101
|
Lee KY, Im JS, Shibata E, Park J, Handa N, Kowalczykowski SC, Dutta A. MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex. Nat Commun 2015; 6:7744. [PMID: 26215093 PMCID: PMC4525285 DOI: 10.1038/ncomms8744] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 06/08/2015] [Indexed: 11/20/2022] Open
Abstract
MCM8-9 complex is required for homologous recombination (HR)-mediated repair of double-strand breaks (DSBs). Here we report that MCM8-9 is required for DNA resection by MRN (MRE11-RAD50-NBS1) at DSBs to generate ssDNA. MCM8-9 interacts with MRN and is required for the nuclease activity and stable association of MRN with DSBs. The ATPase motifs of MCM8-9 are required for recruitment of MRE11 to foci of DNA damage. Homozygous deletion of the MCM9 found in various cancers sensitizes a cancer cell line to interstrand-crosslinking (ICL) agents. A cancer-derived point mutation or an SNP on MCM8 associated with premature ovarian failure (POF) diminishes the functional activity of MCM8. Therefore, the MCM8-9 complex facilitates DNA resection by the MRN complex during HR repair, genetic or epigenetic inactivation of MCM8 or MCM9 are seen in human cancers, and genetic inactivation of MCM8 may be the basis of a POF syndrome.
Collapse
Affiliation(s)
- Kyung Yong Lee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908 USA
| | - Jun-Sub Im
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908 USA
| | - Etsuko Shibata
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908 USA
| | - Jonghoon Park
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908 USA
| | - Naofumi Handa
- Department of Microbiology and Molecular Genetics, University of California, Briggs Hall, One Shields Avenue, Davis, California 95616-8665 USA
| | - Stephen C. Kowalczykowski
- Department of Microbiology and Molecular Genetics, University of California, Briggs Hall, One Shields Avenue, Davis, California 95616-8665 USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908 USA
| |
Collapse
|
102
|
Rickman KA, Lach FP, Abhyankar A, Donovan FX, Sanborn EM, Kennedy JA, Sougnez C, Gabriel SB, Elemento O, Chandrasekharappa SC, Schindler D, Auerbach AD, Smogorzewska A. Deficiency of UBE2T, the E2 Ubiquitin Ligase Necessary for FANCD2 and FANCI Ubiquitination, Causes FA-T Subtype of Fanconi Anemia. Cell Rep 2015; 12:35-41. [PMID: 26119737 DOI: 10.1016/j.celrep.2015.06.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/28/2015] [Accepted: 06/03/2015] [Indexed: 02/03/2023] Open
Abstract
Fanconi anemia (FA) is a rare bone marrow failure and cancer predisposition syndrome resulting from pathogenic mutations in genes encoding proteins participating in the repair of DNA interstrand crosslinks (ICLs). Mutations in 17 genes (FANCA-FANCS) have been identified in FA patients, defining 17 complementation groups. Here, we describe an individual presenting with typical FA features who is deficient for the ubiquitin-conjugating enzyme (E2), UBE2T. UBE2T is known to interact with FANCL, the E3 ubiquitin-ligase component of the multiprotein FA core complex, and is necessary for the monoubiquitination of FANCD2 and FANCI. Proband fibroblasts do not display FANCD2 and FANCI monoubiquitination, do not form FANCD2 foci following treatment with mitomycin C, and are hypersensitive to crosslinking agents. These cellular defects are complemented by expression of wild-type UBE2T, demonstrating that deficiency of the protein UBE2T can lead to Fanconi anemia. UBE2T gene gains an alias of FANCT.
Collapse
Affiliation(s)
- Kimberly A Rickman
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY 10065, USA
| | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY 10065, USA
| | | | - Frank X Donovan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Erica M Sanborn
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY 10065, USA
| | - Jennifer A Kennedy
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY 10065, USA
| | - Carrie Sougnez
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA
| | - Settara C Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Detlev Schindler
- Institute for Human Genetics, Biozentrum, Universität Würzburg, 97074 Würzburg, Germany
| | - Arleen D Auerbach
- Human Genetics and Hematology, The Rockefeller University, New York, NY 10065, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
103
|
Budzowska M, Graham TGW, Sobeck A, Waga S, Walter JC. Regulation of the Rev1-pol ζ complex during bypass of a DNA interstrand cross-link. EMBO J 2015; 34:1971-85. [PMID: 26071591 DOI: 10.15252/embj.201490878] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/06/2015] [Indexed: 11/09/2022] Open
Abstract
DNA interstrand cross-links (ICLs) are repaired in S phase by a complex, multistep mechanism involving translesion DNA polymerases. After replication forks collide with an ICL, the leading strand approaches to within one nucleotide of the ICL ("approach"), a nucleotide is inserted across from the unhooked lesion ("insertion"), and the leading strand is extended beyond the lesion ("extension"). How DNA polymerases bypass the ICL is incompletely understood. Here, we use repair of a site-specific ICL in Xenopus egg extracts to study the mechanism of lesion bypass. Deep sequencing of ICL repair products showed that the approach and extension steps are largely error-free. However, a short mutagenic tract is introduced in the vicinity of the lesion, with a maximum mutation frequency of ~1%. Our data further suggest that approach is performed by a replicative polymerase, while extension involves a complex of Rev1 and DNA polymerase ζ. Rev1-pol ζ recruitment requires the Fanconi anemia core complex but not FancI-FancD2. Our results begin to illuminate how lesion bypass is integrated with chromosomal DNA replication to limit ICL repair-associated mutagenesis.
Collapse
Affiliation(s)
- Magda Budzowska
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Thomas G W Graham
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Alexandra Sobeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Shou Waga
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
104
|
Alagpulinsa DA, Yaccoby S, Ayyadevara S, Shmookler Reis RJ. A peptide nucleic acid targeting nuclear RAD51 sensitizes multiple myeloma cells to melphalan treatment. Cancer Biol Ther 2015; 16:976-86. [PMID: 25996477 DOI: 10.1080/15384047.2015.1040951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
RAD51-mediated recombinational repair is elevated in multiple myeloma (MM) and predicts poor prognosis. RAD51 has been targeted to selectively sensitize and/or kill tumor cells. Here, we employed a peptide nucleic acid (PNA) to inhibit RAD51 expression in MM cells. We constructed a PNA complementary to a unique segment of the RAD51 gene promoter, spanning the transcription start site, and conjugated it to a nuclear localization signal (PKKKRKV) to enhance cellular uptake and nuclear delivery without transfection reagents. This synthetic construct, (PNArad51_nls), significantly reduced RAD51 transcripts in MM cells, and markedly reduced the number and intensity of de novo and melphalan-induced nuclear RAD51 foci, while increasing the level of melphalan-induced γH2AX foci. Melphalan alone markedly induced the expression of 5 other genes involved in homologous-recombination repair, yet suppression of RAD51 by PNArad51_nls was sufficient to synergize with melphalan, producing significant synthetic lethality of MM cells in vitro. In a SCID-rab mouse model mimicking the MM bone marrow microenvironment, treatment with PNArad51_nls ± melphalan significantly suppressed tumor growth after 2 weeks, whereas melphalan plus control PNArad4µ_nls was ineffectual. This study highlights the importance of RAD51 in myeloma growth and is the first to demonstrate that anti-RAD51 PNA can potentiate conventional MM chemotherapy.
Collapse
|
105
|
Räschle M, Smeenk G, Hansen RK, Temu T, Oka Y, Hein MY, Nagaraj N, Long DT, Walter JC, Hofmann K, Storchova Z, Cox J, Bekker-Jensen S, Mailand N, Mann M. DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science 2015; 348:1253671. [PMID: 25931565 DOI: 10.1126/science.1253671] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/19/2015] [Indexed: 12/15/2022]
Abstract
DNA interstrand cross-links (ICLs) block replication fork progression by inhibiting DNA strand separation. Repair of ICLs requires sequential incisions, translesion DNA synthesis, and homologous recombination, but the full set of factors involved in these transactions remains unknown. We devised a technique called chromatin mass spectrometry (CHROMASS) to study protein recruitment dynamics during perturbed DNA replication in Xenopus egg extracts. Using CHROMASS, we systematically monitored protein assembly and disassembly on ICL-containing chromatin. Among numerous prospective DNA repair factors, we identified SLF1 and SLF2, which form a complex with RAD18 and together define a pathway that suppresses genome instability by recruiting the SMC5/6 cohesion complex to DNA lesions. Our study provides a global analysis of an entire DNA repair pathway and reveals the mechanism of SMC5/6 relocalization to damaged DNA in vertebrate cells.
Collapse
Affiliation(s)
- Markus Räschle
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Godelieve Smeenk
- Ubiquitin Signaling Group, Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rebecca K Hansen
- Ubiquitin Signaling Group, Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tikira Temu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Yasuyoshi Oka
- Ubiquitin Signaling Group, Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Marco Y Hein
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nagarjuna Nagaraj
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - David T Long
- Howard Hughes Medical Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Howard Hughes Medical Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kay Hofmann
- Institute of Genetics, University of Cologne, 50674 Cologne, Germany
| | - Zuzana Storchova
- Maintenance of Genome Stability Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Simon Bekker-Jensen
- Ubiquitin Signaling Group, Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Niels Mailand
- Ubiquitin Signaling Group, Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. Novo Nordisk Foundation Center for Protein Research, Proteomics Program, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
106
|
Takahashi D, Sato K, Hirayama E, Takata M, Kurumizaka H. Human FAN1 promotes strand incision in 5'-flapped DNA complexed with RPA. J Biochem 2015; 158:263-70. [PMID: 25922199 DOI: 10.1093/jb/mvv043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022] Open
Abstract
Fanconi anaemia (FA) is a human infantile recessive disorder. Seventeen FA causal proteins cooperatively function in the DNA interstrand crosslink (ICL) repair pathway. Dual DNA strand incisions around the crosslink are critical steps in ICL repair. FA-associated nuclease 1 (FAN1) is a DNA structure-specific endonuclease that is considered to be involved in DNA incision at the stalled replication fork. Replication protein A (RPA) rapidly assembles on the single-stranded DNA region of the stalled fork. However, the effect of RPA on the FAN1-mediated DNA incision has not been determined. In this study, we purified human FAN1, as a bacterially expressed recombinant protein. FAN1 exhibited robust endonuclease activity with 5'-flapped DNA, which is formed at the stalled replication fork. We found that FAN1 efficiently promoted DNA incision at the proper site of RPA-coated 5'-flapped DNA. Therefore, FAN1 possesses the ability to promote the ICL repair of 5'-flapped DNA covered by RPA.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan and
| | - Koichi Sato
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan and
| | - Emiko Hirayama
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan and
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan and
| |
Collapse
|
107
|
Lee C, Hong S, Lee MH, Koo HS. A PHF8 homolog in C. elegans promotes DNA repair via homologous recombination. PLoS One 2015; 10:e0123865. [PMID: 25853498 PMCID: PMC4390335 DOI: 10.1371/journal.pone.0123865] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/23/2015] [Indexed: 12/12/2022] Open
Abstract
PHF8 is a JmjC domain-containing histone demethylase, defects in which are associated with X-linked mental retardation. In this study, we examined the roles of two PHF8 homologs, JMJD-1.1 and JMJD-1.2, in the model organism C. elegans in response to DNA damage. A deletion mutation in either of the genes led to hypersensitivity to interstrand DNA crosslinks (ICLs), while only mutation of jmjd-1.1 resulted in hypersensitivity to double-strand DNA breaks (DSBs). In response to ICLs, JMJD-1.1 did not affect the focus formation of FCD-2, a homolog of FANCD2, a key protein in the Fanconi anemia pathway. However, the dynamic behavior of RPA-1 and RAD-51 was affected by the mutation: the accumulations of both proteins at ICLs appeared normal, but their subsequent disappearance was retarded, suggesting that later steps of homologous recombination were defective. Similar changes in the dynamic behavior of RPA-1 and RAD-51 were seen in response to DSBs, supporting a role of JMJD-1.1 in homologous recombination. Such a role was also supported by our finding that the hypersensitivity of jmjd-1.1 worms to ICLs was rescued by knockdown of lig-4, a homolog of Ligase 4 active in nonhomologous end-joining. The hypersensitivity of jmjd-1.1 worms to ICLs was increased by rad-54 knockdown, suggesting that JMJD-1.1 acts in parallel with RAD-54 in modulating chromatin structure. Indeed, the level of histone H3 Lys9 tri-methylation, a marker of heterochromatin, was higher in jmjd-1.1 cells than in wild-type cells. We conclude that the histone demethylase JMJD-1.1 influences homologous recombination either by relaxing heterochromatin structure or by indirectly regulating the expression of multiple genes affecting DNA repair.
Collapse
Affiliation(s)
- Changrim Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Seokbong Hong
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Min Hye Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hyeon-Sook Koo
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
108
|
Prakash R, Zhang Y, Feng W, Jasin M. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol 2015; 7:a016600. [PMID: 25833843 DOI: 10.1101/cshperspect.a016600] [Citation(s) in RCA: 608] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination (HR) is a major pathway for the repair of DNA double-strand breaks in mammalian cells, the defining step of which is homologous strand exchange directed by the RAD51 protein. The physiological importance of HR is underscored by the observation of genomic instability in HR-deficient cells and, importantly, the association of cancer predisposition and developmental defects with mutations in HR genes. The tumor suppressors BRCA1 and BRCA2, key players at different stages of HR, are frequently mutated in familial breast and ovarian cancers. Other HR proteins, including PALB2 and RAD51 paralogs, have also been identified as tumor suppressors. This review summarizes recent findings on BRCA1, BRCA2, and associated proteins involved in human disease with an emphasis on their molecular roles and interactions.
Collapse
Affiliation(s)
- Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Yu Zhang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Weiran Feng
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
109
|
Tian Y, Paramasivam M, Ghosal G, Chen D, Shen X, Huang Y, Akhter S, Legerski R, Chen J, Seidman MM, Qin J, Li L. UHRF1 contributes to DNA damage repair as a lesion recognition factor and nuclease scaffold. Cell Rep 2015; 10:1957-66. [PMID: 25818288 DOI: 10.1016/j.celrep.2015.03.038] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 11/16/2022] Open
Abstract
We identified ubiquitin-like with PHD and RING finger domain 1 (UHRF1) as a binding factor for DNA interstrand crosslink (ICL) lesions through affinity purification of ICL-recognition activities. UHRF1 is recruited to DNA lesions in vivo and binds directly to ICL-containing DNA. UHRF1-deficient cells display increased sensitivity to a variety of DNA damages. We found that loss of UHRF1 led to retarded lesion processing and reduced recruitment of ICL repair nucleases to the site of DNA damage. UHRF1 interacts physically with both ERCC1 and MUS81, two nucleases involved in the repair of ICL lesions. Depletion of both UHRF1 and components of the Fanconi anemia (FA) pathway resulted in increased DNA damage sensitivity compared to defect of each mechanism alone. These results suggest that UHRF1 promotes recruitment of lesion-processing activities via its affinity to recognize DNA damage and functions as a nuclease recruitment scaffold in parallel to the FA pathway.
Collapse
Affiliation(s)
- Yanyan Tian
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Manikandan Paramasivam
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gargi Ghosal
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ding Chen
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Shen
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yaling Huang
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shamima Akhter
- Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Randy Legerski
- Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Qin
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
110
|
Rusan M, Li YY, Hammerman PS. Genomic landscape of human papillomavirus-associated cancers. Clin Cancer Res 2015; 21:2009-19. [PMID: 25779941 DOI: 10.1158/1078-0432.ccr-14-1101] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/28/2015] [Indexed: 11/16/2022]
Abstract
Recent next-generation sequencing studies have generated a comprehensive overview of the genomic landscape of human papillomavirus (HPV)-associated cancers. This review summarizes these findings to provide insight into the tumor biology of these cancers and potential therapeutic opportunities for HPV-driven malignancies. In addition to the tumorigenic properties of the HPV oncoproteins, integration of HPV DNA into the host genome is suggested to be a driver of the neoplastic process. Integration may confer a growth and survival advantage via enhanced expression of viral oncoproteins, alteration of critical cellular genes, and changes in global promoter methylation and transcription. Alteration of cellular genes may lead to loss of function of tumor suppressor genes, enhanced oncogene expression, loss of function of DNA repair genes, or other vital cellular functions. Recurrent integrations in RAD51B, NR4A2, and TP63, leading to aberrant forms of these proteins, are observed in both HPV-positive head and neck squamous cell carcinoma (HNSCC) and cervical carcinoma. Additional genomic alterations, independent of integration events, include recurrent PIK3CA mutations (and aberrations in other members of the PI3K pathway), alterations in receptor tyrosine kinases (primarily FGFR2 and FGFR3 in HPV-positive HNSCC, and ERBB2 in cervical squamous cell carcinoma), and genes in pathways related to squamous cell differentiation and immune responses. A number of the alterations identified are potentially targetable, which may lead to advances in the treatment of HPV-associated cancers.
Collapse
Affiliation(s)
- Maria Rusan
- Department of Clinical Medicine, Aarhus University, Denmark. Department of Otorhinolaryngology, Aarhus University, Denmark. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Yvonne Y Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Peter S Hammerman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts.
| |
Collapse
|
111
|
DNA interstrand cross-link repair requires replication-fork convergence. Nat Struct Mol Biol 2015; 22:242-7. [PMID: 25643322 PMCID: PMC4351167 DOI: 10.1038/nsmb.2956] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/17/2014] [Indexed: 12/14/2022]
Abstract
DNA interstrand cross-links (ICLs) prevent strand separation during DNA replication and transcription and therefore are extremely cytotoxic. In metazoans, a major pathway of ICL repair is coupled to DNA replication, and it requires the Fanconi anemia pathway. In most current models, collision of a single DNA replication fork with an ICL is sufficient to initiate repair. In contrast, we show here that in Xenopus egg extracts two DNA replication forks must converge on an ICL to trigger repair. When only one fork reaches the ICL, the replicative CMG helicase fails to unload from the stalled fork, and repair is blocked. Arrival of a second fork, even when substantially delayed, rescues repair. We conclude that ICL repair requires a replication-induced X-shaped DNA structure surrounding the lesion, and we speculate on how this requirement helps maintain genomic stability in S phase.
Collapse
|
112
|
Liu H, Yan P, Fanning E. Human DNA helicase B functions in cellular homologous recombination and stimulates Rad51-mediated 5'-3' heteroduplex extension in vitro. PLoS One 2015; 10:e0116852. [PMID: 25617833 PMCID: PMC4305318 DOI: 10.1371/journal.pone.0116852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/15/2014] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination is involved in the repair of DNA damage and collapsed replication fork, and is critical for the maintenance of genomic stability. Its process involves a network of proteins with different enzymatic activities. Human DNA helicase B (HDHB) is a robust 5′-3′ DNA helicase which accumulates on chromatin in cells exposed to DNA damage. HDHB facilitates cellular recovery from replication stress, but its role in DNA damage response remains unclear. Here we report that HDHB silencing results in reduced sister chromatid exchange, impaired homologous recombination repair, and delayed RPA late-stage foci formation induced by ionizing radiation. Ectopically expressed HDHB colocalizes with Rad51, Rad52, RPA, and ssDNA. In vitro, HDHB stimulates Rad51-mediated heteroduplex extension in 5′-3′ direction. A helicase-defective mutant HDHB failed to promote this reaction. Our studies implicate HDHB promotes homologous recombination in vivo and stimulates 5′-3′ heteroduplex extension during Rad51-mediated strand exchange in vitro.
Collapse
Affiliation(s)
- Hanjian Liu
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Peijun Yan
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ellen Fanning
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
113
|
Wang R, Persky NS, Yoo B, Ouerfelli O, Smogorzewska A, Elledge SJ, Pavletich NP. DNA repair. Mechanism of DNA interstrand cross-link processing by repair nuclease FAN1. Science 2014; 346:1127-30. [PMID: 25430771 DOI: 10.1126/science.1258973] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA interstrand cross-links (ICLs) are highly toxic lesions associated with cancer and degenerative diseases. ICLs can be repaired by the Fanconi anemia (FA) pathway and through FA-independent processes involving the FAN1 nuclease. In this work, FAN1-DNA crystal structures and biochemical data reveal that human FAN1 cleaves DNA successively at every third nucleotide. In vitro, this exonuclease mechanism allows FAN1 to excise an ICL from one strand through flanking incisions. DNA access requires a 5'-terminal phosphate anchor at a nick or a 1- or 2-nucleotide flap and is augmented by a 3' flap, suggesting that FAN1 action is coupled to DNA synthesis or recombination. FAN1's mechanism of ICL excision is well suited for processing other localized DNA adducts as well.
Collapse
Affiliation(s)
- Renjing Wang
- Structural Biology Program and Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nicole S Persky
- Structural Biology Program and Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Barney Yoo
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ouathek Ouerfelli
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY 10065, USA
| | - Stephen J Elledge
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA. Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Nikola P Pavletich
- Structural Biology Program and Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
114
|
Gwon GH, Kim Y, Liu Y, Watson AT, Jo A, Etheridge TJ, Yuan F, Zhang Y, Kim Y, Carr AM, Cho Y. Crystal structure of a Fanconi anemia-associated nuclease homolog bound to 5' flap DNA: basis of interstrand cross-link repair by FAN1. Genes Dev 2014; 28:2276-90. [PMID: 25319828 PMCID: PMC4201288 DOI: 10.1101/gad.248492.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in FA genes responsible for processing DNA interstrand cross-links (ICLs). FA-associated nuclease (FAN1) is recruited to lesions by a monoubiquitinated FANCI–FANCD2 (ID) complex and participates in ICL repair. Here, Gwon et al. determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5′ flap DNA. The PaFAN1 structure provides insights into how FAN1 integrates with the FA complex to participate in ICL repair. Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI–FANCD2 (ID) complex and participates in ICL repair. Here, we determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5′ flap DNA. All four domains of the right-hand-shaped PaFAN1 are involved in DNA recognition, with each domain playing a specific role in bending DNA at the nick. The six-helix bundle that binds the junction connects to the catalytic viral replication and repair (VRR) nuclease (VRR nuc) domain, enabling FAN1 to incise the scissile phosphate a few bases distant from the junction. The six-helix bundle also inhibits the cleavage of intact Holliday junctions. PaFAN1 shares several conserved features with other flap structure-selective nucleases despite structural differences. A clamping motion of the domains around the wedge helix, which acts as a pivot, facilitates nucleolytic cleavage. The PaFAN1 structure provides insights into how archaeal Holliday junction resolvases evolved to incise 5′ flap substrates and how FAN1 integrates with the FA complex to participate in ICL repair.
Collapse
Affiliation(s)
- Gwang Hyeon Gwon
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Youngran Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Yaqi Liu
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Adam T Watson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, East Sussex BN1 9RQ, United Kingdom
| | - Aera Jo
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Thomas J Etheridge
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, East Sussex BN1 9RQ, United Kingdom
| | - Fenghua Yuan
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - YoungChang Kim
- Biosciences Division, Structural Biology Center, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Anthony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, East Sussex BN1 9RQ, United Kingdom
| | - Yunje Cho
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, South Korea;
| |
Collapse
|
115
|
Sawyer SL, Tian L, Kähkönen M, Schwartzentruber J, Kircher M, Majewski J, Dyment DA, Innes AM, Boycott KM, Moreau LA, Moilanen JS, Greenberg RA. Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype. Cancer Discov 2014; 5:135-42. [PMID: 25472942 DOI: 10.1158/2159-8290.cd-14-1156] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
UNLABELLED Deficiency in BRCA-dependent DNA interstrand crosslink (ICL) repair is intimately connected to breast cancer susceptibility and to the rare developmental syndrome Fanconi anemia. Bona fide Fanconi anemia proteins, BRCA2 (FANCD1), PALB2 (FANCN), and BRIP1 (FANCJ), interact with BRCA1 during ICL repair. However, the lack of detailed phenotypic and cellular characterization of a patient with biallelic BRCA1 mutations has precluded assignment of BRCA1 as a definitive Fanconi anemia susceptibility gene. Here, we report the presence of biallelic BRCA1 mutations in a woman with multiple congenital anomalies consistent with a Fanconi anemia-like disorder and breast cancer at age 23. Patient cells exhibited deficiency in BRCA1 and RAD51 localization to DNA-damage sites, combined with radial chromosome formation and hypersensitivity to ICL-inducing agents. Restoration of these functions was achieved by ectopic introduction of a BRCA1 transgene. These observations provide evidence in support of BRCA1 as a new Fanconi anemia gene (FANCS). SIGNIFICANCE We establish that biallelic BRCA1 mutations cause a distinct FA-S, which has implications for risk counselling in families where both parents harbor BRCA1 mutations. The genetic basis of hereditary cancer susceptibility syndromes provides diagnostic information, insights into treatment strategies, and more accurate recurrence risk counseling to families.
Collapse
Affiliation(s)
- Sarah L Sawyer
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Lei Tian
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marketta Kähkönen
- Pirkanmaa Hospital District, Fimlab Laboratories, Laboratory of Clinical Genetics, Tampere, Finland
| | | | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | | | | | - Jacek Majewski
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada. McGill University and Genome Quebec Innovation Centre, Montréal, Quebec, Canada
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Lisa A Moreau
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Pediatrics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jukka S Moilanen
- Department of Clinical Genetics and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Roger A Greenberg
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
116
|
Alagpulinsa DA, Ayyadevara S, Shmookler Reis RJ. A Small-Molecule Inhibitor of RAD51 Reduces Homologous Recombination and Sensitizes Multiple Myeloma Cells to Doxorubicin. Front Oncol 2014; 4:289. [PMID: 25401086 PMCID: PMC4214226 DOI: 10.3389/fonc.2014.00289] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/06/2014] [Indexed: 11/22/2022] Open
Abstract
We previously reported high expression of RAD51 and increased homologous recombination (HR) rates in multiple myeloma (MM) cells, and showed that genomic instability and disease progression are commensurate with HR levels. Moreover, high RAD51 expression in vivo is associated with chemoresistance and poor patient survival. Doxorubicin (DOX) is one of the most widely used drug treatments in MM chemotherapy. DOX is cytotoxic because it induces DNA double-strand breaks, which can be repaired by RAD51-mediated HR; activation of this pathway thus contributes to resistance. To investigate the role of RAD51 in MM drug resistance, we assessed the ability of B02, a small-molecule inhibitor of RAD51, to enhance DOX sensitivity of MM cells. Combining low-toxicity doses of DOX and B02 resulted in significant synthetic lethality, observed as increased apoptosis and reduced viability compared to either agent alone, or to the product of their individual effects. In contrast, the combination did not produce significant synergy against normal human CD19+ B cells from peripheral blood. DOX induced RAD51 at both mRNA and protein levels, while arresting cells in S and G2. DOX treatment also increased the number of RAD51 foci, a marker of HR repair, so that the fraction of cells with ≥5 foci rose fourfold, whereas γH2AX foci rose far less, implying that most new breaks are repaired. When B02 treatment preceded DOX exposure, the induction of RAD51 foci was severely blunted, whereas, γH2AX foci rose significantly relative to basal levels or either agent alone. In MM cells carrying a chromosomally integrated reporter of HR repair, DOX increased HR events while B02 inhibition of RAD51 blocked the HR response. These studies demonstrate the crucial role of RAD51 in protecting MM cells from genotoxic agents such as DOX, and suggest that specific inhibition of RAD51 may be an effective means to block DNA repair in MM cells and thus to enhance the efficacy of chemotherapy.
Collapse
Affiliation(s)
- David A Alagpulinsa
- McClellan Veterans Medical Center, Central Arkansas Veterans Healthcare System , Little Rock, AR , USA ; Department of Geriatrics, University of Arkansas for Medical Science , Little Rock, AR , USA
| | - Srinivas Ayyadevara
- McClellan Veterans Medical Center, Central Arkansas Veterans Healthcare System , Little Rock, AR , USA ; Department of Geriatrics, University of Arkansas for Medical Science , Little Rock, AR , USA
| | - Robert Joseph Shmookler Reis
- McClellan Veterans Medical Center, Central Arkansas Veterans Healthcare System , Little Rock, AR , USA ; Department of Geriatrics, University of Arkansas for Medical Science , Little Rock, AR , USA
| |
Collapse
|
117
|
Duxin JP, Dewar JM, Yardimci H, Walter JC. Repair of a DNA-protein crosslink by replication-coupled proteolysis. Cell 2014; 159:346-57. [PMID: 25303529 PMCID: PMC4229047 DOI: 10.1016/j.cell.2014.09.024] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/18/2014] [Accepted: 09/11/2014] [Indexed: 12/24/2022]
Abstract
DNA-protein crosslinks (DPCs) are caused by environmental, endogenous, and chemotherapeutic agents and pose a severe threat to genome stability. We use Xenopus egg extracts to recapitulate DPC repair in vitro and show that this process is coupled to DNA replication. A DPC on the leading strand template arrests the replisome by stalling the CMG helicase. The DPC is then degraded on DNA, yielding a peptide-DNA adduct that is bypassed by CMG. The leading strand subsequently resumes synthesis, stalls again at the adduct, and then progresses past the adduct using DNA polymerase ζ. A DPC on the lagging strand template only transiently stalls the replisome, but it too is degraded, allowing Okazaki fragment bypass. Our experiments describe a versatile, proteolysis-based mechanism of S phase DPC repair that avoids replication fork collapse.
Collapse
Affiliation(s)
- Julien P Duxin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - James M Dewar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hasan Yardimci
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute.
| |
Collapse
|
118
|
Abstract
Fanconi anemia (FA) represents a paradigm of rare genetic diseases, where the quest for cause and cure has led to seminal discoveries in cancer biology. Although a total of 16 FA genes have been identified thus far, the biochemical function of many of the FA proteins remains to be elucidated. FA is rare, yet the fact that 5 FA genes are in fact familial breast cancer genes and FA gene mutations are found frequently in sporadic cancers suggest wider applicability in hematopoiesis and oncology. Establishing the interaction network involving the FA proteins and their associated partners has revealed an intersection of FA with several DNA repair pathways, including homologous recombination, DNA mismatch repair, nucleotide excision repair, and translesion DNA synthesis. Importantly, recent studies have shown a major involvement of the FA pathway in the tolerance of reactive aldehydes. Moreover, despite improved outcomes in stem cell transplantation in the treatment of FA, many challenges remain in patient care.
Collapse
|
119
|
Long DT, Joukov V, Budzowska M, Walter JC. BRCA1 promotes unloading of the CMG helicase from a stalled DNA replication fork. Mol Cell 2014; 56:174-85. [PMID: 25219499 DOI: 10.1016/j.molcel.2014.08.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/30/2014] [Accepted: 08/07/2014] [Indexed: 11/19/2022]
Abstract
The tumor suppressor protein BRCA1 promotes homologous recombination (HR), a high-fidelity mechanism to repair DNA double-strand breaks (DSBs) that arise during normal replication and in response to DNA-damaging agents. Recent genetic experiments indicate that BRCA1 also performs an HR-independent function during the repair of DNA interstrand crosslinks (ICLs). Here we show that BRCA1 is required to unload the CMG helicase complex from chromatin after replication forks collide with an ICL. Eviction of the stalled helicase allows leading strands to be extended toward the ICL, followed by endonucleolytic processing of the crosslink, lesion bypass, and DSB repair. Our results identify BRCA1-dependent helicase unloading as a critical, early event in ICL repair.
Collapse
Affiliation(s)
- David T Long
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir Joukov
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Magda Budzowska
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
120
|
Saffran WA, Ahmed A, Binyaminov O, Gonzalez C, Gupta A, Fajardo MA, Kishun D, Nandram A, Reyes K, Scalercio K, Senior CW. Induction of direct repeat recombination by psoralen–DNA adducts in Saccharomyces cerevisiae: Defects in DNA repair increase gene copy number variation. DNA Repair (Amst) 2014; 21:87-96. [DOI: 10.1016/j.dnarep.2014.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 11/28/2022]
|
121
|
Takahashi D, Sato K, Shimomuki M, Takata M, Kurumizaka H. Expression and purification of human FANCI and FANCD2 using Escherichia coli cells. Protein Expr Purif 2014; 103:8-15. [PMID: 25168188 DOI: 10.1016/j.pep.2014.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 12/11/2022]
Abstract
The DNA interstrand crosslink (ICL) is an extremely deleterious DNA lesion that covalently crosslinks complementary strands and prevents the strand-separation reaction. In higher eukaryotes, the Fanconi anemia proteins, FANCI and FANCD2, form a heterodimer and play essential roles in ICL repair. Human FANCI and FANCD2 are large proteins with molecular masses of 149kDa and 164kDa, respectively, and were reportedly purified using a baculovirus expression system with insect cells. We have established a novel expression and purification procedure for human FANCD2 and FANCI, using Escherichia coli cells. The human FANCD2 and FANCI proteins purified by this bacterial expression method formed a stable heterodimer, and exhibited DNA binding and histone chaperone activities, as previously reported for the proteins purified by the baculovirus system. Therefore, these purification methods for human FANCI and FANCD2 provide novel procedures to facilitate structural and biochemical studies of human FANCI and FANCD2.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Koichi Sato
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Mayo Shimomuki
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
122
|
Zhu B, Yan K, Li L, Lin M, Zhang S, He Q, Zheng D, Yang H, Shao G. K63-linked ubiquitination of FANCG is required for its association with the Rap80-BRCA1 complex to modulate homologous recombination repair of DNA interstand crosslinks. Oncogene 2014; 34:2867-78. [PMID: 25132264 DOI: 10.1038/onc.2014.229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 05/21/2014] [Accepted: 06/23/2014] [Indexed: 11/09/2022]
Abstract
DNA interstrand crosslinks (ICLs) are extremely deleterious lesions that are repaired by homologous recombination (HR) through coordination of Fanconi anemia (FA) proteins and breast cancer susceptibility gene 1 (BRCA1) product, but the exact role these proteins have remains unclear. Here we report that FANCG was modified by the addition of lysine63-linked polyubiquitin chains (K63Ub) in response to DNA damage. We show that FANCG K63Ub was dispensable for monoubiquitination of FANCD2, but was required for FANCG to interact with the Rap80-BRCA1 (receptor-associated protein 80-BRCA1) complex for subsequent modulation of HR repair of ICLs induced by mitomycin C. Mutation of three lysine residues within FANCG to arginine (K182, K258 and K347, 3KR) reduced FANCG K63Ub modification, as well as its interaction with the Rap80-BRCA1 complex, and therefore impeded HR repair. In addition, we demonstrated that K63Ub-modified FANCG was deubiquitinated by BRCC36 complex in vitro and in vivo. Inhibition of BRCC36 resulted in increased K63Ub modification of FANCG. Taken together, our results identify a new role of FANCG in HR repair of ICL through K63Ub-mediated interaction with the Rap80-BRCA1 complex.
Collapse
Affiliation(s)
- B Zhu
- 1] Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China [2] Institute of Systems Biology, Peking University, Beijing, China
| | - K Yan
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - L Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - M Lin
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - S Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Q He
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - D Zheng
- School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - H Yang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - G Shao
- 1] Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China [2] Institute of Systems Biology, Peking University, Beijing, China
| |
Collapse
|
123
|
Abstract
A critical step in DNA interstrand cross-link repair is the programmed collapse of replication forks that have stalled at an ICL. This event is regulated by the Fanconi anemia pathway, which suppresses bone marrow failure and cancer. In this perspective, we focus on the structure of forks that have stalled at ICLs, how these structures might be incised by endonucleases, and how incision is regulated by the Fanconi anemia pathway.
Collapse
Affiliation(s)
- Jieqiong Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States; Howard Hughes Medical Institute.
| |
Collapse
|
124
|
Peng M, Xie J, Ucher A, Stavnezer J, Cantor SB. Crosstalk between BRCA-Fanconi anemia and mismatch repair pathways prevents MSH2-dependent aberrant DNA damage responses. EMBO J 2014; 33:1698-712. [PMID: 24966277 PMCID: PMC4194102 DOI: 10.15252/embj.201387530] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Several proteins in the BRCA-Fanconi anemia (FA) pathway, such as FANCJ, BRCA1, and FANCD2, interact with mismatch repair (MMR) pathway factors, but the significance of this link remains unknown. Unlike the BRCA-FA pathway, the MMR pathway is not essential for cells to survive toxic DNA interstrand crosslinks (ICLs), although MMR proteins bind ICLs and other DNA structures that form at stalled replication forks. We hypothesized that MMR proteins corrupt ICL repair in cells that lack crosstalk between BRCA-FA and MMR pathways. Here, we show that ICL sensitivity of cells lacking the interaction between FANCJ and the MMR protein MLH1 is suppressed by depletion of the upstream mismatch recognition factor MSH2. MSH2 depletion suppresses an aberrant DNA damage response, restores cell cycle progression, and promotes ICL resistance through a Rad18-dependent mechanism. MSH2 depletion also suppresses ICL sensitivity in cells deficient for BRCA1 or FANCD2, but not FANCA. Rescue by Msh2 loss was confirmed in Fancd2-null primary mouse cells. Thus, we propose that regulation of MSH2-dependent DNA damage response underlies the importance of interactions between BRCA-FA and MMR pathways.
Collapse
Affiliation(s)
- Min Peng
- Department of Cancer Biology, University of Massachusetts Medical School, Women's Cancers Program, UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Jenny Xie
- Department of Cancer Biology, University of Massachusetts Medical School, Women's Cancers Program, UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Anna Ucher
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Women's Cancers Program, UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Janet Stavnezer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Women's Cancers Program, UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Sharon B Cantor
- Department of Cancer Biology, University of Massachusetts Medical School, Women's Cancers Program, UMASS Memorial Cancer Center, Worcester, MA, USA
| |
Collapse
|
125
|
Woditschka S, Evans L, Duchnowska R, Reed LT, Palmieri D, Qian Y, Badve S, Sledge G, Gril B, Aladjem MI, Fu H, Flores NM, Gökmen-Polar Y, Biernat W, Szutowicz-Zielińska E, Mandat T, Trojanowski T, Och W, Czartoryska-Arlukowicz B, Jassem J, Mitchell JB, Steeg PS. DNA double-strand break repair genes and oxidative damage in brain metastasis of breast cancer. J Natl Cancer Inst 2014; 106:dju145. [PMID: 24948741 DOI: 10.1093/jnci/dju145] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Breast cancer frequently metastasizes to the brain, colonizing a neuro-inflammatory microenvironment. The molecular pathways facilitating this colonization remain poorly understood. METHODS Expression profiling of 23 matched sets of human resected brain metastases and primary breast tumors by two-sided paired t test was performed to identify brain metastasis-specific genes. The implicated DNA repair genes BARD1 and RAD51 were modulated in human (MDA-MB-231-BR) and murine (4T1-BR) brain-tropic breast cancer cell lines by lentiviral transduction of cDNA or short hairpin RNA (shRNA) coding sequences. Their functional contribution to brain metastasis development was evaluated in mouse xenograft models (n = 10 mice per group). RESULTS Human brain metastases overexpressed BARD1 and RAD51 compared with either matched primary tumors (1.74-fold, P < .001; 1.46-fold, P < .001, respectively) or unlinked systemic metastases (1.49-fold, P = .01; 1.44-fold, P = .008, respectively). Overexpression of either gene in MDA-MB-231-BR cells increased brain metastases by threefold to fourfold after intracardiac injections, but not lung metastases upon tail-vein injections. In 4T1-BR cells, shRNA-mediated RAD51 knockdown reduced brain metastases by 2.5-fold without affecting lung metastasis development. In vitro, BARD1- and RAD51-overexpressing cells showed reduced genomic instability but only exhibited growth and colonization phenotypes upon DNA damage induction. Reactive oxygen species were present in tumor cells and elevated in the metastatic neuro-inflammatory microenvironment and could provide an endogenous source of genotoxic stress. Tempol, a brain-permeable oxygen radical scavenger suppressed brain metastasis promotion induced by BARD1 and RAD51 overexpression. CONCLUSIONS BARD1 and RAD51 are frequently overexpressed in brain metastases from breast cancer and may constitute a mechanism to overcome reactive oxygen species-mediated genotoxic stress in the metastatic brain.
Collapse
Affiliation(s)
- Stephan Woditschka
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA.
| | - Lynda Evans
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Renata Duchnowska
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - L Tiffany Reed
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Diane Palmieri
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Yongzhen Qian
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Sunil Badve
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - George Sledge
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Brunilde Gril
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Mirit I Aladjem
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Haiqing Fu
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Natasha M Flores
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Yesim Gökmen-Polar
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Wojciech Biernat
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Ewa Szutowicz-Zielińska
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Tomasz Mandat
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Tomasz Trojanowski
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Waldemar Och
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Bogumiła Czartoryska-Arlukowicz
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Jacek Jassem
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - James B Mitchell
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Patricia S Steeg
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA.
| |
Collapse
|
126
|
Guirouilh-Barbat J, Lambert S, Bertrand P, Lopez BS. Is homologous recombination really an error-free process? Front Genet 2014; 5:175. [PMID: 24966870 PMCID: PMC4052342 DOI: 10.3389/fgene.2014.00175] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/23/2014] [Indexed: 11/13/2022] Open
Abstract
Homologous recombination (HR) is an evolutionarily conserved process that plays a pivotal role in the equilibrium between genetic stability and diversity. HR is commonly considered to be error-free, but several studies have shown that HR can be error-prone. Here, we discuss the actual accuracy of HR. First, we present the product of genetic exchanges (gene conversion, GC, and crossing over, CO) and the mechanisms of HR during double strand break repair and replication restart. We discuss the intrinsic capacities of HR to generate genome rearrangements by GC or CO, either during DSB repair or replication restart. During this process, abortive HR intermediates generate genetic instability and cell toxicity. In addition to genome rearrangements, HR also primes error-prone DNA synthesis and favors mutagenesis on single stranded DNA, a key DNA intermediate during the HR process. The fact that cells have developed several mechanisms protecting against HR excess emphasize its potential risks. Consistent with this duality, several pro-oncogenic situations have been consistently associated with either decreased or increased HR levels. Nevertheless, this versatility also has advantages that we outline here. We conclude that HR is a double-edged sword, which on one hand controls the equilibrium between genome stability and diversity but, on the other hand, can jeopardize the maintenance of genomic integrity. Therefore, whether non-homologous end joining (which, in contrast with HR, is not intrinsically mutagenic) or HR is the more mutagenic process is a question that should be re-evaluated. Both processes can be "Dr. Jekyll" in maintaining genome stability/variability and "Mr. Hyde" in jeopardizing genome integrity.
Collapse
Affiliation(s)
- Josée Guirouilh-Barbat
- CNRS, UMR 8200, Institut de Cancérologie Gustave Roussy, Équipe Labélisée, Université Paris-Sud, «LIGUE 2014» Villejuif, France
| | | | - Pascale Bertrand
- CEA DSV, UMR 967 CEA-INSERM-Université Paris Diderot-Université Paris Sud, Institut de Radiobiologie Cellulaire et Moléculaire Fontenay-aux-Roses, France
| | - Bernard S Lopez
- CNRS, UMR 8200, Institut de Cancérologie Gustave Roussy, Équipe Labélisée, Université Paris-Sud, «LIGUE 2014» Villejuif, France
| |
Collapse
|
127
|
Hodskinson MRG, Silhan J, Crossan GP, Garaycoechea JI, Mukherjee S, Johnson CM, Schärer OD, Patel KJ. Mouse SLX4 is a tumor suppressor that stimulates the activity of the nuclease XPF-ERCC1 in DNA crosslink repair. Mol Cell 2014; 54:472-84. [PMID: 24726326 PMCID: PMC4017094 DOI: 10.1016/j.molcel.2014.03.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/21/2014] [Accepted: 02/28/2014] [Indexed: 11/18/2022]
Abstract
SLX4 binds to three nucleases (XPF-ERCC1, MUS81-EME1, and SLX1), and its deficiency leads to genomic instability, sensitivity to DNA crosslinking agents, and Fanconi anemia. However, it is not understood how SLX4 and its associated nucleases act in DNA crosslink repair. Here, we uncover consequences of mouse Slx4 deficiency and reveal its function in DNA crosslink repair. Slx4-deficient mice develop epithelial cancers and have a contracted hematopoietic stem cell pool. The N-terminal domain of SLX4 (mini-SLX4) that only binds to XPF-ERCC1 is sufficient to confer resistance to DNA crosslinking agents. Recombinant mini-SLX4 enhances XPF-ERCC1 nuclease activity up to 100-fold, directing specificity toward DNA forks. Mini-SLX4-XPF-ERCC1 also vigorously stimulates dual incisions around a DNA crosslink embedded in a synthetic replication fork, an essential step in the repair of this lesion. These observations define vertebrate SLX4 as a tumor suppressor, which activates XPF-ERCC1 nuclease specificity in DNA crosslink repair.
Collapse
Affiliation(s)
| | - Jan Silhan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Juan I Garaycoechea
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Shivam Mukherjee
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | - Orlando D Schärer
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Ketan J Patel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK; Department of Medicine, Level 5, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
128
|
Inturi S, Tewari-Singh N, Agarwal C, White CW, Agarwal R. Activation of DNA damage repair pathways in response to nitrogen mustard-induced DNA damage and toxicity in skin keratinocytes. Mutat Res 2014; 763-764:53-63. [PMID: 24732344 DOI: 10.1016/j.mrfmmm.2014.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/18/2014] [Accepted: 04/03/2014] [Indexed: 01/24/2023]
Abstract
Nitrogen mustard (NM), a structural analog of chemical warfare agent sulfur mustard (SM), forms adducts and crosslinks with DNA, RNA and proteins. Here we studied the mechanism of NM-induced skin toxicity in response to double strand breaks (DSBs) resulting in cell cycle arrest to facilitate DNA repair, as a model for developing countermeasures against vesicant-induced skin injuries. NM exposure of mouse epidermal JB6 cells decreased cell growth and caused S-phase arrest. Consistent with these biological outcomes, NM exposure also increased comet tail extent moment and the levels of DNA DSB repair molecules phospho H2A.X Ser139 and p53 Ser15 indicating NM-induced DNA DSBs. Since DNA DSB repair occurs via non homologous end joining pathway (NHEJ) or homologous recombination repair (HRR) pathways, next we studied these two pathways and noted their activation as defined by an increase in phospho- and total DNA-PK levels, and the formation of Rad51 foci, respectively. To further analyze the role of these pathways in the cellular response to NM-induced cytotoxicity, NHEJ and HRR were inhibited by DNA-PK inhibitor NU7026 and Rad51 inhibitor BO2, respectively. Inhibition of NHEJ did not sensitize cells to NM-induced decrease in cell growth and cell cycle arrest. However, inhibition of the HRR pathway caused a significant increase in cell death, and prolonged G2M arrest following NM exposure. Together, our findings, indicating that HRR is the key pathway involved in the repair of NM-induced DNA DSBs, could be useful in developing new therapeutic strategies against vesicant-induced skin injury.
Collapse
Affiliation(s)
- Swetha Inturi
- Department of Pharmaceutical Sciences, University of Colorado Anchutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, University of Colorado Anchutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anchutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Carl W White
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anchutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA.
| |
Collapse
|
129
|
Klein Douwel D, Boonen RACM, Long DT, Szypowska AA, Räschle M, Walter JC, Knipscheer P. XPF-ERCC1 acts in Unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Mol Cell 2014; 54:460-71. [PMID: 24726325 DOI: 10.1016/j.molcel.2014.03.015] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/17/2014] [Accepted: 02/28/2014] [Indexed: 12/26/2022]
Abstract
DNA interstrand crosslinks (ICLs), highly toxic lesions that covalently link the Watson and Crick strands of the double helix, are repaired by a complex, replication-coupled pathway in higher eukaryotes. The earliest DNA processing event in ICL repair is the incision of parental DNA on either side of the ICL ("unhooking"), which allows lesion bypass. Incisions depend critically on the Fanconi anemia pathway, whose activation involves ubiquitylation of the FANCD2 protein. Using Xenopus egg extracts, which support replication-coupled ICL repair, we show that the 3' flap endonuclease XPF-ERCC1 cooperates with SLX4/FANCP to carry out the unhooking incisions. Efficient recruitment of XPF-ERCC1 and SLX4 to the ICL depends on FANCD2 and its ubiquitylation. These data help define the molecular mechanism by which the Fanconi anemia pathway promotes a key event in replication-coupled ICL repair.
Collapse
Affiliation(s)
- Daisy Klein Douwel
- Hubrecht Institute-KNAW, University Medical Center Utrecht and Cancer Genomics Netherlands, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Rick A C M Boonen
- Hubrecht Institute-KNAW, University Medical Center Utrecht and Cancer Genomics Netherlands, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - David T Long
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Anna A Szypowska
- Hubrecht Institute-KNAW, University Medical Center Utrecht and Cancer Genomics Netherlands, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Markus Räschle
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Puck Knipscheer
- Hubrecht Institute-KNAW, University Medical Center Utrecht and Cancer Genomics Netherlands, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
130
|
Abbas M, Shanmugam I, Bsaili M, Hromas R, Shaheen M. The role of the human psoralen 4 (hPso4) protein complex in replication stress and homologous recombination. J Biol Chem 2014; 289:14009-19. [PMID: 24675077 DOI: 10.1074/jbc.m113.520056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Psoralen 4 (Pso4) is an evolutionarily conserved protein that has been implicated in a variety of cellular processes including RNA splicing and resistance to agents that cause DNA interstrand cross-links. Here we show that the hPso4 complex is required for timely progression through S phase and transition through the G2/M checkpoint, and it functions in the repair of DNA lesions that arise during replication. Notably, hPso4 depletion results in delayed resumption of DNA replication after hydroxyurea-induced stalling of replication forks, reduced repair of spontaneous and hydroxyurea-induced DNA double strand breaks (DSBs), and increased sensitivity to a poly(ADP-ribose) polymerase inhibitor. Furthermore, we show that hPso4 is involved in the repair of DSBs by homologous recombination, probably by regulating the BRCA1 protein levels and the generation of single strand DNA at DSBs. Together, our results demonstrate that hPso4 participates in cell proliferation and the maintenance of genome stability by regulating homologous recombination. The involvement of hPso4 in the recombinational repair of DSBs provides an explanation for the sensitivity of Pso4-deficient cells to DNA interstrand cross-links.
Collapse
Affiliation(s)
- Mohammad Abbas
- From the Division of Hematology-Oncology, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico 87131 and
| | - Ilanchezhian Shanmugam
- From the Division of Hematology-Oncology, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico 87131 and
| | - Manal Bsaili
- From the Division of Hematology-Oncology, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico 87131 and
| | - Robert Hromas
- the Department of Medicine, University of Florida, Gainesville, Florida 32611
| | - Monte Shaheen
- From the Division of Hematology-Oncology, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico 87131 and
| |
Collapse
|
131
|
Abbotts R, Thompson N, Madhusudan S. DNA repair in cancer: emerging targets for personalized therapy. Cancer Manag Res 2014; 6:77-92. [PMID: 24600246 PMCID: PMC3933425 DOI: 10.2147/cmar.s50497] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genomic deoxyribonucleic acid (DNA) is under constant threat from endogenous and exogenous DNA damaging agents. Mammalian cells have evolved highly conserved DNA repair machinery to process DNA damage and maintain genomic integrity. Impaired DNA repair is a major driver for carcinogenesis and could promote aggressive cancer biology. Interestingly, in established tumors, DNA repair activity is required to counteract oxidative DNA damage that is prevalent in the tumor microenvironment. Emerging clinical data provide compelling evidence that overexpression of DNA repair factors may have prognostic and predictive significance in patients. More recently, DNA repair inhibition has emerged as a promising target for anticancer therapy. Synthetic lethality exploits intergene relationships where the loss of function of either of two related genes is nonlethal, but loss of both causes cell death. Exploiting this approach by targeting DNA repair has emerged as a promising strategy for personalized cancer therapy. In the current review, we focus on recent advances with a particular focus on synthetic lethality targeting in cancer.
Collapse
Affiliation(s)
- Rachel Abbotts
- University of Nottingham, Academic Unit of Oncology, Division of Oncology, School of Medicine, Nottingham University Hospitals, City Hospital Campus, Nottingham, UK
| | - Nicola Thompson
- University of Nottingham, Academic Unit of Oncology, Division of Oncology, School of Medicine, Nottingham University Hospitals, City Hospital Campus, Nottingham, UK
| | - Srinivasan Madhusudan
- University of Nottingham, Academic Unit of Oncology, Division of Oncology, School of Medicine, Nottingham University Hospitals, City Hospital Campus, Nottingham, UK
| |
Collapse
|
132
|
Hosono Y, Abe T, Ishiai M, Islam MN, Arakawa H, Wang W, Takeda S, Ishii Y, Takata M, Seki M, Enomoto T. Tumor suppressor RecQL5 controls recombination induced by DNA crosslinking agents. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1002-12. [PMID: 24418621 DOI: 10.1016/j.bbamcr.2014.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/15/2013] [Accepted: 01/02/2014] [Indexed: 12/20/2022]
Abstract
RecQ family DNA helicases function in the maintenance of genome stability. Mice deficient in RecQL5, one of five RecQ helicases, show a cancer predisposition phenotype, suggesting that RecQL5 plays a tumor suppressor role. RecQL5 interacts with Rad51, a key factor in homologous recombination (HR), and displaces Rad51 from Rad51-single stranded DNA (ssDNA) filaments in vitro. However, the precise roles of RecQL5 in the cell remain elusive. Here, we present evidence suggesting that RecQL5 is involved in DNA interstrand crosslink (ICL) repair. Chicken DT40 RECQL5 gene knockout (KO) cells showed sensitivity to ICL-inducing agents such as cisplatin (CDDP) and mitomycin C (MMC) and a higher number of chromosome aberrations in the presence of MMC than wild-type cells. The phenotypes of RECQL5 KO cells resembled those of Fanconi anemia gene KO cells. Genetic analysis using corresponding gene knockout cells showed that RecQL5 is involved in the FANCD1 (BRCA2)-dependent ICL repair pathway in which Rad51-ssDNA filament formation is promoted by BRCA2. The disappearance but not appearance of Rad51-foci was delayed in RECQL5 KO cells after MMC treatment. Deletion of Rad54, which processes the Rad51-ssDNA filament in HR, in RECQL5 KO cells increased sensitivity to CDDP and further delayed the disappearance of Rad51-foci, suggesting that RecQL5 and Rad54 have different effects on the Rad51-ssDNA filament. Furthermore, the frequency and variation of CDDP-induced gene conversion at the immunoglobulin locus were increased in RECQL5 KO cells. These results suggest that RecQL5 plays a role in regulating the incidence and quality of ICL-induced recombination.
Collapse
Affiliation(s)
- Yoshifumi Hosono
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Takuya Abe
- IFOM, the FIRC Institute for Molecular Oncology Foundation, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| | - Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effect Studies, Radiation Biology Center, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - M Nurul Islam
- Laboratory of Genetics, NIA, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hiroshi Arakawa
- IFOM, the FIRC Institute for Molecular Oncology Foundation, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| | - Weidong Wang
- Laboratory of Genetics, NIA, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yutaka Ishii
- Shujitsu University, School of Pharmacy, Nishigawara, Naka-ku, Okayama 703-8516, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effect Studies, Radiation Biology Center, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masayuki Seki
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan; Department of Biochemistry, Tohoku Pharmaceutical University, 4-1, Komatsushima 4-chome, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| | - Takemi Enomoto
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
133
|
Abstract
The inherited bone marrow failure (BMF) syndromes are a rare and diverse group of genetic disorders that ultimately result in the loss of blood production. The molecular defects underlying many of these conditions have been elucidated, and great progress has been made toward understanding the normal function of these gene products. This review will focus on perhaps the most well-known and genetically heterogeneous BMF syndrome: Fanconi anemia. More specifically, this account will review the current state of our knowledge on why the bone marrow fails in this illness and what this might tell us about the maintenance of bone marrow function and hematopoiesis.
Collapse
Affiliation(s)
- Juan I Garaycoechea
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | |
Collapse
|
134
|
Huang J, Liu S, Bellani MA, Thazhathveetil AK, Ling C, de Winter JP, Wang Y, Wang W, Seidman MM. The DNA translocase FANCM/MHF promotes replication traverse of DNA interstrand crosslinks. Mol Cell 2013; 52:434-46. [PMID: 24207054 DOI: 10.1016/j.molcel.2013.09.021] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/09/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
The replicative machinery encounters many impediments, some of which can be overcome by lesion bypass or replication restart pathways, leaving repair for a later time. However, interstrand crosslinks (ICLs), which preclude DNA unwinding, are considered absolute blocks to replication. Current models suggest that fork collisions, either from one or both sides of an ICL, initiate repair processes required for resumption of replication. To test these proposals, we developed a single-molecule technique for visualizing encounters of replication forks with ICLs as they occur in living cells. Surprisingly, the most frequent patterns were consistent with replication traverse of an ICL, without lesion repair. The traverse frequency was strongly reduced by inactivation of the translocase and DNA binding activities of the FANCM/MHF complex. The results indicate that translocase-based mechanisms enable DNA synthesis to continue past ICLs and that these lesions are not always absolute blocks to replication.
Collapse
Affiliation(s)
- Jing Huang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Clauson C, Schärer OD, Niedernhofer L. Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb Perspect Biol 2013; 5:a012732. [PMID: 24086043 DOI: 10.1101/cshperspect.a012732] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA interstrand cross-links (ICLs) are lesions caused by a variety of endogenous metabolites, environmental exposures, and cancer chemotherapeutic agents that have two reactive groups. The common feature of these diverse lesions is that two nucleotides on opposite strands are covalently joined. ICLs prevent the separation of two DNA strands and therefore essential cellular processes including DNA replication and transcription. ICLs are mainly detected in S phase when a replication fork stalls at an ICL. Damage signaling and repair of ICLs are promoted by the Fanconi anemia pathway and numerous posttranslational modifications of DNA repair and chromatin structural proteins. ICLs are also detected and repaired in nonreplicating cells, although the mechanism is less clear. A unique feature of ICL repair is that both strands of DNA must be incised to completely remove the lesion. This is accomplished in sequential steps to prevent creating multiple double-strand breaks. Unhooking of an ICL from one strand is followed by translesion synthesis to fill the gap and create an intact duplex DNA, harboring a remnant of the ICL. Removal of the lesion from the second strand is likely accomplished by nucleotide excision repair. Inadequate repair of ICLs is particularly detrimental to rapidly dividing cells, explaining the bone marrow failure characteristic of Fanconi anemia and why cross-linking agents are efficacious in cancer therapy. Herein, recent advances in our understanding of ICLs and the biological responses they trigger are discussed.
Collapse
Affiliation(s)
- Cheryl Clauson
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | | | | |
Collapse
|
136
|
High incidence of HPV-associated head and neck cancers in FA deficient mice is associated with E7's induction of DNA damage through its inactivation of pocket proteins. PLoS One 2013; 8:e75056. [PMID: 24086435 PMCID: PMC3781031 DOI: 10.1371/journal.pone.0075056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/06/2013] [Indexed: 11/19/2022] Open
Abstract
Fanconi anemia (FA) patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs) is associated with 'high-risk' HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency in mice predisposes HPV16 E7 transgenic mice to HNCs. To address HPV16 E6's oncogenic potential under FA deficiency in HNCs, we utilized HPV16 E6-transgenic mice (K14E6) and HPV16 E6/E7-bi-transgenic mice (K14E6E7) on genetic backgrounds sufficient or deficient for one of the fanc genes, fancD2 and monitored their susceptibility to HNCs. K14E6 mice failed to develop tumor. However, E6 and fancD2-deficiency accelerated E7-driven tumor development in K14E6E7 mice. The increased tumor incidence was more correlated with E7-driven DNA damage than proliferation. We also found that deficiency of pocket proteins, pRb, p107, and p130 that are well-established targets of E7, could recapitulate E7's induction of DNA damage. Our findings support the hypothesis that E7 induces HPV-associated HNCs by promoting DNA damage through the inactivation of pocket proteins, which explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer. Our results further demonstrate the unexpected finding that FA deficiency does not predispose E6 transgenic mice to HNCs, indicating a specificity in the synergy between FA deficiency and HPV oncogenes in causing HNCs.
Collapse
|
137
|
Pfäffle HN, Wang M, Gheorghiu L, Ferraiolo N, Greninger P, Borgmann K, Settleman J, Benes CH, Sequist LV, Zou L, Willers H. EGFR-activating mutations correlate with a Fanconi anemia-like cellular phenotype that includes PARP inhibitor sensitivity. Cancer Res 2013; 73:6254-63. [PMID: 23966292 DOI: 10.1158/0008-5472.can-13-0044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In patients with lung cancer whose tumors harbor activating mutations in the EGF receptor (EGFR), increased responses to platinum-based chemotherapies are seen compared with wild-type cancers. However, the mechanisms underlying this association have remained elusive. Here, we describe a cellular phenotype of cross-linker sensitivity in a subset of EGFR-mutant lung cancer cell lines that is reminiscent of the defects seen in cells impaired in the Fanconi anemia pathway, including a pronounced G2-M cell-cycle arrest and chromosomal radial formation. We identified a defect downstream of FANCD2 at the level of recruitment of FAN1 nuclease and DNA interstrand cross-link (ICL) unhooking. The effect of EGFR mutation was epistatic with FANCD2. Consistent with the known role of FANCD2 in promoting RAD51 foci formation and homologous recombination repair (HRR), EGFR-mutant cells also exhibited an impaired RAD51 foci response to ICLs, but not to DNA double-strand breaks. EGFR kinase inhibition affected RAD51 foci formation neither in EGFR-mutant nor wild-type cells. In contrast, EGFR depletion or overexpression of mutant EGFR in wild-type cells suppressed RAD51 foci, suggesting an EGFR kinase-independent regulation of DNA repair. Interestingly, EGFR-mutant cells treated with the PARP inhibitor olaparib also displayed decreased FAN1 foci induction, coupled with a putative block in a late HRR step. As a result, EGFR-mutant lung cancer cells exhibited olaparib sensitivity in vitro and in vivo. Our findings provide insight into the mechanisms of cisplatin and PARP inhibitor sensitivity of EGFR-mutant cells, yielding potential therapeutic opportunities for further treatment individualization in this genetically defined subset of lung cancer.
Collapse
Affiliation(s)
- Heike N Pfäffle
- Authors' Affiliations: Laboratory of Cellular & Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston; and Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts; Research Oncology, Genentech, Inc., South San Francisco, California; Department of Pharmaceutical Biology, Ludwig Maximilian University of Munich, Munich; and Center for Oncology, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Sirbu BM, Cortez D. DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol 2013; 5:a012724. [PMID: 23813586 DOI: 10.1101/cshperspect.a012724] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome integrity is challenged by DNA damage from both endogenous and environmental sources. This damage must be repaired to allow both RNA and DNA polymerases to accurately read and duplicate the information in the genome. Multiple repair enzymes scan the DNA for problems, remove the offending damage, and restore the DNA duplex. These repair mechanisms are regulated by DNA damage response kinases including DNA-PKcs, ATM, and ATR that are activated at DNA lesions. These kinases improve the efficiency of DNA repair by phosphorylating repair proteins to modify their activities, by initiating a complex series of changes in the local chromatin structure near the damage site, and by altering the overall cellular environment to make it more conducive to repair. In this review, we focus on these three levels of regulation to illustrate how the DNA damage kinases promote efficient repair to maintain genome integrity and prevent disease.
Collapse
Affiliation(s)
- Bianca M Sirbu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37027, USA
| | | |
Collapse
|
139
|
Abstract
Helicases have major roles in genome maintenance by unwinding structured nucleic acids. Their prominence is marked by various cancers and genetic disorders that are linked to helicase defects. Although considerable effort has been made to understand the functions of DNA helicases that are important for genomic stability and cellular homeostasis, the complexity of the DNA damage response leaves us with unanswered questions regarding how helicase-dependent DNA repair pathways are regulated and coordinated with cell cycle checkpoints. Further studies may open the door to targeting helicases in order to improve cancer treatments based on DNA-damaging chemotherapy or radiation.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA.
| |
Collapse
|
140
|
Williams HL, Gottesman ME, Gautier J. The differences between ICL repair during and outside of S phase. Trends Biochem Sci 2013; 38:386-93. [PMID: 23830640 DOI: 10.1016/j.tibs.2013.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/14/2013] [Accepted: 05/29/2013] [Indexed: 12/11/2022]
Abstract
DNA interstrand crosslinks (ICLs) are complex lesions that block essential DNA transactions including DNA replication, recombination, and RNA transcription. Naturally occurring ICLs are rare, yet these lesions are the major cause of toxicity following treatment with several classes of crosslinking cancer chemotherapeutic drugs. ICLs are repaired during and outside of S phase by pathways with overlapping as well as distinct features. Here, we discuss some recent insights into the mechanisms of replication-dependent and replication-independent repair of ICLs with special emphasis on the differences between these repair pathways.
Collapse
Affiliation(s)
- Hannah L Williams
- Department of Genetics and Development, Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
141
|
Carofiglio F, Inagaki A, de Vries S, Wassenaar E, Schoenmakers S, Vermeulen C, van Cappellen WA, Sleddens-Linkels E, Grootegoed JA, te Riele HPJ, de Massy B, Baarends WM. SPO11-independent DNA repair foci and their role in meiotic silencing. PLoS Genet 2013; 9:e1003538. [PMID: 23754961 PMCID: PMC3675022 DOI: 10.1371/journal.pgen.1003538] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 04/16/2013] [Indexed: 11/19/2022] Open
Abstract
In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent meiotic DSBs, and the whole so-called XY body undergoes meiotic sex chromosome inactivation (MSCI). A more general mechanism, named meiotic silencing of unsynapsed chromatin (MSUC), is activated when autosomes fail to synapse. In the absence of SPO11, many chromosomal regions remain unsynapsed, but MSUC takes place only on part of the unsynapsed chromatin. We asked if spontaneous DSBs occur in meiocytes that lack a functional SPO11 protein, and if these might be involved in targeting the MSUC response to part of the unsynapsed chromatin. We generated mice carrying a point mutation that disrupts the predicted catalytic site of SPO11 (Spo11(YF/YF)), and blocks its DSB-inducing activity. Interestingly, we observed foci of proteins involved in the processing of DNA damage, such as RAD51, DMC1, and RPA, both in Spo11(YF/YF) and Spo11 knockout meiocytes. These foci preferentially localized to the areas that undergo MSUC and form the so-called pseudo XY body. In SPO11-deficient oocytes, the number of repair foci increased during oocyte development, indicating the induction of S phase-independent, de novo DNA damage. In wild type pachytene oocytes we observed meiotic silencing in two types of pseudo XY bodies, one type containing DMC1 and RAD51 foci on unsynapsed axes, and another type containing only RAD51 foci, mainly on synapsed axes. Taken together, our results indicate that in addition to asynapsis, persistent SPO11-induced DSBs are important for the initiation of MSCI and MSUC, and that SPO11-independent DNA repair foci contribute to the MSUC response in oocytes.
Collapse
Affiliation(s)
- Fabrizia Carofiglio
- Department of Reproduction and Development, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Akiko Inagaki
- Department of Reproduction and Development, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Sandra de Vries
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Evelyne Wassenaar
- Department of Reproduction and Development, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Sam Schoenmakers
- Department of Obstetrics and Gynaecology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Christie Vermeulen
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wiggert A. van Cappellen
- Department of Reproduction and Development, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Esther Sleddens-Linkels
- Department of Reproduction and Development, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - J. Anton Grootegoed
- Department of Reproduction and Development, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Hein P. J. te Riele
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bernard de Massy
- Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| | - Willy M. Baarends
- Department of Reproduction and Development, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
142
|
Johnson NM, Lemmens BBLG, Tijsterman M. A role for the malignant brain tumour (MBT) domain protein LIN-61 in DNA double-strand break repair by homologous recombination. PLoS Genet 2013; 9:e1003339. [PMID: 23505385 PMCID: PMC3591299 DOI: 10.1371/journal.pgen.1003339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
Malignant brain tumour (MBT) domain proteins are transcriptional repressors that function within Polycomb complexes. Some MBT genes are tumour suppressors, but how they prevent tumourigenesis is unknown. The Caenorhabditis elegans MBT protein LIN-61 is a member of the synMuvB chromatin-remodelling proteins that control vulval development. Here we report a new role for LIN-61: it protects the genome by promoting homologous recombination (HR) for the repair of DNA double-strand breaks (DSBs). lin-61 mutants manifest numerous problems associated with defective HR in germ and somatic cells but remain proficient in meiotic recombination. They are hypersensitive to ionizing radiation and interstrand crosslinks but not UV light. Using a novel reporter system that monitors repair of a defined DSB in C. elegans somatic cells, we show that LIN-61 contributes to HR. The involvement of this MBT protein in HR raises the possibility that MBT–deficient tumours may also have defective DSB repair. The genome is continually under threat from exogenous sources of DNA damage, as well as from sources that originate within the cell. DNA double-strand breaks (DSBs) are arguably the most problematic type of damage as they can cause dangerous chromosome rearrangements, which can lead to cancer, as well as mutation at the break site and/or cell death. A complex network of molecular pathways, collectively referred to as the DNA damage response (DDR), have evolved to protect the cell from these threats. We have discovered a new DDR factor, LIN-61, that promotes the repair of DSBs. This is a novel and unexpected role for LIN-61, which was previously known to act as a regulator of gene transcription during development.
Collapse
Affiliation(s)
- Nicholas M. Johnson
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Marcel Tijsterman
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
143
|
Kottemann MC, Smogorzewska A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 2013; 493:356-63. [PMID: 23325218 DOI: 10.1038/nature11863] [Citation(s) in RCA: 471] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/08/2012] [Indexed: 12/16/2022]
Abstract
The function of Fanconi anaemia proteins is to maintain genomic stability. Their main role is in the repair of DNA interstrand crosslinks, which, by covalently binding the Watson and the Crick strands of DNA, impede replication and transcription. Inappropriate repair of interstrand crosslinks causes genomic instability, leading to cancer; conversely, the toxicity of crosslinking agents makes them a powerful chemotherapeutic. Fanconi anaemia proteins can promote stem-cell function, prevent tumorigenesis, stabilize replication forks and inhibit inaccurate repair. Recent advances have identified endogenous aldehydes as possible culprits of DNA damage that may induce the phenotypes seen in patients with Fanconi anaemia.
Collapse
Affiliation(s)
- Molly C Kottemann
- Laboratory of Genome Maintenance, The Rockefeller University, New York 10065, USA
| | | |
Collapse
|
144
|
Abstract
The structural features that enable replicative DNA polymerases to synthesize DNA rapidly and accurately also limit their ability to copy damaged DNA. Direct replication of DNA damage is termed translesion synthesis (TLS), a mechanism conserved from bacteria to mammals and executed by an array of specialized DNA polymerases. This chapter examines how these translesion polymerases replicate damaged DNA and how they are regulated to balance their ability to replicate DNA lesions with the risk of undesirable mutagenesis. It also discusses how TLS is co-opted to increase the diversity of the immunoglobulin gene hypermutation and the contribution it makes to the mutations that sculpt the genome of cancer cells.
Collapse
Affiliation(s)
- Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
145
|
Lambert S, Carr AM. Impediments to replication fork movement: stabilisation, reactivation and genome instability. Chromosoma 2013; 122:33-45. [DOI: 10.1007/s00412-013-0398-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/11/2013] [Accepted: 02/11/2013] [Indexed: 01/02/2023]
|
146
|
The MCM8-MCM9 complex promotes RAD51 recruitment at DNA damage sites to facilitate homologous recombination. Mol Cell Biol 2013; 33:1632-44. [PMID: 23401855 DOI: 10.1128/mcb.01503-12] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The minichromosome maintenance protein homologs MCM8 and MCM9 have previously been implicated in DNA replication elongation and prereplication complex (pre-RC) formation, respectively. We found that MCM8 and MCM9 physically associate with each other and that MCM8 is required for the stability of MCM9 protein in mammalian cells. Depletion of MCM8 or MCM9 in human cancer cells or the loss of function MCM9 mutation in mouse embryo fibroblasts sensitizes cells to the DNA interstrand cross-linking (ICL) agent cisplatin. Consistent with a role in the repair of ICLs by homologous recombination (HR), knockdown of MCM8 or MCM9 significantly reduces HR repair efficiency. Chromatin immunoprecipitation analysis using human DR-GFP cells or Xenopus egg extract demonstrated that MCM8 and MCM9 proteins are rapidly recruited to DNA damage sites and promote RAD51 recruitment. Thus, these two metazoan-specific MCM homologs are new components of HR and may represent novel targets for treating cancer in combination with DNA cross-linking agents.
Collapse
|
147
|
Costes A, Lambert SAE. Homologous recombination as a replication fork escort: fork-protection and recovery. Biomolecules 2012; 3:39-71. [PMID: 24970156 PMCID: PMC4030885 DOI: 10.3390/biom3010039] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 01/03/2023] Open
Abstract
Homologous recombination is a universal mechanism that allows DNA repair and ensures the efficiency of DNA replication. The substrate initiating the process of homologous recombination is a single-stranded DNA that promotes a strand exchange reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. The molecular mechanisms by which homologous recombination repairs a double-strand break have been extensively studied and are now well characterized. However, the mechanisms by which homologous recombination contribute to DNA replication in eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for the machinery of homologous recombination at replication forks. Here, we review our understanding of the molecular pathways involving the homologous recombination machinery to support the robustness of DNA replication. In addition to its role in fork-recovery and in rebuilding a functional replication fork apparatus, homologous recombination may also act as a fork-protection mechanism. We discuss that some of the fork-escort functions of homologous recombination might be achieved by loading of the recombination machinery at inactivated forks without a need for a strand exchange step; as well as the consequence of such a model for the stability of eukaryotic genomes.
Collapse
Affiliation(s)
- Audrey Costes
- Institut Curie, Centre de Recherche, CNRS, UMR3348, Centre Universitaire, Bat110, 91405, Orsay, France.
| | - Sarah A E Lambert
- Institut Curie, Centre de Recherche, CNRS, UMR3348, Centre Universitaire, Bat110, 91405, Orsay, France.
| |
Collapse
|
148
|
Lia G, Rigato A, Long E, Chagneau C, Le Masson M, Allemand JF, Michel B. RecA-promoted, RecFOR-independent progressive disassembly of replisomes stalled by helicase inactivation. Mol Cell 2012; 49:547-57. [PMID: 23260658 DOI: 10.1016/j.molcel.2012.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/17/2012] [Accepted: 11/16/2012] [Indexed: 11/26/2022]
Abstract
In all organisms, replication impairment is a recognized source of genomic instability, raising an increasing interest in the fate of inactivated replication forks. We used Escherichia coli strains with a temperature-inactivated replicative helicase (DnaB) and in vivo single-molecule microscopy to quantify the detailed molecular processing of stalled replication forks. After helicase inactivation, RecA binds to blocked replication forks and is essential for the rapid release of hPol III. The entire holoenzyme is disrupted little by little, with some components lost in few minutes, while others are stable in 70% of cells for at least 1 hr. Although replisome dissociation is delayed in a recA mutant, it is not affected by RecF or RecO inactivation. RecFOR are required for full RecA filaments formation, and we propose that polymerase clearance can be catalyzed by short, RecFOR-independent RecA filaments. Our results identify a function for the universally conserved, central recombination protein RecA.
Collapse
Affiliation(s)
- Giuseppe Lia
- CNRS, Centre de Génétique Moléculaire, UPR3404, Gif-sur-Yvette 91198, France.
| | | | | | | | | | | | | |
Collapse
|
149
|
Vare D, Groth P, Carlsson R, Johansson F, Erixon K, Jenssen D. DNA interstrand crosslinks induce a potent replication block followed by formation and repair of double strand breaks in intact mammalian cells. DNA Repair (Amst) 2012; 11:976-85. [DOI: 10.1016/j.dnarep.2012.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 11/17/2022]
|
150
|
Affiliation(s)
- Tomás Aparicio
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY USA
| | | |
Collapse
|