101
|
Lyu Z, Zhang XG, Wang Y, Liu K, Qiu C, Liao X, Yang W, Xie Z, Xie S. Amplified Interfacial Effect in an Atomically Dispersed RuO x -on-Pd 2D Inverse Nanocatalyst for High-Performance Oxygen Reduction. Angew Chem Int Ed Engl 2021; 60:16093-16100. [PMID: 33884729 DOI: 10.1002/anie.202104013] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 11/10/2022]
Abstract
Atomically dispersed oxide-on-metal inverse nanocatalysts provide a blueprint to amplify the strong oxide-metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx -on-Pd nanosheets, by in situ creating atomically dispersed RuOx /Pd interfaces densely on ultrathin Pd nanosheets via a one-pot synthesis. The product displays unexpected performance toward the oxygen reduction reaction (ORR) in alkaline medium, which represents 8.0- and 22.4-fold enhancement in mass activity compared to the state-of-the-art Pt/C and Pd/C catalysts, respectively, showcasing an excellent Pt-alternative cathode electrocatalyst for fuel cells and metal-air batteries. Density functional theory calculations validate that the RuOx /Pd interface can accumulate partial charge from the 2D Pd host and subtly change the adsorption configuration of O2 to facilitate the O-O bond cleavage. Meanwhile, the d-band center of Pd nanosubstrates is effectively downshifted, realizing weakened oxygen binding strength.
Collapse
Affiliation(s)
- Zixi Lyu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yucheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Kai Liu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Chunyu Qiu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Xinyan Liao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Weihua Yang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Shuifen Xie
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
102
|
Nan B, Fu Q, Yu J, Shu M, Zhou LL, Li J, Wang WW, Jia CJ, Ma C, Chen JX, Li L, Si R. Unique structure of active platinum-bismuth site for oxidation of carbon monoxide. Nat Commun 2021; 12:3342. [PMID: 34099668 PMCID: PMC8184822 DOI: 10.1038/s41467-021-23696-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/23/2021] [Indexed: 12/02/2022] Open
Abstract
As the technology development, the future advanced combustion engines must be designed to perform at a low temperature. Thus, it is a great challenge to synthesize high active and stable catalysts to resolve exhaust below 100 °C. Here, we report that bismuth as a dopant is added to form platinum-bismuth cluster on silica for CO oxidation. The highly reducible oxygen species provided by surface metal-oxide (M-O) interface could be activated by CO at low temperature (~50 °C) with a high CO2 production rate of 487 μmolCO2·gPt-1·s-1 at 110 °C. Experiment data combined with density functional calculation (DFT) results demonstrate that Pt cluster with surface Pt-O-Bi structure is the active site for CO oxidation via providing moderate CO adsorption and activating CO molecules with electron transformation between platinum atom and carbon monoxide. These findings provide a unique and general approach towards design of potential excellent performance catalysts for redox reaction.
Collapse
Affiliation(s)
- Bing Nan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Science, Beijing, China
| | - Qiang Fu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jing Yu
- Shanghai Institute of Measurement and Testing Technology, Shanghai, China
| | - Miao Shu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Lu-Lu Zhou
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jinying Li
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China.
| | - Chao Ma
- Center for High Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, China.
| | - Jun-Xiang Chen
- Division of China, TILON Group Technology Limited, Shanghai, China
| | - Lina Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Shanghai, China
| | - Rui Si
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Shanghai, China.
| |
Collapse
|
103
|
Song T, Dong J, Li R, Xu X, Hiroaki M, Yang B, Zhang R, Bai Y, Xin H, Lin L, Mu R, Fu Q, Bao X. Oxidative Strong Metal-Support Interactions between Metals and Inert Boron Nitride. J Phys Chem Lett 2021; 12:4187-4194. [PMID: 33900088 DOI: 10.1021/acs.jpclett.1c00934] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The strong metal-support interaction (SMSI) is one of the most important concepts in heterogeneous catalysis, which has been widely investigated between metals and active oxides triggered by reductive atmospheres. Here, we report the oxidative strong metal-support interaction (O-SMSI) effect between Pt nanoparticles (NPs) and inert hexagonal boron nitride (h-BN) sheets, in which Pt NPs are encapsulated by oxidized boron (BOx) overlayers derived from the h-BN support under oxidative conditions. De-encapsulation of Pt NPs has been achieved by washing in water, and the residual ultrathin BOx overlayers work synergistically with surface Pt sites for enhancing CO oxidation reaction. The O-SMSI effect is also present in other h-BN-supported metal catalysts such as Au, Rh, Ru, and Ir within different oxidative atmospheres including O2 and CO2, which is determined by metal-boron interaction and O affinity of metals.
Collapse
Affiliation(s)
- Tongyuan Song
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhu Dong
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Xu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Matsumoto Hiroaki
- Hitachi High-Tech (Shanghai) Co., Ltd., Shanghai 201203, P. R. China
| | - Bing Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rankun Zhang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yunxing Bai
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hui Xin
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Le Lin
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
104
|
Xu Z, Zhang X, Wang X, Fang J, Zhang Y, Liu X, Zhu W, Yan Y, Zhuang Z. Synthesis of Ag-Ni-Fe-P Multielemental Nanoparticles as Bifunctional Oxygen Reduction/Evolution Reaction Electrocatalysts. ACS NANO 2021; 15:7131-7138. [PMID: 33821618 DOI: 10.1021/acsnano.1c00305] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multielemental nanoparticles (MENPs) provide the possibility to integrate multiple catalytic functions from different elements into one nanoparticle. However, it is difficult to synthesize Ag-based MENPs with transition metals such as Ni and Fe because of the strong phase segregation between Ag and the other metals. Here, we show that nonmetal element P can help the amalgamation of Ag with other metals. Ag-Ni-Fe-P MENPs are successfully synthesized by a solution-phase chemistry, and they demonstrate excellent bifunctional oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) catalytic activities (the potential gap of the potential at 10 mA·cm-2 for OER and half-wave potential for ORR is 630 mV). More important, the synergistic effect from the MENPs endows them with even higher ORR or OER activity than the Ag or NiFeP nanoparticles. A rechargeable Zn-air battery is fabricated by using the Ag-Ni-Fe-P MENPs as the air electrode. The battery has an energy efficiency of ∼60% at 10 mA cm-2. Its performance is almost unchanged during a working period of 250 h, surpassing the Pt/C+IrO2-based battery. These results suggest that the rationally designed MENPs can integrate multiple catalytic functions together and achieve a synergistic effect, which can be used as high-performance multifunctional catalysts.
Collapse
Affiliation(s)
- Zhiyuan Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuejiang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingdong Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinjie Fang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufeng Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuerui Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Zhu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yushan Yan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Zhongbin Zhuang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
105
|
Yao Z, Yang J, Liu Z, Shan B, Chen R, Wen Y, Li Y. Synergetic effect dependence on activated oxygen in the interface of NiO x-modified Pt nanoparticles for the CO oxidation from first-principles. Phys Chem Chem Phys 2021; 23:8541-8548. [PMID: 33876016 DOI: 10.1039/d1cp00149c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO oxidation on NiOx-modified Pt nanoparticles (NPs) was investigated by first-principles calculations and microkinetic methods. The binding energies of O2 and CO on NiOx/Pt suggest that CO adsorption is dominant and the CO oxidation mainly follows the Mars-van Krevelen (M-vK) mechanism. It was found that the interfacial O of NiOx/Pt played a key role in the combination of adsorbed CO to O, as well as the O2 dissociation. With a lower O vacancy formation energy, NiOx/Ptedge shows about four orders higher reaction rates than NiOx/Pt(100). Microkinetic analysis suggests that the rate-determining step also depends on the active O at the interface. The calculations highlight the synergetic effect difference of NiOx selectively deposited on the different sites of Pt NPs on the CO oxidation from the atomic reaction mechanism, and throws light on the high activity of CO oxidation on partially covered NiOx/Ptedge nanoparticles.
Collapse
Affiliation(s)
- Zihang Yao
- Department of Physics and Institute of Condensed Matter Physics, School of Science, Wuhan University of Technology, Wuhan 430070, China.
| | | | | | | | | | | | | |
Collapse
|
106
|
|
107
|
Liu K, Qin R, Zheng N. Insights into the Interfacial Effects in Heterogeneous Metal Nanocatalysts toward Selective Hydrogenation. J Am Chem Soc 2021; 143:4483-4499. [PMID: 33724821 DOI: 10.1021/jacs.0c13185] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heterogeneous metal catalysts are distinguished by their structure inhomogeneity and complexity. The chameleonic nature of heterogeneous metal catalysts have prevented us from deeply understanding their catalytic mechanisms at the molecular level and thus developing industrial catalysts with perfect catalytic selectivity toward desired products. This Perspective aims to summarize recent research advances in deciphering complicated interfacial effects in heterogeneous hydrogenation metal nanocatalysts toward the design of practical heterogeneous catalysts with clear catalytic mechanism and thus nearly perfect selectivity. The molecular insights on how the three key components (i.e., catalytic metal, support, and ligand modifier) of a heterogeneous metal nanocatalyst induce effective interfaces determining the hydrogenation activity and selectivity are provided. The interfaces influence not only the H2 activation pathway but also the interaction of substrates to be hydrogenated with catalytic metal surface and thus the hydrogen transfer process. As for alloy nanocatalysts, together with the electronic and geometric ensemble effects, spillover hydrogenation occurring on catalytically "inert" metal by utilizing hydrogen atom spillover from active metal is highlighted. The metal-support interface effects are then discussed with emphasis on the molecular involvement of ligands located at the metal-support interface as well as cationic species from the support in hydrogenation. The mechanisms of how organic modifiers, with the ability to induce both 3D steric and electronic effects, on metal nanocatalysts manipulate the hydrogenation pathways are demonstrated. A brief summary is finally provided together with a perspective on the development of enzyme-like heterogeneous hydrogenation metal catalysts.
Collapse
Affiliation(s)
- Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
108
|
Zhao S, Lin L, Huang W, Zhang R, Wang D, Mu R, Fu Q, Bao X. Design of Lewis Pairs via Interface Engineering of Oxide-Metal Composite Catalyst for Water Activation. J Phys Chem Lett 2021; 12:1443-1452. [PMID: 33523659 DOI: 10.1021/acs.jpclett.0c03760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rational design and controlled construction of active centers remain grand challenges in heterogeneous catalysis, in particular for oxide catalysts with complex surface and interface structures. This work describes a facile way in the design of highly active Ni-O Lewis pairs for water activation where Ni and O sites act as Lewis acid and base, respectively. Surface science experiments indicate that dissociative adsorption of water occurs at edges of NiOx nanoislands grown on Au(111) and NiOx-Ni interfaces formed by further depositing metallic Ni layers along the edges of NiOx nanoislands. Enhanced activity of Ni-O Lewis pairs at the NiOx-Ni interface has been demonstrated by theoretical calculations, which are attributed to the higher Lewis acidity of metallic Ni sites and synergy of the metal and oxide components. Moreover, proton can migrate away from the NiOx-Ni interface and refresh the O base sites, leading to further hydroxylation of the neighboring Ni acid sites.
Collapse
Affiliation(s)
- Siqin Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wugen Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rankun Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Dongqing Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
109
|
Xu W, Chen X, Chen J, Jia H. Bimetal oxide CuO/Co 3O 4 derived from Cu ions partly-substituted framework of ZIF-67 for toluene catalytic oxidation. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123869. [PMID: 33264941 DOI: 10.1016/j.jhazmat.2020.123869] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/15/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
A MOF-templated method is developed to prepare bimetal oxide CuO/Co3O4 by in situ pyrolysis of Cu2+ partly-substituted ZIF-67 precursor. The physicochemical properties of CuO/Co3O4 are studied by various characterizations such as X-ray diffraction, Raman analysis, transmission electron microscope, scanning electron microscope, N2 adsorption-desorption measurement, X-ray photoelectron spectroscope, O2 temperature-programmed desorption, H2 temperature-programmed reduction, etc. Comparison with CuO, Co3O4 and Mix-CuO/Co3O4, 90 % of both toluene conversion and mineralization over CuO/Co3O4 are fulfilled at around 229 °C under the condition of 1000 ppm toluene and weight hour space velocity =20,000 mL/(g h), which is promoted more than 40 °C. The better catalytic performance of CuO/Co3O4 attributes to high mutual dispersion of two oxides, porous structure, lower temperature reducibility, abundant lattice defects, more active oxygen species, higher Co3+/Co2+ and Olatt/Oads molar ratios. Meanwhile, CuO/Co3O4 exhibits a better catalytic stability at different conversions and a good tolerance to 10 vol.% of water vapour. The investigation of temperature-dependent active oxygen species and in-situ DRIFTS results reveal that toluene oxidation on CuO/Co3O4 obeys Mars van Krevelen mechanism.
Collapse
Affiliation(s)
- Wenjian Xu
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, 361021, China
| | - Xi Chen
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongpeng Jia
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
110
|
He W, Huang L, Liu C, Wang S, Long Z, Hu F, Sun Z. Interfacial sites in platinum-hydroxide-cobalt hybrid nanostructures for promoting CO oxidation activity. NANOSCALE 2021; 13:2593-2600. [PMID: 33480944 DOI: 10.1039/d0nr07880h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-oxide/hydroxide hybrid nanostructures provide an excellent platform to study the interfacial effects on tailoring the catalysis of metal catalysts. Herein, a hybrid nanostructure of Pt@Co(OH)2 supported on SiO2 was synthesized by incipient wetness impregnation of Co(OH)2 with the aid of H2O2 and successive urea-assisted deposition-precipitation of platinum nanoparticles. The Fenton-like reaction between Co2+ and H2O2 during the impregnation process facilitates the formation of active interfacial sites. This hybrid nanostructure exhibits much higher catalytic activity towards CO oxidation than Pt/SiO2 nanoparticles with a similar Pt loading and particle size. In situ diffuse reflectance infrared Fourier transform spectroscopy was used to track the CO adsorption processes and to identify the reaction intermediates during CO oxidation. It shows that the OH species at the Pt-OH-Co interfacial sites could readily react with CO adsorbed on neighboring Pt to yield CO2 by forming *COOH intermediates and oxygen vacancies. Under the CO + O2 oxidation conditions, O2 molecules are activated by the oxygen vacancy and react with the CO molecules adsorbed on Pt to generate CO2, via forming the highly active *OOH intermediates as observed by DRIFTS.
Collapse
Affiliation(s)
- Wenxue He
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Li Huang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Chengyong Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Siyu Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Zhixin Long
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Fengchun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| |
Collapse
|
111
|
Mitchell S, Qin R, Zheng N, Pérez-Ramírez J. Nanoscale engineering of catalytic materials for sustainable technologies. NATURE NANOTECHNOLOGY 2021; 16:129-139. [PMID: 33230317 DOI: 10.1038/s41565-020-00799-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Nanostructured materials of diverse architecture are ubiquitous in industrial catalysis. They offer exciting prospects to tackle various sustainability challenges faced by society. Since the introduction of the concept a century ago, researchers aspire to control the chemical identity, local environment and electronic properties of active sites on catalytic surfaces to optimize their reactivity in given applications. Nowadays, numerous strategies exist to tailor these characteristics with varying levels of atomic precision. Making headway relies upon the existence of analytical approaches able to resolve relevant structural features and remains challenging due to the inherent complexity even of the simplest heterogeneous catalysts, and to dynamic effects often occurring under reaction conditions. Computational methods play a complementary and ever-increasing role in pushing forward the design. Here, we examine how nanoscale engineering can enhance the selectivity and stability of catalysts. We highlight breakthroughs towards their commercialization and identify directions to guide future research and innovation.
Collapse
Affiliation(s)
- Sharon Mitchell
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Centre of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Centre of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.
| | - Javier Pérez-Ramírez
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
112
|
Yan X, Gan T, Shi S, Du J, Xu G, Zhang W, Yan W, Zou Y, Liu G. Potassium-incorporated manganese oxide enhances the activity and durability of platinum catalysts for low-temperature CO oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01409a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Potassium-incorporated manganese oxide is demonstrated as an efficient support for fabricating highly active and stable Pt catalysts for low-temperature CO oxidation.
Collapse
Affiliation(s)
- Xuelan Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tao Gan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shaozhen Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Juan Du
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Guohao Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenxiang Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Gang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
113
|
Yang W, Zhu Y, Li J, Chen Z, Nosheen F, Zhang Q, Zhang Z. Understanding the dehydrogenation mechanism over iron nanoparticles catalysts based on density functional theory. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
114
|
Sun C, Wei G, Liu H, Huang Z, Qin F, Wang H, Zhao J, Liu Z, Zhang L, Yu H, Ge B, Shen W, Xu H. Phase junction-confined single-atom TiO 2–Pt 1–CeO 2 for multiplying catalytic oxidation efficiency. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00571e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The phase junction confinement within the TiO2–Pt1–CeO2 ensemble leads to 5 times higher CO oxidation efficiency under 300 K.
Collapse
|
115
|
Miao G, Shi L, Zhou Z, Zhu L, Zhang Y, Zhao X, Luo H, Li S, Kong L, Sun Y. Catalyst Design for Selective Hydrodeoxygenation of Glycerol to 1,3-Propanediol. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04167] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Gai Miao
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Shi
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
| | - Zhimin Zhou
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lijun Zhu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanfei Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xinpeng Zhao
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hu Luo
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
| | - Shenggang Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Lingzhao Kong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| |
Collapse
|
116
|
Zhao C, Zhang X, Yu M, Wang A, Wang L, Xue L, Liu J, Yang Z, Wang W. Cooperative Catalysis toward Oxygen Reduction Reaction under Dual Coordination Environments on Intrinsic AMnO 3 -Type Perovskites via Regulating Stacking Configurations of Coordination Units. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2006145. [PMID: 33179327 DOI: 10.1002/adma.202006145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/27/2020] [Indexed: 06/11/2023]
Abstract
It remains challenging for pure-phase catalysts to achieve high performance during the electrochemical oxygen reduction reaction to overcome the sluggish kinetics without the assistance of extrinsic conditions. Herein, a series of pristine perovskites, i.e., AMnO3 (A = Ca, Sr, and Ba), are proposed with various octahedron stacking configurations to demonstrate the cooperative catalysis over SrMnO3 jointly explored by experiments and first-principles calculations. Comparing with the unitary stacking of coordination units in CaMnO3 or BaMnO3 , the intrinsic SrMnO3 with a mixture of corner-sharing and face-sharing octahedron stacking configurations demonstrates superior activity (Ehalf-wave = 0.81 V), and charge-discharge stability over 400 h without the voltage gap (≈0.8 V) increasing in zinc-air batteries. The theoretical study reveals that, on the SrMnO3 (110) surface, the active sites switch from coordinatively unsaturated atop Mn (*OO, *OOH) to Mn-Mn bridge (*O, *OH). Therefore, the intrinsic dual coordination environments of Mn-Ocorner and Mn-Oface enable cooperative modulation of the interaction strength of the oxygen intermediates with the surface, inducing the decrease of the *OH desorption energy (rate-limiting step) unrestricted by scaling relationships with the overpotential of ≈0.28 V. This finding provides insights into catalyst design through screening intrinsic structures with multiple coordination unit stacking configurations.
Collapse
Affiliation(s)
- Chunning Zhao
- Integrated Circuits and Smart System Lab (Shenzhen), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Xilin Zhang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, 46# Jianshe Road, Xinxiang, 453007, P. R. China
| | - Meng Yu
- Integrated Circuits and Smart System Lab (Shenzhen), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Ansheng Wang
- Integrated Circuits and Smart System Lab (Shenzhen), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Linxia Wang
- Integrated Circuits and Smart System Lab (Shenzhen), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Lina Xue
- Integrated Circuits and Smart System Lab (Shenzhen), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Jieyu Liu
- Integrated Circuits and Smart System Lab (Shenzhen), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Zongxian Yang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, 46# Jianshe Road, Xinxiang, 453007, P. R. China
| | - Weichao Wang
- Integrated Circuits and Smart System Lab (Shenzhen), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
117
|
Du M, Meng Y, Zhu G, Gao M, Hsu HY, Liu F. Intrinsic electrocatalytic activity of a single IrO x nanoparticle towards oxygen evolution reaction. NANOSCALE 2020; 12:22014-22021. [PMID: 33140807 DOI: 10.1039/d0nr05780k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Identifying the intrinsic electrocatalytic activity of an individual nanoparticle is challenging as traditional ensemble measurements only provide average activity over a large number of nanoparticles and may be greatly affected by the ensemble properties, irrelevant to the nanoparticle itself. Here, single-particle collision electrochemistry is used to investigate the electrocatalytic activity of a single IrOx nanoparticle towards the oxygen evolution reaction (OER). The collision frequency is linearly proportional to the nanoparticle concentration. The mean peak current and transferred charge, extracted from current spikes of the collision, present a similar potential dependence relevant to IrOx intrinsic activity. The turnover frequency (TOF) is determined as 1.55 × 102 O2 s-1, which is orders of magnitude larger than TOFs of the reported ensemble systems. In addition, the deactivation of a single IrOx nanoparticle is also explored based on a half-width analysis of current spikes. This versatilely applicable method provides new insights into the intrinsic performance of a single nanoparticle, which is essential to reveal the structure-activity relations of nanoscale materials for the rational design of advanced catalysts.
Collapse
Affiliation(s)
- Minshu Du
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | | | | | | | | | | |
Collapse
|
118
|
Liu X, Ao C, Shen X, Wang L, Wang S, Cao L, Zhang W, Dong J, Bao J, Ding T, Zhang L, Yao T. Dynamic Surface Reconstruction of Single-Atom Bimetallic Alloy under Operando Electrochemical Conditions. NANO LETTERS 2020; 20:8319-8325. [PMID: 33090809 DOI: 10.1021/acs.nanolett.0c03475] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The atomic-level understanding of the dynamic evolution of the surface structure of bimetallic nanoparticles under industrially relevant operando conditions provides a key guide for improving their catalytic performance. Here, we exploit operando X-ray absorption fine structure spectroscopy to determine the dynamic surface reconstruction of Cu/Au bimetallic alloy where single-atom Cu was embedded on the Au nanoparticle, under electrocatalytic conditions. We identify the migration of isolated Cu atoms from the vertex position of the Au nanoparticle to the stable (100) plane of the Au first atom layer, when the reduction potential is applied. Density functional theory calculations reveal that the surface atom migration would significantly modulate the Au electronic structure, thus serving as the real active site for the catalytic performance. These findings demonstrate the real structural change under electrochemical conditions and provide guidance for the rational design of high-activity bimetallic nanocatalysts.
Collapse
Affiliation(s)
- Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Chengcheng Ao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Xinyi Shen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Lan Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
- School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Sicong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Linlin Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Wei Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Jingjing Dong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Tao Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Lidong Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| |
Collapse
|
119
|
Chen Q, Jiang W, Fan G. Pt nanoparticles on Ti 3C 2T x-based MXenes as efficient catalysts for the selective hydrogenation of nitroaromatic compounds to amines. Dalton Trans 2020; 49:14914-14920. [PMID: 33078801 DOI: 10.1039/d0dt02594a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of Pt nanocatalysts for the selective hydrogenation of nitroaromatic compounds to the corresponding amines is of great significance to solve the drawbacks associated with a low reserve of Pt. Herein, we develop a protocol for the preparation of a Pt/titanium carbide-based MXene heterostructure for the selective reduction of nitroaromatic compounds. In the heterostructure, well-defined and nano-sized metallic Pt crystallites are uniformly decorated on Ti3C2Tx nanosheets using a mild reducing agent of ammonia borane without additional stabilizing agents. The selective hydrogenation of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN) was employed as a model reaction to investigate the catalytic performance of the as-synthesized heterostructure, denoted as Pt/Ti3C2Tx-D-AB. Notably, this catalyst can catalyze the complete conversion of p-CNB to p-CAN with 99.5% selectivity, superior to that of Pt/Ti3C2Tx-D-SB synthesized with sodium borohydride. The high performance of the present catalytic system can be ascribed to the well-dispersed Pt nanoparticles, the abundant surface electron-efficient Pt(0), and the synergistic catalysis between Pt/Ti3C2Tx-D-AB and water. This catalyst also shows generality toward the selective hydrogenation of a series of nitroaromatic compounds to the corresponding amines with high efficiency. The present study provides a strategy to synthesize efficient catalysts for catalytic applications.
Collapse
Affiliation(s)
- Qian Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | | | | |
Collapse
|
120
|
Li Y, Wang S, Wang XS, He Y, Wang Q, Li Y, Li M, Yang G, Yi J, Lin H, Huang D, Li L, Chen H, Ye J. Facile Top-Down Strategy for Direct Metal Atomization and Coordination Achieving a High Turnover Number in CO 2 Photoreduction. J Am Chem Soc 2020; 142:19259-19267. [PMID: 33119292 DOI: 10.1021/jacs.0c09060] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Developing unique single atoms as active sites is vitally important to boosting the efficiency of photocatalytic CO2 reduction, but directly atomizing metal particles and simultaneously adjusting the configuration of individual atoms remain challenging. Herein, we demonstrate a facile strategy at a relatively low temperature (500 °C) to access the in situ metal atomization and coordination adjustment via the thermo-driven gaseous acid. Using this strategy, the pyrolytic gaseous acid (HCl) from NH4Cl could downsize the large metal particles into corresponding ions, which subsequently anchored onto the surface defects of a nitrogen-rich carbon (NC) matrix. Additionally, the low-temperature treatment-induced C═O motifs within the interlayer of NC could bond with the discrete Fe sites in a perpendicular direction and finally create stabilized Fe-N4O species with high valence status (Fe3+) on the shallow surface of the NC matrix. It was found that the Fe-N4O species can achieve a highly efficient CO2 conversion when accepting energetic electrons from both homogeneous and heterogeneous photocatalysts. The optimized sample achieves a maximum turnover number (TON) of 1494 within 1 h in CO generation with a high selectivity of 86.7% as well as excellent stability. Experimental and theoretical results unravel that high valence Fe sites in Fe-N4O species can promote the adsorption of CO2 and lower the formation barrier of key intermediate COOH* compared with the traditional Fe-N4 moiety with lower chemical valence. Our discovery provides new points of view in the construction of more efficient single-atom cocatalysts by considering the optimization of the atomic configuration for high-performance CO2 photoreduction.
Collapse
Affiliation(s)
- Yunxiang Li
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Graduates School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-0814, Japan
| | - Shengyao Wang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xu-Sheng Wang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yu He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Qi Wang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Graduates School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-0814, Japan
| | - Yingbo Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Mengli Li
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Gaoliang Yang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Graduates School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-0814, Japan
| | - Jundong Yi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou, Fujian 350002, P. R China
| | - Huiwen Lin
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Dekang Huang
- College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Lan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou, Fujian 350002, P. R China
| | - Hao Chen
- College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Graduates School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-0814, Japan.,TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
121
|
Wang H, Wang L, Xiao FS. Metal@Zeolite Hybrid Materials for Catalysis. ACS CENTRAL SCIENCE 2020; 6:1685-1697. [PMID: 33145408 PMCID: PMC7596864 DOI: 10.1021/acscentsci.0c01130] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Indexed: 05/04/2023]
Abstract
The fixation of metal nanoparticles into zeolite crystals has emerged as a new series of heterogeneous catalysts, giving performances that steadily outperform the generally supported catalysts in many important reactions. In this outlook, we define different noble metal-in-zeolite structures (metal@zeolite) according to the size of the nanoparticles and their relative location to the micropores. The metal species within the micropores and those larger than the micropores are denoted as encapsulated and fixed structures, respectively. The development in the strategies for the construction of metal@zeolite hybrid materials is briefly summarized in this work, where the rational preparation and improved thermal stability of the metal nanostructures are particularly mentioned. More importantly, these metal@zeolite hybrid materials as catalysts exhibit excellent shape selectivity. Finally, we review the current challenges and future perspectives for these metal@zeolite catalysts.
Collapse
Affiliation(s)
- Hai Wang
- Key
Lab of Biomass Chemical Engineering of Ministry of Education, College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang Wang
- Key
Lab of Biomass Chemical Engineering of Ministry of Education, College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- (L.W.)
| | - Feng-Shou Xiao
- Key
Lab of Biomass Chemical Engineering of Ministry of Education, College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Key
Laboratory of Applied Chemistry of Zhejiang Province, Department of
Chemistry, Zhejiang University, Hangzhou 310028, China
- (F.S.X.)
| |
Collapse
|
122
|
|
123
|
Jian M, Zhao C, Li WX. Ligand Stabilized Ni 1 Catalyst for Efficient CO Oxidation. Chemphyschem 2020; 21:2417-2425. [PMID: 33063907 DOI: 10.1002/cphc.202000730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/15/2020] [Indexed: 12/30/2022]
Abstract
Supported single transition metal (TM1 ) catalysts have attracted broad attention in academia recently. Still, their corresponding reactivity and stability under reaction conditions are critical but have not well explored at the fundamental level. Herein, we use density functional theory calculation and ab initio molecular dynamics simulation to investigate the role of reactants and ligands on the reactivity and stability of graphitic carbon nitride (g-C3 N4 ) supported Ni1 for CO oxidation. We find out that supported bare Ni1 atoms are only metastable on the surface and tend to diffuse into the interlayer of g-C3 N4 . Though Ni1 is catalytically active at moderate temperatures, CO adsorption induced dimerization deactivates the catalyst. Hydroxyl groups not only are able to stabilize the supported Ni1 atom, but also increase the reactivity by participating directly in the reaction. Our results provide valuable insights on improving the chemical stability of TM1 by ligands without sacrificing the reactivity, which are helpful for the rational design of highly loaded atomically dispersed supported metal catalysts.
Collapse
Affiliation(s)
- Minzhen Jian
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chuanlin Zhao
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei-Xue Li
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
124
|
Lu J. A Perspective on New Opportunities in Atom-by-Atom Synthesis of Heterogeneous Catalysts Using Atomic Layer Deposition. Catal Letters 2020. [DOI: 10.1007/s10562-020-03412-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
125
|
Xiong W, Li H, Wang H, Yi J, You H, Zhang S, Hou Y, Cao M, Zhang T, Cao R. Hollow Mesoporous Carbon Sphere Loaded Ni-N 4 Single-Atom: Support Structure Study for CO 2 Electrocatalytic Reduction Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003943. [PMID: 32893483 DOI: 10.1002/smll.202003943] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Single-atom catalysts have become a hot spot because of the high atom utilization efficiency and excellent activity. However, the effect of the support structure in the single-atom catalyst is often unnoticed in the catalytic process. Herein, a series of carbon spheres supported Ni-N4 single-atom catalysts with different support structures are successfully synthesized by the fine adjustment of synthetic conditions. The hollow mesoporous carbon spheres supported Ni-N4 catalyst (Ni/HMCS-3-800) exhibits superior catalytic activity toward the electrocatalytic CO2 reduction reaction (CO2 RR). The Faradaic efficiency toward CO is high to 95% at the potential range from -0.7 to -1.1 V versus reversible hydrogen electrode and the turnover frequency value is high up to 15 608 h-1 . More importantly, the effect of the geometrical structures of carbon support on the CO2 RR performance is studied intensively. The shell thickness and compactness of carbon spheres regulate the chemical environment of the doped-N species in the carbon skeleton effectively and promote CO2 molecule activation. Additionally, the optimized mesopore size is beneficial to improve diffusion and overflow of the substance, which enhances the CO2 adsorption capacity greatly. This work provides a new consideration for promoting the catalytic performance of single-atom catalysts.
Collapse
Affiliation(s)
- Wanfeng Xiong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Hongfang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jundong Yi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanhui You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Suyuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Hou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Minna Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Teng Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
126
|
Sun Q, Chen BWJ, Wang N, He Q, Chang A, Yang CM, Asakura H, Tanaka T, Hülsey MJ, Wang CH, Yu J, Yan N. Zeolite-Encaged Pd-Mn Nanocatalysts for CO 2 Hydrogenation and Formic Acid Dehydrogenation. Angew Chem Int Ed Engl 2020; 59:20183-20191. [PMID: 32770613 DOI: 10.1002/anie.202008962] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/05/2020] [Indexed: 11/09/2022]
Abstract
A CO2 -mediated hydrogen storage energy cycle is a promising way to implement a hydrogen economy, but the exploration of efficient catalysts to achieve this process remains challenging. Herein, sub-nanometer Pd-Mn clusters were encaged within silicalite-1 (S-1) zeolites by a ligand-protected method under direct hydrothermal conditions. The obtained zeolite-encaged metallic nanocatalysts exhibited extraordinary catalytic activity and durability in both CO2 hydrogenation into formate and formic acid (FA) dehydrogenation back to CO2 and hydrogen. Thanks to the formation of ultrasmall metal clusters and the synergic effect of bimetallic components, the PdMn0.6 @S-1 catalyst afforded a formate generation rate of 2151 molformate molPd -1 h-1 at 353 K, and an initial turnover frequency of 6860 mol H 2 molPd -1 h-1 for CO-free FA decomposition at 333 K without any additive. Both values represent the top levels among state-of-the-art heterogeneous catalysts under similar conditions. This work demonstrates that zeolite-encaged metallic catalysts hold great promise to realize CO2 -mediated hydrogen energy cycles in the future that feature fast charge and release kinetics.
Collapse
Affiliation(s)
- Qiming Sun
- NUS Environmental Research Institute (NERI), National University of Singapore, 138602, Singapore, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Benjamin W J Chen
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Qian He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Albert Chang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chia-Min Yang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hiroyuki Asakura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tsunehiro Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Max J Hülsey
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| |
Collapse
|
127
|
Sun Q, Chen BWJ, Wang N, He Q, Chang A, Yang C, Asakura H, Tanaka T, Hülsey MJ, Wang C, Yu J, Yan N. Zeolite‐Encaged Pd–Mn Nanocatalysts for CO
2
Hydrogenation and Formic Acid Dehydrogenation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qiming Sun
- NUS Environmental Research Institute (NERI) National University of Singapore 138602 Singapore Singapore
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Benjamin W. J. Chen
- Institute of High Performance Computing Agency for Science, Technology and Research 1 Fusionopolis Way, #16-16 Connexis Singapore 138632 Singapore
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry International Center of Future Science Jilin University Changchun 130012 P. R. China
| | - Qian He
- Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117575 Singapore
| | - Albert Chang
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
| | - Chia‐Min Yang
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
| | - Hiroyuki Asakura
- Department of Molecular Engineering Graduate School of Engineering Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Tsunehiro Tanaka
- Department of Molecular Engineering Graduate School of Engineering Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Max J. Hülsey
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Chi‐Hwa Wang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry International Center of Future Science Jilin University Changchun 130012 P. R. China
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| |
Collapse
|
128
|
Meng Y, Wang H, Dai Y, Zheng J, Yu H, Zhou C, Yang Y. Modulating the electronic property of Pt nanocatalyst on rGO by iron oxides for aerobic oxidation of glycerol. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
129
|
Cao Z, Xie M, Cheng H, Chen R, Lyu Z, Xie Z, Xia Y. A New Catalytic System with Balanced Activity and Durability toward Oxygen Reduction. ChemCatChem 2020. [DOI: 10.1002/cctc.202001028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhenming Cao
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta Georgia 30332 USA
- State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 P. R. China
| | - Minghao Xie
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Haoyan Cheng
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta Georgia 30332 USA
| | - Ruhui Chen
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 P. R. China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta Georgia 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| |
Collapse
|
130
|
Qin R, Liu K, Wu Q, Zheng N. Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chem Rev 2020; 120:11810-11899. [DOI: 10.1021/acs.chemrev.0c00094] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
131
|
Lu F, Yi D, Liu S, Zhan F, Zhou B, Gu L, Golberg D, Wang X, Yao J. Engineering Platinum–Oxygen Dual Catalytic Sites via Charge Transfer towards Highly Efficient Hydrogen Evolution. Angew Chem Int Ed Engl 2020; 59:17712-17718. [DOI: 10.1002/anie.202008117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/02/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Fei Lu
- Key Laboratory of Luminescence and Optical Information Ministry of Education Department of Physics School of Science Beijing Jiaotong University Beijing 100044 P. R. China
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ding Yi
- Key Laboratory of Luminescence and Optical Information Ministry of Education Department of Physics School of Science Beijing Jiaotong University Beijing 100044 P. R. China
| | - Shoujie Liu
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
- Institute of Molecular Plus Tianjin University Tianjin 300072 P. R. China
| | - Fei Zhan
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| | - Bo Zhou
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Dmitri Golberg
- Centre for Materials Science Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australia
- School of Chemistry and Physics, Science and Engineering Faculty Science and Engineering Faculty Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australia
- International Centre for Materials Nanoarhitectonics (MANA) National Institute for Materials Science (NIMS) Namiki 1-1 Tsukuba Ibaraki 3050044 Japan
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information Ministry of Education Department of Physics School of Science Beijing Jiaotong University Beijing 100044 P. R. China
| | - Jiannian Yao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
- Institute of Molecular Plus Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
132
|
Lu F, Yi D, Liu S, Zhan F, Zhou B, Gu L, Golberg D, Wang X, Yao J. Engineering Platinum–Oxygen Dual Catalytic Sites via Charge Transfer towards Highly Efficient Hydrogen Evolution. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fei Lu
- Key Laboratory of Luminescence and Optical Information Ministry of Education Department of Physics School of Science Beijing Jiaotong University Beijing 100044 P. R. China
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ding Yi
- Key Laboratory of Luminescence and Optical Information Ministry of Education Department of Physics School of Science Beijing Jiaotong University Beijing 100044 P. R. China
| | - Shoujie Liu
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
- Institute of Molecular Plus Tianjin University Tianjin 300072 P. R. China
| | - Fei Zhan
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| | - Bo Zhou
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Dmitri Golberg
- Centre for Materials Science Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australia
- School of Chemistry and Physics, Science and Engineering Faculty Science and Engineering Faculty Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australia
- International Centre for Materials Nanoarhitectonics (MANA) National Institute for Materials Science (NIMS) Namiki 1-1 Tsukuba Ibaraki 3050044 Japan
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information Ministry of Education Department of Physics School of Science Beijing Jiaotong University Beijing 100044 P. R. China
| | - Jiannian Yao
- Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
- Institute of Molecular Plus Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
133
|
Shin DY, Kim MS, Kang S, Kwon JA, Govindaraja T, Yoon CW, Lim DH. Hybrid Pd38 nanocluster/Ni(OH)2-graphene catalyst for enhanced HCOOH dehydrogenation: First principles approach. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0606-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
134
|
Chen M, Zhou H, Liu X, Yuan T, Wang W, Zhao C, Zhao Y, Zhou F, Wang X, Xue Z, Yao T, Xiong C, Wu Y. Single Iron Site Nanozyme for Ultrasensitive Glucose Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002343. [PMID: 32597016 DOI: 10.1002/smll.202002343] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/21/2020] [Indexed: 05/23/2023]
Abstract
Nanomaterials with enzyme-mimicking characteristics have engaged great awareness in various fields owing to their comparative low cost, high stability, and large-scale preparation. However, the wide application of nanozymes is seriously restricted by the relatively low catalytic activity and poor specificity, primarily because of the inhomogeneous catalytic sites and unclear catalytic mechanisms. Herein, a support-sacrificed strategy is demonstrated to prepare a single iron site nanozyme (Fe SSN) dispersed on the porous N-doped carbon. With well-defined coordination structure and high density of active sites, the Fe SSN performs prominent peroxidase-like activity by efficiently activating H2 O2 into hydroxyl radical (•OH) species. Furthermore, the Fe SSN is applied in colorimetric detection of glucose through a multienzyme biocatalytic cascade platform. Moreover, a low-cost integrated agarose-based hydrogel colorimetric biosensor is designed and successfully achieves the visualization evaluation and quantitative detection of glucose. This work expands the application of single-site catalysts in the fields of nanozyme-based biosensors and personal biomedical diagnosis.
Collapse
Affiliation(s)
- Min Chen
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| | - Huang Zhou
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Tongwei Yuan
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Wenyu Wang
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| | - Chao Zhao
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| | - Yafei Zhao
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| | - Fangyao Zhou
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| | - Xin Wang
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| | - Zhenggang Xue
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Can Xiong
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
- School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuen Wu
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
135
|
Zhan C, Wang Q, Zhou L, Han X, Wanyan Y, Chen J, Zheng Y, Wang Y, Fu G, Xie Z, Tian Z. Critical Roles of Doping Cl on Cu2O Nanocrystals for Direct Epoxidation of Propylene by Molecular Oxygen. J Am Chem Soc 2020; 142:14134-14141. [DOI: 10.1021/jacs.0c03882] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers, and Esters, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Qiuxiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers, and Esters, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Lingyun Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers, and Esters, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Xiao Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers, and Esters, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Yongyin Wanyan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers, and Esters, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Jiayu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers, and Esters, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Yanping Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers, and Esters, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers, and Esters, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Gang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers, and Esters, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers, and Esters, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers, and Esters, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, Xiamen University, Xiamen 361005, China
| |
Collapse
|
136
|
Liu J, Wang L, Okejiri F, Luo J, Zhao J, Zhang P, Liu M, Yang S, Zhang Z, Song W, Zhu W, Liu J, Zhao Z, Feng G, Xu C, Dai S. Deep Understanding of Strong Metal Interface Confinement: A Journey of Pd/FeOx Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01447] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jixing Liu
- School of Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang 212013, P. R. China
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, P. R. China
- Department of Chemistry, University of Tennessee−Knoxville, Knoxville, Tennessee 37996-1600, United States
| | - Lu Wang
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, P. R. China
| | - Francis Okejiri
- Department of Chemistry, University of Tennessee−Knoxville, Knoxville, Tennessee 37996-1600, United States
| | - Jing Luo
- School of Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jiahua Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Miaomiao Liu
- Department of Chemistry, University of Tennessee−Knoxville, Knoxville, Tennessee 37996-1600, United States
| | - Shize Yang
- Brookhaven National Laboratory, Upton, New York NY11973, United States
| | - Zihao Zhang
- Department of Chemistry, University of Tennessee−Knoxville, Knoxville, Tennessee 37996-1600, United States
| | - Weiyu Song
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, P. R. China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jian Liu
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, P. R. China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, P. R. China
| | - Guodong Feng
- Department of Chemistry, University of Tennessee−Knoxville, Knoxville, Tennessee 37996-1600, United States
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Key Laboratory of Advanced Molecular Engineering Materials, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, P. R. China
| | - Sheng Dai
- Department of Chemistry, University of Tennessee−Knoxville, Knoxville, Tennessee 37996-1600, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
137
|
Jing KQ, Fu YQ, Wang ZQ, Chen ZN, Tan HZ, Sun J, Xu ZN, Guo GC. Zn 2+ stabilized Pd clusters with enhanced covalent metal-support interaction via the formation of Pd-Zn bonds to promote catalytic thermal stability. NANOSCALE 2020; 12:14825-14830. [PMID: 32672320 DOI: 10.1039/d0nr02987d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pd-Based heterogeneous catalysts have been demonstrated to be efficient in numerous heterogeneous reactions. However, the effect of the support resulting in covalent metal-support interaction (CMSI) has not been researched sufficiently. In this work, a Lewis base is modulated over MgAl-LDH to investigate the support effects and it is further loaded with Pd clusters to research the metal-support interactions. MgAl-LDH with ultra-low Pd loading (0.0779%) shows CO conversion (55.0%) and dimethyl oxalate (DMO) selectivity (93.7%) for CO oxidative coupling to DMO, which was gradually deactivated after evaluation for 20 h. To promote the stability of Pd/MgAl-LDH, Zn2+ ions were introduced into the MgAl-LDH support to strengthen the CMSI by forming Pd-Zn bonds, which further increased the adsorption energy of the Pd clusters on ZnMgAl-LDH, and this was verified by X-ray absorption fine structure (XAFS) measurements and density functional theory (DFT) calculations. The stability of the Pd/ZnMgAl-LDH catalyst could be maintained for at least 100 h. This work highlights that covalent metal-support interactions can be strengthened by forming new metal-metal bonds, which could be extended to other systems for the stabilization of noble metals over supports.
Collapse
Affiliation(s)
- Kai-Qiang Jing
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu-Qing Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhi-Qiao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Zhe-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Hong-Zi Tan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Jing Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Zhong-Ning Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
138
|
Zhang X, Zhang X, Yuan B, Liang C, Yu Y. Atomic-scale study of nanocatalysts by aberration-corrected electron microscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:413004. [PMID: 32666936 DOI: 10.1088/1361-648x/ab977c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Aberration-corrected electron microscopy (AC-EM) including transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) has become one of the most powerful technologies in the studies of nanocatalysts. With the current spatial resolution of sub-0.5 Å and energy resolution of 10 meV, AC-EM can quantificationally articulate the connection between catalytic properties and atomic configurations of nanocatalysts. However, the restricted irradiation sensitive characteristics of specimens pose an obstacle to solve their intrinsic structure. Low-dose imaging should be applied to overcome this problem. In addition, the choice of appropriate imaging method is also crucial to tackle specific structural problems of nanocatalysts. On the basis of careful management of electron dose and selection of suitable imaging method,in situgas and liquid S/TEM are able to reveal the structure evolution of nanocatalysts in real-time. Further combination with residual gas analysis would deepen the understanding of the catalytic reaction.
Collapse
Affiliation(s)
- Xun Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Xiuli Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Biao Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Chao Liang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| |
Collapse
|
139
|
Chen Y, Feng Y, Li L, Liu J, Pan X, Liu W, Wei F, Cui Y, Qiao B, Sun X, Li X, Lin J, Lin S, Wang X, Zhang T. Identification of Active Sites on High-Performance Pt/Al 2O 3 Catalyst for Cryogenic CO Oxidation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02253] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Chen
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yingxin Feng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jingyue Liu
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaoli Pan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Wei Liu
- Laboratory of Advanced Electron Microscopy Research, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Fenfei Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China
| | - Yitao Cui
- Synchrotron Radiation Laboratory, Laser and Synchrotron Research Center (LASOR), The Institute for Solid State Physics, The University of Tokyo, 1-490-2 Kouto, Shingu-cho, Tatsuno 679-14 5165, Hyogo, Japan
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiucheng Sun
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyu Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
140
|
Inverse iron oxide/metal catalysts from galvanic replacement. Nat Commun 2020; 11:3269. [PMID: 32601487 PMCID: PMC7324589 DOI: 10.1038/s41467-020-16830-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022] Open
Abstract
Key chemical transformations require metal and redox sites in proximity at interfaces; however, in traditional oxide-supported materials, this requirement is met only at the perimeters of metal nanoparticles. We report that galvanic replacement can produce inverse FeOx/metal nanostructures in which the concentration of oxide species adjoining metal domains is maximal. The synthesis involves reductive deposition of rhodium or platinum and oxidation of Fe2+ from magnetite (Fe3O4). We discovered a parallel dissolution and adsorption of Fe2+ onto the metal, yielding inverse FeOx-coated metal nanoparticles. This nanostructure exhibits the intrinsic activity in selective CO2 reduction that simple metal nanoparticles have only at interfaces with the support. By enabling a simple way to control the surface functionality of metal particles, our approach is not only scalable but also enables a versatile palette for catalyst design. While typical catalysts involve oxide-supported metals, inverse catalysts of oxides on metal supports offer an attractive alternative. Here, authors prepare FeOx-coated Rh nanoparticles via galvanic replacement and dissolution-precipitation to form effective CO2 reduction catalysts.
Collapse
|
141
|
Chen J, Hope MA, Lin Z, Wang M, Liu T, Halat DM, Wen Y, Chen T, Ke X, Magusin PCMM, Ding W, Xia X, Wu XP, Gong XQ, Grey CP, Peng L. Interactions of Oxide Surfaces with Water Revealed with Solid-State NMR Spectroscopy. J Am Chem Soc 2020; 142:11173-11182. [PMID: 32459963 DOI: 10.1021/jacs.0c03760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrous materials are ubiquitous in the natural environment and efforts have previously been made to investigate the structures and dynamics of hydrated surfaces for their key roles in various chemical and physical applications, with the help of theoretical modeling and microscopy techniques. However, an overall atomic-scale understanding of the water-solid interface, including the effect of water on surface ions, is still lacking. Herein, we employ ceria nanorods with different amounts of water as an example and demonstrate a new approach to explore the water-surface interactions by using solid-state NMR in combination with density functional theory. NMR shifts and relaxation time analysis provide detailed information on the local structure of oxygen ions and the nature of water motion on the surface: the amount of molecularly adsorbed water decreases rapidly with increasing temperature (from room temperature to 150 °C), whereas hydroxyl groups are stable up to 150 °C, and dynamic water molecules are found to instantaneously coordinate to the surface oxygen ions. The applicability of dynamic nuclear polarization for selective detection of surface oxygen species is also compared to conventional NMR with surface selective isotopic-labeling: the optimal method depends on the feasibility of enrichment and the concentration of protons in the sample. These results provide new insight into the interfacial structure of hydrated oxide nanostructures, which is important to improve performance for various applications.
Collapse
Affiliation(s)
- Junchao Chen
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Michael A Hope
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Zhiye Lin
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Meng Wang
- College of Chemistry and Molecular Engineering (CCME), Peking University, Beijing 100871, China
| | - Tao Liu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - David M Halat
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Yujie Wen
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Teng Chen
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Xiaokang Ke
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Pieter C M M Magusin
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Weiping Ding
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Xifeng Xia
- Analysis and Testing Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| |
Collapse
|
142
|
He P, Chen Y, Jarvis J, Meng S, Liu L, Wen XD, Song H. Highly Selective Aromatization of Octane over Pt-Zn/UZSM-5: The Effect of Pt-Zn Interaction and Pt Position. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28273-28287. [PMID: 32459461 DOI: 10.1021/acsami.0c07039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effects of Zn-Pt interaction and Pt dispersion over a uniform compact cylindrical shape ZSM-5 (UZSM-5) on the catalytic octane aromatization performance are investigated. The comparison between different Pt- and Zn-modified ZSM-5 catalysts demonstrates the significance of ZSM-5 morphology and, more importantly, the metal distributions on it. For the UZSM-5 support, Pt atoms prefer to occupy the sites within its inner pores, resulting in high selectivity to xylenes during the octane aromatization. The Zn deposit in inner pores and higher dispersion of Pt lead to the spillover of Pt sites to the external surface, which is critical for the activation of octane to produce reaction intermediates that are further converted to aromatics over the inner pore catalytic sites. These effects are evidenced by a diffuse reflection infrared Fourier transform spectroscopy study of CO adsorbed on the catalyst surface. In situ X-ray absorption fine structure spectra are collected to probe the coordination number and the chemical environment of Pt and Zn atoms in the catalysts during the octane aromatization reaction. Pt and Zn are well dispersed and stable during the reaction, and a partial reduction of Pt during the reaction is observed. A theoretical study using the density functional theory method predicts that the reaction and transition-state intermediates upon octane activation are better stabilized by Pt(111) of Pt external surface sites with a smaller activation barrier, indicating their significance in C-H activation. This hypothesis is further evidenced by comparing the octane aromatization performance of various modified catalysts through varying Zn loading, blocking inner pores, and covering the external catalytic sites with SiO2.
Collapse
Affiliation(s)
- Peng He
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary, Alberta T2N 1N4, Canada
| | - Yunlei Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- National Energy Center for Coal to Clean Fuel, Synfuels China Co., Ltd, Huairou District, Beijing 101400, China
| | - Jack Jarvis
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary, Alberta T2N 1N4, Canada
| | - Shijun Meng
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary, Alberta T2N 1N4, Canada
| | - Lijia Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiao-Dong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- National Energy Center for Coal to Clean Fuel, Synfuels China Co., Ltd, Huairou District, Beijing 101400, China
| | - Hua Song
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
143
|
Dutta S. Hydro(deoxygenation) Reaction Network of Lignocellulosic Oxygenates. CHEMSUSCHEM 2020; 13:2894-2915. [PMID: 32134557 DOI: 10.1002/cssc.202000247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Hydrodeoxygenation (HDO) is a key transformation step to convert lignocellulosic oxygenates into drop-in and functional high-value hydrocarbons through controlled oxygen removal. Nevertheless, the mechanistic insights of HDO chemistry have been scarcely investigated as opposed to a significant extent of hydrodesulfurization chemistry. Current requirements emphasize certain underexplored events of HDO of oxygenates, which include 1) interactions of oxygenates of varied molecular size with active sites of the catalysts, 2) determining the conformation of oxygenates on the active site at the point of interaction, and 3) effects of oxygen contents of oxygenates on the reaction rate of HDO. It is realized that the molecular interactions of oxygenates with the surface of the catalyst dominates the degree and nature of deoxygenation to derive products with desired selectivity by overcoming complex separation processes in a biorefinery. Those oxygenates with high carbon numbers (>C10), multiple furan rings, and branched architectures are even more complex to understand. This article aims to focus on concise mechanistic analysis of biorefinery oxygenates (C10-35 ) for their deoxygenation processes, with a special emphasis on their interactions with active sites in a complex chemical environment. This article also addresses differentiation of the mode of interactions based on the molecular size of oxygenates. Deoxygenation processes coupled with or without ring opening of furan-based oxygenates and site-substrate cooperativity dictate the formation of diverse value-added products. Oxygen removal has been the key step for microbial deoxygenation by the use of oxygen-removing decarbonylase enzymes. However, challenges to obtain branched and long-chain hydrocarbons remain, which require special attention, including the invention of newer techniques to upgrade the process for combined depolymerization-HDO from real biomass.
Collapse
Affiliation(s)
- Saikat Dutta
- Molecular Catalysis & Energy (MCR) Laboratory, Amity Institute Click Chemistry Research & Studies (AICCRS), Amity University, Sector 125, Noida, 201303, India
| |
Collapse
|
144
|
Wei Y, Zhang P, Xiong J, Yu Q, Wu Q, Zhao Z, Liu J. SO 2-Tolerant Catalytic Removal of Soot Particles over 3D Ordered Macroporous Al 2O 3-Supported Binary Pt-Co Oxide Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6947-6956. [PMID: 32374163 DOI: 10.1021/acs.est.0c00752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The catalytic purification of soot particles is dependent on the SO2 tolerance and activity of the catalysts in practical application. Herein, we have elaborately fabricated the nanocatalysts of three-dimensionally ordered macroporous (3DOM) Al2O3-supported binary Pt-cobalt oxide nanoparticles (NPs) using the method of gas bubbling-assisted membrane precipitation (GBMP), abbreviated as Pt-CoOx/3DOM-Al2O3. Three-dimensionally ordered macroporous Al2O3 support can not only improve the contact performance between the soot and active sites but also possess surface acidity to improve the SO2 tolerance. Supported binary Pt-CoOx NPs over 3DOM-Al2O3 have high-efficient properties for activating NO and O2. The Pt-CoOx/3DOM-Al2O3 catalyst exhibits super catalytic performance and SO2 tolerance during the removal of soot particles, whose values of turnover frequency (TOF) and T50 are 0.29 h-1 and 368 °C, respectively. The catalytic and SO2-tolerant mechanisms of the Pt-CoOx/3DOM-Al2O3 catalyst for soot purification are systematically studied by in situ diffuse reflectance infrared Fourier transform (DRIFT) spectra. The synergistic effect of binary Pt-CoOx NPs plays a vital role in the oxidation of NO to NO2 as a key step during catalytic soot removal, and the surface acidity of 3DOM-Al2O3 can not only inhibit the adsorption of SO2 but also enhance the decomposition of surface hydrosulfate species. This work provides a novel strategy to the development of high-efficient catalysts for SO2-tolerant catalytic removal of soot particles in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Yuechang Wei
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Jing Xiong
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Qi Yu
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Qiangqiang Wu
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, People's Republic of China
| |
Collapse
|
145
|
Wang Y, Qin R, Wang Y, Ren J, Zhou W, Li L, Ming J, Zhang W, Fu G, Zheng N. Chemoselective Hydrogenation of Nitroaromatics at the Nanoscale Iron(III)–OH–Platinum Interface. Angew Chem Int Ed Engl 2020; 59:12736-12740. [DOI: 10.1002/anie.202003651] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Yu Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yongke Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Juan Ren
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Wenting Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Laiyang Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jiang Ming
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Wuyong Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Gang Fu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
146
|
Wang Y, Qin R, Wang Y, Ren J, Zhou W, Li L, Ming J, Zhang W, Fu G, Zheng N. Chemoselective Hydrogenation of Nitroaromatics at the Nanoscale Iron(III)–OH–Platinum Interface. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yu Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yongke Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Juan Ren
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Wenting Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Laiyang Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jiang Ming
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Wuyong Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Gang Fu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
147
|
The Construction of Au–Fe–TS-1 Interface Coupling Structure for Improving Catalytic Performance of Propylene Epoxidation with H2 and O2. Catal Letters 2020. [DOI: 10.1007/s10562-020-03222-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
148
|
Hao P, Xie M, Chen S, Li M, Bi F, Zhang Y, Lin M, Guo X, Ding W, Guo X. Surrounded catalysts prepared by ion-exchange inverse loading. SCIENCE ADVANCES 2020; 6:eaay7031. [PMID: 32426494 PMCID: PMC7220309 DOI: 10.1126/sciadv.aay7031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
The supported catalyst featuring highly dispersed active phase on support is the most important kind of industrial catalyst. Extensive research has demonstrated the critical role (in catalysis) of the interfacial interaction/perimeter sites between the active phase and support. However, the supported catalyst prepared by traditional methods generally presents low interface density because of limit contact area. Here, an ion-exchange inverse loading (IEIL) method has been developed, in which the precursor of support is controllably deposited onto the precursor of active phase by ion-exchange reaction, leading to an active core surrounded (by support) catalyst with various structures. The unique surrounded structure presents not only high interface density and mutually changed interface but also high stability due to the physical isolation of active phase, revealing superior catalytic performances to the traditional supported catalysts, suggesting the great potential of this new surrounded catalyst as the upgrade of supported catalyst in heterogeneous catalysis.
Collapse
Affiliation(s)
- Panpan Hao
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mingjiang Xie
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shanyong Chen
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Muhong Li
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feifei Bi
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu Zhang
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ming Lin
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiangke Guo
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weiping Ding
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuefeng Guo
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
149
|
Rossini PDO, Laza A, Azeredo NF, Gonçalves JM, Felix FS, Araki K, Angnes L. Ni-based double hydroxides as electrocatalysts in chemical sensors: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
150
|
Luo L, Li L, Schreiber DK, He Y, Baer DR, Bruemmer SM, Wang C. Deciphering atomistic mechanisms of the gas-solid interfacial reaction during alloy oxidation. SCIENCE ADVANCES 2020; 6:eaay8491. [PMID: 32494632 PMCID: PMC7182408 DOI: 10.1126/sciadv.aay8491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/28/2020] [Indexed: 06/01/2023]
Abstract
Gas-solid interfacial reaction is critical to many technological applications from heterogeneous catalysis to stress corrosion cracking. A prominent question that remains unclear is how gas and solid interact beyond chemisorption to form a stable interphase for bridging subsequent gas-solid reactions. Here, we report real-time atomic-scale observations of Ni-Al alloy oxidation reaction from initial surface adsorption to interfacial reaction into the bulk. We found distinct atomistic mechanisms for oxide growth in O2 and H2O vapor, featuring a "step-edge" mechanism with severe interfacial strain in O2, and a "subsurface" one in H2O. Ab initio density functional theory simulations rationalize the H2O dissociation to favor the formation of a disordered oxide, which promotes ion diffusion to the oxide-metal interface and leads to an eased interfacial strain, therefore enhancing inward oxidation. Our findings depict a complete pathway for the Ni-Al surface oxidation reaction and delineate the delicate coupling of chemomechanical effect on gas-solid interactions.
Collapse
Affiliation(s)
- Langli Luo
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Liang Li
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Daniel K. Schreiber
- Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
| | - Yang He
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
| | - Donald R. Baer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
| | - Stephen M. Bruemmer
- Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
| |
Collapse
|