101
|
Shpak M, Goldberg MM, Cowperthwaite MC. Rapid and convergent evolution in the glioblastoma multiforme genome. Genomics 2015; 105:159-67. [PMID: 25576655 DOI: 10.1016/j.ygeno.2014.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/08/2014] [Accepted: 12/31/2014] [Indexed: 12/11/2022]
Abstract
Determining which mutations drive tumor progression is a defining question in cancer genomics. We analyzed sequence evolution in Glioblastoma multiforme (GBM) by computing the number of parallel mutations and by estimating ω=dN/dS, a measure of the strength and direction of selection. The ω values of almost all 7617 mutated genes in GBM are much higher than in germline genes. We identified only 21 genes under significant positive selection in GBM, as well as 29 genes under significant purifying selection, including several zinc finger proteins. Therefore, most of the high ω values in the GBM genome are due to weaker purifying selection rather than positive selection. We also found multiple recurrent mutations in GBM, several of which are associated with patient survival time. Our results suggest that convergence and neutral evolution play a significant role in GBM, and that sites with recurrent mutations can serve as molecular diagnostics of the clinical course of GBM tumors.
Collapse
Affiliation(s)
- Max Shpak
- NeuroTexas Institute, St. David's Healthcare, Austin, TX 78705, United States; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, United States; Fresh Pond Research Institute, Cambridge, MA 02140, United States.
| | - Marcus M Goldberg
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Matthew C Cowperthwaite
- NeuroTexas Institute, St. David's Healthcare, Austin, TX 78705, United States; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, United States; Texas Advanced Computing Center, University of Texas at Austin, Austin, TX 78758, United States
| |
Collapse
|
102
|
Anand RP, Tsaponina O, Greenwell PW, Lee CS, Du W, Petes TD, Haber JE. Chromosome rearrangements via template switching between diverged repeated sequences. Genes Dev 2014; 28:2394-406. [PMID: 25367035 PMCID: PMC4215184 DOI: 10.1101/gad.250258.114] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Anand et al. examined break-induced replication (BIR) and template switching between highly diverged sequences in S. cerevisiae, induced during repair of a site-specific double-strand break (DSB). Template switches between highly divergent sequences appear to be mechanistically distinct from the initial strand invasions that establish BIR. BIR traversing repeated DNA sequences frequently results in complex translocations analogous to those seen in mammalian cells. These results suggest that template switching among repeated genes is a potent driver of genome instability and evolution. Recent high-resolution genome analyses of cancer and other diseases have revealed the occurrence of microhomology-mediated chromosome rearrangements and copy number changes. Although some of these rearrangements appear to involve nonhomologous end-joining, many must have involved mechanisms requiring new DNA synthesis. Models such as microhomology-mediated break-induced replication (MM-BIR) have been invoked to explain these rearrangements. We examined BIR and template switching between highly diverged sequences in Saccharomyces cerevisiae, induced during repair of a site-specific double-strand break (DSB). Our data show that such template switches are robust mechanisms that give rise to complex rearrangements. Template switches between highly divergent sequences appear to be mechanistically distinct from the initial strand invasions that establish BIR. In particular, such jumps are less constrained by sequence divergence and exhibit a different pattern of microhomology junctions. BIR traversing repeated DNA sequences frequently results in complex translocations analogous to those seen in mammalian cells. These results suggest that template switching among repeated genes is a potent driver of genome instability and evolution.
Collapse
Affiliation(s)
- Ranjith P Anand
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | - Olga Tsaponina
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | - Patricia W Greenwell
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Cheng-Sheng Lee
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | - Wei Du
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - James E Haber
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA;
| |
Collapse
|
103
|
Abstract
A role for somatic mutations in carcinogenesis is well accepted, but the degree to which mutation rates influence cancer initiation and development is under continuous debate. Recently accumulated genomic data have revealed that thousands of tumour samples are riddled by hypermutation, broadening support for the idea that many cancers acquire a mutator phenotype. This major expansion of cancer mutation data sets has provided unprecedented statistical power for the analysis of mutation spectra, which has confirmed several classical sources of mutation in cancer, highlighted new prominent mutation sources (such as apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) enzymes) and empowered the search for cancer drivers. The confluence of cancer mutation genomics and mechanistic insight provides great promise for understanding the basic development of cancer through mutations.
Collapse
|
104
|
Dosage changes of a segment at 17p13.1 lead to intellectual disability and microcephaly as a result of complex genetic interaction of multiple genes. Am J Hum Genet 2014; 95:565-78. [PMID: 25439725 DOI: 10.1016/j.ajhg.2014.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/03/2014] [Indexed: 11/24/2022] Open
Abstract
The 17p13.1 microdeletion syndrome is a recently described genomic disorder with a core clinical phenotype of intellectual disability, poor to absent speech, dysmorphic features, and a constellation of more variable clinical features, most prominently microcephaly. We identified five subjects with copy-number variants (CNVs) on 17p13.1 for whom we performed detailed clinical and molecular studies. Breakpoint mapping and retrospective analysis of published cases refined the smallest region of overlap (SRO) for microcephaly to a genomic interval containing nine genes. Dissection of this phenotype in zebrafish embryos revealed a complex genetic architecture: dosage perturbation of four genes (ASGR1, ACADVL, DVL2, and GABARAP) impeded neurodevelopment and decreased dosage of the same loci caused a reduced mitotic index in vitro. Moreover, epistatic analyses in vivo showed that dosage perturbations of discrete gene pairings induce microcephaly. Taken together, these studies support a model in which concomitant dosage perturbation of multiple genes within the CNV drive the microcephaly and possibly other neurodevelopmental phenotypes associated with rearrangements in the 17p13.1 SRO.
Collapse
|
105
|
Le Guen T, Ragu S, Guirouilh-Barbat J, Lopez BS. Role of the double-strand break repair pathway in the maintenance of genomic stability. Mol Cell Oncol 2014; 2:e968020. [PMID: 27308383 PMCID: PMC4905226 DOI: 10.4161/23723548.2014.968020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022]
Abstract
DNA double-strand breaks (DSBs) are highly lethal lesions that jeopardize genome integrity. However, DSBs are also used to generate diversity during the physiological processes of meiosis or establishment of the immune repertoire. Therefore, DSB repair must be tightly controlled. Two main strategies are used to repair DSBs: homologous recombination (HR) and non-homologous end joining (NHEJ). HR is generally considered to be error-free, whereas NHEJ is considered to be error-prone. However, recent data challenge these assertions. Here, we present the molecular mechanisms involved in HR and NHEJ and the recently described alternative end-joining mechanism, which is exclusively mutagenic. Whereas NHEJ is not intrinsically error-prone but adaptable, HR has the intrinsic ability to modify the DNA sequence. Importantly, in both cases the initial structure of the DNA impacts the outcome. Finally, the consequences and applications of these repair mechanisms are discussed. Both HR and NHEJ are double-edged swords, essential for maintenance of genome stability and diversity but also able to generate genome instability.
Collapse
Affiliation(s)
- Tangui Le Guen
- Université Paris Sud; CNRS UMR 8200; Institut de Cancérologie Gustave-Roussy; Team labeled "Ligue 2014" ; Villejuif, France
| | - Sandrine Ragu
- Université Paris Sud; CNRS UMR 8200; Institut de Cancérologie Gustave-Roussy; Team labeled "Ligue 2014" ; Villejuif, France
| | - Josée Guirouilh-Barbat
- Université Paris Sud; CNRS UMR 8200; Institut de Cancérologie Gustave-Roussy; Team labeled "Ligue 2014" ; Villejuif, France
| | - Bernard S Lopez
- Université Paris Sud; CNRS UMR 8200; Institut de Cancérologie Gustave-Roussy; Team labeled "Ligue 2014" ; Villejuif, France
| |
Collapse
|
106
|
Prado F. Homologous recombination maintenance of genome integrity during DNA damage tolerance. Mol Cell Oncol 2014; 1:e957039. [PMID: 27308329 PMCID: PMC4905194 DOI: 10.4161/23723548.2014.957039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 01/01/2023]
Abstract
The DNA strand exchange protein Rad51 provides a safe mechanism for the repair of DNA breaks using the information of a homologous DNA template. Homologous recombination (HR) also plays a key role in the response to DNA damage that impairs the advance of the replication forks by providing mechanisms to circumvent the lesion and fill in the tracks of single-stranded DNA that are generated during the process of lesion bypass. These activities postpone repair of the blocking lesion to ensure that DNA replication is completed in a timely manner. Experimental evidence generated over the last few years indicates that HR participates in this DNA damage tolerance response together with additional error-free (template switch) and error-prone (translesion synthesis) mechanisms through intricate connections, which are presented here. The choice between repair and tolerance, and the mechanism of tolerance, is critical to avoid increased mutagenesis and/or genome rearrangements, which are both hallmarks of cancer.
Collapse
Affiliation(s)
- Félix Prado
- Departamento de Biología Molecular; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) ; Consejo Superior de Investigaciones Científicas (CSIC) ; Seville, Spain
| |
Collapse
|
107
|
Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locus Saccharomyces cerevisiae system. Proc Natl Acad Sci U S A 2014; 111:E4851-8. [PMID: 25349420 DOI: 10.1073/pnas.1416014111] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Saccharomyces cerevisiae has a complex system for switching the mating type of haploid cells, requiring the genome to have three mating-type (MAT)-like loci and a mechanism for silencing two of them. How this system originated is unknown, because the three-locus system is present throughout the family Saccharomycetaceae, whereas species in the sister Candida clade have only one locus and do not switch. Here we show that yeasts in a third clade, the methylotrophs, have a simpler two-locus switching system based on reversible inversion of a section of chromosome with MATa genes at one end and MATalpha genes at the other end. In Hansenula polymorpha the 19-kb invertible region lies beside a centromere so that, depending on the orientation, either MATa or MATalpha is silenced by centromeric chromatin. In Pichia pastoris, the orientation of a 138-kb invertible region puts either MATa or MATalpha beside a telomere and represses transcription of MATa2 or MATalpha2. Both species are homothallic, and inversion of their MAT regions can be induced by crossing two strains of the same mating type. The three-locus system of S. cerevisiae, which uses a nonconservative mechanism to replace DNA at MAT, likely evolved from a conservative two-locus system that swapped genes between expression and nonexpression sites by inversion. The increasing complexity of the switching apparatus, with three loci, donor bias, and cell lineage tracking, can be explained by continuous selection to increase sporulation ability in young colonies. Our results provide an evolutionary context for the diversity of switching and silencing mechanisms.
Collapse
|
108
|
Liu T, Huang J. Quality control of homologous recombination. Cell Mol Life Sci 2014; 71:3779-97. [PMID: 24858417 PMCID: PMC11114062 DOI: 10.1007/s00018-014-1649-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
Exogenous and endogenous genotoxic agents, such as ionizing radiation and numerous chemical agents, cause DNA double-strand breaks (DSBs), which are highly toxic and lead to genomic instability or tumorigenesis if not repaired accurately and efficiently. Cells have over evolutionary time developed certain repair mechanisms in response to DSBs to maintain genomic integrity. Major DSB repair mechanisms include non-homologous end joining and homologous recombination (HR). Using sister homologues as templates, HR is a high-fidelity repair pathway that can rejoin DSBs without introducing mutations. However, HR execution without appropriate guarding may lead to more severe gross genome rearrangements. Here we review current knowledge regarding the factors and mechanisms required for accomplishment of accurate HR.
Collapse
Affiliation(s)
- Ting Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
109
|
Abstract
Transcription requires unwinding complementary DNA strands, generating torsional stress, and sensitizing the exposed single strands to chemical reactions and endogenous damaging agents. In addition, transcription can occur concomitantly with the other major DNA metabolic processes (replication, repair, and recombination), creating opportunities for either cooperation or conflict. Genetic modifications associated with transcription are a global issue in the small genomes of microorganisms in which noncoding sequences are rare. Transcription likewise becomes significant when one considers that most of the human genome is transcriptionally active. In this review, we focus specifically on the mutagenic consequences of transcription. Mechanisms of transcription-associated mutagenesis in microorganisms are discussed, as is the role of transcription in somatic instability of the vertebrate immune system.
Collapse
Affiliation(s)
- Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710;
| | | |
Collapse
|
110
|
Kiraly O, Gong G, Roytman MD, Yamada Y, Samson LD, Engelward BP. DNA glycosylase activity and cell proliferation are key factors in modulating homologous recombination in vivo. Carcinogenesis 2014; 35:2495-502. [PMID: 25155011 DOI: 10.1093/carcin/bgu177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cancer susceptibility varies between people, affected by genotoxic exposures, genetic makeup and physiological state. Yet, how these factors interact among each other to define cancer risk is largely unknown. Here, we uncover the interactive effects of genetical, environmental and physiological factors on genome rearrangements driven by homologous recombination (HR). Using FYDR mice to quantify HR-driven rearrangements in pancreas tissue, we show that DNA methylation damage (induced by methylnitrosourea) and cell proliferation (induced by thyroid hormone) each induce HR and together act synergistically to induce HR-driven rearrangements in vivo. These results imply that developmental or regenerative proliferation as well as mitogenic exposures may sensitize tissues to DNA damaging exposures. We exploited mice genetically deficient in alkyl-adenine DNA glycosylase (Aag) to analyse the relative contributions of unrepaired DNA base lesions versus intermediates formed during base excision repair (BER). Remarkably, results show that, in the pancreas, Aag is a major driver of spontaneous HR, indicating that BER intermediates (including abasic sites and single strand breaks) are more recombinogenic than the spontaneous base lesions removed by Aag. Given that mammals have about a dozen DNA glycosylases, these results point to BER as a major source of pressure on the HR pathway in vivo. Taken together, methylation damage, cell proliferation and Aag interact to define the risk of HR-driven sequence rearrangements in vivo. These data identify important sources of sequence changes in a cancer-relevant organ, and advance the effort to identify populations at high-risk for cancer.
Collapse
Affiliation(s)
- Orsolya Kiraly
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and
| | - Guanyu Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and
| | - Megan D Roytman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and
| | - Yoshiyuki Yamada
- Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| |
Collapse
|
111
|
Mehta A, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 2014; 6:a016428. [PMID: 25104768 PMCID: PMC4142968 DOI: 10.1101/cshperspect.a016428] [Citation(s) in RCA: 511] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA is subject to many endogenous and exogenous insults that impair DNA replication and proper chromosome segregation. DNA double-strand breaks (DSBs) are one of the most toxic of these lesions and must be repaired to preserve chromosomal integrity. Eukaryotes are equipped with several different, but related, repair mechanisms involving homologous recombination, including single-strand annealing, gene conversion, and break-induced replication. In this review, we highlight the chief sources of DSBs and crucial requirements for each of these repair processes, as well as the methods to identify and study intermediate steps in DSB repair by homologous recombination.
Collapse
Affiliation(s)
- Anuja Mehta
- Rosenstiel Basic Medical Sciences Research Center, MS029 Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02454-9110
| | - James E Haber
- Rosenstiel Basic Medical Sciences Research Center, MS029 Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
112
|
Tsaponina O, Haber JE. Frequent Interchromosomal Template Switches during Gene Conversion in S. cerevisiae. Mol Cell 2014; 55:615-25. [PMID: 25066232 DOI: 10.1016/j.molcel.2014.06.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/15/2014] [Accepted: 06/12/2014] [Indexed: 11/26/2022]
Abstract
Although repair of double-strand breaks (DSBs) by gene conversion is the most accurate way to repair such lesions, in budding yeast there is a 1,000-fold increase in accompanying mutations, including interchromosomal template switches (ICTS) involving highly mismatched (homeologous) ectopic sequences. Although such events are rare and appear at a rate of 2 × 10(-7) when template jumps occur between 71% identical sequences, they are surprisingly frequent (0.3% of all repair events) when the second template is identical to the first, revealing the remarkable instability of repair DNA synthesis. With homeologous donors, ICTS uses microhomologies as small as 2 bp. Cells lacking mismatch repair proteins Msh6 and Mlh1 form chimeric recombinants with two distinct patches of microhomology, implying that these proteins are crucial for strand discrimination of heteroduplex DNA formed during ICTS. We identify the chromatin remodeler Rdh54 as the first protein required for template switching that does not affect simple gene conversion.
Collapse
Affiliation(s)
- Olga Tsaponina
- Department of Biology, Brandeis University, Waltham, MA 02454-9110, USA; Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | - James E Haber
- Department of Biology, Brandeis University, Waltham, MA 02454-9110, USA; Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA.
| |
Collapse
|
113
|
Meier B, Cooke SL, Weiss J, Bailly AP, Alexandrov LB, Marshall J, Raine K, Maddison M, Anderson E, Stratton MR, Gartner A, Campbell PJ. C. elegans whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency. Genome Res 2014; 24:1624-36. [PMID: 25030888 PMCID: PMC4199376 DOI: 10.1101/gr.175547.114] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mutation is associated with developmental and hereditary disorders, aging, and cancer. While we understand some mutational processes operative in human disease, most remain mysterious. We used Caenorhabditis elegans whole-genome sequencing to model mutational signatures, analyzing 183 worm populations across 17 DNA repair-deficient backgrounds propagated for 20 generations or exposed to carcinogens. The baseline mutation rate in C. elegans was approximately one per genome per generation, not overtly altered across several DNA repair deficiencies over 20 generations. Telomere erosion led to complex chromosomal rearrangements initiated by breakage–fusion–bridge cycles and completed by simultaneously acquired, localized clusters of breakpoints. Aflatoxin B1 induced substitutions of guanines in a GpC context, as observed in aflatoxin-induced liver cancers. Mutational burden increased with impaired nucleotide excision repair. Cisplatin and mechlorethamine, DNA crosslinking agents, caused dose- and genotype-dependent signatures among indels, substitutions, and rearrangements. Strikingly, both agents induced clustered rearrangements resembling “chromoanasynthesis,” a replication-based mutational signature seen in constitutional genomic disorders, suggesting that interstrand crosslinks may play a pathogenic role in such events. Cisplatin mutagenicity was most pronounced in xpf-1 mutants, suggesting that this gene critically protects cells against platinum chemotherapy. Thus, experimental model systems combined with genome sequencing can recapture and mechanistically explain mutational signatures associated with human disease.
Collapse
Affiliation(s)
- Bettina Meier
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Susanna L Cooke
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Joerg Weiss
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Aymeric P Bailly
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom; CRBM/CNRS UMR5237, University of Montpellier, Montpellier 34293, France
| | - Ludmil B Alexandrov
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - John Marshall
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Keiran Raine
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Mark Maddison
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Elizabeth Anderson
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Michael R Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Anton Gartner
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom;
| | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, United Kingdom; Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
114
|
Abstract
Genetic instabilities, including mutations and chromosomal rearrangements, lead to cancer and other diseases in humans and play an important role in evolution. A frequent cause of genetic instabilities is double-strand DNA breaks (DSBs), which may arise from a wide range of exogeneous and endogeneous cellular factors. Although the repair of DSBs is required, some repair pathways are dangerous because they may destabilize the genome. One such pathway, break-induced replication (BIR), is the mechanism for repairing DSBs that possesses only one repairable end. This situation commonly arises as a result of eroded telomeres or collapsed replication forks. Although BIR plays a positive role in repairing DSBs, it can alternatively be a dangerous source of several types of genetic instabilities, including loss of heterozygosity, telomere maintenance in the absence of telomerase, and non-reciprocal translocations. Also, mutation rates in BIR are about 1000 times higher as compared to normal DNA replication. In addition, micro-homology-mediated BIR (MMBIR), which is a mechanism related to BIR, can generate copy-number variations (CNVs) as well as various complex chromosomal rearrangements. Overall, activation of BIR may contribute to genomic destabilization resulting in substantial biological consequences including those affecting human health.
Collapse
Affiliation(s)
| | | | - Anna Malkova
- Author to whom correspondence should be addressed; ; Tel.: +1-317-278-5717; Fax: +1-317-274-2946
| |
Collapse
|
115
|
Abstract
Although the analysis of linkage disequilibrium (LD) plays a central role in many areas of population genetics, the sampling variance of LD is known to be very large with high sensitivity to numbers of nucleotide sites and individuals sampled. Here we show that a genome-wide analysis of the distribution of heterozygous sites within a single diploid genome can yield highly informative patterns of LD as a function of physical distance. The proposed statistic, the correlation of zygosity, is closely related to the conventional population-level measure of LD, but is agnostic with respect to allele frequencies and hence likely less prone to outlier artifacts. Application of the method to several vertebrate species leads to the conclusion that >80% of recombination events are typically resolved by gene-conversion-like processes unaccompanied by crossovers, with the average lengths of conversion patches being on the order of one to several kilobases in length. Thus, contrary to common assumptions, the recombination rate between sites does not scale linearly with distance, often even up to distances of 100 kb. In addition, the amount of LD between sites separated by <200 bp is uniformly much greater than can be explained by the conventional neutral model, possibly because of the nonindependent origin of mutations within this spatial scale. These results raise questions about the application of conventional population-genetic interpretations to LD on short spatial scales and also about the use of spatial patterns of LD to infer demographic histories.
Collapse
|
116
|
Solieri L, Dakal TC, Giudici P, Cassanelli S. Sex-determination system in the diploid yeast Zygosaccharomyces sapae. G3 (BETHESDA, MD.) 2014; 4:1011-25. [PMID: 24939186 PMCID: PMC4065246 DOI: 10.1534/g3.114.010405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/06/2014] [Indexed: 11/18/2022]
Abstract
Sexual reproduction and breeding systems are driving forces for genetic diversity. The mating-type (MAT) locus represents a mutation and chromosome rearrangement hotspot in yeasts. Zygosaccharomyces rouxii complex yeasts are naturally faced with hostile low water activity (aw) environments and are characterized by gene copy number variation, genome instability, and aneuploidy/allodiploidy. Here, we investigated sex-determination system in Zygosaccharomyces sapae diploid strain ABT301(T), a member of the Z. rouxii complex. We cloned three divergent mating type-like (MTL) α-idiomorph sequences and designated them as ZsMTLα copies 1, 2, and 3. They encode homologs of Z. rouxii CBS 732(T) MATα2 (amino acid sequence identities spanning from 67.0 to 99.5%) and MATα1 (identity range 81.5-99.5%). ABT301(T) possesses two divergent HO genes encoding distinct endonucleases 100% and 92.3% identical to Z. rouxii HO. Cloning of MATA: -idiomorph resulted in a single ZsMTLA: locus encoding two Z. rouxii-like proteins MATA: 1 and MATA: 2. To assign the cloned ZsMTLα and ZsMTLA: idiomorphs as MAT, HML, and HMR cassettes, we analyzed their flanking regions. Three ZsMTLα loci exhibited the DIC1-MAT-SLA2 gene order canonical for MAT expression loci. Furthermore, four putative HML cassettes were identified, two containing the ZsMTLα copy 1 and the remaining harboring ZsMTLα copies 2 and 3. Finally, the ZsMTLA: locus was 3'-flanked by SLA2, suggesting the status of MAT expression locus. In conclusion, Z. sapae ABT301(T) displays an aααα genotype missing of the HMR silent cassette. Our results demonstrated that mating-type switching is a hypermutagenic process in Z. rouxii complex that generates genetic diversity de novo. This error-prone mechanism could be suitable to generate progenies more rapidly adaptable to hostile environments.
Collapse
Affiliation(s)
- Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Tikam Chand Dakal
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Stefano Cassanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122, Reggio Emilia, Italy
| |
Collapse
|
117
|
Guirouilh-Barbat J, Lambert S, Bertrand P, Lopez BS. Is homologous recombination really an error-free process? Front Genet 2014; 5:175. [PMID: 24966870 PMCID: PMC4052342 DOI: 10.3389/fgene.2014.00175] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/23/2014] [Indexed: 11/13/2022] Open
Abstract
Homologous recombination (HR) is an evolutionarily conserved process that plays a pivotal role in the equilibrium between genetic stability and diversity. HR is commonly considered to be error-free, but several studies have shown that HR can be error-prone. Here, we discuss the actual accuracy of HR. First, we present the product of genetic exchanges (gene conversion, GC, and crossing over, CO) and the mechanisms of HR during double strand break repair and replication restart. We discuss the intrinsic capacities of HR to generate genome rearrangements by GC or CO, either during DSB repair or replication restart. During this process, abortive HR intermediates generate genetic instability and cell toxicity. In addition to genome rearrangements, HR also primes error-prone DNA synthesis and favors mutagenesis on single stranded DNA, a key DNA intermediate during the HR process. The fact that cells have developed several mechanisms protecting against HR excess emphasize its potential risks. Consistent with this duality, several pro-oncogenic situations have been consistently associated with either decreased or increased HR levels. Nevertheless, this versatility also has advantages that we outline here. We conclude that HR is a double-edged sword, which on one hand controls the equilibrium between genome stability and diversity but, on the other hand, can jeopardize the maintenance of genomic integrity. Therefore, whether non-homologous end joining (which, in contrast with HR, is not intrinsically mutagenic) or HR is the more mutagenic process is a question that should be re-evaluated. Both processes can be "Dr. Jekyll" in maintaining genome stability/variability and "Mr. Hyde" in jeopardizing genome integrity.
Collapse
Affiliation(s)
- Josée Guirouilh-Barbat
- CNRS, UMR 8200, Institut de Cancérologie Gustave Roussy, Équipe Labélisée, Université Paris-Sud, «LIGUE 2014» Villejuif, France
| | | | - Pascale Bertrand
- CEA DSV, UMR 967 CEA-INSERM-Université Paris Diderot-Université Paris Sud, Institut de Radiobiologie Cellulaire et Moléculaire Fontenay-aux-Roses, France
| | - Bernard S Lopez
- CNRS, UMR 8200, Institut de Cancérologie Gustave Roussy, Équipe Labélisée, Université Paris-Sud, «LIGUE 2014» Villejuif, France
| |
Collapse
|
118
|
Henninger EE, Pursell ZF. DNA polymerase ε and its roles in genome stability. IUBMB Life 2014; 66:339-51. [PMID: 24861832 DOI: 10.1002/iub.1276] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/02/2014] [Indexed: 12/14/2022]
Abstract
DNA Polymerase Epsilon (Pol ε) is one of three DNA Polymerases (along with Pol δ and Pol α) required for nuclear DNA replication in eukaryotes. Pol ε is comprised of four subunits, the largest of which is encoded by the POLE gene and contains the catalytic polymerase and exonuclease activities. The 3'-5' exonuclease proofreading activity is able to correct DNA synthesis errors and helps protect against genome instability. Recent cancer genome sequencing efforts have shown that 3% of colorectal and 7% of endometrial cancers contain mutations within the exonuclease domain of POLE and are associated with significantly elevated levels of single nucleotide substitutions (15-500 per Mb) and microsatellite stability. POLE mutations have also been found in other tumor types, though at lower frequency, suggesting roles in tumorigenesis more broadly in different tissue types. In addition to its proofreading activity, Pol ε contributes to genome stability through multiple mechanisms that are discussed in this review.
Collapse
Affiliation(s)
- Erin E Henninger
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | | |
Collapse
|
119
|
Magdalou I, Lopez BS, Pasero P, Lambert SAE. The causes of replication stress and their consequences on genome stability and cell fate. Semin Cell Dev Biol 2014; 30:154-64. [PMID: 24818779 DOI: 10.1016/j.semcdb.2014.04.035] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 04/29/2014] [Indexed: 01/28/2023]
Abstract
Alterations of the dynamics of DNA replication cause genome instability. These alterations known as "replication stress" have emerged as a major source of genomic instability in pre-neoplasic lesions, contributing to cancer development. The concept of replication stress covers a wide variety of events that distort the temporal and spatial DNA replication program. These events have endogenous or exogenous origins and impact globally or locally on the dynamics of DNA replication. They may arise within a short window of time (acute stress) or during each S phase (chronic stress). Here, we review the known situations in which the dynamics of DNA replication is distorted. We have united them in four main categories: (i) inadequate firing of replication origins (deficiency or excess), (ii) obstacles to fork progression, (iii) conflicts between replication and transcription and (iv) DNA replication under inappropriate metabolic conditions (unbalanced DNA replication). Because the DNA replication program is a process tightly regulated by many factors, replication stress often appears as a cascade of events. A local stress may prevent the completion of DNA replication at a single locus and subsequently compromise chromosome segregation in mitosis and therefore have a global effect on genome integrity. Finally, we discuss how replication stress drives genome instability and to what extent it is relevant to cancer biology.
Collapse
Affiliation(s)
- Indiana Magdalou
- Université Paris Sud, CNRS, UMR 8200 and Institut de Cancérologie Gustave Roussy, équipe labélisée «LIGUE 2014», Villejuif, France
| | - Bernard S Lopez
- Université Paris Sud, CNRS, UMR 8200 and Institut de Cancérologie Gustave Roussy, équipe labélisée «LIGUE 2014», Villejuif, France
| | - Philippe Pasero
- Institute of Human Genetics, CNRS UPR 1142, équipe labélisée LIGUE contre le Cancer, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Sarah A E Lambert
- Institut Curie, centre de recherche, CNRS UMR338, Bat 110, centre universitaire, 91405 Orsay, France.
| |
Collapse
|
120
|
Mitra S, Gómez-Raja J, Larriba G, Dubey DD, Sanyal K. Rad51-Rad52 mediated maintenance of centromeric chromatin in Candida albicans. PLoS Genet 2014; 10:e1004344. [PMID: 24762765 PMCID: PMC3998917 DOI: 10.1371/journal.pgen.1004344] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 03/19/2014] [Indexed: 11/29/2022] Open
Abstract
Specification of the centromere location in most eukaryotes is not solely dependent on the DNA sequence. However, the non-genetic determinants of centromere identity are not clearly defined. While multiple mechanisms, individually or in concert, may specify centromeres epigenetically, most studies in this area are focused on a universal factor, a centromere-specific histone H3 variant CENP-A, often considered as the epigenetic determinant of centromere identity. In spite of variable timing of its loading at centromeres across species, a replication coupled early S phase deposition of CENP-A is found in most yeast centromeres. Centromeres are the earliest replicating chromosomal regions in a pathogenic budding yeast Candida albicans. Using a 2-dimensional agarose gel electrophoresis assay, we identify replication origins (ORI7-LI and ORI7-RI) proximal to an early replicating centromere (CEN7) in C. albicans. We show that the replication forks stall at CEN7 in a kinetochore dependent manner and fork stalling is reduced in the absence of the homologous recombination (HR) proteins Rad51 and Rad52. Deletion of ORI7-RI causes a significant reduction in the stalled fork signal and an increased loss rate of the altered chromosome 7. The HR proteins, Rad51 and Rad52, have been shown to play a role in fork restart. Confocal microscopy shows declustered kinetochores in rad51 and rad52 mutants, which are evidence of kinetochore disintegrity. CENP-ACaCse4 levels at centromeres, as determined by chromatin immunoprecipitation (ChIP) experiments, are reduced in absence of Rad51/Rad52 resulting in disruption of the kinetochore structure. Moreover, western blot analysis reveals that delocalized CENP-A molecules in HR mutants degrade in a similar fashion as in other kinetochore mutants described before. Finally, co-immunoprecipitation assays indicate that Rad51 and Rad52 physically interact with CENP-ACaCse4in vivo. Thus, the HR proteins Rad51 and Rad52 epigenetically maintain centromere functioning by regulating CENP-ACaCse4 levels at the programmed stall sites of early replicating centromeres. The epigenetic mark of centromeres, CENP-A, is deposited in S phase in most yeasts by a mechanism that is not completely understood. Here, we identify two CEN7 flanking replication origins, ORI7-L1 and ORI7-RI, proximal to an early replicating centromere (CEN7) in a budding yeast Candida albicans. Replication forks starting from these origins stall randomly at CEN7 by the kinetochore that serves as a barrier to fork progression. We observe that centromeric fork stalling is reduced in absence of the HR proteins, Rad51 and Rad52, known to play a role in restarting stalled forks. Further, we demonstrate that Rad51 and Rad52 physically interact with CENP-ACaCse4in vivo. CENP-ACaCse4 levels are reduced in absence of Rad51 or Rad52, which results in disruption of the kinetochore structure. Here we propose a novel DNA replication-coupled mechanism mediated by HR proteins which epigenetically maintains centromere identity by regulating CENP-A deposition. A direct role of DNA repair proteins in centromere function offers insights into the mechanisms of centromere mis-regulation that leads to widespread aneuploidy in cancer cells.
Collapse
Affiliation(s)
- Sreyoshi Mitra
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Jonathan Gómez-Raja
- Departamento Ciencias Biomédicas Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| | - Germán Larriba
- Departamento Ciencias Biomédicas Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| | | | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
- * E-mail:
| |
Collapse
|
121
|
Prado F. Genetic instability is prevented by Mrc1-dependent spatio-temporal separation of replicative and repair activities of homologous recombination: homologous recombination tolerates replicative stress by Mrc1-regulated replication and repair activities operating at S and G2 in distinct subnuclear compartments. Bioessays 2014; 36:451-62. [PMID: 24615940 PMCID: PMC4312893 DOI: 10.1002/bies.201300161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Homologous recombination (HR) is required to protect and restart stressed replication forks. Paradoxically, the Mrc1 branch of the S phase checkpoints, which is activated by replicative stress, prevents HR repair at breaks and arrested forks. Indeed, the mechanisms underlying HR can threaten genome integrity if not properly regulated. Thus, understanding how cells avoid genetic instability associated with replicative stress, a hallmark of cancer, is still a challenge. Here I discuss recent results that support a model by which HR responds to replication stress through replicative and repair activities that operate at different stages of the cell cycle (S and G2, respectively) and in distinct subnuclear structures. Remarkably, the replication checkpoint appears to control this scenario by inhibiting the assembly of HR repair centers at stressed forks during S phase, thereby avoiding genetic instability.
Collapse
Affiliation(s)
- Félix Prado
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| |
Collapse
|
122
|
Roberts SA, Gordenin DA. Clustered and genome-wide transient mutagenesis in human cancers: Hypermutation without permanent mutators or loss of fitness. Bioessays 2014; 36:382-393. [PMID: 24615916 DOI: 10.1002/bies.201300140] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The gain of a selective advantage in cancer as well as the establishment of complex traits during evolution require multiple genetic alterations, but how these mutations accumulate over time is currently unclear. There is increasing evidence that a mutator phenotype perpetuates the development of many human cancers. While in some cases the increased mutation rate is the result of a genetic disruption of DNA repair and replication or environmental exposures, other evidence suggests that endogenous DNA damage induced by AID/APOBEC cytidine deaminases can result in transient localized hypermutation generating simultaneous, closely spaced (i.e. "clustered") multiple mutations. Here, we discuss mechanisms that lead to mutation cluster formation, the biological consequences of their formation in cancer and evidence suggesting that APOBEC mutagenesis can also occur genome-wide. This raises the possibility that dysregulation of these enzymes may enable rapid malignant transformation by increasing mutation rates without the loss of fitness associated with permanent mutators.
Collapse
Affiliation(s)
- Steven A Roberts
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Durham, NC, USA
| | | |
Collapse
|
123
|
Heitzer E, Tomlinson I. Replicative DNA polymerase mutations in cancer. Curr Opin Genet Dev 2014; 24:107-13. [PMID: 24583393 PMCID: PMC4003352 DOI: 10.1016/j.gde.2013.12.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 12/18/2022]
Abstract
Three DNA polymerases - Pol α, Pol δ and Pol ɛ - are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson-Crick base pairing and 3'exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to 'polymerase proofreading associated polyposis' (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an 'ultramutator' phenotype, with a dramatic increase in base substitutions.
Collapse
Affiliation(s)
- Ellen Heitzer
- Institute of Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria.
| | - Ian Tomlinson
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK; Oxford NIHR Comprehensive Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
124
|
Rimer J, Cohen IR, Friedman N. Do all creatures possess an acquired immune system of some sort? Bioessays 2014; 36:273-81. [DOI: 10.1002/bies.201300124] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jacob Rimer
- Department of Immunology; Weizmann Institute of Science; Rehovot Israel
| | - Irun R. Cohen
- Department of Immunology; Weizmann Institute of Science; Rehovot Israel
| | - Nir Friedman
- Department of Immunology; Weizmann Institute of Science; Rehovot Israel
| |
Collapse
|
125
|
Christensen AC. Plant mitochondrial genome evolution can be explained by DNA repair mechanisms. Genome Biol Evol 2013; 5:1079-86. [PMID: 23645599 PMCID: PMC3698917 DOI: 10.1093/gbe/evt069] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Plant mitochondrial genomes are notorious for their large and variable size, nonconserved open reading frames of unknown function, and high rates of rearrangement. Paradoxically, the mutation rates are very low. However, mutation rates can only be measured in sequences that can be aligned—a very small part of plant mitochondrial genomes. Comparison of the complete mitochondrial genome sequences of two ecotypes of Arabidopsis thaliana allows the alignment of noncoding as well as coding DNA and estimation of the mutation rates in both. A recent chimeric duplication is also analyzed. A hypothesis is proposed that the mechanisms of plant mitochondrial DNA repair account for these features and includes different mechanisms in transcribed and nontranscribed regions. Within genes, a bias toward gene conversion would keep measured mutation rates low, whereas in noncoding regions, break-induced replication (BIR) explains the expansion and rearrangements. Both processes are types of double-strand break repair, but enhanced second-strand capture in transcribed regions versus BIR in nontranscribed regions can explain the two seemingly contradictory features of plant mitochondrial genome evolution—the low mutation rates in genes and the striking expansions of noncoding sequences.
Collapse
Affiliation(s)
- Alan C Christensen
- School of Biological Sciences, E249 Beadle Center, University of Nebraska-Lincoln, USA.
| |
Collapse
|
126
|
Lieberman-Lazarovich M, Melamed-Bessudo C, de Pater S, Levy AA. Epigenetic alterations at genomic loci modified by gene targeting in Arabidopsis thaliana. PLoS One 2013; 8:e85383. [PMID: 24386472 PMCID: PMC3873452 DOI: 10.1371/journal.pone.0085383] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/26/2013] [Indexed: 12/20/2022] Open
Abstract
Gene Targeting (GT) is the integration of an introduced vector into a specific chromosomal site, via homologous recombination. It is considered an effective tool for precise genome editing, with far-reaching implications in biological research and biotechnology, and is widely used in mice, with the potential of becoming routine in many species. Nevertheless, the epigenetic status of the targeted allele remains largely unexplored. Using GT-modified lines of the model plant Arabidopsis thaliana, we show that the DNA methylation profile of the targeted locus is changed following GT. This effect is non-directional as methylation can be either completely lost, maintained with minor alterations or show instability in the generations subsequent to GT. As DNA methylation is known to be involved in several cellular processes, GT-related alterations may result in unexpected or even unnoticed perturbations. Our analysis shows that GT may be used as a new tool for generating epialleles, for example, to study the role of gene body methylation. In addition, the analysis of DNA methylation at the targeted locus may be utilized to investigate the mechanism of GT, many aspects of which are still unknown.
Collapse
Affiliation(s)
- Michal Lieberman-Lazarovich
- Department of Plant Biology, University of Geneva, Geneva, Switzerland
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| | | | - Sylvia de Pater
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Avraham A. Levy
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
127
|
Abstract
In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13–Stn1–Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes.
Collapse
|
128
|
Abstract
Recombination-dependent DNA replication, often called break-induced replication (BIR), was initially invoked to explain recombination events in bacteriophage but it has recently been recognized as a fundamentally important mechanism to repair double-strand chromosome breaks in eukaryotes. This mechanism appears to be critically important in the restarting of stalled and broken replication forks and in maintaining the integrity of eroded telomeres. Although BIR helps preserve genome integrity during replication, it also promotes genome instability by the production of loss of heterozygosity and the formation of nonreciprocal translocations, as well as in the generation of complex chromosomal rearrangements.
Collapse
Affiliation(s)
- Ranjith P Anand
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110
| | | | | |
Collapse
|
129
|
Zhang CZ, Leibowitz ML, Pellman D. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev 2013; 27:2513-30. [PMID: 24298051 PMCID: PMC3861665 DOI: 10.1101/gad.229559.113] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent genome sequencing studies have identified several classes of complex genomic rearrangements that appear to be derived from a single catastrophic event. These discoveries identify ways that genomes can be altered in single large jumps rather than by many incremental steps. Here we compare and contrast these phenomena and examine the evidence that they arise "all at once." We consider the impact of massive chromosomal change for the development of diseases such as cancer and for evolution more generally. Finally, we summarize current models for underlying mechanisms and discuss strategies for testing these models.
Collapse
Affiliation(s)
- Cheng-Zhong Zhang
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Mitchell L. Leibowitz
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David Pellman
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
130
|
Carr AM, Lambert S. Replication stress-induced genome instability: the dark side of replication maintenance by homologous recombination. J Mol Biol 2013; 425:4733-44. [PMID: 23643490 DOI: 10.1016/j.jmb.2013.04.023] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/30/2013] [Accepted: 04/22/2013] [Indexed: 12/17/2022]
Abstract
Homologous recombination (HR) is an evolutionary-conserved mechanism involved in a subtle balance between genome stability and diversity. HR is a faithful DNA repair pathway and has been largely characterized in the context of double-strand break (DSB) repair. Recently, multiple functions for the HR machinery have been identified at arrested forks. These are evident across different organisms and include replication fork-stabilization and fork-restart functions. Interestingly, a DSB appears not to be a prerequisite for HR-mediated replication maintenance. HR has the ability to rebuild a replisome at inactivated forks, but perhaps surprisingly, the resulting replisome is liable to intrastrand and interstrand switches leading to replication errors. Here, we review our current understanding of the replication maintenance function of HR. The error proneness of these pathways leads us to suggest that the origin of replication-associated genome instability should be re-evaluated.
Collapse
Affiliation(s)
- Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | | |
Collapse
|
131
|
Kim N, Cho JE, Li YC, Jinks-Robertson S. RNA∶DNA hybrids initiate quasi-palindrome-associated mutations in highly transcribed yeast DNA. PLoS Genet 2013; 9:e1003924. [PMID: 24244191 PMCID: PMC3820800 DOI: 10.1371/journal.pgen.1003924] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022] Open
Abstract
RNase H enzymes promote genetic stability by degrading aberrant RNA∶DNA hybrids and by removing ribonucleotide monophosphates (rNMPs) that are present in duplex DNA. Here, we report that loss of RNase H2 in yeast is associated with mutations that extend identity between the arms of imperfect inverted repeats (quasi-palindromes or QPs), a mutation type generally attributed to a template switch during DNA synthesis. QP events were detected using frameshift-reversion assays and were only observed under conditions of high transcription. In striking contrast to transcription-associated short deletions that also are detected by these assays, QP events do not require Top1 activity. QP mutation rates are strongly affected by the direction of DNA replication and, in contrast to their elevation in the absence of RNase H2, are reduced when RNase H1 is additionally eliminated. Finally, transcription-associated QP events are limited by components of the nucleotide excision repair pathway and are promoted by translesion synthesis DNA polymerases. We suggest that QP mutations reflect either a transcription-associated perturbation of Okazaki-fragment processing, or the use of a nascent transcript to resume replication following a transcription-replication conflict. Mutation rates are correlated with the level of gene expression in budding yeast, demonstrating a link between transcription and stability of the underlying DNA template. In the current work, we describe a novel type of transcription-associated mutation that converts imperfect inverted repeats (quasi-palindromes or QPs) to perfect inverted repeats. Using appropriate mutation reporters, we demonstrate that QP mutations are strongly affected by the direction of DNA replication and have distinctive genetic requirements. Most notably, rates of transcription-associated QP events are regulated by the RNase H class of enzymes, which are specialized to process the RNA component of RNA∶DNA hybrids. The source of the RNA∶DNA hybrids that initiate QP mutations is unclear, but could reflect transcripts that remain stably base-paired with the DNA template, or aberrant processing of the RNA primers normally used to initiate DNA synthesis. These studies further expand the diverse ways that transcription affects the mutation landscape, and establish a novel way that RNA∶DNA hybrids can contribute to genetic instability. The high conservation of basic DNA-related metabolic processes suggests that results in yeast will be broadly applicable in higher eukaryotes.
Collapse
Affiliation(s)
- Nayun Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yue C. Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
132
|
Guo X, Jinks-Robertson S. Roles of exonucleases and translesion synthesis DNA polymerases during mitotic gap repair in yeast. DNA Repair (Amst) 2013; 12:1024-30. [PMID: 24210827 DOI: 10.1016/j.dnarep.2013.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/03/2013] [Indexed: 11/27/2022]
Abstract
Transformation-based gap-repair assays have long been used to model the repair of mitotic double-strand breaks (DSBs) by homologous recombination in yeast. In the current study, we examine genetic requirements of two key processes involved in DSB repair: (1) the processive 5'-end resection that is required to efficiently engage a repair template and (2) the filling of resected ends by DNA polymerases. The specific gap-repair assay used allows repair events resolved as crossover versus noncrossover products to be distinguished, as well as the extent of heteroduplex DNA formed during recombination to be measured. To examine end resection, the efficiency and outcome of gap repair were monitored in the absence of the Exo1 exonuclease and the Sgs1 helicase. We found that either Exo1 or Sgs1 presence is sufficient to inhibit gap-repair efficiency over 10-fold, consistent with resection-mediated destruction of the introduced plasmid. In terms of DNA polymerase requirements for gap repair, we focused specifically on potential roles of the Pol ζ and Pol η translesion synthesis DNA polymerases. We found that both Pol ζ and Pol η are necessary for efficient gap repair and that each functions independently of the other. These polymerases may be involved either in the initiation of DNA synthesis from the an invading end, or in a gap-filling process that is required to complete recombination.
Collapse
Affiliation(s)
- Xiaoge Guo
- Graduate Program in Pharmacology and Molecular Cancer Biology, United States
| | | |
Collapse
|
133
|
Aze A, Zhou JC, Costa A, Costanzo V. DNA replication and homologous recombination factors: acting together to maintain genome stability. Chromosoma 2013; 122:401-13. [PMID: 23584157 DOI: 10.1007/s00412-013-0411-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
Genome duplication requires the coordinated action of multiple proteins to ensure a fast replication with high fidelity. These factors form a complex called the Replisome, which is assembled onto the DNA duplex to promote its unwinding and to catalyze the polymerization of two new strands. Key constituents of the Replisome are the Cdc45-Mcm2-7-GINS helicase and the And1-Claspin-Tipin-Tim1 complex, which coordinate DNA unwinding with polymerase alpha-, delta-, and epsilon- dependent DNA polymerization. These factors encounter numerous obstacles, such as endogenous DNA lesions leading to template breakage and complex structures arising from intrinsic features of specific DNA sequences. To overcome these roadblocks, homologous recombination DNA repair factors, such as Rad51 and the Mre11-Rad50-Nbs1 complex, are required to ensure complete and faithful replication. Consistent with this notion, many of the genes involved in this process result in lethal phenotypes when inactivated in organisms with complex and large genomes. Here, we summarize the architectural and functional properties of the Replisome and propose a unified view of DNA replication and repair processes.
Collapse
Affiliation(s)
- Antoine Aze
- Clare Hall Laboratories, London Research Institute, South Mimms, Herts, EN63LD, UK
| | | | | | | |
Collapse
|
134
|
Replicative mechanisms for CNV formation are error prone. Nat Genet 2013; 45:1319-26. [PMID: 24056715 PMCID: PMC3821386 DOI: 10.1038/ng.2768] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 08/27/2013] [Indexed: 01/20/2023]
Abstract
We investigated 67 breakpoint junctions of gene copy number gains (CNVs) in 31 unrelated subjects. We observed a strikingly high frequency of small deletions and insertions (29%) apparently originating from polymerase-slippage events, in addition to frameshifts and point mutations in homonucleotide runs (13%), at or flanking the breakpoint junctions of complex CNVs. These simple nucleotide variants (SNV) were generated concomitantly with the de novo complex genomic rearrangement (CGR) event. Our findings implicate a low fidelity error-prone DNA polymerase in synthesis associated with DNA repair mechanisms that leads to a local increase in point mutation burden associated with human CGR.
Collapse
|
135
|
Lada AG, Stepchenkova EI, Waisertreiger ISR, Noskov VN, Dhar A, Eudy JD, Boissy RJ, Hirano M, Rogozin IB, Pavlov YI. Genome-wide mutation avalanches induced in diploid yeast cells by a base analog or an APOBEC deaminase. PLoS Genet 2013; 9:e1003736. [PMID: 24039593 PMCID: PMC3764175 DOI: 10.1371/journal.pgen.1003736] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/05/2013] [Indexed: 11/23/2022] Open
Abstract
Genetic information should be accurately transmitted from cell to cell; conversely, the adaptation in evolution and disease is fueled by mutations. In the case of cancer development, multiple genetic changes happen in somatic diploid cells. Most classic studies of the molecular mechanisms of mutagenesis have been performed in haploids. We demonstrate that the parameters of the mutation process are different in diploid cell populations. The genomes of drug-resistant mutants induced in yeast diploids by base analog 6-hydroxylaminopurine (HAP) or AID/APOBEC cytosine deaminase PmCDA1 from lamprey carried a stunning load of thousands of unselected mutations. Haploid mutants contained almost an order of magnitude fewer mutations. To explain this, we propose that the distribution of induced mutation rates in the cell population is uneven. The mutants in diploids with coincidental mutations in the two copies of the reporter gene arise from a fraction of cells that are transiently hypersensitive to the mutagenic action of a given mutagen. The progeny of such cells were never recovered in haploids due to the lethality caused by the inactivation of single-copy essential genes in cells with too many induced mutations. In diploid cells, the progeny of hypersensitive cells survived, but their genomes were saturated by heterozygous mutations. The reason for the hypermutability of cells could be transient faults of the mutation prevention pathways, like sanitization of nucleotide pools for HAP or an elevated expression of the PmCDA1 gene or the temporary inability of the destruction of the deaminase. The hypothesis on spikes of mutability may explain the sudden acquisition of multiple mutational changes during evolution and carcinogenesis.
Collapse
Affiliation(s)
- Artem G. Lada
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Elena I. Stepchenkova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Saint Petersburg Branch of Vavilov Institute of General Genetics, St. Petersburg, Russia
- Department of Genetics, Saint Petersburg University, St. Petersburg, Russia
| | - Irina S. R. Waisertreiger
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Vladimir N. Noskov
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Alok Dhar
- Department of Genetics, Cell Biology and Anatomy and Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - James D. Eudy
- Department of Genetics, Cell Biology and Anatomy and Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Robert J. Boissy
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Masayuki Hirano
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Genetics, Saint Petersburg University, St. Petersburg, Russia
| |
Collapse
|
136
|
Degtyareva NP, Heyburn L, Sterling J, Resnick MA, Gordenin DA, Doetsch PW. Oxidative stress-induced mutagenesis in single-strand DNA occurs primarily at cytosines and is DNA polymerase zeta-dependent only for adenines and guanines. Nucleic Acids Res 2013; 41:8995-9005. [PMID: 23925127 PMCID: PMC3799438 DOI: 10.1093/nar/gkt671] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Localized hyper-mutability caused by accumulation of lesions in persistent single-stranded (ss) DNA has been recently found in several types of cancers. An increase in endogenous levels of reactive oxygen species (ROS) is considered to be one of the hallmarks of cancers. Employing a yeast model system, we addressed the role of oxidative stress as a potential source of hyper-mutability in ssDNA by modulation of the endogenous ROS levels and by exposing cells to oxidative DNA-damaging agents. We report here that under oxidative stress conditions the majority of base substitution mutations in ssDNA are caused by erroneous, DNA polymerase (Pol) zeta-independent bypass of cytosines, resulting in C to T transitions. For all other DNA bases Pol zeta is essential for ROS-induced mutagenesis. The density of ROS-induced mutations in ssDNA is lower, compared to that caused by UV and MMS, which suggests that ssDNA could be actively protected from oxidative damage. These findings have important implications for understanding mechanisms of oxidative mutagenesis, and could be applied to development of anticancer therapies and cancer prevention.
Collapse
Affiliation(s)
- Natalya P Degtyareva
- Department of Biochemistry, Winship Cancer Institute, Emory University School of Medicine, 4013 Rollins Research Center, Atlanta, GA 30322, USA, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIH, DHHS), Research Triangle Park, NC 27709, USA and Department of Radiation Oncology, Emory University School of Medicine, 4013 Rollins Research Center, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
137
|
Gioti A, Stajich JE, Johannesson H. Neurospora and the dead-end hypothesis: genomic consequences of selfing in the model genus. Evolution 2013; 67:3600-16. [PMID: 24299411 DOI: 10.1111/evo.12206] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 06/24/2013] [Indexed: 12/24/2022]
Abstract
It is becoming increasingly evident that adoption of different reproductive strategies, such as sexual selfing and asexuality, greatly impacts genome evolution. In this study, we test theoretical predictions on genomic maladaptation of selfing lineages using empirical data from the model fungus Neurospora. We sequenced the genomes of four species representing distinct transitions to selfing within the history of the genus, as well as the transcriptome of one of these, and compared with available data from three outcrossing species. Our results provide evidence for a relaxation of purifying selection in protein-coding genes and for a reduced efficiency of transposable element silencing by Repeat Induced Point mutation. A reduction in adaptive evolution was also identified in the form of reduced codon usage bias in highly expressed genes of selfing Neurospora, but this result may be confounded by mutational bias. Potentially counteracting these negative effects, the nucleotide substitution rate and the spread of transposons is reduced in selfing species. We suggest that differences in substitution rate relate to the absence, in selfing Neurospora, of the asexual pathway producing conidia. Our results support the dead-end theory and show that Neurospora genomes bear signatures of both sexual and asexual reproductive mode.
Collapse
Affiliation(s)
- Anastasia Gioti
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden.
| | | | | |
Collapse
|
138
|
Yamanishi A, Yusa K, Horie K, Tokunaga M, Kusano K, Kokubu C, Takeda J. Enhancement of microhomology-mediated genomic rearrangements by transient loss of mouse Bloom syndrome helicase. Genome Res 2013; 23:1462-73. [PMID: 23908384 PMCID: PMC3759722 DOI: 10.1101/gr.152744.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bloom syndrome, an autosomal recessive disorder of the BLM gene, confers predisposition to a broad spectrum of early-onset cancers in multiple tissue types. Loss of genomic integrity is a primary hallmark of such human malignancies, but many studies using disease-affected specimens are limited in that they are retrospective and devoid of an appropriate experimental control. To overcome this, we devised an experimental system to recapitulate the early molecular events in genetically engineered mouse embryonic stem cells, in which cells undergoing loss of heterozygosity (LOH) can be enriched after inducible down-regulation of Blm expression, with or without site-directed DNA double-strand break (DSB) induction. Transient loss of BLM increased the rate of LOH, whose breakpoints were distributed along the chromosome. Combined with site-directed DSB induction, loss of BLM synergistically increased the rate of LOH and concentrated the breakpoints around the targeted chromosomal region. We characterized the LOH events using specifically tailored genomic tools, such as high-resolution array comparative genomic hybridization and high-density single nucleotide polymorphism genotyping, revealing that the combination of BLM suppression and DSB induction enhanced genomic rearrangements, including deletions and insertions, whose breakpoints were clustered in genomic inverted repeats and associated with junctional microhomologies. Our experimental approach successfully uncovered the detailed molecular mechanisms of as-yet-uncharacterized loss of heterozygosities and reveals the significant contribution of microhomology-mediated genomic rearrangements, which could be widely applicable to the early steps of cancer formation in general.
Collapse
Affiliation(s)
- Ayako Yamanishi
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
139
|
Shor E, Fox CA, Broach JR. The yeast environmental stress response regulates mutagenesis induced by proteotoxic stress. PLoS Genet 2013; 9:e1003680. [PMID: 23935537 PMCID: PMC3731204 DOI: 10.1371/journal.pgen.1003680] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/13/2013] [Indexed: 12/26/2022] Open
Abstract
Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. Cellular capability to mutate its DNA plays an important role in evolution and impinges on medical issues, including acquisition of mutator phenotypes by cancer cells and emergence of drug-resistant pathogens. Whether and how the environment affects rates of mutation has been studied predominantly in the context of environmental agents that damage DNA (e.g. UV and γ-rays). However, it has been observed that conditions of chronic non-DNA-damaging stress (e.g. starvation or heat shock) also increase mutagenesis. It has been shown that in bacteria, activation of the general stress response activates a pro-mutagenic pathway and thus promotes mutagenesis during periods of stress. However, in eukaryotes, so far there has been no evidence of a stress response regulating mutagenesis. In this manuscript we demonstrate that in budding yeast, a model eukaryote, the general environmental stress response (ESR) regulates mutagenesis induced by proteotoxic stress (accumulation of unfolded proteins) at several loci. We also identify two pro-mutagenic DNA metabolic pathways that contribute to this mutagenesis and present genetic data showing that the ESR regulates these pathways. Together, these data advance our understanding of how cellular sensing and responding to environmental cues affect cellular capability for mutagenesis.
Collapse
Affiliation(s)
- Erika Shor
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - James R. Broach
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
140
|
Scully R, Xie A. Double strand break repair functions of histone H2AX. Mutat Res 2013; 750:5-14. [PMID: 23916969 DOI: 10.1016/j.mrfmmm.2013.07.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 12/12/2022]
Abstract
Chromosomal double strand breaks provoke an extensive reaction in neighboring chromatin, characterized by phosphorylation of histone H2AX on serine 139 of its C-terminal tail (to form "γH2AX"). The γH2AX response contributes to the repair of double strand breaks encountered in a variety of different contexts, including those induced by ionizing radiation, physiologically programmed breaks that characterize normal immune cell development and the pathological exposure of DNA ends triggered by telomere dysfunction. γH2AX also participates in the evolutionarily conserved process of sister chromatid recombination, a homologous recombination pathway involved in the suppression of genomic instability during DNA replication and directly implicated in tumor suppression. At a biochemical level, the γH2AX response provides a compelling example of how the "histone code" is adapted to the regulation of double strand break repair. Here, we review progress in research aimed at understanding how γH2AX contributes to double strand break repair in mammalian cells.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States.
| | | |
Collapse
|
141
|
Pomerantz RT, Goodman MF, O'Donnell ME. DNA polymerases are error-prone at RecA-mediated recombination intermediates. Cell Cycle 2013; 12:2558-63. [PMID: 23907132 DOI: 10.4161/cc.25691] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Genetic studies have suggested that Y-family translesion DNA polymerase IV (DinB) performs error-prone recombination-directed replication (RDR) under conditions of stress due to its ability to promote mutations during double-strand break (DSB) repair in growth-limited E. coli cells. In recent studies we have demonstrated that pol IV is preferentially recruited to D-loop recombination intermediates at stress-induced concentrations and is highly mutagenic during RDR in vitro. These findings verify longstanding genetic data that have implicated pol IV in promoting stress-induced mutagenesis at D-loops. In this Extra View, we demonstrate the surprising finding that A-family pol I, which normally exhibits high-fidelity DNA synthesis, is highly error-prone at D-loops like pol IV. These findings indicate that DNA polymerases are intrinsically error-prone at RecA-mediated D-loops and suggest that auxiliary factors are necessary for suppressing mutations during RDR in non-stressed proliferating cells.
Collapse
Affiliation(s)
- Richard T Pomerantz
- Fels Institute for Cancer Research, Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA, USA.
| | | | | |
Collapse
|
142
|
Saini N, Zhang Y, Nishida Y, Sheng Z, Choudhury S, Mieczkowski P, Lobachev KS. Fragile DNA motifs trigger mutagenesis at distant chromosomal loci in saccharomyces cerevisiae. PLoS Genet 2013; 9:e1003551. [PMID: 23785298 PMCID: PMC3681665 DOI: 10.1371/journal.pgen.1003551] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 04/23/2013] [Indexed: 11/19/2022] Open
Abstract
DNA sequences capable of adopting non-canonical secondary structures have been associated with gross-chromosomal rearrangements in humans and model organisms. Previously, we have shown that long inverted repeats that form hairpin and cruciform structures and triplex-forming GAA/TTC repeats induce the formation of double-strand breaks which trigger genome instability in yeast. In this study, we demonstrate that breakage at both inverted repeats and GAA/TTC repeats is augmented by defects in DNA replication. Increased fragility is associated with increased mutation levels in the reporter genes located as far as 8 kb from both sides of the repeats. The increase in mutations was dependent on the presence of inverted or GAA/TTC repeats and activity of the translesion polymerase Polζ. Mutagenesis induced by inverted repeats also required Sae2 which opens hairpin-capped breaks and initiates end resection. The amount of breakage at the repeats is an important determinant of mutations as a perfect palindromic sequence with inherently increased fragility was also found to elevate mutation rates even in replication-proficient strains. We hypothesize that the underlying mechanism for mutagenesis induced by fragile motifs involves the formation of long single-stranded regions in the broken chromosome, invasion of the undamaged sister chromatid for repair, and faulty DNA synthesis employing Polζ. These data demonstrate that repeat-mediated breaks pose a dual threat to eukaryotic genome integrity by inducing chromosomal aberrations as well as mutations in flanking genes.
Collapse
Affiliation(s)
- Natalie Saini
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Yu Zhang
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Yuri Nishida
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Ziwei Sheng
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Shilpa Choudhury
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Piotr Mieczkowski
- Department of Genetics, School of Medicine, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
- * E-mail:
| |
Collapse
|
143
|
Sebesta M, Burkovics P, Juhasz S, Zhang S, Szabo JE, Lee MYWT, Haracska L, Krejci L. Role of PCNA and TLS polymerases in D-loop extension during homologous recombination in humans. DNA Repair (Amst) 2013; 12:691-8. [PMID: 23731732 PMCID: PMC3744802 DOI: 10.1016/j.dnarep.2013.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 11/16/2022]
Abstract
Homologous recombination (HR) is essential for maintaining genomic integrity, which is challenged by a wide variety of potentially lethal DNA lesions. Regardless of the damage type, recombination is known to proceed by RAD51-mediated D-loop formation, followed by DNA repair synthesis. Nevertheless, the participating polymerases and extension mechanism are not well characterized. Here, we present a reconstitution of this step using purified human proteins. In addition to Pol δ, TLS polymerases, including Pol η and Pol κ, also can extend D-loops. In vivo characterization reveals that Pol η and Pol κ are involved in redundant pathways for HR. In addition, the presence of PCNA on the D-loop regulates the length of the extension tracks by recruiting various polymerases and might present a regulatory point for the various recombination outcomes.
Collapse
Affiliation(s)
- Marek Sebesta
- National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Leushkin EV, Bazykin GA. Short indels are subject to insertion-biased gene conversion. Evolution 2013; 67:2604-13. [PMID: 24033170 DOI: 10.1111/evo.12129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/05/2013] [Indexed: 11/29/2022]
Abstract
Recombination between homologous loci is accompanied by formation of heteroduplexes. Repairing mismatches in heteroduplexes often leads to single nucleotide substitutions in a process known as gene conversion. Gene conversion was shown to be GC-biased in different organisms; that is, a W(A or T)→S(G or C) substitution is more likely in this process than a S→W substitution. Here, we show that the insertion/deletion ratio for short noncoding indels that reach fixation between species is positively correlated with the recombination rate in Drosophila melanogaster, Homo sapiens, and Saccharomyces cerevisiae. This correlation is both due to an increase of the fixation rate of insertions and decrease of the fixation rate of deletions in regions of high recombination. Whole-genome data on indel polymorphism and divergence in D. melanogaster rule out mutation biases and selection as the cause of this trend, pointing to insertion-biased gene conversion as the most likely explanation. The bias toward insertions is the strongest for single-nucleotide indels, and decreases with indel length. In regions of high recombination rate this bias leads to an up to ∼5-fold excess of fixed short insertions over deletions, and substantially affects the evolution of DNA segments.
Collapse
Affiliation(s)
- Evgeny V Leushkin
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskye Gory 1-73, Moscow, 119992, Russia; Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoi Karetny pereulok, 19, Moscow, 127994, Russia.
| | | |
Collapse
|
145
|
Abstract
Mutations stimulate evolutionary change and lead to birth defects and cancer in humans as well as to antibiotic resistance in bacteria. According to the classic view, most mutations arise in dividing cells and result from uncorrected errors of S-phase DNA replication, which is highly accurate because of the involvement of selective DNA polymerases and efficient error-correcting mechanisms. In contrast, studies in bacteria and yeast reveal that DNA synthesis associated with repair of double-strand chromosomal breaks (DSBs) by homologous recombination is highly inaccurate, thus making DSBs and their repair an important source of mutations. Different error-prone mechanisms appear to operate in different repair scenarios. In the filling in of single-stranded DNA regions, error-prone translesion DNA polymerases appear to produce most errors. In contrast, in gene conversion gap repair and in break-induced replication, errors are independent of translesion polymerases, and many mutations have the signatures of template switching during DNA repair synthesis. DNA repair also appears to create complex copy-number variants. Overall, homologous recombination, which is traditionally considered a safe pathway of DSB repair, is an important source of mutagenesis that may contribute to human disease and evolution.
Collapse
Affiliation(s)
- Anna Malkova
- Department of Biology, School of Science, IUPUI, Indianapolis, Indiana 46202-5132, USA.
| | | |
Collapse
|
146
|
Mugal CF, Arndt PF, Ellegren H. Twisted signatures of GC-biased gene conversion embedded in an evolutionary stable karyotype. Mol Biol Evol 2013; 30:1700-12. [PMID: 23564940 PMCID: PMC3684855 DOI: 10.1093/molbev/mst067] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The genomes of many vertebrates show a characteristic heterogeneous distribution of GC content, the so-called GC isochore structure. The origin of isochores has been explained via the mechanism of GC-biased gene conversion (gBGC). However, although the isochore structure is declining in many mammalian genomes, the heterogeneity in GC content is being reinforced in the avian genome. Despite this discrepancy, which remains unexplained, examinations of individual substitution frequencies in mammals and birds are both consistent with the gBGC model of isochore evolution. On the other hand, a negative correlation between substitution and recombination rate found in the chicken genome is inconsistent with the gBGC model. It should therefore be important to consider along with gBGC other consequences of recombination on the origin and fate of mutations, as well as to account for relationships between recombination rate and other genomic features. We therefore developed an analytical model to describe the substitution patterns found in the chicken genome, and further investigated the relationships between substitution patterns and several genomic features in a rigorous statistical framework. Our analysis indicates that GC content itself, either directly or indirectly via interrelations to other genomic features, has an impact on the substitution pattern. Further, we suggest that this phenomenon is particularly visible in avian genomes due to their unusually low rate of chromosomal evolution. Because of this, interrelations between GC content and other genomic features are being reinforced, and are as such more pronounced in avian genomes as compared with other vertebrate genomes with a less stable karyotype.
Collapse
Affiliation(s)
- Carina F Mugal
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
147
|
Sneeden JL, Grossi SM, Tappin I, Hurwitz J, Heyer WD. Reconstitution of recombination-associated DNA synthesis with human proteins. Nucleic Acids Res 2013; 41:4913-25. [PMID: 23535143 PMCID: PMC3643601 DOI: 10.1093/nar/gkt192] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The repair of DNA breaks by homologous recombination is a high-fidelity process, necessary for the maintenance of genome integrity. Thus, DNA synthesis associated with recombinational repair must be largely error-free. In this report, we show that human DNA polymerase delta (δ) is capable of robust DNA synthesis at RAD51-mediated recombination intermediates dependent on the processivity clamp PCNA. Translesion synthesis polymerase eta (η) also extends these substrates, albeit far less processively. The single-stranded DNA binding protein RPA facilitates recombination-mediated DNA synthesis by increasing the efficiency of primer utilization, preventing polymerase stalling at specific sequence contexts, and overcoming polymerase stalling caused by topological constraint allowing the transition to a migrating D-loop. Our results support a model whereby the high-fidelity replicative DNA polymerase δ performs recombination-associated DNA synthesis, with translesion synthesis polymerases providing a supportive role as in normal replication.
Collapse
Affiliation(s)
- Jessica L Sneeden
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | | | | | | | | |
Collapse
|
148
|
Thakur J, Sanyal K. Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in Candida albicans. Genome Res 2013; 23:638-52. [PMID: 23439889 PMCID: PMC3613581 DOI: 10.1101/gr.141614.112] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CENPA/Cse4 assembles centromeric chromatin on diverse DNA. CENPA chromatin is epigenetically propagated on unique and different centromere DNA sequences in a pathogenic yeast Candida albicans. Formation of neocentromeres on DNA, nonhomologous to native centromeres, indicates a role of non-DNA sequence determinants in CENPA deposition. Neocentromeres have been shown to form at multiple loci in C. albicans when a native centromere was deleted. However, the process of site selection for CENPA deposition on native or neocentromeres in the absence of defined DNA sequences remains elusive. By systematic deletion of CENPA chromatin-containing regions of variable length of different chromosomes, followed by mapping of neocentromere loci in C. albicans and its related species Candida dubliniensis, which share similar centromere properties, we demonstrate that the chromosomal location is an evolutionarily conserved primary determinant of CENPA deposition. Neocentromeres on the altered chromosome are always formed close to the site which was once occupied by the native centromere. Interestingly, repositioning of CENPA chromatin from the neocentromere to the native centromere occurs by gene conversion in C. albicans.
Collapse
Affiliation(s)
- Jitendra Thakur
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India
| | | |
Collapse
|
149
|
Tóth-Petróczy Á, Tawfik DS. Protein Insertions and Deletions Enabled by Neutral Roaming in Sequence Space. Mol Biol Evol 2013; 30:761-71. [DOI: 10.1093/molbev/mst003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
150
|
Abstract
Plant mitochondrial genomes are notorious for their large and variable size, nonconserved open reading frames of unknown function, and high rates of rearrangement. Paradoxically, the mutation rates are very low. However, mutation rates can only be measured in sequences that can be aligned--a very small part of plant mitochondrial genomes. Comparison of the complete mitochondrial genome sequences of two ecotypes of Arabidopsis thaliana allows the alignment of noncoding as well as coding DNA and estimation of the mutation rates in both. A recent chimeric duplication is also analyzed. A hypothesis is proposed that the mechanisms of plant mitochondrial DNA repair account for these features and includes different mechanisms in transcribed and nontranscribed regions. Within genes, a bias toward gene conversion would keep measured mutation rates low, whereas in noncoding regions, break-induced replication (BIR) explains the expansion and rearrangements. Both processes are types of double-strand break repair, but enhanced second-strand capture in transcribed regions versus BIR in nontranscribed regions can explain the two seemingly contradictory features of plant mitochondrial genome evolution--the low mutation rates in genes and the striking expansions of noncoding sequences.
Collapse
Affiliation(s)
- Alan C Christensen
- School of Biological Sciences, E249 Beadle Center, University of Nebraska-Lincoln, USA.
| |
Collapse
|