0.18-5.43) for primary immunodeficiencies. Pooled rate of engraftment is 86.7% (95% CI = 67.1-95.5%) for γRV and 98.7% (95% CI = 94.5-99.7%) for LV HSPC-GT (p = 0.005). Our analyses show stable reconstitution of haematopoiesis in most recipients with superior engraftment and safer profile in patients receiving LV-transduced HSPCs.
Collapse
Affiliation(s)
- Francesca Tucci
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Galimberti
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Grazia Valsecchi
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Alessandro Aiuti
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
119
|
Baron Y, Sens J, Lange L, Nassauer L, Klatt D, Hoffmann D, Kleppa MJ, Barbosa PV, Keisker M, Steinberg V, Suerth JD, Vondran FW, Meyer J, Morgan M, Schambach A, Galla M. Improved alpharetrovirus-based Gag.MS2 particles for efficient and transient delivery of CRISPR-Cas9 into target cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:810-823. [PMID: 35141043 PMCID: PMC8801357 DOI: 10.1016/j.omtn.2021.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
DNA-modifying technologies, such as the CRISPR-Cas9 system, are promising tools in the field of gene and cell therapies. However, high and prolonged expression of DNA-modifying enzymes may cause cytotoxic and genotoxic side effects and is therefore unwanted in therapeutic approaches. Consequently, development of new and potent short-term delivery methods is of utmost importance. Recently, we developed non-integrating gammaretrovirus- and MS2 bacteriophage-based Gag.MS2 (g.Gag.MS2) particles for transient transfer of non-retroviral CRISPR-Cas9 RNA into target cells. In the present study, we further improved the technique by transferring the system to the alpharetroviral vector platform (a.Gag.MS2), which significantly increased CRISPR-Cas9 delivery into target cells and allowed efficient targeted knockout of endogenous TP53/Trp53 genes in primary murine fibroblasts as well as primary human fibroblasts, hepatocytes, and cord-blood-derived CD34+ stem and progenitor cells. Strikingly, co-packaging of Cas9 mRNA and multiple single guide RNAs (sgRNAs) into a.Gag.MS2 chimera displayed efficient targeted knockout of up to three genes. Co-transfection of single-stranded DNA donor oligonucleotides during CRISPR-Cas9 particle production generated all-in-one particles, which mediated up to 12.5% of homology-directed repair in primary cell cultures. In summary, optimized a.Gag.MS2 particles represent a versatile tool for short-term delivery of DNA-modifying enzymes into a variety of target cells, including primary murine and human cells.
Collapse
Affiliation(s)
- Yvonne Baron
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Johanna Sens
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Larissa Nassauer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Denise Klatt
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Marc-Jens Kleppa
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Philippe Vollmer Barbosa
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover 30625, Germany
| | - Maximilian Keisker
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Viviane Steinberg
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Julia D. Suerth
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Florian W.R. Vondran
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover 30625, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover Medical School, Hannover 30625, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
120
|
Avances en terapia génica en humanos: algunos conceptos básicos y un recorrido histórico. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [DOI: 10.1016/j.rmclc.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
121
|
Bone marrow transplantation chemotherapy disrupts regenerative brain cell populations. Nat Med 2022; 28:452-453. [PMID: 35210598 DOI: 10.1038/s41591-022-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
122
|
Sailor KA, Agoranos G, López-Manzaneda S, Tada S, Gillet-Legrand B, Guerinot C, Masson JB, Vestergaard CL, Bonner M, Gagnidze K, Veres G, Lledo PM, Cartier N. Hematopoietic stem cell transplantation chemotherapy causes microglia senescence and peripheral macrophage engraftment in the brain. Nat Med 2022; 28:517-527. [PMID: 35190726 DOI: 10.1038/s41591-022-01691-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023]
|
123
|
Ozgür-Günes Y, Chedik M, LE Stunff C, Fovet CM, Bougneres P. Long-term disease prevention with a gene therapy targeting oligodendrocytes in a mouse model of adrenomyeloneuropathy. Hum Gene Ther 2022; 33:936-949. [PMID: 35166123 DOI: 10.1089/hum.2021.293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adrenomyeloneuropathy (AMN) is a late-onset axonopathy of spinal cord tracts caused by mutations of the ABCD1 gene that encodes ALDP, a peroxisomal transporter of very long chain fatty acids (VLCFA). Disturbed metabolic interaction between oligodendrocytes (OL) and axons is suspected to play a major role in AMN axonopathy. To develop a vector targeting OL, the human ABCD1 gene driven by a short 0.3 kb part of the human myelin-associated glycoprotein (MAG) promoter was packaged into an adeno-associated viral serotype 9 (rAAV9). An intravenous injection of this vector at postnatal day 10 (P10) in Abcd1-/- mice, a model of AMN, allowed a near normal motor performance to persist for 24 months, while age-matched untreated mice developed major defects of balance and motricity. Three weeks post vector, 50-54% of spinal cord white matter OL were expressing ALDP at the cervical level, and only 6-7% after 24 months. In addition, 29-32% of cervical spinal cord astrocytes at 3 weeks and 16-19% at 24 months also expressed ALDP. C26:0-lysoPC, a sensitive VLCFA marker of AMN, was lower by 41% and 50%, respectively in the spinal cord and brain of vector-treated compared with untreated mice. In a non-human primate (NHP), the intrathecal injection of the rAAV9-MAG vector induced abundant ALDP expression at 3 weeks in spinal cord OL (43%, 29%, 26% at cervical, thoracic and lumbar levels) and cerebellum OL (35%). In addition, 33-41 % of spinal cord astrocytes expressed hALDP, and 27% of cerebellar astrocytes. To our knowledge, OL targeting had not been obtained before in primates with other vectors or promoters. The current results thus provide a robust proof-of-concept not only for the gene therapy of AMN but for other CNS diseases where the targeting of OL with the rAAV9-MAG vector may be of interest.
Collapse
Affiliation(s)
| | - Malha Chedik
- INSERM, 27102, Le Kremlin-Bicêtre, Île-de-France, France;
| | | | | | - Pierre Bougneres
- INSERM, 27102, 80 rue du Général Leclercc, Le Kremlin Bicêtre, France, 94276;
| |
Collapse
|
124
|
Urusov FA, Glazkova DV, Tsyganova GM, Pozdyshev DV, Bogoslovskaya EV, Shipulin GA. The Titer of the Lentiviral Vector Encoding Chimeric TRIM5α-HRH Gene is Reduced Due to Expression of TRIM5α-HRH in Producer Cells and the Negative Effect of Ef1α Promoter. Mol Biol 2022. [DOI: 10.1134/s0026893322010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
125
|
The EHA Research Roadmap: Hematopoietic Stem Cell Gene Therapy. Hemasphere 2022; 6:e671. [PMID: 35198856 PMCID: PMC8855740 DOI: 10.1097/hs9.0000000000000671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/14/2021] [Indexed: 11/26/2022] Open
|
126
|
Unnisa Z, Yoon JK, Schindler JW, Mason C, van Til NP. Gene Therapy Developments for Pompe Disease. Biomedicines 2022; 10:302. [PMID: 35203513 PMCID: PMC8869611 DOI: 10.3390/biomedicines10020302] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Pompe disease is an inherited neuromuscular disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). The most severe form is infantile-onset Pompe disease, presenting shortly after birth with symptoms of cardiomyopathy, respiratory failure and skeletal muscle weakness. Late-onset Pompe disease is characterized by a slower disease progression, primarily affecting skeletal muscles. Despite recent advancements in enzyme replacement therapy management several limitations remain using this therapeutic approach, including risks of immunogenicity complications, inability to penetrate CNS tissue, and the need for life-long therapy. The next wave of promising single therapy interventions involves gene therapies, which are entering into a clinical translational stage. Both adeno-associated virus (AAV) vectors and lentiviral vector (LV)-mediated hematopoietic stem and progenitor (HSPC) gene therapy have the potential to provide effective therapy for this multisystemic disorder. Optimization of viral vector designs, providing tissue-specific expression and GAA protein modifications to enhance secretion and uptake has resulted in improved preclinical efficacy and safety data. In this review, we highlight gene therapy developments, in particular, AAV and LV HSPC-mediated gene therapy technologies, to potentially address all components of the neuromuscular associated Pompe disease pathology.
Collapse
Affiliation(s)
- Zeenath Unnisa
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
| | - John K. Yoon
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
| | | | - Chris Mason
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
- Advanced Centre for Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Niek P. van Til
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
- Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
127
|
Structure and Function of the ABCD1 Variant Database: 20 Years, 940 Pathogenic Variants, and 3400 Cases of Adrenoleukodystrophy. Cells 2022; 11:cells11020283. [PMID: 35053399 PMCID: PMC8773697 DOI: 10.3390/cells11020283] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
The progressive neurometabolic disorder X-linked adrenoleukodystrophy (ALD) is caused by pathogenic variants in the ABCD1 gene, which encodes the peroxisomal ATP-binding transporter for very-long-chain fatty acids. The clinical spectrum of ALD includes adrenal insufficiency, myelopathy, and/or leukodystrophy. A complicating factor in disease management is the absence of a genotype–phenotype correlation in ALD. Since 1999, most ABCD1 (likely) pathogenic and benign variants have been reported in the ABCD1 Variant Database. In 2017, following the expansion of ALD newborn screening, the database was rebuilt. To add an additional level of confidence with respect to pathogenicity, for each variant, it now also reports the number of cases identified and, where available, experimental data supporting the pathogenicity of the variant. The website also provides information on a number of ALD-related topics in several languages. Here, we provide an updated analysis of the known variants in ABCD1. The order of pathogenic variant frequency, overall clustering of disease-causing variants in exons 1–2 (transmembrane domain spanning region) and 6–9 (ATP-binding domain), and the most commonly reported pathogenic variant p.Gln472Argfs*83 in exon 5 are consistent with the initial reports of the mutation database. Novel insights include nonrandom clustering of high-density missense variant hotspots within exons 1, 2, 6, 8, and 9. Perhaps more importantly, we illustrate the importance of collaboration and utility of the database as a scientific, clinical, and ALD-community-wide resource.
Collapse
|
128
|
Hong SA, Seo JH, Wi S, Jung ES, Yu J, Hwang GH, Yu JH, Baek A, Park S, Bae S, Cho SR. In vivo gene editing via homology-independent targeted integration for adrenoleukodystrophy treatment. Mol Ther 2022; 30:119-129. [PMID: 34058389 PMCID: PMC8753287 DOI: 10.1016/j.ymthe.2021.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 01/07/2023] Open
Abstract
Adrenoleukodystrophy (ALD) is caused by various pathogenic mutations in the X-linked ABCD1 gene, which lead to metabolically abnormal accumulations of very long-chain fatty acids in many organs. However, curative treatment of ALD has not yet been achieved. To treat ALD, we applied two different gene-editing strategies, base editing and homology-independent targeted integration (HITI), in ALD patient-derived fibroblasts. Next, we performed in vivo HITI-mediated gene editing using AAV9 vectors delivered via intravenous administration in the ALD model mice. We found that the ABCD1 mRNA level was significantly increased in HITI-treated mice, and the plasma levels of C24:0-LysoPC (lysophosphatidylcholine) and C26:0-LysoPC, sensitive diagnostic markers for ALD, were significantly reduced. These results suggest that HITI-mediated mutant gene rescue could be a promising therapeutic strategy for human ALD treatment.
Collapse
Affiliation(s)
- Sung-Ah Hong
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04673, South Korea
| | - Jung Hwa Seo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Soohyun Wi
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea; Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Eul Sik Jung
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, South Korea; JES Clinic, Incheon 21550, South Korea
| | - Jihyeon Yu
- Division of Life Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Gue-Ho Hwang
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04673, South Korea
| | - Ji Hea Yu
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Ahreum Baek
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea; Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, South Korea
| | - Soeon Park
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea; Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Sangsu Bae
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04673, South Korea.
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea; Graduate Program of Nano Science and Technology, Yonsei University, Seoul 03722, South Korea; Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
129
|
Ikeda T, Kawahara Y, Miyauchi A, Niijima H, Furukawa R, Shimozawa N, Morimoto A, Osaka H, Yamagata T. Low donor chimerism may be sufficient to prevent demyelination in adrenoleukodystrophy. JIMD Rep 2022; 63:19-24. [PMID: 35028267 PMCID: PMC8743339 DOI: 10.1002/jmd2.12259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/08/2022] Open
Abstract
Adrenoleukodystrophy (ALD) is a peroxisomal disorder characterized by white matter degeneration caused by adenosine triphosphate-binding cassette subfamily D member 1 (ABCD1) gene mutations, which lead to an accumulation of very-long-chain fatty acids (VLCFA). Hematopoietic stem cell transplantation (HSCT) is the most effective treatment; however, the ratio of donor-to-recipient cells required to prevent the progression of demyelination is unclear. The proband was diagnosed with the childhood cerebral form of ALD at 5 years of age based on the clinical phenotype, elevated plasma VLCFA levels, and pathogenic ABCD1 mutation c.293C>T (p.Ser98Leu). Soon after the diagnosis, he became bedridden. At 1 year of age, his younger brother was found to carry the same ABCD1 mutation; despite being asymptomatic, at 1 year and 9 months, head magnetic resonance imaging (MRI) showed high-signal-intensity lesions in the cerebral white matter. The patient underwent unrelated cord blood transplantation (UCBT) with a reduced conditioning regimen, which resulted in mixed chimerism. For 7 years after UCBT, the donor chimerism remained low (<10%) in peripheral blood and cerebrospinal fluid. However, even though a second HSCT was not performed, his neurological symptoms and brain MRI findings did not deteriorate. Our case suggests that even a small number of donor cells may prevent demyelination in ALD. This is an important case when considering the timing of a second HSCT.
Collapse
Affiliation(s)
- Takahiro Ikeda
- Department of PediatricsJichi Medical UniversityTochigiJapan
| | - Yuta Kawahara
- Department of PediatricsJichi Medical UniversityTochigiJapan
| | | | - Hitomi Niijima
- Department of PediatricsJichi Medical UniversityTochigiJapan
| | - Rieko Furukawa
- Department of RadiologyJichi Medical UniversityTochigiJapan
| | - Nobuyuki Shimozawa
- Division of Genomics Research, Life Science Research CenterGifu UniversityGifuJapan
| | - Akira Morimoto
- Department of PediatricsJichi Medical UniversityTochigiJapan
| | - Hitoshi Osaka
- Department of PediatricsJichi Medical UniversityTochigiJapan
| | | |
Collapse
|
130
|
Dong B, Lv W, Xu L, Zhao Y, Sun X, Wang Z, Cheng B, Fu Z, Wang Y. Identification of Two Novel Mutations of ABCD1 Gene in Pedigrees with X-Linked Adrenoleukodystrophy and Review of the Literature. Int J Endocrinol 2022; 2022:5479781. [PMID: 35479665 PMCID: PMC9038410 DOI: 10.1155/2022/5479781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND X-linked adrenoleukodystrophy (ALD) is an inherited peroxisomal metabolism disorder, resulting from the loss-of-function mutation of ATP-binding cassette protein subfamily D1 (ABCD1) gene. The dysfunction of ALD protein, a peroxisomal ATP-binding cassette transporter, results in the excessive saturated very long-chain fatty acids (VLCFAs) accumulation in organs including the brain, spine, and adrenal cortex. X-ALD is characterized as the childhood, adolescent, adult cerebral ALD, adrenomyeloneuropathy (AMN), adrenal insufficiency, and asymptomatic phenotypes, exhibiting a high variety of clinical neurological manifestations with or without adrenocortical insufficiency. RESULTS In this study, we reported two cases of X-ALD, which were first diagnosed as adrenal insufficiency (Addison's disease) and treated with adrenocortical supplement. However, both of the cases progressed as neurological symptoms and signs after decades. Elevated VLCFAs level, brain MRI scan, and genetic analysis confirmed final diagnosis. In addition, we identified two novel mutations of ABCD1 gene, NM_000033.3 (ABCD1): c.874_876delGAG (p.Glu292del) and NM_000033.3 (ABCD1): c.96_97delCT (p.Tyr33Profs∗161), in exon 1 of ABCD1 gene. Sanger sequencing confirmed that the proband's mother of the first case was heterozygous carrying the same variant. Adrenal insufficiency-only type is very rare; however, it may be the starting performance of X-ALD. In addition, we summarized reported mutation sites and clinical manifestations to investigate the correlationship of phenotype-genotype of X-ALD. CONCLUSIONS The early warning manifestations should be noticed, and the probability of X-ALD should be considered. This report could be beneficial for the early diagnosis and genetic counseling for patients with X-ALD.
Collapse
Affiliation(s)
- Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Wenshan Lv
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yuhang Zhao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaofang Sun
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zhongchao Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Bingfei Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zhengju Fu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
131
|
Shaimardanova AA, Chulpanova DS, Solovyeva VV, Aimaletdinov AM, Rizvanov AA. Functionality of a bicistronic construction containing HEXA and HEXB genes encoding β-hexosaminidase A for cell-mediated therapy of GM2 gangliosidoses. Neural Regen Res 2022; 17:122-129. [PMID: 34100447 PMCID: PMC8451576 DOI: 10.4103/1673-5374.314310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Tay-Sachs disease and Sandhoff disease are severe hereditary neurodegenerative disorders caused by a deficiency of β-hexosaminidase A (HexA) enzyme, which results in the accumulation of GM2 gangliosides in the nervous system cells. In this work, we analyzed the efficacy and safety of cell-mediated gene therapy for Sandhoff disease and Sandhoff disease using a bicistronic lentiviral vector encoding cDNA of HexA α- and β-subunit genes separated by the nucleotide sequence of a P2A peptide (HEXA-HEXB). The functionality of the bicistronic construct containing the HEXA-HEXB genetic cassette was analyzed in a culture of HEK293T cells and human umbilical cord blood mononuclear cells (hUCBMCs). Our results showed that the enzymatic activity of HexA in the conditioned medium harvested from genetically modified HEK293T-HEXA-HEXB and hUCBMCs-HEXA-HEXB was increased by 23 and 8 times, respectively, compared with the conditioned medium of native cells. Western blot analysis showed that hUCBMCs-HEXA-HEXB secreted both completely separated HEXA and HEXB proteins, and an uncleaved protein containing HEXA + HEXB linked by the P2A peptide. Intravenous injection of genetically modified hUCBMCs-HEXA-HEXB to laboratory Wistar rats was carried out, and the HexA enzymatic activity in the blood plasma of experimental animals, as well as the number of live cells of immune system organs (spleen, thymus, bone marrow, lymph nodes) were determined. A significant increase in the enzymatic activity of HexA in the blood plasma of laboratory rats on days 6 and 9 (by 2.5 and 3 times, respectively) after the administration of hUCBMCs-HEXA-HEXB was shown. At the same time, the number of live cells in the studied organs remained unchanged. Thus, the functionality of the bicistronic genetic construct encoding cDNA of the HEXA and HEXB genes separated by the nucleotide sequence of the P2A peptide was shown in vitro and in vivo. We hypothesize that due to the natural ability of hUCBMCs to overcome biological barriers, such a strategy can restore the activity of the missing enzyme in the central nervous system of patients with GM2 gangliosidoses. Based on the obtained data, it can be concluded that intravenous administration of hUCBMCs with HexA overexpression is a promising method of the therapy for GM2 gangliosidoses. The animal protocol was approved by the Animal Ethics Committee of the Kazan Federal University (No. 23) on June 30, 2020.
Collapse
Affiliation(s)
- Alisa A Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
132
|
Comisel RM, Kara B, Fiesser FH, Farid SS. Gene therapy process change evaluation framework: Transient transfection and stable producer cell line comparison. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
133
|
Xie YX, Lv WQ, Chen YK, Hong S, Yao XP, Chen WJ, Zhao M. Advances in gene therapy for neurogenetic diseases: a brief review. J Mol Med (Berl) 2021; 100:385-394. [PMID: 34837498 DOI: 10.1007/s00109-021-02167-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
Neurogenetic diseases are neurological conditions with a genetic cause (s). There are thousands of neurogenetic diseases, and most of them are incurable. The development of bioinformatics and elucidation of the mechanism of pathogenesis have allowed the development of gene therapy approaches, which show great potential in treating neurogenetic diseases. Viral vectors delivery, antisense oligonucleotides, gene editing, RNA interference, and burgeoning viroid delivery technique are promising gene therapy strategies, and commendable therapeutic effects in the treatment of neurogenetic diseases have been achieved (Fig. 1). This review highlights a sampling of advances in gene therapies for neurogenetic disorders. Fig. 1 Examples of gene therapy strategies used in the treatment of neurogenetic diseases. The schematic diagram shows different gene therapy approaches used for treating a sampling of neurogenetic disorders, such as ASO therapy, gene editing, gene augmentation, and RNA interference.
Collapse
Affiliation(s)
- Ying-Xuan Xie
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Wen-Qi Lv
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Yi-Kun Chen
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Shunyan Hong
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Xiang-Ping Yao
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Miao Zhao
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
134
|
Vogiatzis S, Celestino M, Trevisan M, Magro G, Del Vecchio C, Erdengiz D, Palù G, Parolin C, Maguire-Zeiss K, Calistri A. Lentiviral Vectors Expressing Chimeric NEDD4 Ubiquitin Ligases: An Innovative Approach for Interfering with Alpha-Synuclein Accumulation. Cells 2021; 10:cells10113256. [PMID: 34831478 PMCID: PMC8624294 DOI: 10.3390/cells10113256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
One of the main pathological features of Parkinson’s disease (PD) is a diffuse accumulation of alpha-synuclein (aS) aggregates in neurons. The NEDD4 E3 Ub ligase promotes aS degradation by the endosomal–lysosomal route. Interestingly, NEDD4, as well as being a small molecule able to trigger its functions, is protective against human aS toxicity in evolutionary distant models. While pharmacological activation of E3 enzymes is not easy to achieve, their flexibility and the lack of “consensus” motifs for Ub-conjugation allow the development of engineered Ub-ligases, able to target proteins of interest. We developed lentiviral vectors, encoding well-characterized anti-human aS scFvs fused in frame to the NEDD4 catalytic domain (ubiquibodies), in order to target ubiquitinate aS. We demonstrate that, while all generated ubiquibodies bind to and ubiquitinate aS, the one directed against the non-amyloid component (NAC) of aS (Nac32HECT) affects aS’s intracellular levels. Furthermore, Nac32HECT expression partially rescues aS’s overexpression or mutation toxicity in neural stem cells. Overall, our data suggest that ubiquibodies, and Nac32HECT in particular, represent a valid platform for interfering with the effects of aS’s accumulation and aggregation in neurons.
Collapse
Affiliation(s)
- Stefania Vogiatzis
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Michele Celestino
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Marta Trevisan
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Gloria Magro
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Deran Erdengiz
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, NRB, EP04, Washington, DC 20057, USA; (D.E.); (K.M.-Z.)
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
| | - Kathleen Maguire-Zeiss
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, NRB, EP04, Washington, DC 20057, USA; (D.E.); (K.M.-Z.)
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy; (S.V.); (M.C.); (M.T.); (G.M.); (C.D.V.); (G.P.); (C.P.)
- Correspondence: ; Tel.: +39-049-827-2341
| |
Collapse
|
135
|
Moreira A, Faria T, Oliveira J, Kavara A, Schofield M, Sanderson T, Collins M, Gantier R, Alves P, Carrondo M, Peixoto C. Enhancing the purification of Lentiviral vectors for clinical applications. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
136
|
Ma CY, Li C, Zhou X, Zhang Z, Jiang H, Liu H, Chen HJ, Tse HF, Liao C, Lian Q. Management of adrenoleukodystrophy: From pre-clinical studies to the development of new therapies. Biomed Pharmacother 2021; 143:112214. [PMID: 34560537 DOI: 10.1016/j.biopha.2021.112214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is an inherited neurodegenerative disorder associated with mutations of the ABCD1 gene that encodes a peroxisomal transmembrane protein. It results in accumulation of very long chain fatty acids in tissues and body fluid. Along with other factors such as epigenetic and environmental involvement, ABCD1 mutation-provoked disorders can present different phenotypes including cerebral adrenoleukodystrophy (cALD), adrenomyeloneuropathy (AMN), and peripheral neuropathy. cALD is the most severe form that causes death in young childhood. Bone marrow transplantation and hematopoietic stem cell gene therapy are only effective when performed at an early stage of onsets in cALD. Nonetheless, current research and development of novel therapies are hampered by a lack of in-depth understanding disease pathophysiology and a lack of reliable cALD models. The Abcd1 and Abcd1/Abcd2 knock-out mouse models as well as the deficiency of Abcd1 rabbit models created in our lab, do not develop cALD phenotypes observed in human beings. In this review, we summarize the clinical and biochemical features of X-ALD, the progress of pre-clinical and clinical studies. Challenges and perspectives for future X-ALD studies are also discussed.
Collapse
Affiliation(s)
- Chui Yan Ma
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong
| | - Cheng Li
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong
| | - Xiaoya Zhou
- Prenatal Diagnostic Centre and Cord Blood Bank, China
| | - Zhao Zhang
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong
| | - Hua Jiang
- Department of Haematology, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Huanhuan Joyce Chen
- The Pritzker School of Molecular Engineering, the University of Chicago, IL 60637, USA
| | - Hung-Fat Tse
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong
| | - Can Liao
- Prenatal Diagnostic Centre and Cord Blood Bank, China
| | - Qizhou Lian
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong; State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong; Prenatal Diagnostic Centre and Cord Blood Bank, China.
| |
Collapse
|
137
|
He Y, Phan K, Bhatia S, Pickford R, Fu Y, Yang Y, Hodges JR, Piguet O, Halliday GM, Kim WS. Increased VLCFA-lipids and ELOVL4 underlie neurodegeneration in frontotemporal dementia. Sci Rep 2021; 11:21348. [PMID: 34725421 PMCID: PMC8560873 DOI: 10.1038/s41598-021-00870-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Rare, yet biologically critical, lipids that contain very long chain fatty acids (VLCFA-lipids) are synthesized in the brain by the enzyme ELOVL4. High levels of VLCFA-lipids are toxic to cells and excess VLCFA-lipids are actively removed by ABCD1 in an ATP-dependent manner. Virtually nothing is known about the impact of VLCFA-lipids in neurodegenerative diseases. Here, we investigated the possible role of VLCFA-lipids in frontotemporal dementia (FTD), which is a leading cause of younger-onset dementia. Using quantitative discovery lipidomics, we identified three VLCFA-lipid species that were significantly increased in FTD brain compared to controls, with strong correlations with ELOVL4. Increases in ELOVL4 expression correlated with significant decreases in the membrane-bound synaptophysin in FTD brain. Furthermore, increases in ABCD1 expression correlated with increases in VLCFA-lipids. We uncovered a new pathomechanism that is pertinent to understanding the pathogenesis of FTD.
Collapse
Affiliation(s)
- Ying He
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Katherine Phan
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Surabhi Bhatia
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - YuHong Fu
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Yue Yang
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - John R Hodges
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Olivier Piguet
- Brain and Mind Centre and School of Psychology, The University of Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia.
- Neuroscience Research Australia, Sydney, NSW, Australia.
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
138
|
Papanikolaou E, Bosio A. The Promise and the Hope of Gene Therapy. Front Genome Ed 2021; 3:618346. [PMID: 34713249 PMCID: PMC8525363 DOI: 10.3389/fgeed.2021.618346] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
It has been over 30 years since visionary scientists came up with the term "Gene Therapy," suggesting that for certain indications, mostly monogenic diseases, substitution of the missing or mutated gene with the normal allele via gene addition could provide long-lasting therapeutic effect to the affected patients and consequently improve their quality of life. This notion has recently become a reality for certain diseases such as hemoglobinopathies and immunodeficiencies and other monogenic diseases. However, the therapeutic wave of gene therapies was not only applied in this context but was more broadly employed to treat cancer with the advent of CAR-T cell therapies. This review will summarize the gradual advent of gene therapies from bench to bedside with a main focus on hemopoietic stem cell gene therapy and genome editing and will provide some useful insights into the future of genetic therapies and their gradual integration in the everyday clinical practice.
Collapse
Affiliation(s)
- Eleni Papanikolaou
- Department of Molecular Technologies and Stem Cell Therapy, Miltenyi Biotec, Bergisch Gladbach, Germany.,Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Bosio
- Department of Molecular Technologies and Stem Cell Therapy, Miltenyi Biotec, Bergisch Gladbach, Germany
| |
Collapse
|
139
|
Büning H, Fehse B, Ivics Z, Kochanek S, Koehl U, Kupatt C, Mussolino C, Nettelbeck DM, Schambach A, Uckert W, Wagner E, Cathomen T. Gene Therapy "Made in Germany": A Historical Perspective, Analysis of the Status Quo, and Recommendations for Action by the German Society for Gene Therapy. Hum Gene Ther 2021; 32:987-996. [PMID: 34662229 DOI: 10.1089/hum.2021.29178.hbu] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene therapies have been successfully applied to treat severe inherited and acquired disorders. Although research and development are sufficiently well funded in Germany and while the output of scientific publications and patents is comparable with the leading nations in gene therapy, the country lags noticeably behind with regard to the number of both clinical studies and commercialized gene therapy products. In this article, we give a historical perspective on the development of gene therapy in Germany, analyze the current situation from the standpoint of the German Society for Gene Therapy (DG-GT), and define recommendations for action that would enable our country to generate biomedical and economic advantages from innovations in this sector, instead of merely importing advanced therapy medicinal products. Inter alia, we propose (1) to harmonize and simplify regulatory licensing processes to enable faster access to advanced therapies, and (2) to establish novel coordination, support and funding structures that facilitate networking of the key players. Such a center would provide the necessary infrastructure and know-how to translate cell and gene therapies to patients on the one hand, and pave the way for commercialization of these promising and innovative technologies on the other. Hence, these courses of action would not only benefit the German biotech and pharma landscape but also the society and the patients in need of new treatment options.
Collapse
Affiliation(s)
- Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) and Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Dirk M Nettelbeck
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Wolfgang Uckert
- Department of Molecular Cell Biology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Center for NanoScience (CeNS), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
140
|
Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202100255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Muzahidul I. Anik
- Department of Chemical Engineering University of Rhode Island South Kingstown Rhode Island USA
| | - Niaz Mahmud
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering Bangladesh University of Engineering and Technology Dhaka Bangladesh
| | - Maruf Hasan
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| |
Collapse
|
141
|
Jensen TL, Gøtzsche CR, Woldbye DPD. Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord. Front Mol Neurosci 2021; 14:695937. [PMID: 34690692 PMCID: PMC8527017 DOI: 10.3389/fnmol.2021.695937] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, gene therapy has been raising hopes toward viable treatment strategies for rare genetic diseases for which there has been almost exclusively supportive treatment. We here review this progress at the pre-clinical and clinical trial levels as well as market approvals within diseases that specifically affect the brain and spinal cord, including degenerative, developmental, lysosomal storage, and metabolic disorders. The field reached an unprecedented milestone when Zolgensma® (onasemnogene abeparvovec) was approved by the FDA and EMA for in vivo adeno-associated virus-mediated gene replacement therapy for spinal muscular atrophy. Shortly after EMA approved Libmeldy®, an ex vivo gene therapy with lentivirus vector-transduced autologous CD34-positive stem cells, for treatment of metachromatic leukodystrophy. These successes could be the first of many more new gene therapies in development that mostly target loss-of-function mutation diseases with gene replacement (e.g., Batten disease, mucopolysaccharidoses, gangliosidoses) or, less frequently, gain-of-toxic-function mutation diseases by gene therapeutic silencing of pathologic genes (e.g., amyotrophic lateral sclerosis, Huntington's disease). In addition, the use of genome editing as a gene therapy is being explored for some diseases, but this has so far only reached clinical testing in the treatment of mucopolysaccharidoses. Based on the large number of planned, ongoing, and completed clinical trials for rare genetic central nervous system diseases, it can be expected that several novel gene therapies will be approved and become available within the near future. Essential for this to happen is the in depth characterization of short- and long-term effects, safety aspects, and pharmacodynamics of the applied gene therapy platforms.
Collapse
Affiliation(s)
- Thomas Leth Jensen
- Department of Neurology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | | | |
Collapse
|
142
|
Sevin C, Deiva K. Clinical Trials for Gene Therapy in Lysosomal Diseases With CNS Involvement. Front Mol Biosci 2021; 8:624988. [PMID: 34604300 PMCID: PMC8481654 DOI: 10.3389/fmolb.2021.624988] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
There are over 70 known lysosomal storage disorders (LSDs), most caused by mutations in genes encoding lysosomal hydrolases. Central nervous system involvement is a hallmark of the majority of LSDs and, if present, generally determines the prognosis of the disease. Nonetheless, brain disease is currently poorly targeted by available therapies, including systemic enzyme replacement therapy, mostly (but not only) due to the presence of the blood–brain barrier that restricts the access of orally or parenterally administered large molecules into the brain. Thus, one of the greatest and most exciting challenges over coming years will be to succeed in developing effective therapies for the treatment of central nervous system manifestations in LSDs. Over recent years, gene therapy (GT) has emerged as a promising therapeutic strategy for a variety of inherited neurodegenerative diseases. In LSDs, the ability of genetically corrected cells to cross-correct adjacent lysosomal enzyme-deficient cells in the brain after gene transfer might enhance the diffusion of the recombinant enzyme, making this group of diseases a strong candidate for such an approach. Both in vivo (using the administration of recombinant adeno-associated viral vectors) and ex vivo (auto-transplantation of lentiviral vector-modified hematopoietic stem cells-HSCs) strategies are feasible. Promising results have been obtained in an ever-increasing number of preclinical studies in rodents and large animal models of LSDs, and these give great hope of GT successfully correcting neurological defects, once translated to clinical practice. We are now at the stage of treating patients, and various clinical trials are underway, to assess the safety and efficacy of in vivo and ex vivo GT in several neuropathic LSDs. In this review, we summarize different approaches being developed and review the current clinical trials related to neuropathic LSDs, their results (if any), and their limitations. We will also discuss the pitfalls and the remaining challenges.
Collapse
Affiliation(s)
- Caroline Sevin
- Pediatric Neurology Department, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Kumaran Deiva
- Pediatric Neurology Department, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| |
Collapse
|
143
|
Sevilla J, Navarro S, Rio P, Sánchez-Domínguez R, Zubicaray J, Gálvez E, Merino E, Sebastián E, Azqueta C, Casado JA, Segovia JC, Alberquilla O, Bogliolo M, Román-Rodríguez FJ, Giménez Y, Larcher L, Salgado R, Pujol RM, Hladun R, Castillo A, Soulier J, Querol S, Fernández J, Schwartz J, García de Andoín N, López R, Catalá A, Surralles J, Díaz-de-Heredia C, Bueren JA. Improved collection of hematopoietic stem cells and progenitors from Fanconi anemia patients for gene therapy purposes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:66-75. [PMID: 34485595 PMCID: PMC8390450 DOI: 10.1016/j.omtm.2021.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022]
Abstract
Difficulties in the collection of hematopoietic stem and progenitor cells (HSPCs) from Fanconi anemia (FA) patients have limited the gene therapy in this disease. We have investigated (ClinicalTrials.gov, NCT02931071) the safety and efficacy of filgrastim and plerixafor for mobilization of HSPCs and collection by leukapheresis in FA patients. Nine of eleven enrolled patients mobilized beyond the threshold level of 5 CD34+ cells/μL required to initiate apheresis. A median of 21.8 CD34+ cells/μL was reached at the peak of mobilization. Significantly, the oldest patients (15 and 16 years old) were the only ones who did not reach that threshold. A median of 4.27 million CD34+ cells/kg was collected in 2 or 3 aphereses. These numbers were markedly decreased to 1.1 million CD34+ cells/kg after immunoselection, probably because of weak expression of the CD34 antigen. However, these numbers were sufficient to facilitate the engraftment of corrected HSPCs in non-conditioned patients. No procedure-associated serious adverse events were observed. Mobilization of CD34+ cells correlated with younger age, higher leukocyte counts and hemoglobin values, lower mean corpuscular volume, and higher proportion of CD34+ cells in bone marrow (BM). All these values offer crucial information for the enrollment of FA patients for gene therapy protocols.
Collapse
Affiliation(s)
- Julián Sevilla
- Servicio Hematología y Oncología Pediátrica, Fundación Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain
| | - Susana Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Paula Rio
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Rebeca Sánchez-Domínguez
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Josune Zubicaray
- Servicio Hematología y Oncología Pediátrica, Fundación Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain
| | - Eva Gálvez
- Servicio Hematología y Oncología Pediátrica, Fundación Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain
| | - Eva Merino
- Servicio Hematología y Oncología Pediátrica, Fundación Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain
| | - Elena Sebastián
- Servicio Hematología y Oncología Pediátrica, Fundación Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain
| | - Carmen Azqueta
- Banc de Sang i Teixits de Catalunya, 08005 Barcelona, Spain
| | - José A Casado
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - José C Segovia
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Omaira Alberquilla
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Massimo Bogliolo
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Servicio de Genética e Institut de Reserca, IIB-Sant Pau, Hospital Sant Pau, 08041 Barcelona, Spain.,Departmento de Genética y Microbiología, Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
| | - Francisco J Román-Rodríguez
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Yari Giménez
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Lise Larcher
- Université de Paris, Institut de Recherche Saint-Louis, 75010 Paris, France
| | - Rocío Salgado
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Roser M Pujol
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Servicio de Genética e Institut de Reserca, IIB-Sant Pau, Hospital Sant Pau, 08041 Barcelona, Spain.,Departmento de Genética y Microbiología, Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
| | - Raquel Hladun
- Servicio de Oncología y Hematología Pediátrica, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Ana Castillo
- Análisis Clínicos Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain
| | - Jean Soulier
- Université de Paris, Institut de Recherche Saint-Louis, 75010 Paris, France
| | - Sergi Querol
- Banc de Sang i Teixits de Catalunya, 08005 Barcelona, Spain
| | | | | | | | | | - Albert Catalá
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Department of Hematology/Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain.,Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Spain
| | - Jordi Surralles
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Servicio de Genética e Institut de Reserca, IIB-Sant Pau, Hospital Sant Pau, 08041 Barcelona, Spain.,Departmento de Genética y Microbiología, Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
| | - Cristina Díaz-de-Heredia
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Servicio de Oncología y Hematología Pediátrica, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Juan A Bueren
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| |
Collapse
|
144
|
Kettwig M, Klemp H, Nessler S, Streit F, Krätzner R, Rosewich H, Gärtner J. Targeted metabolomics revealed changes in phospholipids during the development of neuroinflammation in Abcd1 tm1Kds mice and X-linked adrenoleukodystrophy patients. J Inherit Metab Dis 2021; 44:1174-1185. [PMID: 33855724 DOI: 10.1002/jimd.12389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/06/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is the most common leukodystrophy. Despite intensive research in recent years, it remains unclear, what drives the different clinical disease courses. Due to this missing pathophysiological link, therapy for the childhood cerebral disease course of X-ALD (CCALD) remains symptomatic; the allogenic hematopoietic stem cell transplantation or hematopoietic stem-cell gene therapy is an option for early disease stages. The inclusion of dried blood spot (DBS) C26:0-lysophosphatidylcholine to newborn screening in an increasing number of countries is leading to an increasing number of X-ALD patients diagnosed at risk for CCALD. Current follow-up in asymptomatic boys with X-ALD requires repetitive cerebral MRIs under sedation. A reliable and easily accessible biomarker that predicts CCALD would therefore be of great value. Here we report the application of targeted metabolomics by AbsoluteIDQ p180-Kit from Biocrates to search for suitable biomarkers in X-ALD. LysoPC a C20:3 and lysoPC a C20:4 were identified as metabolites that indicate neuroinflammation after induction of experimental autoimmune encephalitis in the serum of Abcd1tm1Kds mice. Analysis of serum from X-ALD patients also revealed different concentrations of these lipids at different disease stages. Further studies in a larger cohort of X-ALD patient sera are needed to prove the diagnostic value of these lipids for use as early biomarkers for neuroinflammation in CCALD patients.
Collapse
Affiliation(s)
- Matthias Kettwig
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Henry Klemp
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Frank Streit
- Institute for Clinical Chemistry, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Ralph Krätzner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Hendrik Rosewich
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| |
Collapse
|
145
|
Domm JM, Wootton SK, Medin JA, West ML. Gene therapy for Fabry disease: Progress, challenges, and outlooks on gene-editing. Mol Genet Metab 2021; 134:117-131. [PMID: 34340879 DOI: 10.1016/j.ymgme.2021.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022]
Abstract
Gene therapy is the delivery of a therapeutic gene for endogenous cellular expression with the goal of rescuing a disease phenotype. It has been used to treat an increasing number of human diseases with many strategies proving safe and efficacious in clinical trials. Gene delivery may be viral or non-viral, performed in vivo or ex vivo, and relies on gene integration or transient expression; all of these techniques have been applied to the treatment of Fabry disease. Fabry disease is a genetic disorder of the α-galactosidase A gene, GLA, that causes an accumulation of glycosphingolipids in cells leading to cardiac, renal and cerebrovascular damage and eventually death. Currently, there are no curative treatments available, and the therapies that are used have significant drawbacks. These treatment concerns have led to the advent of gene therapies for Fabry disease. The first Fabry patients to receive gene therapy were treated with recombinant lentivirus targeting their hematopoietic stem/progenitor cells. Adeno-associated virus treatments have also begun. Alternatively, the field of gene-editing is a new and rapidly growing field. Gene-editing has been used to repair disease-causing mutations or insert genes into cellular DNA. These techniques have the potential to be applied to the treatment of Fabry disease provided the concerns of gene-editing technology, such as safety and efficiency, were addressed. This review focuses on the current state of gene therapy as it is being developed for Fabry disease, including progresses and challenges as well as an overview of gene-editing and how it may be applied to correct Fabry disease-causing mutations in the future.
Collapse
Affiliation(s)
- Jakob M Domm
- Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jeffrey A Medin
- Department of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael L West
- Department of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
146
|
Morgan MA, Galla M, Grez M, Fehse B, Schambach A. Retroviral gene therapy in Germany with a view on previous experience and future perspectives. Gene Ther 2021; 28:494-512. [PMID: 33753908 PMCID: PMC8455336 DOI: 10.1038/s41434-021-00237-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 02/01/2023]
Abstract
Gene therapy can be used to restore cell function in monogenic disorders or to endow cells with new capabilities, such as improved killing of cancer cells, expression of suicide genes for controlled elimination of cell populations, or protection against chemotherapy or viral infection. While gene therapies were originally most often used to treat monogenic diseases and to improve hematopoietic stem cell transplantation outcome, the advent of genetically modified immune cell therapies, such as chimeric antigen receptor modified T cells, has contributed to the increased numbers of patients treated with gene and cell therapies. The advancement of gene therapy with integrating retroviral vectors continues to depend upon world-wide efforts. As the topic of this special issue is "Spotlight on Germany," the goal of this review is to provide an overview of contributions to this field made by German clinical and research institutions. Research groups in Germany made, and continue to make, important contributions to the development of gene therapy, including design of vectors and transduction protocols for improved cell modification, methods to assess gene therapy vector efficacy and safety (e.g., clonal imbalance, insertion sites), as well as in the design and conduction of clinical gene therapy trials.
Collapse
Affiliation(s)
- Michael A Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
147
|
Xu F, Liu X, Zhang D, Zhao F, Fan Z, Hu S, Mei S, Huang Y, Sun H, Wei L, Guo L, Wang J, Cen S, Liang C, Guo F. The Engineered MARCH8-Resistant Vesicular Stomatitis Virus Glycoprotein Enhances Lentiviral Vector Transduction. Hum Gene Ther 2021; 32:936-948. [PMID: 33678011 DOI: 10.1089/hum.2020.292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lentiviral vectors are one of the most commonly used viral delivery systems for gene therapy. Vesicular stomatitis virus-G envelope glycoprotein (VSV G)-pseudotyped lentiviral vectors have been widely used in clinical studies for treatment of virus infections and genetic deficient diseases. However, the efficiency of lentiviral vector transduction has been long recognized as a limiting factor in clinical gene therapy application, especially in transducing hematopoietic stem cells. MARCH8 (membrane-associated RING-CH 8), an E3 ubiquitin ligase, has been reported to target and downregulate VSV G. Results in this study show that MARCH8 induces ubiquitination and lysosome degradation of VSV G, and knockout of MARCH8 in virus-producing cells increases lentiviral vector transduction by elevating the level of VSV G protein. We then engineered VSV G mutant that has the lysine residues in the cytoplasmic domain substituted for arginine, and showed that this G mutant resists degradation by MARCH8, and allows the enhancement of transduction efficiency of lentiviral vector particles than the parental VSV G protein. This engineered VSV G mutant thus further advances the lentiviral vector system as a powerful tool in gene therapy.
Collapse
Affiliation(s)
- Fengwen Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Xiaoman Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Di Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Fei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Zhangling Fan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Siqi Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Shan Mei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Yu Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Hong Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Liang Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Li Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Chen Liang
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Fei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
148
|
Abstract
Leukodystrophies are a group of genetically determined disorders that affect development or maintenance of central nervous system myelin. Leukodystrophies have an incidence of at least 1 in 4700 live births and significant morbidity and elevated risk of early death. This report includes a discussion of the types of leukodystrophies; their prevalence, clinical presentation, symptoms, and diagnosis; and current and future treatments. Leukodystrophies can present at any age from infancy to adulthood, with variability in disease progression and clinical presentation, ranging from developmental delay to seizures to spasticity. Diagnosis is based on a combination of history, examination, and radiologic and laboratory findings, including genetic testing. Although there are few cures, there are significant opportunities for care and improvements in patient well-being. Rapid advances in imaging and diagnosis, the emergence of and requirement for timely treatments, and the addition of leukodystrophy screening to newborn screening, make an understanding of the leukodystrophies necessary for pediatricians and other care providers for children.
Collapse
Affiliation(s)
- Joshua L Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, School of Medicine, University of Utah and Brain and Spine Center, Primary Children's Hospital, Salt Lake City, Utah
| | | | | |
Collapse
|
149
|
Arango D, Bittar A, Esmeral NP, Ocasión C, Muñoz-Camargo C, Cruz JC, Reyes LH, Bloch NI. Understanding the Potential of Genome Editing in Parkinson's Disease. Int J Mol Sci 2021; 22:9241. [PMID: 34502143 PMCID: PMC8430539 DOI: 10.3390/ijms22179241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023] Open
Abstract
CRISPR is a simple and cost-efficient gene-editing technique that has become increasingly popular over the last decades. Various CRISPR/Cas-based applications have been developed to introduce changes in the genome and alter gene expression in diverse systems and tissues. These novel gene-editing techniques are particularly promising for investigating and treating neurodegenerative diseases, including Parkinson's disease, for which we currently lack efficient disease-modifying treatment options. Gene therapy could thus provide treatment alternatives, revolutionizing our ability to treat this disease. Here, we review our current knowledge on the genetic basis of Parkinson's disease to highlight the main biological pathways that become disrupted in Parkinson's disease and their potential as gene therapy targets. Next, we perform a comprehensive review of novel delivery vehicles available for gene-editing applications, critical for their successful application in both innovative research and potential therapies. Finally, we review the latest developments in CRISPR-based applications and gene therapies to understand and treat Parkinson's disease. We carefully examine their advantages and shortcomings for diverse gene-editing applications in the brain, highlighting promising avenues for future research.
Collapse
Affiliation(s)
- David Arango
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Amaury Bittar
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Natalia P. Esmeral
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Camila Ocasión
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (C.O.); (L.H.R.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (C.O.); (L.H.R.)
| | - Natasha I. Bloch
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| |
Collapse
|
150
|
Keam SJ. Elivaldogene Autotemcel: First Approval. Mol Diagn Ther 2021; 25:803-809. [PMID: 34424497 DOI: 10.1007/s40291-021-00555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 11/27/2022]
Abstract
Elivaldogene autotemcel (SKYSONA™, eli-cel; Lenti-D™ gene therapy) is a gene therapy that has been developed by bluebird bio for the treatment of cerebral adrenoleukodystrophy (CALD), a rare, X-linked genetic disease that mainly affects the nervous system and adrenal glands. In July 2021, elivaldogene autotemcel received its first approval (in the EU) for the treatment of for the treatment of early CALD in patients < 18 years of age, with an ABCD1 genetic mutation, and for whom a human leukocyte antigen (HLA)-matched sibling haematopoietic stem cell (HSC) donor is not available. This article summarizes the milestones in the development of elivaldogene autotemcel leading to this first approval.
Collapse
Affiliation(s)
- Susan J Keam
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|