101
|
Virulence determinants of Salmonella Gallinarum biovar Pullorum identified by PCR signature-tagged mutagenesis and the spiC mutant as a candidate live attenuated vaccine. Vet Microbiol 2014; 168:388-94. [DOI: 10.1016/j.vetmic.2013.11.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/13/2013] [Accepted: 11/15/2013] [Indexed: 11/16/2022]
|
102
|
Abstract
H(+), a most common ion, is involved in very many biological processes. However, most proteins have distinct ranges of pH for function; when the H(+) concentration in the cells is too high or too low, protons turn into very potent stressors to all cells. Therefore, all living cells are strictly dependent on homeostasis mechanisms that regulate their intracellular pH. Na(+)/H(+) antiporters play primary role in pH homeostatic mechanisms both in prokaryotes and eukaryotes. Regulation by pH is a property common to these antiporters. They are equipped with a pH sensor to perceive the pH signal and a pH transducer to transduce the signal into a change in activity. Determining the crystal structure of NhaA, the Na(+)/H(+) antiporter of Escherichia coli have provided the basis for understanding in a realistic rational way the unique regulation of an antiporter by pH and the mechanism of the antiport activity. The physical separation between the pH sensor/transducer and the active site revealed by the structure entailed long-range pH-induced conformational changes for NhaA pH activation. As yet, it is not possible to decide whether the amino acid participating in the pH sensor and the pH transducer overlap or are separated. The pH sensor/transducer is not a single amino acid but rather a cluster of electrostatically interacting residues. Thus, integrating structural, computational, and experimental approaches are essential to reveal how the pH signal is perceived and transduced to activate the pH regulated protein.
Collapse
Affiliation(s)
- Etana Padan
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
103
|
Hammarlöf DL, Canals R, Hinton JCD. The FUN of identifying gene function in bacterial pathogens; insights from Salmonella functional genomics. Curr Opin Microbiol 2013; 16:643-51. [PMID: 24021902 DOI: 10.1016/j.mib.2013.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/12/2013] [Indexed: 02/01/2023]
Abstract
The availability of thousands of genome sequences of bacterial pathogens poses a particular challenge because each genome contains hundreds of genes of unknown function (FUN). How can we easily discover which FUN genes encode important virulence factors? One solution is to combine two different functional genomic approaches. First, transcriptomics identifies bacterial FUN genes that show differential expression during the process of mammalian infection. Second, global mutagenesis identifies individual FUN genes that the pathogen requires to cause disease. The intersection of these datasets can reveal a small set of candidate genes most likely to encode novel virulence attributes. We demonstrate this approach with the Salmonella infection model, and propose that a similar strategy could be used for other bacterial pathogens.
Collapse
Affiliation(s)
- Disa L Hammarlöf
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | | | | |
Collapse
|
104
|
Barison N, Gupta R, Kolbe M. A sophisticated multi-step secretion mechanism: how the type 3 secretion system is regulated. Cell Microbiol 2013; 15:1809-17. [PMID: 23927570 DOI: 10.1111/cmi.12178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 11/28/2022]
Abstract
Many Gram-negative pathogens utilize type 3 secretion systems (T3SSs) for a successful infection. The T3SS is a large macromolecular complex which spans both bacterial membranes and delivers effector proteins into the host cell. The infection requires spatiotemporal control of diverse sets of secreted effectors and various mechanisms have evolved to regulate T3SS in response to external stimuli. This review will describe mechanisms that may control type 3 secretion, revealing a multi-step regulatory strategy. We then propose an updated model of T3SS that illustrates different stages of secretion and integrates the most recent structural and functional data.
Collapse
Affiliation(s)
- Nicola Barison
- Max-Planck-Institute for Infection Biology, Cellular Microbiology, Charitéplatz 1, 10117, Berlin, Germany
| | | | | |
Collapse
|
105
|
Rabbani G, Kaur J, Ahmad E, Khan RH, Jain SK. Structural characteristics of thermostable immunogenic outer membrane protein from Salmonella enterica serovar Typhi. Appl Microbiol Biotechnol 2013; 98:2533-43. [PMID: 23949993 PMCID: PMC7080034 DOI: 10.1007/s00253-013-5123-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/14/2013] [Accepted: 07/10/2013] [Indexed: 02/08/2023]
Abstract
In this work, we explored the acid-induced unfolding pathway of non-porin outer membrane protein (OMP), an immunogenic protein from Salmonella Typhi, by monitoring the conformational changes over a pH range of 1.0-7.0 by circular dichroism, intrinsic fluorescence, ANS binding, acrylamide quenching, and dynamic light scattering. The spectroscopic measurements showed that OMP in its native state at pH 7.0 exists in more stable and compact conformation. In contrast, at pH 2.0, OMP retains substantial amount of secondary structure, disrupted side chain interactions, increased hydrodynamic radii, and nearly four-fold increase in ANS fluorescence with respect to the native state, indicating that MG state exists at pH 2.0. Quenching of tryptophan fluorescence by acrylamide further confirmed the accumulation of a partially unfolded state between native and unfolded state. The effect of pH on the conformation and thermostability of OMP points towards its heat resistance at neutral pH (T m ~ 69 °C at pH 7.0, monitored by change in MRE222 nm). Acid unfolded state was also characterized by the lack of a cooperative thermal transition. All these results suggested that acid-induced unfolded state of OMP at pH 2.0 represented the molten globule state. The chemical denaturation studies with GuHCl and urea as denaturants showed dissimilar results. The chemical unfolding experiments showed that in both far-UV CD and fluorescence measurements, GuHCl is more efficient than urea. GuHCl is characterized by low C m (~1 M), while urea is characterized by high C m (~3 M). The fully unfolded states were reached at 2 M GuHCl and 4 M urea concentration, respectively. This study adds to several key considerations of importance in the development of therapeutic agents against typhoid fever for clinical purposes.
Collapse
Affiliation(s)
- Gulam Rabbani
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | | | | | | | | |
Collapse
|
106
|
Kidwai AS, Mushamiri I, Niemann GS, Brown RN, Adkins JN, Heffron F. Diverse secreted effectors are required for Salmonella persistence in a mouse infection model. PLoS One 2013; 8:e70753. [PMID: 23950998 PMCID: PMC3741292 DOI: 10.1371/journal.pone.0070753] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/26/2013] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.
Collapse
Affiliation(s)
- Afshan S. Kidwai
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ivy Mushamiri
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - George S. Niemann
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Roslyn N. Brown
- Center for Bioproducts and Bioenergy, Washington State University, Richland, Washington, United States of America
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
107
|
Rac and Rab GTPases dual effector Nischarin regulates vesicle maturation to facilitate survival of intracellular bacteria. EMBO J 2013; 32:713-27. [PMID: 23386062 DOI: 10.1038/emboj.2013.10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/08/2013] [Indexed: 12/31/2022] Open
Abstract
The intracellular pathogenic bacterium Salmonella enterica serovar typhimurium (Salmonella) relies on acidification of the Salmonella-containing vacuole (SCV) for survival inside host cells. The transport and fusion of membrane-bound compartments in a cell is regulated by small GTPases, including Rac and members of the Rab GTPase family, and their effector proteins. However, the role of these components in survival of intracellular pathogens is not completely understood. Here, we identify Nischarin as a novel dual effector that can interact with members of Rac and Rab GTPase (Rab4, Rab14 and Rab9) families at different endosomal compartments. Nischarin interacts with GTP-bound Rab14 and PI(3)P to direct the maturation of early endosomes to Rab9/CD63-containing late endosomes. Nischarin is recruited to the SCV in a Rab14-dependent manner and enhances acidification of the SCV. Depletion of Nischarin or the Nischarin binding partners--Rac1, Rab14 and Rab9 GTPases--reduced the intracellular growth of Salmonella. Thus, interaction of Nischarin with GTPases may regulate maturation and subsequent acidification of vacuoles produced after phagocytosis of pathogens.
Collapse
|
108
|
Moest TP, Méresse S. Salmonella T3SSs: successful mission of the secret(ion) agents. Curr Opin Microbiol 2013; 16:38-44. [DOI: 10.1016/j.mib.2012.11.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/15/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
|
109
|
Mebrhatu MT, Cenens W, Aertsen A. An overview of the domestication and impact of the Salmonella mobilome. Crit Rev Microbiol 2013; 40:63-75. [PMID: 23356413 DOI: 10.3109/1040841x.2012.755949] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Salmonella spp. are accountable for a large fraction of the global infectious disease burden, with most of their infections being food- or water-borne. The phenotypic features and adaptive potential of Salmonella spp. appear to be driven to a large extent by mobile or laterally acquired genetic elements. A better understanding of the conduct and diversification of these important pathogens consequently requires a more profound insight into the different mechanisms by which these pivotal elements establish themselves in the cell and affect its behavior. This review, therefore, provides an overview of the physiological impact and domestication of the Salmonella mobilome.
Collapse
Affiliation(s)
- Mehari Tesfazgi Mebrhatu
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven , Leuven , Belgium
| | | | | |
Collapse
|
110
|
Joseph SS, Plano GV. The SycN/YscB chaperone-binding domain of YopN is required for the calcium-dependent regulation of Yop secretion by Yersinia pestis. Front Cell Infect Microbiol 2013; 3:1. [PMID: 23355975 PMCID: PMC3553376 DOI: 10.3389/fcimb.2013.00001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 01/04/2013] [Indexed: 11/13/2022] Open
Abstract
Numerous Gram-negative bacterial pathogens employ type III secretion systems (T3SSs) to inject effector proteins into eukaryotic cells. The activation of the type III secretion (T3S) process is tightly controlled in all T3SSs. In Yersinia pestis, the secretion of effector proteins, termed Yersinia outer proteins (Yops), is regulated by the activity of the YopN/SycN/YscB/TyeA complex. YopN is a secreted protein that interacts with the SycN/YscB chaperone via an N-terminal chaperone-binding domain (CBD) and with TyeA via a C-terminal TyeA-binding domain (TBD). Efficient YopN secretion is dependent upon its N-terminal secretion signal (SS), CBD, and the SycN/YscB chaperone. In this study, we investigate the role of the YopN CBD in the regulation of Yop secretion. Analysis of YopE/YopN hybrid proteins in which the YopN SS or SS and CBD were replaced with the analogous regions of YopE indicated that the YopN CBD or SycN/YscB chaperone play a role in the regulation of Yop secretion that is independent of their established roles in YopN secretion. To further analyze the role of the YopN CBD in the regulation of Yop secretion a series of tetra-alanine substitution mutants were generated throughout the YopN CBD. A number of these mutants exhibited a defect in the regulation of Yop secretion but showed no defect in YopN secretion or in the interaction of YopN with the SycN/YscB chaperone. Finally, conditions were established that enabled YopN and TyeA to regulate Yop secretion in the absence of the SycN/YscB chaperone. Importantly, a number of the YopN CBD mutants maintained their defect in the regulation of Yop secretion even under the established SycN/YscB chaperone-independent conditions. These studies establish a role for the CBD region of YopN in the regulation of Yop secretion that is independent from its role in YopN secretion or in the binding of the SycN/YscB chaperone.
Collapse
Affiliation(s)
- Sabrina S Joseph
- Department of Microbiology and Immunology, F. Edward Hérbert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
111
|
Nedelsky NB, Kuballa P, Castoreno AB, Xavier RJ. Inflammatory Bowel Disease at the Intersection of Autophagy and Immunity: Insights from Human Genetics. MOLECULAR GENETICS OF INFLAMMATORY BOWEL DISEASE 2013. [PMCID: PMC7121872 DOI: 10.1007/978-1-4614-8256-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Studies using human genetics have identified more than 160 loci that affect the risk of developing inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC). Several of these genes have been found to play key roles in the process of autophagy, a lysosome-based degradation pathway. Although historically considered to be a relatively nonselective process of degradation of cytosolic contents, autophagy has recently been revealed to have several selective and immune-specific functions that are relevant to the maintenance of intestinal homeostasis, including xenophagy, mitophagy, antigen presentation, secretion, and inflammasome regulation. In this chapter, we review the evidence that links autophagy-related genes, their immune-specific functions, and possible mechanisms of IBD pathogenesis. We summarize the basic molecular events underlying general and selective autophagy and present evidence suggesting possible pathogenic mechanisms revealed by studies of IBD-associated risk alleles of ATG16L1 and IRGM. Finally, we review chemical biology-based experimental approaches for identifying autophagy regulatory pathways that may have implications for the development of therapeutics.
Collapse
|
112
|
Dewoody R, Merritt PM, Marketon MM. YopK controls both rate and fidelity of Yop translocation. Mol Microbiol 2013; 87:301-17. [PMID: 23205707 PMCID: PMC3545096 DOI: 10.1111/mmi.12099] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 11/27/2022]
Abstract
Yersinia pestis, the causative agent of plague, utilizes a type III secretion system (T3SS) to intoxicate host cells. The injection of T3SS substrates must be carefully controlled, and dysregulation leads to altered infection kinetics and early clearance of Y. pestis. While the sequence of events leading up to cell contact and initiation of translocation has received much attention, the regulatory events that take place after effector translocation is less understood. Here we show that the regulator YopK is required to maintain fidelity of substrate specificity, in addition to controlling translocation rate. YopK was found to interact with YopD within targeted cells during Y. pestis infection, suggesting that YopK's regulatory mechanism involves a direct interaction with the translocation pore. In addition, we identified a single amino acid in YopK that is essential for translocation rate regulation but is dispensable for maintaining fidelity of translocation. Furthermore, we found that expression of YopK within host cells was sufficient to downregulate translocation rate, but it did not affect translocation fidelity. Together, our data support a model in which YopK is a bifunctional protein whose activities are genetically and spatially distinct such that fidelity control occurs within bacteria and rate control occurs within host cells.
Collapse
|
113
|
Ramos-Morales F. Impact of Salmonella enterica Type III Secretion System Effectors on the Eukaryotic Host Cell. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/787934] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type III secretion systems are molecular machines used by many Gram-negative bacterial pathogens to inject proteins, known as effectors, directly into eukaryotic host cells. These proteins manipulate host signal transduction pathways and cellular processes to the pathogen’s advantage. Salmonella enterica possesses two virulence-related type III secretion systems that deliver more than forty effectors. This paper reviews our current knowledge about the functions, biochemical activities, host targets, and impact on host cells of these effectors. First, the concerted action of effectors at the cellular level in relevant aspects of the interaction between Salmonella and its hosts is analyzed. Then, particular issues that will drive research in the field in the near future are discussed. Finally, detailed information about each individual effector is provided.
Collapse
Affiliation(s)
- Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain
| |
Collapse
|
114
|
Grant AJ, Morgan FJE, McKinley TJ, Foster GL, Maskell DJ, Mastroeni P. Attenuated Salmonella Typhimurium lacking the pathogenicity island-2 type 3 secretion system grow to high bacterial numbers inside phagocytes in mice. PLoS Pathog 2012; 8:e1003070. [PMID: 23236281 PMCID: PMC3516571 DOI: 10.1371/journal.ppat.1003070] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/19/2012] [Indexed: 01/23/2023] Open
Abstract
Intracellular replication within specialized vacuoles and cell-to-cell spread in the tissue are essential for the virulence of Salmonella enterica. By observing infection dynamics at the single-cell level in vivo, we have discovered that the Salmonella pathogenicity island 2 (SPI-2) type 3 secretory system (T3SS) is dispensable for growth to high intracellular densities. This challenges the concept that intracellular replication absolutely requires proteins delivered by SPI-2 T3SS, which has been derived largely by inference from in vitro cell experiments and from unrefined measurement of net growth in mouse organs. Furthermore, we infer from our data that the SPI-2 T3SS mediates exit from infected cells, with consequent formation of new infection foci resulting in bacterial spread in the tissues. This suggests a new role for SPI-2 in vivo as a mediator of bacterial spread in the body. In addition, we demonstrate that very similar net growth rates of attenuated salmonellae in organs can be derived from very different underlying intracellular growth dynamics.
Collapse
Affiliation(s)
- Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | |
Collapse
|
115
|
Abstract
The TTSS encoding "translocator operon" of Pseudomonas aeruginosa consists of a major translocator protein PopB, minor translocator protein PopD and their cognate chaperone PcrH. Far-UV CD spectra and secondary structure prediction servers predict an α-helical model for PopB, PcrH and PopB-PcrH complex. PopB itself forms a single species of higher order oligomer (15 mer) as seen from AUC, but in complex with PcrH, both monomeric (1:1) and oligomeric form exist. PopB has large solvent-exposed hydrophobic patches and exists as an unordered molten globule in its native state, but on forming complex with PcrH it gets transformed into an ordered molten globule. Tryptophan fluorescence spectrum indicates that PopB interacts with the first TPR region of dimeric PcrH to form a stable PopB-PcrH complex that has a partial rigid structure with a large hydrodynamic radius and few tertiary contacts. The pH-dependent studies of PopB, PcrH and complex by ANS fluorescence, urea induced unfolding and thermal denaturation experiments prove that PcrH not only provides structural support to the ordered molten globule PopB in complex but also undergoes conformational change to assist PopB to pass through the needle complex of TTSS and form pores in the host cell membrane. ITC experiments show a strong affinity (K(d) ~ 0.37 μM) of PopB for PcrH at pH 7.8, which reduces to ~0.68 μM at pH 5.8. PcrH also loses its rigid tertiary structure at pH 5 and attains a molten globule conformation. This indicates that the decrease in pH releases PopB molecules and thus triggers the TTSS activation mechanism for the formation of a functional translocon.
Collapse
|
116
|
Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 2012; 76:262-310. [PMID: 22688814 DOI: 10.1128/mmbr.05017-11] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Flagellar and translocation-associated type III secretion (T3S) systems are present in most gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria.
Collapse
|
117
|
A Comprehensive Subcellular Proteomic Survey of Salmonella Grown under Phagosome-Mimicking versus Standard Laboratory Conditions. INTERNATIONAL JOURNAL OF PROTEOMICS 2012; 2012:123076. [PMID: 22900174 PMCID: PMC3410353 DOI: 10.1155/2012/123076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/06/2012] [Indexed: 11/17/2022]
Abstract
Towards developing a systems-level pathobiological understanding of Salmonella enterica, we performed a subcellular proteomic analysis of this pathogen grown under standard laboratory and phagosome-mimicking conditions in vitro. Analysis of proteins from cytoplasmic, inner membrane, periplasmic, and outer membrane fractions yielded coverage of 25% of the theoretical proteome. Confident subcellular location could be assigned to over 1000 proteins, with good agreement between experimentally observed location and predicted/known protein properties. Comparison of protein location under the different environmental conditions provided insight into dynamic protein localization and possible moonlighting (multiple function) activities. Notable examples of dynamic localization were the response regulators of two-component regulatory systems (e.g., ArcB and PhoQ). The DNA-binding protein Dps that is generally regarded as cytoplasmic was significantly enriched in the outer membrane for all growth conditions examined, suggestive of moonlighting activities. These observations imply the existence of unknown transport mechanisms and novel functions for a subset of Salmonella proteins. Overall, this work provides a catalog of experimentally verified subcellular protein locations for Salmonella and a framework for further investigations using computational modeling.
Collapse
|
118
|
Van Parys A, Boyen F, Verbrugghe E, Leyman B, Bram F, Haesebrouck F, Pasmans F. Salmonella Typhimurium induces SPI-1 and SPI-2 regulated and strain dependent downregulation of MHC II expression on porcine alveolar macrophages. Vet Res 2012; 43:52. [PMID: 22694285 PMCID: PMC3403916 DOI: 10.1186/1297-9716-43-52] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 06/13/2012] [Indexed: 11/10/2022] Open
Abstract
Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host's immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI)-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig's immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology.
Collapse
Affiliation(s)
- Alexander Van Parys
- Ghent University, Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian Diseases, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | | | | | | | | | | | | |
Collapse
|
119
|
Lee EJ, Groisman EA. Control of a Salmonella virulence locus by an ATP-sensing leader messenger RNA. Nature 2012; 486:271-5. [PMID: 22699622 DOI: 10.1038/nature11090] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/26/2012] [Indexed: 11/09/2022]
Abstract
The facultative intracellular pathogen Salmonella enterica resides within a membrane-bound compartment inside macrophages. This compartment must be acidified for Salmonella to survive within macrophages, possibly because acidic pH promotes expression of Salmonella virulence proteins. We reasoned that Salmonella might sense its surroundings have turned acidic not only upon protonation of the extracytoplasmic domain of a protein sensor but also by an increase in cytosolic ATP levels, because conditions that enhance the proton gradient across the bacterial inner membrane stimulate ATP synthesis. Here we report that an increase in cytosolic ATP promotes transcription of the coding region for the virulence gene mgtC, which is the most highly induced horizontally acquired gene when Salmonella is inside macrophages. This transcript is induced both upon media acidification and by physiological conditions that increase ATP levels independently of acidification. ATP is sensed by the coupling/uncoupling of transcription of the unusually long mgtC leader messenger RNA and translation of a short open reading frame located in this region. A mutation in the mgtC leader messenger RNA that eliminates the response to ATP hinders mgtC expression inside macrophages and attenuates Salmonella virulence in mice. Our results define a singular example of an ATP-sensing leader messenger RNA. Moreover, they indicate that pathogens can interpret extracellular cues by the impact they have on cellular metabolites.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Howard Hughes Medical Institute, Yale School of Medicine, Section of Microbial Pathogenesis, New Haven, Connecticut 06536-0812, USA
| | | |
Collapse
|
120
|
Crabill E, Karpisek A, Alfano JR. The Pseudomonas syringae HrpJ protein controls the secretion of type III translocator proteins and has a virulence role inside plant cells. Mol Microbiol 2012; 85:225-38. [PMID: 22607547 DOI: 10.1111/j.1365-2958.2012.08097.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The bacterial plant pathogen Pseudomonas syringae injects effector proteins into plant cells via a type III secretion system (T3SS), which is required for pathogenesis. The protein HrpJ is secreted by P. syringae and is required for a fully functional T3SS. A hrpJ mutant is non-pathogenic and cannot inject effectors into plant cells or secrete the harpin HrpZ1. Here we show that the hrpJ mutant also cannot secrete the harpins HrpW1 and HopAK1 or the translocator HrpK1, suggesting that these proteins are required in the translocation (injection) of effectors into plant cells. Complementation of the hrpJ mutant with secretion incompetent HrpJ derivatives restores the secretion of HrpZ1 and HrpW1 and the ability to elicit a hypersensitive response, a measure of translocation. However, growth in planta and disease symptom production is only partially restored, suggesting that secreted HrpJ may have a direct role in virulence. Transgenic Arabidopsis plants expressing HrpJ-HA complemented the virulence phenotype of the hrpJ mutant expressing a secretion incompetent HrpJ derivative and were reduced in their immune responses. Collectively, these data indicate that HrpJ has a dual role in P. syringae: inside bacterial cells HrpJ controls the secretion of translocator proteins and inside plant cells it suppresses plant immunity.
Collapse
Affiliation(s)
- Emerson Crabill
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588-0660, USA
| | | | | |
Collapse
|
121
|
van der Heijden J, Finlay BB. Type III effector-mediated processes in Salmonella infection. Future Microbiol 2012; 7:685-703. [DOI: 10.2217/fmb.12.49] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Salmonella is one of the most successful bacterial pathogens that infect humans in both developed and developing countries. In order to cause infection, Salmonella uses type III secretion systems to inject bacterial effector proteins into host cells. In the age of antibiotic resistance, researchers have been looking for new strategies to reduce Salmonella infection. To understand infection and to analyze type III secretion as a potential therapeutic target, research has focused on identification of effectors, characterization of effector functions and how they contribute to disease. Many effector-mediated processes have been identified that contribute to infection but thus far no specific treatment has been found. In this perspective we discuss our current understanding of effector-mediated processes and discuss new techniques and approaches that may help us to find a solution to this worldwide problem.
Collapse
Affiliation(s)
- Joris van der Heijden
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
122
|
Üstün Ş, Müller P, Palmisano R, Hensel M, Börnke F. SseF, a type III effector protein from the mammalian pathogen Salmonella enterica, requires resistance-gene-mediated signalling to activate cell death in the model plant Nicotiana benthamiana. THE NEW PHYTOLOGIST 2012; 194:1046-1060. [PMID: 22471508 DOI: 10.1111/j.1469-8137.2012.04124.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Type III effector proteins (T3Es) of many Gram-negative pathogenic bacteria manipulate highly conserved cellular processes, indicating conservation in virulence mechanisms during the infection of hosts of divergent evolutionary origin. In order to identify conserved effector functions, we used a cross-kingdom approach in which we expressed selected T3Es from the mammalian pathogen Salmonella enterica in leaves of Nicotiana benthamiana and searched for possible virulence or avirulence phenotypes. We show that the T3E SseF of S. enterica triggers hypersensitive response (HR)-like symptoms, a hallmark of effector-triggered immunity in plants, either when transiently expressed in leaves of N. benthamiana by Agrobacterium tumefaciens infiltration or when delivered by Xanthomonas campestris pv vesicatoria (Xcv) through the type III secretion system. The ability of SseF to elicit HR-like symptoms was lost upon silencing of suppressor of G2 allele of skp1 (SGT1), indicating that the S. enterica T3E is probably recognized by an R protein in N. benthamiana. Xcv translocating an AvrRpt2-SseF fusion protein was restricted in multiplication within leaves of N. benthamiana. Bacterial growth was not impaired but symptom development was rather accelerated in a compatible interaction with susceptible pepper (Capsicum annuum) plants. We conclude that the S. enterica T3E SseF is probably recognized by the plant immune system in N. benthamiana, resulting in effector-triggered immunity.
Collapse
Affiliation(s)
- Şuayib Üstün
- Department Biologie, Lehrstuhl für Biochemie, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Petra Müller
- Infektionsbiologische Abteilung im Mikrobiologischen Institut, Universitätsklinikum Erlangen, Wasserturmstr. 3-5, 91054 Erlangen, Germany
| | - Ralf Palmisano
- Department Biologie, Lehrstuhl für Biochemie, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Michael Hensel
- Infektionsbiologische Abteilung im Mikrobiologischen Institut, Universitätsklinikum Erlangen, Wasserturmstr. 3-5, 91054 Erlangen, Germany
| | - Frederik Börnke
- Department Biologie, Lehrstuhl für Biochemie, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
123
|
SrfJ, a Salmonella type III secretion system effector regulated by PhoP, RcsB, and IolR. J Bacteriol 2012; 194:4226-36. [PMID: 22661691 DOI: 10.1128/jb.00173-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Virulence-related type III secretion systems are present in many Gram-negative bacterial pathogens. These complex devices translocate proteins, called effectors, from the bacterium into the eukaryotic host cell. Here, we identify the product of srfJ, a Salmonella enterica serovar Typhimurium gene regulated by SsrB, as a new substrate of the type III secretion system encoded by Salmonella pathogenicity island 2. The N-terminal 20-amino-acid segment of SrfJ was recognized as a functional secretion and translocation signal specific for this system. Transcription of srfJ was positively regulated by the PhoP/PhoQ system in an SsrB-dependent manner and was negatively regulated by the Rcs system in an SsrB-independent manner. A screen for regulators of an srfJ-lacZ transcriptional fusion using the T-POP transposon identified IolR, the regulator of genes involved in myo-inositol utilization, as an srfJ repressor. Our results suggest that SrfJ is synthesized both inside the host, in response to intracellular conditions, and outside the host, in myo-inositol-rich environments.
Collapse
|
124
|
Figueira R, Holden DW. Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology (Reading) 2012; 158:1147-1161. [DOI: 10.1099/mic.0.058115-0] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Rita Figueira
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - David W. Holden
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| |
Collapse
|
125
|
Konovalova A, Löbach S, Søgaard-Andersen L. A RelA-dependent two-tiered regulated proteolysis cascade controls synthesis of a contact-dependent intercellular signal in Myxococcus xanthus. Mol Microbiol 2012; 84:260-75. [PMID: 22404381 DOI: 10.1111/j.1365-2958.2012.08020.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteolytic cleavage of precursor proteins to generate intercellular signals is a common mechanism in all cells. In Myxococcus xanthus the contact-dependent intercellular C-signal is a 17 kDa protein (p17) generated by proteolytic cleavage of the 25 kDa csgA protein (p25), and is essential for starvation-induced fruiting body formation. p25 accumulates in the outer membrane and PopC, the protease that cleaves p25, in the cytoplasm of vegetative cells. PopC is secreted in response to starvation, therefore, restricting p25 cleavage to starving cells. We focused on identifying proteins critical for PopC secretion in response to starvation. PopC secretion depends on the (p)ppGpp synthase RelA and the stringent response, and is regulated post-translationally. PopD, which is encoded in an operon with PopC, forms a soluble complex with PopC and inhibits PopC secretion whereas the integral membrane AAA+ protease FtsH(D) is required for PopC secretion. Biochemical and genetic evidence suggest that in response to starvation, RelA is activated and induces the degradation of PopD thereby releasing pre-formed PopC for secretion and that FtsH(D) is important for PopD degradation. Hence, regulated PopC secretion depends on regulated proteolysis. Accordingly, p17 synthesis depends on a proteolytic cascade including FtsH(D) -dependent degradation of PopD and PopC-dependent cleavage of p25.
Collapse
Affiliation(s)
- Anna Konovalova
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043 Marburg, Germany
| | | | | |
Collapse
|
126
|
Allam US, Krishna MG, Sen M, Thomas R, Lahiri A, Gnanadhas DP, Chakravortty D. Acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella. Virulence 2012; 3:122-135. [PMID: 22460643 PMCID: PMC3396692 DOI: 10.4161/viru.19029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During the course of infection, Salmonella has to face several potentially lethal environmental conditions, one such being acidic pH. The ability to sense and respond to the acidic pH is crucial for the survival and replication of Salmonella. The physiological role of one gene (STM1485) involved in this response, which is upregulated inside the host cells (by 90- to 113-fold) is functionally characterized in Salmonella pathogenesis. In vitro, the ΔSTM1485 neither exhibited any growth defect at pH 4.5 nor any difference in the acid tolerance response. The ΔSTM1485 was compromised in its capacity to proliferate inside the host cells and complementation with STM1485 gene restored its virulence. We further demonstrate that the surface translocation of Salmonella pathogenicity island-2 (SPI-2) encoded translocon proteins, SseB and SseD were reduced in the ΔSTM1485. The increase in co-localization of this mutant with lysosomes was also observed. In addition, the ΔSTM1485 displayed significantly reduced competitive indices (CI) in spleen, liver and mesenteric lymph nodes in murine typhoid model when infected by intra-gastric route. Based on these results, we conclude that the acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.
Collapse
Affiliation(s)
| | | | - Minakshi Sen
- Department of Microbiology and Cell Biology; Centre for Infectious Disease Research and Biosafety Laboratories; Indian Institute of Science; Bangalore, India
| | - Rony Thomas
- Department of Microbiology and Cell Biology; Centre for Infectious Disease Research and Biosafety Laboratories; Indian Institute of Science; Bangalore, India
| | - Amit Lahiri
- Department of Microbiology and Cell Biology; Centre for Infectious Disease Research and Biosafety Laboratories; Indian Institute of Science; Bangalore, India
| | - Divya Prakash Gnanadhas
- Department of Microbiology and Cell Biology; Centre for Infectious Disease Research and Biosafety Laboratories; Indian Institute of Science; Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology; Centre for Infectious Disease Research and Biosafety Laboratories; Indian Institute of Science; Bangalore, India
| |
Collapse
|
127
|
Abstract
Much is known about the molecular effectors of pathogenicity of gram-negative enteric pathogens, among which Shigella can be considered a model. This is due to its capacity to recapitulate the multiple steps required for a pathogenic microbe to survive close to its mucosal target, colonize and then invade its epithelial surface, cause its inflammatory destruction and simultaneously regulate the extent of the elicited innate response to likely survive the encounter and achieve successful subsequent transmission. These various steps of the infectious process represent an array of successive environmental conditions to which the bacteria need to successfully adapt. These conditions represent the selective pressure that triggered the "arms race" in which Shigella acquired the genetic and molecular effectors of its pathogenic armory, including the regulatory hierarchies that regulate the expression and function of these effectors. They also represent cues through which Shigella achieves the temporo-spatial expression and regulation of its virulence effectors. The role of such environmental cues has recently become obvious in the case of the major virulence effector of Shigella, the type three secretion system (T3SS) and its dedicated secreted virulence effectors. It needs to be better defined for other major virulence components such as the LPS and peptidoglycan which are used as examples here, in addition to the T3SS as models of regulation as it relates to the assembly and functional regulation of complex macromolecular systems of the bacterial surface. This review also stresses the need to better define what the true and relevant environmental conditions can be at the various steps of the progression of infection. The "identity" of the pathogen differs depending whether it is cultivated under in vitro or in vivo conditions. Moreover, this "identity" may quickly change during its progression into the infected tissue. Novel concepts and relevant tools are needed to address this challenge in microbial pathogenesis.
Collapse
Affiliation(s)
- Benoit Marteyn
- Unité de Pathogénie Microbienne Moléculaire; Institut Pasteur; Paris, France,Unité INSERM 786; Institut Pasteur; Paris, France
| | - Anastasia Gazi
- Unité de Pathogénie Microbienne Moléculaire; Institut Pasteur; Paris, France,Unité INSERM 786; Institut Pasteur; Paris, France
| | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire; Institut Pasteur; Paris, France,Unité INSERM 786; Institut Pasteur; Paris, France,Chaire de Microbiologie et Maladies Infectieuses; Collège de France; Paris, France,Correspondence to: Philippe Sansonetti,
| |
Collapse
|
128
|
Flannagan RS, Jaumouillé V, Grinstein S. The Cell Biology of Phagocytosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 7:61-98. [PMID: 21910624 DOI: 10.1146/annurev-pathol-011811-132445] [Citation(s) in RCA: 677] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ronald S. Flannagan
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada;
| | - Valentin Jaumouillé
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada;
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada;
| |
Collapse
|
129
|
Verove J, Bernarde C, Bohn YST, Boulay F, Rabiet MJ, Attree I, Cretin F. Injection of Pseudomonas aeruginosa Exo toxins into host cells can be modulated by host factors at the level of translocon assembly and/or activity. PLoS One 2012; 7:e30488. [PMID: 22299042 PMCID: PMC3267729 DOI: 10.1371/journal.pone.0030488] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 12/20/2011] [Indexed: 01/03/2023] Open
Abstract
Pseudomonas aeruginosa type III secretion apparatus exports and translocates four exotoxins into the cytoplasm of the host cell. The translocation requires two hydrophobic bacterial proteins, PopB and PopD, that are found associated with host cell membranes following infection. In this work we examined the influence of host cell elements on exotoxin translocation efficiency. We developed a quantitative flow cytometry based assay of translocation that used protein fusions between either ExoS or ExoY and the ß-lactamase reporter enzyme. In parallel, association of translocon proteins with host plasma membranes was evaluated by immunodetection of PopB/D following sucrose gradient fractionation of membranes. A pro-myelocytic cell line (HL-60) and a pro-monocytic cell line (U937) were found resistant to toxin injection even though PopB/D associated with host cell plasma membranes. Differentiation of these cells to either macrophage- or neutrophil-like cell lines resulted in injection-sensitive phenotype without significantly changing the level of membrane-inserted translocon proteins. As previous in vitro studies have indicated that the lysis of liposomes by PopB and PopD requires both cholesterol and phosphatidyl-serine, we first examined the role of cholesterol in translocation efficiency. Treatment of sensitive HL-60 cells with methyl-ß-cyclodextrine, a cholesterol-depleting agent, resulted in a diminished injection of ExoS-Bla. Moreover, the PopB translocator was found in the membrane fraction, obtained from sucrose-gradient purifications, containing the lipid-raft marker flotillin. Examination of components of signalling pathways influencing the toxin injection was further assayed through a pharmacological approach. A systematic detection of translocon proteins within host membranes showed that, in addition to membrane composition, some general signalling pathways involved in actin polymerization may be critical for the formation of a functional pore. In conclusion, we provide new insights in regulation of translocation process and suggest possible cross-talks between eukaryotic cell and the pathogen at the level of exotoxin translocation.
Collapse
Affiliation(s)
- Julien Verove
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Cédric Bernarde
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Yu-Sing Tammy Bohn
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - François Boulay
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Marie-Josèphe Rabiet
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Ina Attree
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - François Cretin
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
- * E-mail:
| |
Collapse
|
130
|
Ashida H, Ogawa M, Kim M, Mimuro H, Sasakawa C. Bacteria and host interactions in the gut epithelial barrier. Nat Chem Biol 2011; 8:36-45. [PMID: 22173358 DOI: 10.1038/nchembio.741] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The gut mucosa acts as a barrier against microbial invaders, whereas resident commensal and foreign invading bacteria interact intimately with the gut epithelium and influence the host cellular and immune systems. The epithelial barrier serves as an infectious foothold for many bacterial pathogens and as an entry port for pathogens to disseminate into deeper tissues. Enteric bacterial pathogens can efficiently infect the gut mucosa using highly sophisticated virulence mechanisms that allow bacteria to circumvent the defense barriers in the gut. We provide an overview of the components of the mucosal barrier and discuss the bacterial stratagems that circumvent these barriers with particular emphasis on the roles of bacterial effector proteins.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
131
|
Basu A, Chatterjee R, Datta S. Expression, Purification, Structural and Functional Analysis of SycB: A Type Three Secretion Chaperone From Yersinia enterocolitica. Protein J 2011; 31:93-107. [DOI: 10.1007/s10930-011-9377-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
132
|
Cardenal-Muñoz E, Ramos-Morales F. Analysis of the expression, secretion and translocation of the Salmonella enterica type III secretion system effector SteA. PLoS One 2011; 6:e26930. [PMID: 22046414 PMCID: PMC3203157 DOI: 10.1371/journal.pone.0026930] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/06/2011] [Indexed: 11/28/2022] Open
Abstract
Many Gram-negative pathogens possess virulence-related type III secretion systems. Salmonella enterica uses two of these systems, encoded on the pathogenicity islands SPI-1 and SPI-2, respectively, to translocate more than 30 effector proteins into eukaryotic host cells. SteA is one of the few effectors that can be translocated by both systems. We investigated the conditions affecting the synthesis of this effector, its secretion to culture media and its translocation into host cells. Whereas steA was expressed under a wide range of conditions, some factors, including low and high osmolarity, and presence of butyrate, decreased expression. SteA was efficiently secreted to the culture media under both SPI-1 and SPI-2 inducing conditions. The kinetics of translocation into murine macrophages and human epithelial cells was studied using fusions with the 3xFLAG tag, and fusions with CyaA from Bordetella pertussis. Translocation into macrophages under non-invasive conditions was mainly dependent on the SPI-2-encoded type III secretion system but some participation of the SPI-1 system was also detected 6 hours post-infection. Interestingly, both type III secretion systems had a relevant role in the translocation of SteA into epithelial cells. Finally, a deletion approach allowed the identification of the N-terminal signal necessary for translocation of this effector. The amino acid residues 1–10 were sufficient to direct translocation into host cells through both type III secretion systems. Our results provide new examples of functional overlapping between the two type III secretion systems of Salmonella.
Collapse
Affiliation(s)
- Elena Cardenal-Muñoz
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
133
|
Alteri CJ, Lindner JR, Reiss DJ, Smith SN, Mobley HL. The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli. Mol Microbiol 2011; 82:145-63. [PMID: 21854465 PMCID: PMC3188958 DOI: 10.1111/j.1365-2958.2011.07804.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PhoP is considered a virulence regulator despite being conserved in both pathogenic and non-pathogenic Enterobacteriaceae. While Escherichia coli strains represent non-pathogenic commensal isolates and numerous virulent pathotypes, the PhoP virulence regulator has only been studied in commensal E. coli. To better understand how conserved transcription factors contribute to virulence, we characterized PhoP in pathogenic E. coli. Deletion of phoP significantly attenuated E. coli during extraintestinal infection. This was not surprising since we demonstrated that PhoP differentially regulated the transcription of > 600 genes. In addition to survival at acidic pH and resistance to polymyxin, PhoP was required for repression of motility and oxygen-independent changes in the expression of primary dehydrogenase and terminal reductase respiratory chain components. All phenotypes have in common a reliance on an energized membrane. Thus, we hypothesized that PhoP mediates these effects by regulating genes encoding proteins that generate proton motive force. Indeed, bacteria lacking PhoP exhibited a hyperpolarized membrane and dissipation of the transmembrane electrochemical gradient increased susceptibility of the phoP mutant to acidic pH, while inhibiting respiratory generation of the proton gradient restored resistance to antimicrobial peptides independent of lipopolysaccharide modification. These findings demonstrate a connection between PhoP, virulence and the energized state of the membrane.
Collapse
Affiliation(s)
- Christopher J. Alteri
- Department of Microbiology and Immunology, University of Michigan Medical School, 5641 West Medical Center Drive, Ann Arbor, Michigan 48109
| | - Jonathon R. Lindner
- Department of Microbiology and Immunology, University of Michigan Medical School, 5641 West Medical Center Drive, Ann Arbor, Michigan 48109
| | - Daniel J. Reiss
- Department of Microbiology and Immunology, University of Michigan Medical School, 5641 West Medical Center Drive, Ann Arbor, Michigan 48109
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, 5641 West Medical Center Drive, Ann Arbor, Michigan 48109
| | - Harry L.T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, 5641 West Medical Center Drive, Ann Arbor, Michigan 48109
| |
Collapse
|
134
|
Yu XJ, Liu M, Matthews S, Holden DW. Tandem translation generates a chaperone for the Salmonella type III secretion system protein SsaQ. J Biol Chem 2011; 286:36098-36107. [PMID: 21878641 PMCID: PMC3195561 DOI: 10.1074/jbc.m111.278663] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type III secretion systems (T3SSs) of bacterial pathogens involve the assembly of a surface-localized needle complex, through which translocon proteins are secreted to form a pore in the eukaryotic cell membrane. This enables the transfer of effector proteins from the bacterial cytoplasm to the host cell. A structure known as the C-ring is thought to have a crucial role in secretion by acting as a cytoplasmic sorting platform at the base of the T3SS. Here, we studied SsaQ, an FliN-like putative C-ring protein of the Salmonella pathogenicity island 2 (SPI-2)-encoded T3SS. ssaQ produces two proteins by tandem translation: a long form (SsaQ(L)) composed of 322 amino acids and a shorter protein (SsaQ(S)) comprising the C-terminal 106 residues of SsaQ(L). SsaQ(L) is essential for SPI-2 T3SS function. Loss of SsaQ(S) impairs the function of the T3SS both ex vivo and in vivo. SsaQ(S) binds to its corresponding region within SsaQ(L) and stabilizes the larger protein. Therefore, SsaQ(L) function is optimized by a novel chaperone-like protein, produced by tandem translation from its own mRNA species.
Collapse
Affiliation(s)
- Xiu-Jun Yu
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mei Liu
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Steve Matthews
- Division of Molecular Biosciences, Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - David W Holden
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
135
|
Sato H, Frank DW. Multi-Functional Characteristics of the Pseudomonas aeruginosa Type III Needle-Tip Protein, PcrV; Comparison to Orthologs in other Gram-negative Bacteria. Front Microbiol 2011; 2:142. [PMID: 21772833 PMCID: PMC3131520 DOI: 10.3389/fmicb.2011.00142] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 06/15/2011] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa possesses a type III secretion system (T3SS) to intoxicate host cells and evade innate immunity. This virulence-related machinery consists of a molecular syringe and needle assembled on the bacterial surface, which allows delivery of T3 effector proteins into infected cells. To accomplish a one-step effector translocation, a tip protein is required at the top end of the T3 needle structure. Strains lacking expression of the functional tip protein fail to intoxicate host cells. P. aeruginosa encodes a T3S that is highly homologous to the proteins encoded by Yersinia spp. The needle-tip proteins of Yersinia, LcrV, and P. aeruginosa, PcrV, share 37% identity and 65% similarity. Other known tip proteins are AcrV (Aeromonas), IpaD (Shigella), SipD (Salmonella), BipD (Burkholderia), EspA (EPEC, EHEC), Bsp22 (Bordetella), with additional proteins identified from various Gram-negative species, such as Vibrio and Bordetella. The tip proteins can serve as a protective antigen or may be critical for sensing host cells and evading innate immune responses. Recognition of the host microenvironment transcriptionally activates synthesis of T3SS components. The machinery appears to be mechanically controlled by the assemblage of specific junctions within the apparatus. These junctions include the tip and base of the T3 apparatus, the needle proteins and components within the bacterial cytoplasm. The tip proteins likely have chaperone functions for translocon proteins, allowing the proper assembly of translocation channels in the host membrane and completing vectorial delivery of effector proteins into the host cytoplasm. Multi-functional features of the needle-tip proteins appear to be intricately controlled. In this review, we highlight the functional aspects and complex controls of T3 needle-tip proteins with particular emphasis on PcrV and LcrV.
Collapse
Affiliation(s)
- Hiromi Sato
- Center for Infectious Disease Research, Medical College of Wisconsin Milwaukee, WI, USA
| | | |
Collapse
|
136
|
Liu J, Guo Y. The alkaline tolerance in Arabidopsis requires stabilizing microfilament partially through inactivation of PKS5 kinase. J Genet Genomics 2011; 38:307-13. [PMID: 21777855 DOI: 10.1016/j.jgg.2011.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
High soil pH is harmful to plant growth and development. The organization and dynamics of microfilament (MF) cytoskeleton play important roles in the plant anti-alkaline process. In the previous study, we determined that alkaline stress induces a signal that triggers MF dynamics-dependent root growth. In this study we identified that PKS5 kinase involves in this regulatory process to facilitate the signal to reach the downstream target MF. Under pH 8.3 treatment, the depolymerization of MF was faster in pks5-4 (PKS5 kinase constitutively activated) than that in wild-type plants. The inhibition of wild-type, pks5-1, and pks5-4 root growth by pH 8.3 was correlated to their MF depolymerization rate. When the plants were treated with phalloidin to stabilize MF, the high pH sensitive phenotype of pks5-4 can be partially rescued. When the plants were treated with a kinase inhibitor Staurosporine, the MF depolymerization rate in pks5-4 was similar as that in wild-type under pH 8.3 treatment and the sensitivity of root growth was also rescued. However, when the plants were treated with LaCl(3), a calcium channel blocker, the root growth sensitivity of pks5-4 under pH 8.3 was rescued but MF depolymerization was even faster than that of plants without LaCl(3) treatment. These results suggest that the PKS5 involves in external high pH signal mediated MF depolymerization, and that may be independent of calcium signal.
Collapse
Affiliation(s)
- Juntao Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing
| | | |
Collapse
|
137
|
|
138
|
Osborne SE, Coombes BK. Expression and secretion hierarchy in the nonflagellar type III secretion system. Future Microbiol 2011; 6:193-202. [PMID: 21366419 DOI: 10.2217/fmb.10.172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Type III secretion systems that deliver bacterial proteins into eukaryotic cells are the basis for both symbiotic and pathogenic relationships between many Gram-negative bacteria and their hosts. Exploration of the structure, function and assembly of this secretion system has greatly enhanced our knowledge of bacterial ecology in the context of infectious disease and has spawned new avenues in anti-infective research with a view towards inhibiting virulence functions. We outline advances in understanding type III secretion system function with specific focus on how assembly is hierarchically coordinated at the level of expression and how the type III secretion system mediates transitions in substrate specificity.
Collapse
Affiliation(s)
- Suzanne E Osborne
- Michael G DeGroote Institute for Infectious Disease Research & Department of Biochemistry & Biomedical Sciences, HSC-4H17, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
139
|
Auweter SD, Bhavsar AP, de Hoog CL, Li Y, Chan YA, van der Heijden J, Lowden MJ, Coombes BK, Rogers LD, Stoynov N, Foster LJ, Finlay BB. Quantitative mass spectrometry catalogues Salmonella pathogenicity island-2 effectors and identifies their cognate host binding partners. J Biol Chem 2011; 286:24023-35. [PMID: 21566117 DOI: 10.1074/jbc.m111.224600] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gram-negative bacterial pathogens have developed specialized secretion systems to transfer bacterial proteins directly into host cells. These bacterial effectors are central to virulence and reprogram host cell processes to favor bacterial survival, colonization, and proliferation. Knowing the complete set of effectors encoded by a particular pathogen is the key to understanding bacterial disease. In addition, the identification of the molecular assemblies that these effectors engage once inside the host cell is critical to determining the mechanism of action of each effector. In this work we used stable isotope labeling of amino acids in cell culture (SILAC), a powerful quantitative proteomics technique, to identify the proteins secreted by the Salmonella pathogenicity island-2 type three secretion system (SPI-2 T3SS) and to characterize the host interaction partners of SPI-2 effectors. We confirmed many of the known SPI-2 effectors and were able to identify several novel substrate candidates of this secretion system. We verified previously published host protein-effector binding pairs and obtained 11 novel interactions, three of which were investigated further and confirmed by reciprocal co-immunoprecipitation. The host cell interaction partners identified here suggest that Salmonella SPI-2 effectors target, in a concerted fashion, cellular processes such as cell attachment and cell cycle control that are underappreciated in the context of infection. The technology outlined in this study is specific and sensitive and serves as a robust tool for the identification of effectors and their host targets that is readily amenable to the study of other bacterial pathogens.
Collapse
Affiliation(s)
- Sigrid D Auweter
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Buckner MMC, Croxen MA, Arena ET, Finlay BB. A comprehensive study of the contribution of Salmonella enterica serovar Typhimurium SPI2 effectors to bacterial colonization, survival, and replication in typhoid fever, macrophage, and epithelial cell infection models. Virulence 2011; 2:208-16. [PMID: 21540636 DOI: 10.4161/viru.2.3.15894] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica serovars are Gram-negative bacterial pathogens responsible for human diseases including gastroenteritis and typhoid fever. After ingestion, Salmonella cross the intestinal epithelial barrier, where they are phagocytosed by macrophages and dendritic cells, which then enables their spread to systemic sites during cases of typhoid fever. Salmonella use two type 3 secretion systems encoded by Salmonella pathogenicity islands (SPI) 1 and 2 to inject virulence proteins into host cells to modify cellular functions. SPI1 is involved in host cell invasion and inflammation, whereas SPI2 is required for intracellular survival and replication within phagocytes, and systemic spread. In this study the contribution of nearly all known SPI2 effectors was examined in an in vivo model of murine typhoid fever and cell culture models of macrophage and epithelial cell infection. Unmarked, in-frame deletions of SPI2 effectors were engineered in S. enterica serovar Typhimurium and the ability of the 16 different mutants to colonize and replicate was examined. In the typhoid model, we found that ΔspvB and ΔspiC mutants were attenuated for colonization of intestinal and systemic sites, while the ΔsseF mutant was attenuated in systemic organs. In epithelial cells, all mutants replicated to the same extent as the wild-type. In macrophages, ΔspiC, ΔsteC, ΔspvB, ΔssseK1/K2/K3, ΔsifA, and ΔsifB strains replicated poorly in comparison to wild-type Salmonella. This study provides a thorough screen of the majority of the known SPI2 effectors evaluated under the same conditions in various models of infection, providing a foundation for comparative examination of the roles and interactions of these effectors.
Collapse
Affiliation(s)
- Michelle M C Buckner
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Canada
| | | | | | | |
Collapse
|
141
|
Tree JJ, Roe AJ, Flockhart A, McAteer SP, Xu X, Shaw D, Mahajan A, Beatson SA, Best A, Lotz S, Woodward MJ, La Ragione R, Murphy KC, Leong JM, Gally DL. Transcriptional regulators of the GAD acid stress island are carried by effector protein-encoding prophages and indirectly control type III secretion in enterohemorrhagic Escherichia coli O157:H7. Mol Microbiol 2011; 80:1349-65. [PMID: 21492263 DOI: 10.1111/j.1365-2958.2011.07650.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type III secretion (T3S) plays a pivotal role in the colonization of ruminant hosts by Enterohemorrhagic Escherichia coli (EHEC). The T3S system translocates effector proteins into host cells to promote bacterial attachment and persistence. The repertoire and variation in prophage regions underpins differences in the pathogenesis and epidemiology of EHEC strains. In this study, we have used a collection of deletions in cryptic prophages and EHEC O157 O-islands to screen for novel regulators of T3S. Using this approach we have identified a family of homologous AraC-like regulators that indirectly repress T3S. These prophage-encoded secretion regulator genes (psr) are found exclusively on prophages and are associated with effector loci and the T3S activating Pch family of regulators. Transcriptional profiling, mutagenesis and DNA binding studies were used to show that these regulators usurp the conserved GAD acid stress resistance system to regulate T3S by increasing the expression of GadE (YhiE) and YhiF and that this regulation follows attachment to bovine epithelial cells. We further demonstrate that PsrA and effectors encoded within cryptic prophage CP933-N are required for persistence in a ruminant model of colonization.
Collapse
Affiliation(s)
- Jai J Tree
- Immunity and Infection Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Salmonella phage ST64B encodes a member of the SseK/NleB effector family. PLoS One 2011; 6:e17824. [PMID: 21445262 PMCID: PMC3060822 DOI: 10.1371/journal.pone.0017824] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/11/2011] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica is a species of bacteria that is a major cause of enteritis across the globe, while certain serovars cause typhoid, a more serious disease associated with a significant mortality rate. Type III secreted effectors are major contributors to the pathogenesis of Salmonella infections. Genes encoding effectors are acquired via horizontal gene transfer, and a subset are encoded within active phage lysogens. Because the acquisition of effectors is in flux, the complement of effectors possessed by various Salmonella strains frequently differs. By comparing the genome sequences of S. enterica serovar Typhimurium strain SL1344 with LT2, we identified a gene with significant similarity to SseK/NleB type III secreted effector proteins within a phage ST64B lysogen that is absent from LT2. We have named this gene sseK3. SseK3 was co-regulated with the SPI-2 type III secretion system in vitro and inside host cells, and was also injected into infected host cells. While no role for SseK3 in virulence could be identified, a role for the other family members in murine typhoid was found. SseK3 and other phage-encoded effectors were found to have a significant but sparse distribution in the available Salmonella genome sequences, indicating the potential for more uncharacterised effectors to be present in less studied serovars. These phage-encoded effectors may be principle subjects of contemporary selective processes shaping Salmonella-host interactions.
Collapse
|
143
|
Eulalio A, Fröhlich KS, Mano M, Giacca M, Vogel J. A candidate approach implicates the secreted Salmonella effector protein SpvB in P-body disassembly. PLoS One 2011; 6:e17296. [PMID: 21390246 PMCID: PMC3046968 DOI: 10.1371/journal.pone.0017296] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/28/2011] [Indexed: 01/11/2023] Open
Abstract
P-bodies are dynamic aggregates of RNA and proteins involved in several post-transcriptional regulation processes. P-bodies have been shown to play important roles in regulating viral infection, whereas their interplay with bacterial pathogens, specifically intracellular bacteria that extensively manipulate host cell pathways, remains unknown. Here, we report that Salmonella infection induces P-body disassembly in a cell type-specific manner, and independently of previously characterized pathways such as inhibition of host cell RNA synthesis or microRNA-mediated gene silencing. We show that the Salmonella-induced P-body disassembly depends on the activation of the SPI-2 encoded type 3 secretion system, and that the secreted effector protein SpvB plays a major role in this process. P-body disruption is also induced by the related pathogen, Shigella flexneri, arguing that this might be a new mechanism by which intracellular bacterial pathogens subvert host cell function.
Collapse
Affiliation(s)
- Ana Eulalio
- RNA Biology Group, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail: (JV); (AE)
| | - Kathrin S. Fröhlich
- Institute of Molecular Infection Biology, Würzburg University, Würzburg, Germany
| | - Miguel Mano
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Jörg Vogel
- RNA Biology Group, Max Planck Institute for Infection Biology, Berlin, Germany
- Institute of Molecular Infection Biology, Würzburg University, Würzburg, Germany
- * E-mail: (JV); (AE)
| |
Collapse
|
144
|
|
145
|
Matteï PJ, Faudry E, Job V, Izoré T, Attree I, Dessen A. Membrane targeting and pore formation by the type III secretion system translocon. FEBS J 2010; 278:414-26. [PMID: 21182592 DOI: 10.1111/j.1742-4658.2010.07974.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative species to initiate infection. Toxins secreted through the system are synthesized in the bacterial cytoplasm and utilize the T3SS to pass through both bacterial membranes and the periplasm, thus being introduced directly into the eukaryotic cytoplasm. A key element of the T3SS of all bacterial pathogens is the translocon, which comprises a pore that is inserted into the membrane of the target cell, allowing toxin injection. Three macromolecular partners associate to form the translocon: two are hydrophobic and one is hydrophilic, and the latter also associates with the T3SS needle. In this review, we discuss recent advances on the biochemical and structural characterization of the proteins involved in translocon formation, as well as their participation in the modification of intracellular signalling pathways upon infection. Models of translocon assembly and regulation are also discussed.
Collapse
Affiliation(s)
- Pierre-Jean Matteï
- Bacterial Pathogenesis Group, Institut de Biologie Structurale, UMR 5075 (CNRS/CEA/UJF), Grenoble, France
| | | | | | | | | | | |
Collapse
|
146
|
Unraveling type III secretion systems in the highly versatile Burkholderia pseudomallei. Trends Microbiol 2010; 18:561-8. [DOI: 10.1016/j.tim.2010.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/06/2010] [Accepted: 09/10/2010] [Indexed: 12/26/2022]
|
147
|
Bobard A, Mellouk N, Enninga J. Spotting the right location- imaging approaches to resolve the intracellular localization of invasive pathogens. Biochim Biophys Acta Gen Subj 2010; 1810:297-307. [PMID: 21029766 DOI: 10.1016/j.bbagen.2010.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/16/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND A common strategy of microbial pathogens is to invade host cells during infection. The invading microbes explore different intracellular compartments to find their preferred niche. SCOPE OF REVIEW Imaging has been instrumental to unravel paradigms of pathogen entry, to identify their exact intracellular location, and to understand the underlying mechanisms for the formation of pathogen-containing niches. Here, we provide an overview of imaging techniques that have been applied to monitor the intracellular lifestyle of pathogens, focusing mainly on bacteria that either remain in vacuolar-bound compartments or rupture the endocytic vacuole to escape into the host's cellular cytoplasm. MAJOR CONCLUSIONS We will depict common molecular and cellular paradigms that are preferentially exploited by pathogens. A combination of electron microscopy, fluorescence microscopy, and time-lapse microscopy has been the driving force to reveal underlying cell biological processes. Furthermore, the development of highly sensitive and specific fluorescent sensor molecules has allowed for the identification of functional aspects of niche formation by intracellular pathogens. GENERAL SIGNIFICANCE Currently, we are beginning to understand the sophistication of the invasion strategies used by bacterial pathogens during the infection process- innovative imaging has been a key ingredient for this. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.
Collapse
Affiliation(s)
- Alexandre Bobard
- Institut Pasteur, Groupe "Dynamique des Interactions Hôte-Pathogène, Paris, France
| | | | | |
Collapse
|
148
|
Discovery of novel secreted virulence factors from Salmonella enterica serovar Typhimurium by proteomic analysis of culture supernatants. Infect Immun 2010; 79:33-43. [PMID: 20974834 DOI: 10.1128/iai.00771-10] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a leading cause of acute gastroenteritis throughout the world. This pathogen has two type III secretion systems (TTSS) encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) that deliver virulence factors (effectors) to the host cell cytoplasm and are required for virulence. While many effectors have been identified and at least partially characterized, the full repertoire of effectors has not been catalogued. In this proteomic study, we identified effector proteins secreted into defined minimal medium designed to induce expression of the SPI-2 TTSS and its effectors. We compared the secretomes of the parent strain to those of strains missing essential (ssaK::cat) or regulatory (ΔssaL) components of the SPI-2 TTSS. We identified 20 known SPI-2 effectors. Excluding the translocon components SseBCD, all SPI-2 effectors were biased for identification in the ΔssaL mutant, substantiating the regulatory role of SsaL in TTS. To identify novel effector proteins, we coupled our secretome data with a machine learning algorithm (SIEVE, SVM-based identification and evaluation of virulence effectors) and selected 12 candidate proteins for further characterization. Using CyaA' reporter fusions, we identified six novel type III effectors and two additional proteins that were secreted into J774 macrophages independently of a TTSS. To assess their roles in virulence, we constructed nonpolar deletions and performed a competitive index analysis from intraperitoneally infected 129/SvJ mice. Six mutants were significantly attenuated for spleen colonization. Our results also suggest that non-type III secretion mechanisms are required for full Salmonella virulence.
Collapse
|
149
|
Martinez-Argudo I, Blocker AJ. The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors. Mol Microbiol 2010. [PMID: 21143311 DOI: 10.1111/journal.1365-2958.2010.07413.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type III secretion systems (T3SSs) are key determinants of virulence in many Gram-negative bacteria, including animal and plant pathogens. They inject 'effector' proteins through a 'needle' protruding from the bacterial surface directly into eukaryotic cells after assembly of a 'translocator' pore in the host plasma membrane. Secretion is a tightly regulated process, which is blocked until physical contact with a host cell takes place. Host cell sensing occurs through a distal needle 'tip complex' and translocators are secreted before effectors. MxiC, a Shigella T3SS substrate, prevents premature effector secretion. Here, we examine how the different parts of T3SSs work together to allow orderly secretion. We show that T3SS assembly and needle tip composition are not altered in an mxiC mutant. We find that MxiC not only represses effector secretion but that it is also required for translocator release. We provide genetic evidence that MxiC acts downstream of the tip complex and then the needle during secretion activation. Finally, we show that the needle controls MxiC release. Therefore, for the first time, our data allow us to propose a model of secretion activation that goes from the tip complex to cytoplasmic MxiC via the needle.
Collapse
|
150
|
Martinez-Argudo I, Blocker AJ. The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors. Mol Microbiol 2010; 78:1365-78. [PMID: 21143311 PMCID: PMC3020320 DOI: 10.1111/j.1365-2958.2010.07413.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Type III secretion systems (T3SSs) are key determinants of virulence in many Gram-negative bacteria, including animal and plant pathogens. They inject ‘effector’ proteins through a ‘needle’ protruding from the bacterial surface directly into eukaryotic cells after assembly of a ‘translocator’ pore in the host plasma membrane. Secretion is a tightly regulated process, which is blocked until physical contact with a host cell takes place. Host cell sensing occurs through a distal needle ‘tip complex’ and translocators are secreted before effectors. MxiC, a Shigella T3SS substrate, prevents premature effector secretion. Here, we examine how the different parts of T3SSs work together to allow orderly secretion. We show that T3SS assembly and needle tip composition are not altered in an mxiC mutant. We find that MxiC not only represses effector secretion but that it is also required for translocator release. We provide genetic evidence that MxiC acts downstream of the tip complex and then the needle during secretion activation. Finally, we show that the needle controls MxiC release. Therefore, for the first time, our data allow us to propose a model of secretion activation that goes from the tip complex to cytoplasmic MxiC via the needle.
Collapse
|