101
|
Fowler ML, McPhail JA, Jenkins ML, Masson GR, Rutaganira FU, Shokat KM, Williams RL, Burke JE. Using hydrogen deuterium exchange mass spectrometry to engineer optimized constructs for crystallization of protein complexes: Case study of PI4KIIIβ with Rab11. Protein Sci 2016; 25:826-39. [PMID: 26756197 PMCID: PMC4832280 DOI: 10.1002/pro.2879] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/22/2015] [Accepted: 01/07/2016] [Indexed: 01/14/2023]
Abstract
The ability of proteins to bind and interact with protein partners plays fundamental roles in many cellular contexts. X‐ray crystallography has been a powerful approach to understand protein‐protein interactions; however, a challenge in the crystallization of proteins and their complexes is the presence of intrinsically disordered regions. In this article, we describe an application of hydrogen deuterium exchange mass spectrometry (HDX‐MS) to identify dynamic regions within type III phosphatidylinositol 4 kinase beta (PI4KIIIβ) in complex with the GTPase Rab11. This information was then used to design deletions that allowed for the production of diffraction quality crystals. Importantly, we also used HDX‐MS to verify that the new construct was properly folded, consistent with it being catalytically and functionally active. Structures of PI4KIIIβ in an Apo state and bound to the potent inhibitor BQR695 in complex with both GTPγS and GDP loaded Rab11 were determined. This hybrid HDX‐MS/crystallographic strategy revealed novel aspects of the PI4KIIIβ‐Rab11 complex, as well as the molecular mechanism of potency of a PI4K specific inhibitor (BQR695). This approach is widely applicable to protein‐protein complexes, and is an excellent strategy to optimize constructs for high‐resolution structural approaches. PDB Code(s): 5C46; 5C4G
Collapse
Affiliation(s)
- Melissa L Fowler
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, V8P 5C2, Canada
| | - Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, V8P 5C2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, V8P 5C2, Canada
| | - Glenn R Masson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - Florentine U Rutaganira
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco (UCSF), California, 94158
| | - Kevan M Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco (UCSF), California, 94158
| | - Roger L Williams
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, V8P 5C2, Canada
| |
Collapse
|
102
|
Masson GR, Burke JE, Williams RL. Methods in the Study of PTEN Structure: X-Ray Crystallography and Hydrogen Deuterium Exchange Mass Spectrometry. Methods Mol Biol 2016; 1388:215-30. [PMID: 27033079 DOI: 10.1007/978-1-4939-3299-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Despite its small size and deceptively simple domain organization, PTEN remains a challenging structural target due to its N- and C-terminal intrinsically disordered segments, and the conformational heterogeneity caused by phosphorylation of its C terminus. Using hydrogen/deuterium exchange mass spectrometry (HDX-MS), it is possible to probe the conformational dynamics of the disordered termini, and also to determine how PTEN binds to lipid membranes. Here, we describe how to purify recombinant, homogenously dephosphorylated PTEN from a eukaryotic system for subsequent investigation with HDX-MS or crystallography.
Collapse
Affiliation(s)
- Glenn R Masson
- Laboratory of Molecular Biology, Medical Research Council (MRC), Francis Crick Avenue, Cambridge Biomedical campus, Cambridge, CB2 0QH, UK
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Drive, Victoria, BC, Canada, V8P 5C2
| | - Roger L Williams
- Laboratory of Molecular Biology, Medical Research Council (MRC), Francis Crick Avenue, Cambridge Biomedical campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
103
|
Venditti R, Masone MC, Wilson C, De Matteis MA. PI(4)P homeostasis: Who controls the controllers? Adv Biol Regul 2016; 60:105-114. [PMID: 26542744 DOI: 10.1016/j.jbior.2015.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
During recent decades, PI(4)P (phosphoinositol-4-phosphate) has been described as a key regulator of a wide range of cellular functions such as organelle biogenesis, lipid metabolism and distribution, membrane trafficking, ion channels, pumps, and transporter activities. In this review we will focus on the multiple mechanisms that regulate PI(4)P homeostasis ranging from those responsible for the spatial distribution of the PI4 kinases and PI(4)P phosphatase to those controlling their enzymatic activity or the delivery/presentation of the substrate, i.e. PI or PI(4)P, to the PI4Ks or PI(4)P phosphatase, respectively. We will also highlight the open questions in the field mainly dealing with the existence and mode of action of PI(4)P sensors that monitor its amount and can act as a rheostat tuning PI(4)P levels in different compartments and adapting them to the different needs of the cell.
Collapse
Affiliation(s)
- Rossella Venditti
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Maria Chiara Masone
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | | |
Collapse
|
104
|
Sari D, Gupta K, Thimiri Govinda Raj DB, Aubert A, Drncová P, Garzoni F, Fitzgerald D, Berger I. The MultiBac Baculovirus/Insect Cell Expression Vector System for Producing Complex Protein Biologics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 896:199-215. [PMID: 27165327 PMCID: PMC7122245 DOI: 10.1007/978-3-319-27216-0_13] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiprotein complexes regulate most if not all cellular functions. Elucidating the structure and function of these complex cellular machines is essential for understanding biology. Moreover, multiprotein complexes by themselves constitute powerful reagents as biologics for the prevention and treatment of human diseases. Recombinant production by the baculovirus/insect cell expression system is particularly useful for expressing proteins of eukaryotic origin and their complexes. MultiBac, an advanced baculovirus/insect cell system, has been widely adopted in the last decade to produce multiprotein complexes with many subunits that were hitherto inaccessible, for academic and industrial research and development. The MultiBac system, its development and numerous applications are presented. Future opportunities for utilizing MultiBac to catalyze discovery are outlined.
Collapse
Affiliation(s)
- Duygu Sari
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Kapil Gupta
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Deepak Balaji Thimiri Govinda Raj
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Alice Aubert
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Petra Drncová
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Frederic Garzoni
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Daniel Fitzgerald
- Geneva Biotech SARL, Avenue de la Roseraie 64, 1205, Genève, Switzerland
| | - Imre Berger
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France.
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France.
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
105
|
Abstract
Existing analgesics are not efficacious in treating all patients with chronic pain and have harmful side effects when used long term. A deeper understanding of pain signaling and sensitization could lead to the development of more efficacious analgesics. Nociceptor sensitization occurs under conditions of inflammation and nerve injury where diverse chemicals are released and signal through receptors to reduce the activation threshold of ion channels, leading to an overall increase in neuronal excitability. Drugs that inhibit specific receptors have so far been unsuccessful in alleviating pain, possibly because they do not simultaneously target the diverse receptors that contribute to nociceptor sensitization. Hence, the focus has shifted toward targeting downstream convergence points of nociceptive signaling. Lipid mediators, including phosphatidylinositol 4,5-bisphosphate (PIP2), are attractive targets, as these molecules are required for signaling downstream of G-protein-coupled receptors and receptor tyrosine kinases. Furthermore, PIP2 regulates the activity of various ion channels. Thus, PIP2 sits at a critical convergence point for multiple receptors, ion channels, and signaling pathways that promote and maintain chronic pain. Decreasing the amount of PIP2 in neurons was recently shown to attenuate pronociceptive signaling and could provide a novel approach for treating pain. Here, we review the lipid kinases that are known to regulate pain signaling and sensitization and speculate on which additional lipid kinases might regulate signaling in nociceptive neurons.
Collapse
|
106
|
Boura E, Nencka R. Phosphatidylinositol 4-kinases: Function, structure, and inhibition. Exp Cell Res 2015; 337:136-45. [DOI: 10.1016/j.yexcr.2015.03.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023]
|
107
|
Definition and expression in E. coli of large fragments from the human lipid kinase phosphatidylinositol 4-kinase type III alpha, and purification of a 1100-residue N-terminal module. Protein Expr Purif 2015; 114:121-7. [DOI: 10.1016/j.pep.2015.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/29/2015] [Indexed: 11/22/2022]
|
108
|
Vetter M, Wang J, Lorentzen E, Deretic D. Novel topography of the Rab11-effector interaction network within a ciliary membrane targeting complex. Small GTPases 2015; 6:165-73. [PMID: 26399276 DOI: 10.1080/21541248.2015.1091539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Small GTPases function as universal molecular switches due to the nucleotide dependent conformational changes of their switch regions that allow interacting proteins to discriminate between the active GTP-bound and the inactive GDP-bound states. Guanine nucleotide exchange factors (GEFs) recognize the inactive GDP-bound conformation whereas GTPase activating proteins (GAPs), and the GTPase effectors recognize the active GTP-bound state. Small GTPases are linked to each other through regulatory and effector proteins into functional networks that regulate intracellular membrane traffic through diverse mechanisms that include GEF and GAP cascades, GEF-effector interactions, common effectors and positive feedback loops linking interacting proteins. As more structural and functional information is becoming available, new types of interactions between regulatory proteins, and new mechanisms by which GTPases are networked to control membrane traffic are being revealed. This review will focus on the structure and function of the novel Rab11-FIP3-Rabin8 dual effector complex and its implications for the targeting of sensory receptors to primary cilia, dysfunction of which causes cilia defects underlying human diseases and disorders know as ciliopathies.
Collapse
Affiliation(s)
- Melanie Vetter
- a Department of Structural Cell Biology ; Max-Planck-Institute of Biochemistry ; Martinsried , Germany
| | - Jing Wang
- b Departments of Surgery ; Division of Ophthalmology; University of New Mexico ; Albuquerque , NM USA
| | - Esben Lorentzen
- a Department of Structural Cell Biology ; Max-Planck-Institute of Biochemistry ; Martinsried , Germany
| | - Dusanka Deretic
- b Departments of Surgery ; Division of Ophthalmology; University of New Mexico ; Albuquerque , NM USA.,c Cell Biology and Physiology ; University of New Mexico ; Albuquerque , NM USA
| |
Collapse
|
109
|
Campobasso N, Huddler D. Hydrogen deuterium mass spectrometry in drug discovery. Bioorg Med Chem Lett 2015; 25:3771-6. [DOI: 10.1016/j.bmcl.2015.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/02/2015] [Accepted: 07/05/2015] [Indexed: 10/23/2022]
|
110
|
Abstract
Rab GTPases control intracellular membrane traffic by recruiting specific effector proteins to restricted membranes in a GTP-dependent manner. In this Cell Science at a Glance and the accompanying poster, we highlight the regulation of Rab GTPases by proteins that control their membrane association and activation state, and provide an overview of the cellular processes that are regulated by Rab GTPases and their effectors, including protein sorting, vesicle motility and vesicle tethering. We also discuss the physiological importance of Rab GTPases and provide examples of diseases caused by their dysfunctions.
Collapse
Affiliation(s)
- Yan Zhen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo N-0379, Norway Department for Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo N-0379, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo N-0379, Norway Department for Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo N-0379, Norway
| |
Collapse
|
111
|
Structure of Rab11-FIP3-Rabin8 reveals simultaneous binding of FIP3 and Rabin8 effectors to Rab11. Nat Struct Mol Biol 2015; 22:695-702. [PMID: 26258637 DOI: 10.1038/nsmb.3065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
The small GTPase Rab11 and its effectors FIP3 and Rabin8 are essential to membrane-trafficking pathways required for cytokinesis and ciliogenesis. Although effector binding is generally assumed to be sequential and mutually exclusive, we show that Rab11 can simultaneously bind FIP3 and Rabin8. We determined crystal structures of human Rab11-GMPPNP-Rabin8 and Rab11-GMPPNP-FIP3-Rabin8. The structures reveal that the C-terminal domain of Rabin8 adopts a previously undescribed fold that interacts with Rab11 at an unusual effector-binding site neighboring the canonical FIP3-binding site. We show that Rab11-GMPPNP-FIP3-Rabin8 is more stable than Rab11-GMPPNP-Rabin8, owing to direct interaction between Rabin8 and FIP3 within the dual effector-bound complex. The data allow us to propose a model for how membrane-targeting complexes assemble at the trans-Golgi network and recycling endosomes, through multiple weak interactions that create high-avidity complexes.
Collapse
|
112
|
Klima M, Baumlova A, Chalupska D, Hřebabecký H, Dejmek M, Nencka R, Boura E. The high-resolution crystal structure of phosphatidylinositol 4-kinase IIβ and the crystal structure of phosphatidylinositol 4-kinase IIα containing a nucleoside analogue provide a structural basis for isoform-specific inhibitor design. ACTA ACUST UNITED AC 2015; 71:1555-63. [PMID: 26143926 DOI: 10.1107/s1399004715009505] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/18/2015] [Indexed: 11/10/2022]
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is the most abundant monophosphoinositide in eukaryotic cells. Humans have four phosphatidylinositol 4-kinases (PI4Ks) that synthesize PI4P, among which are PI4K IIβ and PI4K IIα. In this study, two crystal structures are presented: the structure of human PI4K IIβ and the structure of PI4K IIα containing a nucleoside analogue. The former, a complex with ATP, is the first high-resolution (1.9 Å) structure of a PI4K. These structures reveal new details such as high conformational heterogeneity of the lateral hydrophobic pocket of the C-lobe and together provide a structural basis for isoform-specific inhibitor design.
Collapse
Affiliation(s)
- Martin Klima
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Adriana Baumlova
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Dominika Chalupska
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Hubert Hřebabecký
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Milan Dejmek
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Radim Nencka
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Evzen Boura
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| |
Collapse
|
113
|
Mejdrová I, Chalupská D, Kögler M, Šála M, Plačková P, Baumlová A, Hřebabecký H, Procházková E, Dejmek M, Guillon R, Strunin D, Weber J, Lee G, Birkus G, Mertlíková-Kaiserová H, Boura E, Nencka R. Highly Selective Phosphatidylinositol 4-Kinase IIIβ Inhibitors and Structural Insight into Their Mode of Action. J Med Chem 2015; 58:3767-93. [PMID: 25897704 DOI: 10.1021/acs.jmedchem.5b00499] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphatidylinositol 4-kinase IIIβ is a cellular lipid kinase pivotal to pathogenesis of various RNA viruses. These viruses hijack the enzyme in order to modify the structure of intracellular membranes and use them for the construction of functional replication machinery. Selective inhibitors of this enzyme are potential broad-spectrum antiviral agents, as inhibition of this enzyme results in the arrest of replication of PI4K IIIβ-dependent viruses. Herein, we report a detailed study of novel selective inhibitors of PI4K IIIβ, which exert antiviral activity against a panel of single-stranded positive-sense RNA viruses. Our crystallographic data show that the inhibitors occupy the binding site for the adenine ring of the ATP molecule and therefore prevent the phosphorylation reaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Gary Lee
- ‡Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Gabriel Birkus
- ‡Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | | | | | | |
Collapse
|
114
|
Pagnamenta AT, Howard MF, Wisniewski E, Popitsch N, Knight SJL, Keays DA, Quaghebeur G, Cox H, Cox P, Balla T, Taylor JC, Kini U. Germline recessive mutations in PI4KA are associated with perisylvian polymicrogyria, cerebellar hypoplasia and arthrogryposis. Hum Mol Genet 2015; 24:3732-41. [PMID: 25855803 PMCID: PMC4459391 DOI: 10.1093/hmg/ddv117] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/03/2015] [Indexed: 01/06/2023] Open
Abstract
Polymicrogyria (PMG) is a structural brain abnormality involving the cerebral cortex that results from impaired neuronal migration and although several genes have been implicated, many cases remain unsolved. In this study, exome sequencing in a family where three fetuses had all been diagnosed with PMG and cerebellar hypoplasia allowed us to identify regions of the genome for which both chromosomes were shared identical-by-descent, reducing the search space for causative variants to 8.6% of the genome. In these regions, the only plausibly pathogenic mutations were compound heterozygous variants in PI4KA, which Sanger sequencing confirmed segregated consistent with autosomal recessive inheritance. The paternally transmitted variant predicted a premature stop mutation (c.2386C>T; p.R796X), whereas the maternally transmitted variant predicted a missense substitution (c.5560G>A; p.D1854N) at a conserved residue within the catalytic domain. Functional studies using expressed wild-type or mutant PI4KA enzyme confirmed the importance of p.D1854 for kinase activity. Our results emphasize the importance of phosphoinositide signalling in early brain development.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Malcolm F Howard
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Eva Wisniewski
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niko Popitsch
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Samantha J L Knight
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - David A Keays
- Institute of Molecular Pathology, Vienna 1030, Austria
| | | | - Helen Cox
- West Midlands Regional Clinical Genetics Service, Clinical Genetics Unit and
| | - Phillip Cox
- Department of Histopathology, Birmingham Women's Hospital NHS Foundation Trust, Birmingham B15 2TG, UK
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny C Taylor
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Usha Kini
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK,
| |
Collapse
|
115
|
Wang J, Deretic D. The Arf and Rab11 effector FIP3 acts synergistically with ASAP1 to direct Rabin8 in ciliary receptor targeting. J Cell Sci 2015; 128:1375-85. [PMID: 25673879 DOI: 10.1242/jcs.162925] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Primary cilia have gained considerable importance in biology and disease now that their involvement in a wide range of human ciliopathies has been abundantly documented. However, detailed molecular mechanisms for specific targeting of sensory receptors to primary cilia are still unknown. Here, we show that the Arf and Rab11 effector FIP3 (also known as RAB11FIP3) promotes the activity of Rab11a and the Arf GTPase-activating protein (GAP) ASAP1 in the Arf4-dependent ciliary transport of the sensory receptor rhodopsin. During its passage out of the photoreceptor Golgi and trans-Golgi network (TGN), rhodopsin indirectly interacts with FIP3 through Rab11a and ASAP1. FIP3 competes with rhodopsin for binding to ASAP1 and displaces it from the ternary complex with Arf4-GTP and ASAP1. Resembling the phenotype resulting from </emph>lack of ASAP1, ablation of FIP3 abolishes ciliary targeting and causes rhodopsin mislocalization. FIP3 coordinates the interactions of ASAP1 and Rab11a with the Rab8 guanine nucleotide exchange factor Rabin8 (also known as RAB3IP). Our study implies that FIP3 functions as a crucial targeting regulator, which impinges on rhodopsin-ASAP1 interactions and shapes the binding pocket for Rabin8 within the ASAP1-Rab11a-FIP3 targeting complex, thus facilitating the orderly assembly and activation of the Rab11-Rabin8-Rab8 cascade during ciliary receptor trafficking.
Collapse
Affiliation(s)
- Jing Wang
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Dusanka Deretic
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM 87131, USA Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
116
|
Baretić D, Williams RL. PIKKs--the solenoid nest where partners and kinases meet. Curr Opin Struct Biol 2014; 29:134-42. [PMID: 25460276 DOI: 10.1016/j.sbi.2014.11.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/15/2014] [Accepted: 11/18/2014] [Indexed: 11/29/2022]
Abstract
The recent structure of a truncated mTOR in a complex with mLST8 has provided a basic framework for understanding all of the phosphoinositide 3-kinase (PI3K)-related kinases (PIKKs): mTOR, ATM, ATR, SMG-1, TRRAP and DNA-PK. The PIKK kinase domain is encircled by the FAT domain, a helical solenoid that is present in all PIKKs. PIKKs also have an extensive helical solenoid N-terminal to the FAT domain for which there is limited structural information. This N-terminal helical solenoid is essential for binding proteins that associate with the PIKKs to regulate their activity and cellular localization.
Collapse
Affiliation(s)
- Domagoj Baretić
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Roger L Williams
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
117
|
Phosphoinositides: Lipids with informative heads and mastermind functions in cell division. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:832-43. [PMID: 25449648 DOI: 10.1016/j.bbalip.2014.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 01/22/2023]
Abstract
Phosphoinositides are low abundant but essential phospholipids in eukaryotic cells and refer to phosphatidylinositol and its seven polyphospho-derivatives. In this review, we summarize our current knowledge on phosphoinositides in multiple aspects of cell division in animal cells, including mitotic cell rounding, longitudinal cell elongation, cytokinesis furrow ingression, intercellular bridge abscission and post-cytokinesis events. PtdIns(4,5)P₂production plays critical roles in spindle orientation, mitotic cell shape and bridge stability after furrow ingression by recruiting force generator complexes and numerous cytoskeleton binding proteins. Later, PtdIns(4,5)P₂hydrolysis and PtdIns3P production are essential for normal cytokinesis abscission. Finally, emerging functions of PtdIns3P and likely PtdIns(4,5)P₂have recently been reported for midbody remnant clearance after abscission. We describe how the multiple functions of phosphoinositides in cell division reflect their distinct roles in local recruitment of protein complexes, membrane traffic and cytoskeleton remodeling. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
|
118
|
Baumlova A, Chalupska D, Róźycki B, Jovic M, Wisniewski E, Klima M, Dubankova A, Kloer DP, Nencka R, Balla T, Boura E. The crystal structure of the phosphatidylinositol 4-kinase IIα. EMBO Rep 2014; 15:1085-92. [PMID: 25168678 DOI: 10.15252/embr.201438841] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Phosphoinositides are a class of phospholipids generated by the action of phosphoinositide kinases with key regulatory functions in eukaryotic cells. Here, we present the atomic structure of phosphatidylinositol 4-kinase type IIα (PI4K IIα), in complex with ATP solved by X-ray crystallography at 2.8 Å resolution. The structure revealed a non-typical kinase fold that could be divided into N- and C-lobes with the ATP binding groove located in between. Surprisingly, a second ATP was found in a lateral hydrophobic pocket of the C-lobe. Molecular simulations and mutagenesis analysis revealed the membrane binding mode and the putative function of the hydrophobic pocket. Taken together, our results suggest a mechanism of PI4K IIα recruitment, regulation, and function at the membrane.
Collapse
Affiliation(s)
- Adriana Baumlova
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Bartosz Róźycki
- Institute of Physics Polish Academy of Sciences, Warsaw, Poland
| | - Marko Jovic
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD NIH, Bethesda, MD, USA
| | - Eva Wisniewski
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD NIH, Bethesda, MD, USA
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Anna Dubankova
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Daniel P Kloer
- Syngenta Jealott's Hill Internation Research Centre, Bracknell, UK
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD NIH, Bethesda, MD, USA
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| |
Collapse
|