101
|
Mikkola S, Lönnberg T, Lönnberg H. Phosphodiester models for cleavage of nucleic acids. Beilstein J Org Chem 2018; 14:803-837. [PMID: 29719577 PMCID: PMC5905247 DOI: 10.3762/bjoc.14.68] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids that store and transfer biological information are polymeric diesters of phosphoric acid. Cleavage of the phosphodiester linkages by protein enzymes, nucleases, is one of the underlying biological processes. The remarkable catalytic efficiency of nucleases, together with the ability of ribonucleic acids to serve sometimes as nucleases, has made the cleavage of phosphodiesters a subject of intensive mechanistic studies. In addition to studies of nucleases by pH-rate dependency, X-ray crystallography, amino acid/nucleotide substitution and computational approaches, experimental and theoretical studies with small molecular model compounds still play a role. With small molecules, the importance of various elementary processes, such as proton transfer and metal ion binding, for stabilization of transition states may be elucidated and systematic variation of the basicity of the entering or departing nucleophile enables determination of the position of the transition state on the reaction coordinate. Such data is important on analyzing enzyme mechanisms based on synergistic participation of several catalytic entities. Many nucleases are metalloenzymes and small molecular models offer an excellent tool to construct models for their catalytic centers. The present review tends to be an up to date summary of what has been achieved by mechanistic studies with small molecular phosphodiesters.
Collapse
Affiliation(s)
- Satu Mikkola
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Harri Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
102
|
Ziach K, Chollet C, Parissi V, Prabhakaran P, Marchivie M, Corvaglia V, Bose PP, Laxmi-Reddy K, Godde F, Schmitter JM, Chaignepain S, Pourquier P, Huc I. Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA. Nat Chem 2018; 10:511-518. [PMID: 29610464 DOI: 10.1038/s41557-018-0018-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 01/31/2018] [Indexed: 01/15/2023]
Abstract
Numerous essential biomolecular processes require the recognition of DNA surface features by proteins. Molecules mimicking these features could potentially act as decoys and interfere with pharmacologically or therapeutically relevant protein-DNA interactions. Although naturally occurring DNA-mimicking proteins have been described, synthetic tunable molecules that mimic the charge surface of double-stranded DNA are not known. Here, we report the design, synthesis and structural characterization of aromatic oligoamides that fold into single helical conformations and display a double helical array of negatively charged residues in positions that match the phosphate moieties in B-DNA. These molecules were able to inhibit several enzymes possessing non-sequence-selective DNA-binding properties, including topoisomerase 1 and HIV-1 integrase, presumably through specific foldamer-protein interactions, whereas sequence-selective enzymes were not inhibited. Such modular and synthetically accessible DNA mimics provide a versatile platform to design novel inhibitors of protein-DNA interactions.
Collapse
Affiliation(s)
- Krzysztof Ziach
- Univ. Bordeaux - CNRS - IPB, CBMN Laboratory (UMR5248), Institut Européen de Chimie et Biologie, Pessac, France
| | - Céline Chollet
- Univ. Bordeaux - CNRS - IPB, CBMN Laboratory (UMR5248), Institut Européen de Chimie et Biologie, Pessac, France
| | - Vincent Parissi
- Univ. Bordeaux - CNRS, Laboratoire de Microbiologie Fondamentale et Pathogénicité (UMR 5234), Bordeaux, France
| | - Panchami Prabhakaran
- Univ. Bordeaux - CNRS - IPB, CBMN Laboratory (UMR5248), Institut Européen de Chimie et Biologie, Pessac, France
| | | | - Valentina Corvaglia
- Univ. Bordeaux - CNRS - IPB, CBMN Laboratory (UMR5248), Institut Européen de Chimie et Biologie, Pessac, France
| | - Partha Pratim Bose
- Univ. Bordeaux - CNRS - IPB, CBMN Laboratory (UMR5248), Institut Européen de Chimie et Biologie, Pessac, France
| | - Katta Laxmi-Reddy
- Univ. Bordeaux - CNRS - IPB, CBMN Laboratory (UMR5248), Institut Européen de Chimie et Biologie, Pessac, France
| | - Frédéric Godde
- Univ. Bordeaux - CNRS - IPB, CBMN Laboratory (UMR5248), Institut Européen de Chimie et Biologie, Pessac, France
| | - Jean-Marie Schmitter
- Univ. Bordeaux - CNRS - IPB, CBMN Laboratory (UMR5248), Institut Européen de Chimie et Biologie, Pessac, France
| | - Stéphane Chaignepain
- Univ. Bordeaux - CNRS - IPB, CBMN Laboratory (UMR5248), Institut Européen de Chimie et Biologie, Pessac, France
| | - Philippe Pourquier
- INSERM U1194, Institut de Recherche en Cancérologie de Montpellier & Université de Montpellier, Montpellier, France
| | - Ivan Huc
- Univ. Bordeaux - CNRS - IPB, CBMN Laboratory (UMR5248), Institut Européen de Chimie et Biologie, Pessac, France. .,Department of Pharmacy, Ludwig-Maximilians-Universität, München, Germany.
| |
Collapse
|
103
|
Synthesis, crystal structure and antitumor activities of water soluble protonated salt of 20(S)-camptothecin. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.10.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
104
|
Low level phosphorylation of histone H2AX on serine 139 (γH2AX) is not associated with DNA double-strand breaks. Oncotarget 2018; 7:49574-49587. [PMID: 27391338 PMCID: PMC5226530 DOI: 10.18632/oncotarget.10411] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/12/2016] [Indexed: 11/25/2022] Open
Abstract
Phosphorylation of histone H2AX on serine 139 (γH2AX) is an early step in cellular response to a DNA double-strand break (DSB). γH2AX foci are generally regarded as markers of DSBs. A growing body of evidence demonstrates, however, that while induction of DSBs always brings about phosphorylation of histone H2AX, the reverse is not true - the presence of γH2AX foci should not be considered an unequivocal marker of DNA double-strand breaks. We studied DNA damage induced in A549 human lung adenocarcinoma cells by topoisomerase type I and II inhibitors (0.2 μM camptothecin, 10 μM etoposide or 0.2 μM mitoxantrone for 1 h), and using 3D high resolution quantitative confocal microscopy, assessed the number, size and the integrated intensity of immunofluorescence signals of individual γH2AX foci induced by these drugs. Also, investigated was spatial association between γH2AX foci and foci of 53BP1, the protein involved in DSB repair, both in relation to DNA replication sites (factories) as revealed by labeling nascent DNA with EdU. Extensive 3D and correlation data analysis demonstrated that γH2AX foci exhibit a wide range of sizes and levels of H2AX phosphorylation, and correlate differently with 53BP1 and DNA replication. This is the first report showing lack of a link between low level phosphorylation γH2AX sites and double-strand DNA breaks in cells exposed to topoisomerase I or II inhibitors. The data are discussed in terms of mechanisms that may be involved in formation of γH2AX sites of different sizes and intensities.
Collapse
|
105
|
Bali SK, Marion A, Ugur I, Dikmenli AK, Catak S, Aviyente V. Activity of Topotecan toward the DNA/Topoisomerase I Complex: A Theoretical Rationalization. Biochemistry 2018; 57:1542-1551. [DOI: 10.1021/acs.biochem.7b01297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Semiha Kevser Bali
- Department of Chemistry, Faculty of Arts and Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | - Antoine Marion
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Ilke Ugur
- Department of Lifesciences, Technical University of Munich, 80333 Munich, Germany
| | - Ayse Kumru Dikmenli
- Department of Chemistry and Chemical Biology, MacMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Saron Catak
- Department of Chemistry, Faculty of Arts and Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | - Viktorya Aviyente
- Department of Chemistry, Faculty of Arts and Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| |
Collapse
|
106
|
Delgado JL, Hsieh CM, Chan NL, Hiasa H. Topoisomerases as anticancer targets. Biochem J 2018; 475:373-398. [PMID: 29363591 PMCID: PMC6110615 DOI: 10.1042/bcj20160583] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022]
Abstract
Many cancer type-specific anticancer agents have been developed and significant advances have been made toward precision medicine in cancer treatment. However, traditional or nonspecific anticancer drugs are still important for the treatment of many cancer patients whose cancers either do not respond to or have developed resistance to cancer-specific anticancer agents. DNA topoisomerases, especially type IIA topoisomerases, are proved therapeutic targets of anticancer and antibacterial drugs. Clinically successful topoisomerase-targeting anticancer drugs act through topoisomerase poisoning, which leads to replication fork arrest and double-strand break formation. Unfortunately, this unique mode of action is associated with the development of secondary cancers and cardiotoxicity. Structures of topoisomerase-drug-DNA ternary complexes have revealed the exact binding sites and mechanisms of topoisomerase poisons. Recent advances in the field have suggested a possibility of designing isoform-specific human topoisomerase II poisons, which may be developed as safer anticancer drugs. It may also be possible to design catalytic inhibitors of topoisomerases by targeting certain inactive conformations of these enzymes. Furthermore, identification of various new bacterial topoisomerase inhibitors and regulatory proteins may inspire the discovery of novel human topoisomerase inhibitors. Thus, topoisomerases remain as important therapeutic targets of anticancer agents.
Collapse
Affiliation(s)
- Justine L Delgado
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA 52242, U.S.A
| | - Chao-Ming Hsieh
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City 100, Taiwan
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City 100, Taiwan
| | - Hiroshi Hiasa
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, U.S.A.
| |
Collapse
|
107
|
Han X, Wei Q, Kihara D. Protein 3D Structure and Electron Microscopy Map Retrieval Using 3D-SURFER2.0 and EM-SURFER. ACTA ACUST UNITED AC 2017; 60:3.14.1-3.14.15. [PMID: 29220075 DOI: 10.1002/cpbi.37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
With the rapid growth in the number of solved protein structures stored in the Protein Data Bank (PDB) and the Electron Microscopy Data Bank (EMDB), it is essential to develop tools to perform real-time structure similarity searches against the entire structure database. Since conventional structure alignment methods need to sample different orientations of proteins in the three-dimensional space, they are time consuming and unsuitable for rapid, real-time database searches. To this end, we have developed 3D-SURFER and EM-SURFER, which utilize 3D Zernike descriptors (3DZD) to conduct high-throughput protein structure comparison, visualization, and analysis. Taking an atomic structure or an electron microscopy map of a protein or a protein complex as input, the 3DZD of a query protein is computed and compared with the 3DZD of all other proteins in PDB or EMDB. In addition, local geometrical characteristics of a query protein can be analyzed using VisGrid and LIGSITECSC in 3D-SURFER. This article describes how to use 3D-SURFER and EM-SURFER to carry out protein surface shape similarity searches, local geometric feature analysis, and interpretation of the search results. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Xusi Han
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Qing Wei
- Department of Computer Science, Purdue University, West Lafayette, Indiana
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana.,Department of Computer Science, Purdue University, West Lafayette, Indiana
| |
Collapse
|
108
|
Takarada JE, Guedes APM, Correa RS, Silveira-Lacerda EDP, Castelli S, Iacovelli F, Deflon VM, Batista AA, Desideri A. Ru/Fe bimetallic complexes: Synthesis, characterization, cytotoxicity and study of their interactions with DNA/HSA and human topoisomerase IB. Arch Biochem Biophys 2017; 636:28-41. [PMID: 29107586 DOI: 10.1016/j.abb.2017.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/16/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Three ruthenium/iron-based compounds, 1: [Ru(MIm)(bipy)(dppf)]PF6 (MIm = 2-mercapto-1-methylimidazole anion), 2: [RuCl(Im)(bipy)(dppf)]PF6 (Im = imidazole), and 3: [Ru(tzdt)(bipy)(dppf)]PF6 (tzdt = 1,3-thiazolidine-2-thione anion) (dppf = 1,1'-bis(diphenylphosphine)ferrocene and bipy = 2,2'-bipyridine), were synthesized, and characterized by elemental analyses, conductivity, UV/Vis, IR, 1H, 13C and 31P{1H} NMR spectroscopies, and by electrochemical technique. The complex 3 was also characterized by single-crystal X-ray. The three ruthenium(II) complexes show cytotoxicity against DU-145 (prostate carcinoma cells) and A549 (lung carcinoma cells) tumor cells. The free ligands do not exhibit any cytotoxic activity, such as evident by the IC50 values higher than 200 μM. UV/Vis and viscosity experiments showed that the complexes interact weakly with the DNA molecule, via electrostatic forces. The interaction of the complexes 1-3 with the HSA is moderate, with Kb values in range of 105-107 M-1, presenting a static mechanism of interaction stabilized by hydrophobic. Complexes 2 and 3 showed high affinity for the FA7 HSA site as evidenced by fluorescence spectroscopy and molecular docking. Complexes 1-3 were tested as potential human Topoisomerase IB inhibitors by analysing the different steps of the enzyme catalytic cycle. The results indicate that all compounds efficiently inhibit the DNA relaxation and the cleavage reaction, in which the effect increases upon pre-incubation. Complexes 1 and 2 are also able to slow down the religation reaction.
Collapse
Affiliation(s)
- Jessica E Takarada
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Adriana P M Guedes
- Department of Chemistry, University Federal of São Carlos, CP 676, CEP 13565-905, São Carlos, São Paulo, Brazil
| | - Rodrigo S Correa
- Department of Chemistry, University Federal of São Carlos, CP 676, CEP 13565-905, São Carlos, São Paulo, Brazil
| | - Elisângela de P Silveira-Lacerda
- Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, University Federal of Goiás-UFG, Goiânia, Goiás, Brazil
| | - Silvia Castelli
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Victor Marcelo Deflon
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, São Paulo, Brazil
| | - Alzir Azevedo Batista
- Department of Chemistry, University Federal of São Carlos, CP 676, CEP 13565-905, São Carlos, São Paulo, Brazil.
| | | |
Collapse
|
109
|
Abstract
AIM Quercetin (Q1) is a flavonoid widely present in plants and endowed with several pharmacological properties mostly due to its antioxidant potential. Q1 shows anticancer activity and could be useful in cancer prevention. On the other hand, Q1 is poorly soluble in water and unstable in physiological systems, and its bioavailability is very low. METHODS A small set of Q1 derivatives (Q2-Q9) has been synthesized following opportunely modified chemical procedures previously reported. Anticancer activity has been evaluated by MTT assay. Human Topoisomerases inhibition has been performed by direct enzymatic assays. Apoptosis has been evaluated by TUNEL assay. ROS production and scavenging activity have been determined by immunofluorescence. RESULTS The anticancer profile of a small library of Q1 analogues, in which the OH groups were all or partially replaced with hydrophobic functional groups, has been evaluated. Two of the studied compounds demonstrated an interesting cytotoxic profile in two breast cancer models showing the capability to inhibit human Topoisomerases. CONCLUSION The studied compounds represent suitable leads for the development of innovative anticancer drugs. [Formula: see text].
Collapse
|
110
|
Lucchetti L, Fraccia TP, Ciciulla F, Simoni F, Bellini T. Giant optical nonlinearity in DNA lyotropic liquid crystals. OPTICS EXPRESS 2017; 25:25951-25959. [PMID: 29041257 DOI: 10.1364/oe.25.025951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
We report the experimental evidence of nonlinear optical response in DNA lyotropic nematic liquid crystals. Pump-probe experiments indicate that the non-linearity is remarkably large. Quantitative assessment of the non-linear optical coefficient by transient optical grating demonstrates that the response is of the same order of the well-known Giant Optical Nonlinearity (GON) of thermotropic nematics. These results represent a further incentive to the current investigation of potential applications of DNA in biophotonics.
Collapse
|
111
|
Kristoffersen EL, Givskov A, Jørgensen LA, Jensen PW, W Byl JA, Osheroff N, Andersen AH, Stougaard M, Ho YP, Knudsen BR. Interlinked DNA nano-circles for measuring topoisomerase II activity at the level of single decatenation events. Nucleic Acids Res 2017; 45:7855-7869. [PMID: 28541438 PMCID: PMC5570003 DOI: 10.1093/nar/gkx480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/22/2017] [Indexed: 12/23/2022] Open
Abstract
DNA nano-structures present appealing new means for monitoring different molecules. Here, we demonstrate the assembly and utilization of a surface-attached double-stranded DNA catenane composed of two intact interlinked DNA nano-circles for specific and sensitive measurements of the life essential topoisomerase II (Topo II) enzyme activity. Topo II activity was detected via the numeric release of DNA nano-circles, which were visualized at the single-molecule level in a fluorescence microscope upon isothermal amplification and fluorescence labeling. The transition of each enzymatic reaction to a micrometer sized labeled product enabled quantitative detection of Topo II activity at the single decatenation event level rendering activity measurements in extracts from as few as five cells possible. Topo II activity is a suggested predictive marker in cancer therapy and, consequently, the described highly sensitive monitoring of Topo II activity may add considerably to the toolbox of individualized medicine where decisions are based on very sparse samples.
Collapse
Affiliation(s)
- Emil L Kristoffersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center - iNANO, Aarhus University, 8000 Aarhus C, Denmark
| | - Asger Givskov
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Line A Jørgensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Pia W Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Anni H Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Magnus Stougaard
- Department of Pathology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Yi-Ping Ho
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center - iNANO, Aarhus University, 8000 Aarhus C, Denmark.,Division of Biomedical Engineering, Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Birgitta R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center - iNANO, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
112
|
|
113
|
Zhang H, Seol Y, Agama K, Neuman KC, Pommier Y. Distribution bias and biochemical characterization of TOP1MT single nucleotide variants. Sci Rep 2017; 7:8614. [PMID: 28819183 PMCID: PMC5561071 DOI: 10.1038/s41598-017-09258-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/17/2017] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial topoisomerase I (TOP1MT) is a type IB topoisomerase encoded in the nucleus of vertebrate cells. In contrast to the other five human topoisomerases, TOP1MT possesses two high frequency single nucleotide variants (SNVs), rs11544484 (V256I, Minor Allele Frequency = 0.27) and rs2293925 (R525W, MAF = 0.45), which tend to be mutually exclusive across different human ethnic groups and even more clearly in a cohort of 129 US patients with breast cancer and in the NCI-60 cancer cell lines. We expressed these two TOP1MT variants and the double-variant (V256I-R525W) as recombinant proteins, as well as a less common variant E168G (rs200673353, MAF = 0.001), and studied their biochemical properties by magnetic tweezers-based supercoil relaxation and classical DNA relaxation assays. Variants showed reduced DNA relaxation activities, especially the V256I variant towards positively supercoiled DNA. We also found that the V256I variant was enriched to MAF = 0.64 in NCI-60 lung carcinoma cell lines, whereas the TOP1MT R525W was enriched to MAF = 0.65 in the NCI-60 melanoma cell lines. Moreover, TOP1MT expression correlated with the 256 variants in the NCI-60 lung carcinoma cell lines, valine with high expression and isoleucine with low expression. Our results are discussed in the context of evolution between the nuclear and mitochondrial topoisomerases and potential cancer predisposition.
Collapse
Affiliation(s)
- Hongliang Zhang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, NHLBI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Keli Agama
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, NHLBI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
114
|
Xin LT, Liu L, Shao CL, Yu RL, Chen FL, Yue SJ, Wang M, Guo ZL, Fan YC, Guan HS, Wang CY. Discovery of DNA Topoisomerase I Inhibitors with Low-Cytotoxicity Based on Virtual Screening from Natural Products. Mar Drugs 2017; 15:md15070217. [PMID: 28698495 PMCID: PMC5532659 DOI: 10.3390/md15070217] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 01/17/2023] Open
Abstract
Currently, DNA topoisomerase I (Topo I) inhibitors constitute a family of antitumor agents with demonstrated clinical effects on human malignancies. However, the clinical uses of these agents have been greatly limited due to their severe toxic effects. Therefore, it is urgent to find and develop novel low toxic Topo I inhibitors. In recent years, during our ongoing research on natural antitumor products, a collection of low cytotoxic or non-cytotoxic compounds with various structures were identified from marine invertebrates, plants, and their symbiotic microorganisms. In the present study, new Topo I inhibitors were discovered from low cytotoxic and non-cytotoxic natural products by virtual screening with docking simulations in combination with bioassay test. In total, eight potent Topo I inhibitors were found from 138 low cytotoxic or non-cytotoxic compounds from coral-derived fungi and plants. All of these Topo I inhibitors demonstrated activities against Topo I-mediated relaxation of supercoiled DNA at the concentrations of 5–100 µM. Notably, the flavonoids showed higher Topo I inhibitory activities than other compounds. These newly discovered Topo I inhibitors exhibited structurally diverse and could be considered as a good starting point for the development of new antitumor lead compounds.
Collapse
Affiliation(s)
- Lan-Ting Xin
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Lu Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Ri-Lei Yu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Fang-Ling Chen
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Shi-Jun Yue
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Mei Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Zhong-Long Guo
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Ya-Chu Fan
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Hua-Shi Guan
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
115
|
Ranjan N, Story S, Fulcrand G, Leng F, Ahmad M, King A, Sur S, Wang W, Tse-Dinh YC, Arya DP. Selective Inhibition of Escherichia coli RNA and DNA Topoisomerase I by Hoechst 33258 Derived Mono- and Bisbenzimidazoles. J Med Chem 2017; 60:4904-4922. [PMID: 28513176 PMCID: PMC12125705 DOI: 10.1021/acs.jmedchem.7b00191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A series of Hoechst 33258 based mono- and bisbenzimidazoles have been synthesized and their Escherichia coli DNA topoisomerase I inhibition, binding to B-DNA duplex, and antibacterial activity has been evaluated. Bisbenzimidazoles with alkynyl side chains display excellent E. coli DNA topoisomerase I inhibition properties with IC50 values <5.0 μM. Several bisbenzimidazoles (3, 6, 7, 8) also inhibit RNA topoisomerase activity of E. coli DNA topoisomerase I. Bisbenzimidazoles inhibit bacterial growth much better than monobenzimidazoles for Gram-positive strains. The minimum inhibitory concentration (MIC) was much lower for Gram positive bacteria (Enterococcus spp. and Staphylococcus spp., including two MRSA strains 0.3-8 μg/mL) than for the majority of Gram negative bacteria (Pseudomonas aeruginosa, 16-32 μg/mL, Klebsiella pneumoniae > 32 μg/mL). Bisbenzimidazoles showed varied stabilization of B-DNA duplex (1.2-23.4 °C), and cytotoxicity studies show similar variation dependent upon the side chain length. Modeling studies suggest critical interactions between the inhibitor side chain and amino acids of the active site of DNA topoisomerase I.
Collapse
Affiliation(s)
- Nihar Ranjan
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Sandra Story
- NUBAD LLC, 900B West Faris Road, Greenville, South Carolina 29605, United States
| | - Geraldine Fulcrand
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Muzammil Ahmad
- Genome Instability and Chromatin Remodeling Section, Lab of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, United States
| | - Ada King
- NUBAD LLC, 900B West Faris Road, Greenville, South Carolina 29605, United States
| | - Souvik Sur
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Weidong Wang
- Genome Instability and Chromatin Remodeling Section, Lab of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, United States
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Dev P. Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- NUBAD LLC, 900B West Faris Road, Greenville, South Carolina 29605, United States
| |
Collapse
|
116
|
Reed B, Yakovleva L, Shuman S, Ghose R. Characterization of DNA Binding by the Isolated N-Terminal Domain of Vaccinia Virus DNA Topoisomerase IB. Biochemistry 2017; 56:3307-3317. [PMID: 28570045 DOI: 10.1021/acs.biochem.7b00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vaccinia TopIB (vTopIB), a 314-amino acid eukaryal-type IB topoisomerase, recognizes and transesterifies at the DNA sequence 5'-(T/C)CCTT↓, leading to the formation of a covalent DNA-(3'-phosphotyrosyl274)-enzyme intermediate in the supercoil relaxation reaction. The C-terminal segment of vTopIB (amino acids 81-314), which engages the DNA minor groove at the scissile phosphodiester, comprises an autonomous catalytic domain that retains cleavage specificity, albeit with a cleavage site affinity lower than that of the full-length enzyme. The N-terminal domain (amino acids 1-80) engages the major groove on the DNA face opposite the scissile phosphodiester. Whereas DNA contacts of the N-terminal domain have been implicated in the DNA site affinity of vTopIB, it was not known whether the N-terminal domain per se could bind DNA. Here, using isothermal titration calorimetry, we demonstrate the ability of the isolated N-terminal domain to bind a CCCTT-containing 24-mer duplex with an apparent affinity that is ∼2.2-fold higher than that for an otherwise identical duplex in which the pentapyrimidine sequence is changed to ACGTG. Analyses of the interactions of the isolated N-terminal domain with duplex DNA via solution nuclear magnetic resonance methods are consistent with its DNA contacts observed in DNA-bound crystal structures of full-length vTopIB. The chemical shift perturbations and changes in hydrodynamic properties triggered by CCCTT DNA versus non-CCCTT DNA suggest differences in DNA binding dynamics. The importance of key N-terminal domain contacts in the context of full-length vTopIB is underscored by assessing the effects of double-alanine mutations on DNA transesterification and its sensitivity to ionic strength.
Collapse
Affiliation(s)
- Benjamin Reed
- Department of Chemistry and Biochemistry, The City College of New York , New York, New York 10031, United States
| | - Lyudmila Yakovleva
- Molecular Biology Program, Sloan-Kettering Institute , New York, New York 10021, United States
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute , New York, New York 10021, United States
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York , New York, New York 10031, United States
| |
Collapse
|
117
|
Abstract
Topoisomerases manage the torsional stress associated with the separation of DNA strands during transcription and DNA replication. Eukaryotic Topoisomerase I (Top1) is a Type IB enzyme that nicks and rejoins only one strand of duplex DNA, and it is especially important during transcription. By resolving transcription-associated torsional stress, Top1 reduces the accumulation of genome-destabilizing R-loops and non-B DNA structures. The DNA nicking activity of Top1, however, can also initiate genome instability in the form of illegitimate recombination, homologous recombination and mutagenesis. In this review, we focus on the diverse, and often opposing, roles of Top1 in regulating eukaryotic genome stability.
Collapse
|
118
|
Zhang P, Zhang L, Zhang Y, Mao L, Jiang H. Substitutions in Spodoptera exigua topoisomerase I modulate its relaxation activity and camptothecin sensitivity. PEST MANAGEMENT SCIENCE 2017; 73:1179-1186. [PMID: 27643798 DOI: 10.1002/ps.4440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/25/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Topoisomerase I (Top I) is referred as the cellular target of the camptothecins (CPTs) which are now being explored as potential pesticides for insect control. Three amino acid substitutions, including L530P, A653T and S729T, in Top Is of insects were found in our previous studies. In order to investigate the effect of these three substitutions, a comparative analysis was conducted between the wild-type and mutant Top Is in Spodoptera exigua Hübner. RESULTS The optimal salt concentration of A653T and S729T was 150 mm, which is consistent with that of the wild-type Top I, while the mutant L530P showed maximum relaxation activity at a lower KCl concentration (100 mm). The mutated L530P and A653T Top Is showed a higher relaxation efficiency owing to an increased relaxation velocity toward the negatively supercoiled plasmid pBR322 DNA, which rendered L530P and A653T resistant to CPTs, whereas mutant S729T exhibited sensitivity to CPTs as a result of a decreased relaxation activity toward plasmid pBR322 DNA. CONCLUSIONS These results suggested that the polymorphism in Top I of insects was related to the biological activity of CPTs, which provided the basic information for reasonable usage of CPTs to control insect pests. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
119
|
Bist G, Park S, Song C, Thapa Magar TB, Shrestha A, Kwon Y, Lee ES. Dihydroxylated 2,6-diphenyl-4-chlorophenylpyridines: Topoisomerase I and IIα dual inhibitors with DNA non-intercalative catalytic activity. Eur J Med Chem 2017; 133:69-84. [DOI: 10.1016/j.ejmech.2017.03.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 01/10/2023]
|
120
|
Cuya SM, Bjornsti MA, van Waardenburg RCAM. DNA topoisomerase-targeting chemotherapeutics: what's new? Cancer Chemother Pharmacol 2017; 80:1-14. [PMID: 28528358 DOI: 10.1007/s00280-017-3334-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/03/2017] [Indexed: 02/05/2023]
Abstract
To resolve the topological problems that threaten the function and structural integrity of nuclear and mitochondrial genomes and RNA molecules, human cells encode six different DNA topoisomerases including type IB enzymes (TOP1 and TOP1mt), type IIA enzymes (TOP2α and TOP2β) and type IA enzymes (TOP3α and TOP3β). DNA entanglements and the supercoiling of DNA molecules are regulated by topoisomerases through the introduction of transient enzyme-linked DNA breaks. The covalent topoisomerase-DNA complexes are the cellular targets of a diverse group of cancer chemotherapeutics, which reversibly stabilize these reaction intermediates. Here we review the structure-function and catalytic mechanisms of each family of eukaryotic DNA topoisomerases and the topoisomerase-targeting agents currently approved for patient therapy or in clinical trials, and highlight novel developments and challenges in the clinical development of these agents.
Collapse
Affiliation(s)
- Selma M Cuya
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave. S., Birmingham, AL, 35294-0019, USA
| | - Mary-Ann Bjornsti
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave. S., Birmingham, AL, 35294-0019, USA
| | - Robert C A M van Waardenburg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave. S., Birmingham, AL, 35294-0019, USA.
| |
Collapse
|
121
|
Dong G, Fang Y, Liu Y, Liu N, Wu S, Zhang W, Sheng C. Design, synthesis and evaluation of 4-substituted anthra[2,1-c][1,2,5]thiadiazole-6,11-dione derivatives as novel non-camptothecin topoisomerase I inhibitors. Bioorg Med Chem Lett 2017; 27:1929-1933. [DOI: 10.1016/j.bmcl.2017.03.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 12/20/2022]
|
122
|
Identification of several high-risk HPV inhibitors and drug targets with a novel high-throughput screening assay. PLoS Pathog 2017; 13:e1006168. [PMID: 28182794 PMCID: PMC5300127 DOI: 10.1371/journal.ppat.1006168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/05/2017] [Indexed: 12/19/2022] Open
Abstract
Human papillomaviruses (HPVs) are oncogenic viruses that cause numerous different cancers as well as benign lesions in the epithelia. To date, there is no effective cure for an ongoing HPV infection. Here, we describe the generation process of a platform for the development of anti-HPV drugs. This system consists of engineered full-length HPV genomes that express reporter genes for evaluation of the viral copy number in all three HPV replication stages. We demonstrate the usefulness of this system by conducting high-throughput screens to identify novel high-risk HPV-specific inhibitors. At least five of the inhibitors block the function of Tdp1 and PARP1, which have been identified as essential cellular proteins for HPV replication and promising candidates for the development of antivirals against HPV and possibly against HPV-related cancers. Human papillomaviruses are causative agents of many different cancers; they are most commonly associated with cervical cancer which leads to about quarter of a million deaths each year. Regardless of extensive studies for decades there is no specific cure against HPV infection. During this research, we have engineered modified HPV marker genomes that express Renilla luciferase reporter gene which expression level correlates directly with viral genome copy number. We have used such modified HPV genome in high-throughput screening of NCI Diversity Set IV chemical library and have identified a number of novel high-risk HPV-specific chemical compounds and drug targets. Such Renilla-expressing marker genomes could be used in various cell systems suitable for HPV replication studies to conduct high-throughput screens and quantify viral genome copy number quickly and effectively.
Collapse
|
123
|
Andersen MB, Tesauro C, Gonzalez M, Kristoffersen EL, Alonso C, Rubiales G, Coletta A, Frøhlich R, Stougaard M, Ho YP, Palacios F, Knudsen BR. Advantages of an optical nanosensor system for the mechanistic analysis of a novel topoisomerase I targeting drug: a case study. NANOSCALE 2017; 9:1886-1895. [PMID: 28094391 DOI: 10.1039/c6nr06848k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The continuous need for the development of new small molecule anti-cancer drugs calls for easily accessible sensor systems for measuring the effect of vast numbers of new drugs on their potential cellular targets. Here we demonstrate the use of an optical DNA biosensor to unravel the inhibitory mechanism of a member of a new family of small molecule human topoisomerase I inhibitors, the so-called indeno-1,5-naphthyridines. By analysing human topoisomerase I catalysis on the biosensor in the absence or presence of added drug complemented with a few traditional assays, we demonstrate that the investigated member of the indeno-1,5-naphthyridine family inhibited human topoisomerase I activity by blocking enzyme-DNA dissociation. To our knowledge, this represents the first characterized example of a small molecule drug that inhibits a post-ligation step of catalysis. The elucidation of a completely new and rather surprising drug mechanism-of-action using an optical real time sensor highlights the value of this assay system in the search for new topoisomerase I targeting small molecule drugs.
Collapse
Affiliation(s)
- Marie B Andersen
- Department of Molecular Biology and Genetics, C. F. Møllers Allé 3, Bldg 1131, Aarhus University, 8000 Aarhus C, Denmark.
| | - Cinzia Tesauro
- Department of Molecular Biology and Genetics, C. F. Møllers Allé 3, Bldg 1131, Aarhus University, 8000 Aarhus C, Denmark.
| | - María Gonzalez
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Emil L Kristoffersen
- Department of Molecular Biology and Genetics, C. F. Møllers Allé 3, Bldg 1131, Aarhus University, 8000 Aarhus C, Denmark.
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Gloria Rubiales
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Andrea Coletta
- Department of Chemistry, Langelandsgade 140, Aarhus University, 8000 Aarhus C, Denmark
| | - Rikke Frøhlich
- Department of Molecular Biology and Genetics, C. F. Møllers Allé 3, Bldg 1131, Aarhus University, 8000 Aarhus C, Denmark.
| | - Magnus Stougaard
- Department of Pathology, Nørrebrogade 44 building 18B, Aarhus University, Denmark
| | - Yi-Ping Ho
- Department of Molecular Biology and Genetics, C. F. Møllers Allé 3, Bldg 1131, Aarhus University, 8000 Aarhus C, Denmark. and Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark and Division of Biomedical Engineering, Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Birgitta R Knudsen
- Department of Molecular Biology and Genetics, C. F. Møllers Allé 3, Bldg 1131, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
124
|
Affiliation(s)
- Giovanni Capranico
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
8/2, 40126 Bologna, Italy
| | - Jessica Marinello
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
8/2, 40126 Bologna, Italy
| | - Giovanni Chillemi
- SCAI
SuperComputing Applications and Innovation Department, Cineca, Via dei Tizii 6, 00185 Rome, Italy
| |
Collapse
|
125
|
Shadrack DM, K. Ndesendo VM. Molecular Docking and ADMET Study of Emodin Derivatives as Anticancer Inhibitors of NAT2, COX2 and TOP1 Enzymes. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/cmb.2017.71001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
126
|
Martino E, Della Volpe S, Terribile E, Benetti E, Sakaj M, Centamore A, Sala A, Collina S. The long story of camptothecin: From traditional medicine to drugs. Bioorg Med Chem Lett 2016; 27:701-707. [PMID: 28073672 DOI: 10.1016/j.bmcl.2016.12.085] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 12/11/2022]
Abstract
20-(S)-Camptothecin (CPT) is a natural alkaloid extracted from the bark of Camptotheca acuminata (Chinese happy tree). It acts as a DNA topoisomerase 1 poison with an interesting antitumor activity and its use is limited by low stability and solubility and unpredictable drug-drug interactions. Since the late 20th century, it has been widely used in cancer therapy and, since extraction yields from plant tissues are very low, various synthetic routes have been developed to satisfy the increase in demand for CPT. Moreover, SAR studies have allowed for the development of more potent CPT analogues topotecan and irinotecan. Unfortunately, resistance has already occurred in several tumour lines. Additional studies are needed to better understand the relationship between substituents and resistance, its clinical relevance and the impact of related gene polymorphism. One of the latest research approaches focuses on modifying the delivery mode to improve tumour cell uptake and reduce toxicity.
Collapse
Affiliation(s)
- Emanuela Martino
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy
| | - Serena Della Volpe
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Elisa Terribile
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Emanuele Benetti
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Mirena Sakaj
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Adriana Centamore
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Andrea Sala
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
127
|
Hille T, Irrgang T, Kempe R. Synthese
meta
‐funktionalisierter Pyridine über selektive dehydrierende Heterokondensation von β‐ und γ‐Aminoalkoholen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Toni Hille
- Anorganische Chemie II – Katalysatordesign Universität Bayreuth 95540 Bayreuth Deutschland
| | - Torsten Irrgang
- Anorganische Chemie II – Katalysatordesign Universität Bayreuth 95540 Bayreuth Deutschland
| | - Rhett Kempe
- Anorganische Chemie II – Katalysatordesign Universität Bayreuth 95540 Bayreuth Deutschland
| |
Collapse
|
128
|
Hille T, Irrgang T, Kempe R. Synthesis of meta
-Functionalized Pyridines by Selective Dehydrogenative Heterocondensation of β- and γ-Amino Alcohols. Angew Chem Int Ed Engl 2016; 56:371-374. [DOI: 10.1002/anie.201610071] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Toni Hille
- Anorganische Chemie II-Katalysatordesign; Universität Bayreuth; 95540 Bayreuth Germany
| | - Torsten Irrgang
- Anorganische Chemie II-Katalysatordesign; Universität Bayreuth; 95540 Bayreuth Germany
| | - Rhett Kempe
- Anorganische Chemie II-Katalysatordesign; Universität Bayreuth; 95540 Bayreuth Germany
| |
Collapse
|
129
|
Molecular Mechanism of DNA Topoisomerase I-Dependent rDNA Silencing: Sir2p Recruitment at Ribosomal Genes. J Mol Biol 2016; 428:4905-4916. [PMID: 27825925 DOI: 10.1016/j.jmb.2016.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 11/24/2022]
Abstract
Saccharomyces cerevisiae sir2Δ or top1Δ mutants exhibit similar phenotypes involving ribosomal DNA, including (i) loss of transcriptional silencing, resulting in non-coding RNA hyperproduction from cryptic RNA polymerase II promoters; (ii) alterations in recombination; and (iii) a general increase in histone acetylation. Given the distinct enzymatic activities of Sir2 and Top1 proteins, a histone deacetylase and a DNA topoisomerase, respectively, we investigated whether genetic and/or physical interactions between the two proteins could explain the shared ribosomal RNA genes (rDNA) phenotypes. We employed an approach of complementing top1Δ cells with yeast, human, truncated, and chimeric yeast/human TOP1 constructs and of assessing the extent of non-coding RNA silencing and histone H4K16 deacetylation. Our findings demonstrate that residues 115-125 within the yeast Top1p N-terminal domain are required for the complementation of the top1∆ rDNA phenotypes. In chromatin immunoprecipitation and co-immunoprecipitation experiments, we further demonstrate the physical interaction between Top1p and Sir2p. Our genetic and biochemical studies support a model whereby Top1p recruits Sir2p to the rDNA and clarifies a structural role of DNA topoisomerase I in the epigenetic regulation of rDNA, independent of its known catalytic activity.
Collapse
|
130
|
Bracher F, Tremmel T. From Lead to Drug Utilizing a Mannich Reaction: The Topotecan Story. Arch Pharm (Weinheim) 2016; 350. [DOI: 10.1002/ardp.201600236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/26/2016] [Accepted: 10/06/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Franz Bracher
- Department of Pharmacy, Center for Drug Research; Ludwig-Maximilians University; Munich Germany
| | - Tim Tremmel
- Department of Pharmacy, Center for Drug Research; Ludwig-Maximilians University; Munich Germany
| |
Collapse
|
131
|
Synthesis and biological evaluation of 6-fluoro-3-phenyl-7-piperazinyl quinolone derivatives as potential topoisomerase I inhibitors. Eur J Med Chem 2016; 122:465-474. [DOI: 10.1016/j.ejmech.2016.06.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/17/2022]
|
132
|
Bansal S, Bajaj P, Pandey S, Tandon V. Topoisomerases: Resistance versus Sensitivity, How Far We Can Go? Med Res Rev 2016; 37:404-438. [PMID: 27687257 DOI: 10.1002/med.21417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
DNA topoisomerases are ubiquitously present remarkable molecular machines that help in altering topology of DNA in living cells. The crucial role played by these nucleases during DNA replication, transcription, and recombination vis-à-vis less sequence similarity among different species makes topoisomerases unique and attractive targets for different anticancer and antibacterial drugs. However, druggability of topoisomerases by the existing class of molecules is increasingly becoming questationable due to resistance development predominated by mutations in the corresponding genes. The current scenario facing a decline in the development of new molecules further comprises an important factor that may challenge topoisomerase-targeting therapy. Thus, it is imperative to wisely use the existing inhibitors lest with this rapid rate of losing grip over the target we may not go too far. Furthermore, it is important not only to design new molecules but also to develop new approaches that may avoid obstacles in therapies due to multiple resistance mechanisms. This review provides a succinct account of different classes of topoisomerase inhibitors, focuses on resistance acquired by mutations in topoisomerases, and discusses the various approaches to increase the efficacy of topoisomerase inhibitors. In a later section, we also suggest the possibility of using bisbenzimidazoles along with efflux pump inhibitors for synergistic bactericidal effects.
Collapse
Affiliation(s)
- Sandhya Bansal
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Priyanka Bajaj
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Stuti Pandey
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,Department of Chemistry, University of Delhi, New Delhi, India
| |
Collapse
|
133
|
Hussain I, Bania KK, Gour NK, Deka RC. Application of Physicochemical and DFT Based Descriptors for QSAR Study of Camptothecin Derivatives. ChemistrySelect 2016. [DOI: 10.1002/slct.201600609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Iftikar Hussain
- Department of Chemical Sciences; Tezpur University, Napaam; Tezpur - 784028, Assam India
| | - Kusum K. Bania
- Department of Chemical Sciences; Tezpur University, Napaam; Tezpur - 784028, Assam India
| | - N. K. Gour
- Department of Chemical Sciences; Tezpur University, Napaam; Tezpur - 784028, Assam India
| | - Ramesh C. Deka
- Department of Chemical Sciences; Tezpur University, Napaam; Tezpur - 784028, Assam India
| |
Collapse
|
134
|
Salvio R, Volpi S, Cacciapaglia R, Sansone F, Mandolini L, Casnati A. Phosphoryl Transfer Processes Promoted by a Trifunctional Calix[4]arene Inspired by DNA Topoisomerase I. J Org Chem 2016; 81:9012-9019. [DOI: 10.1021/acs.joc.6b01643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Riccardo Salvio
- Dipartimento
di Chimica and IMC - CNR Sezione Meccanismi di Reazione, Universitá La Sapienza, 00185 Rome, Italy
| | - Stefano Volpi
- Dipartimento
di Chimica, Universitá degli Studi di Parma, Viale delle
Scienze 17/A, 43124 Parma, Italy
| | - Roberta Cacciapaglia
- Dipartimento
di Chimica and IMC - CNR Sezione Meccanismi di Reazione, Universitá La Sapienza, 00185 Rome, Italy
| | - Francesco Sansone
- Dipartimento
di Chimica, Universitá degli Studi di Parma, Viale delle
Scienze 17/A, 43124 Parma, Italy
| | - Luigi Mandolini
- Dipartimento
di Chimica and IMC - CNR Sezione Meccanismi di Reazione, Universitá La Sapienza, 00185 Rome, Italy
| | - Alessandro Casnati
- Dipartimento
di Chimica, Universitá degli Studi di Parma, Viale delle
Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
135
|
Mulholland K, Wu C. Computational Study of Anticancer Drug Resistance Caused by 10 Topisomerase I Mutations, Including 7 Camptothecin Analogs and Lucanthone. J Chem Inf Model 2016; 56:1872-83. [PMID: 27564845 DOI: 10.1021/acs.jcim.6b00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Although Camptothecin and its analogs as Topoisomerase I poisons can effectively treat cancers, serious drug resistance has been identified for this class of drugs. Recent computational studies have indicated that the mutations near the active binding site of the drug can significantly weaken the drug binding and cause drug resistance. However, only Topotecan and three mutations have been previously analyzed. Here we present a comprehensive binding study of 10 Topoisomerase I mutants (N722S, N722A, D533G, D533N, G503S, G717V, T729A, F361S, G363C, and R364H) and 8 poisons including 7 Camptothecin analogs as well as a new generation Topoisomerase I drug, Lucanthone. Utilizing Glide docking followed by MMGBSA calculations, we determined the binding energy for each complex. We examine the relative binding energy changes with reference to the wild type, which are linked to the degree of drug resistance. On this set of mutant complexes, Topotecan and Camptothecin showed much smaller binding energies than a set of new Camptothecin derivatives (Lurtotecan, SN38, Gimatecan, Exatecan, and Belotecan) currently under clinical trials. We observed that Lucanthone exhibited comparable results to Topotecan and Camptothecin, indicating that it may serve as a promising candidate for future studies as a Topoisomerase I poison. Our docked results on Topotecan were also validated by a set of molecular dynamics simulations. In addition to a good agreement on the MMGBSA binding energy change, our simulation data also shows there is larger conformation fluctuation upon the mutations. These results may be utilized to further advancements of Topoisomerase I drugs that are resistant to mutations.
Collapse
Affiliation(s)
- Kelly Mulholland
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Chun Wu
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| |
Collapse
|
136
|
Baranello L, Wojtowicz D, Cui K, Devaiah BN, Chung HJ, Chan-Salis KY, Guha R, Wilson K, Zhang X, Zhang H, Piotrowski J, Thomas CJ, Singer DS, Pugh BF, Pommier Y, Przytycka TM, Kouzine F, Lewis BA, Zhao K, Levens D. RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription. Cell 2016; 165:357-71. [PMID: 27058666 DOI: 10.1016/j.cell.2016.02.036] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 12/01/2015] [Accepted: 02/17/2016] [Indexed: 11/24/2022]
Abstract
We report a mechanism through which the transcription machinery directly controls topoisomerase 1 (TOP1) activity to adjust DNA topology throughout the transcription cycle. By comparing TOP1 occupancy using chromatin immunoprecipitation sequencing (ChIP-seq) versus TOP1 activity using topoisomerase 1 sequencing (TOP1-seq), a method reported here to map catalytically engaged TOP1, TOP1 bound at promoters was discovered to become fully active only after pause-release. This transition coupled the phosphorylation of the carboxyl-terminal-domain (CTD) of RNA polymerase II (RNAPII) with stimulation of TOP1 above its basal rate, enhancing its processivity. TOP1 stimulation is strongly dependent on the kinase activity of BRD4, a protein that phosphorylates Ser2-CTD and regulates RNAPII pause-release. Thus the coordinated action of BRD4 and TOP1 overcame the torsional stress opposing transcription as RNAPII commenced elongation but preserved negative supercoiling that assists promoter melting at start sites. This nexus between transcription and DNA topology promises to elicit new strategies to intercept pathological gene expression.
Collapse
Affiliation(s)
| | | | - Kairong Cui
- Systems Biology Center, NHLBI/NIH, Bethesda, MD 20892, USA
| | | | - Hye-Jung Chung
- Laboratory of Pathology, NCI/NIH, Bethesda, MD 20892, USA
| | - Ka Yim Chan-Salis
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Rajarshi Guha
- Division of Preclinical Innovation, NCATS/NIH, Rockville, MD 20850, USA
| | - Kelli Wilson
- Division of Preclinical Innovation, NCATS/NIH, Rockville, MD 20850, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, NCATS/NIH, Rockville, MD 20850, USA
| | - Hongliang Zhang
- Development Therapeutics Branch and Laboratory of Molecular Pharmacology, NCI/NIH, Bethesda, MD 20892, USA
| | | | - Craig J Thomas
- Division of Preclinical Innovation, NCATS/NIH, Rockville, MD 20850, USA
| | - Dinah S Singer
- Experimental Immunology Branch, NCI/NIH, Bethesda, MD 20892, USA
| | - B Franklin Pugh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Yves Pommier
- Development Therapeutics Branch and Laboratory of Molecular Pharmacology, NCI/NIH, Bethesda, MD 20892, USA
| | | | - Fedor Kouzine
- Laboratory of Pathology, NCI/NIH, Bethesda, MD 20892, USA
| | - Brian A Lewis
- Lymphoid Malignancies Branch, NCI/NIH, Bethesda, MD 20892, USA
| | - Keji Zhao
- Systems Biology Center, NHLBI/NIH, Bethesda, MD 20892, USA.
| | - David Levens
- Laboratory of Pathology, NCI/NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
137
|
Girstun A, Ishikawa T, Kowalska-Loth B, Czubaty A, Staron K. Subnuclear Localization of Human Topoisomerase I. J Cell Biochem 2016; 118:407-419. [DOI: 10.1002/jcb.25654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Agnieszka Girstun
- Department of Molecular Biology; Institute of Biochemistry; Faculty of Biology; University of Warsaw; Warsaw Poland
| | - Takao Ishikawa
- Department of Molecular Biology; Institute of Biochemistry; Faculty of Biology; University of Warsaw; Warsaw Poland
| | - Barbara Kowalska-Loth
- Department of Molecular Biology; Institute of Biochemistry; Faculty of Biology; University of Warsaw; Warsaw Poland
| | - Alicja Czubaty
- Department of Molecular Biology; Institute of Biochemistry; Faculty of Biology; University of Warsaw; Warsaw Poland
| | - Krzysztof Staron
- Department of Molecular Biology; Institute of Biochemistry; Faculty of Biology; University of Warsaw; Warsaw Poland
| |
Collapse
|
138
|
Pastrana CL, Carrasco C, Akhtar P, Leuba SH, Khan SA, Moreno-Herrero F. Force and twist dependence of RepC nicking activity on torsionally-constrained DNA molecules. Nucleic Acids Res 2016; 44:8885-8896. [PMID: 27488190 PMCID: PMC5062986 DOI: 10.1093/nar/gkw689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/22/2016] [Indexed: 11/14/2022] Open
Abstract
Many bacterial plasmids replicate by an asymmetric rolling-circle mechanism that requires sequence-specific recognition for initiation, nicking of one of the template DNA strands and unwinding of the duplex prior to subsequent leading strand DNA synthesis. Nicking is performed by a replication-initiation protein (Rep) that directly binds to the plasmid double-stranded origin and remains covalently bound to its substrate 5′-end via a phosphotyrosine linkage. It has been proposed that the inverted DNA sequences at the nick site form a cruciform structure that facilitates DNA cleavage. However, the role of Rep proteins in the formation of this cruciform and the implication for its nicking and religation functions is unclear. Here, we have used magnetic tweezers to directly measure the DNA nicking and religation activities of RepC, the replication initiator protein of plasmid pT181, in plasmid sized and torsionally-constrained linear DNA molecules. Nicking by RepC occurred only in negatively supercoiled DNA and was force- and twist-dependent. Comparison with a type IB topoisomerase in similar experiments highlighted a relatively inefficient religation activity of RepC. Based on the structural modeling of RepC and on our experimental evidence, we propose a model where RepC nicking activity is passive and dependent upon the supercoiling degree of the DNA substrate.
Collapse
Affiliation(s)
- Cesar L Pastrana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - Carolina Carrasco
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - Parvez Akhtar
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Sanford H Leuba
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Saleem A Khan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
139
|
Das SK, Rehman I, Ghosh A, Sengupta S, Majumdar P, Jana B, Das BB. Poly(ADP-ribose) polymers regulate DNA topoisomerase I (Top1) nuclear dynamics and camptothecin sensitivity in living cells. Nucleic Acids Res 2016; 44:8363-75. [PMID: 27466387 PMCID: PMC5041477 DOI: 10.1093/nar/gkw665] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/13/2016] [Indexed: 01/19/2023] Open
Abstract
Topoisomerase 1 (Top1) is essential for removing the DNA supercoiling generated during replication and transcription. Anticancer drugs like camptothecin (CPT) and its clinical derivatives exert their cytotoxicity by reversibly trapping Top1 in covalent complexes on the DNA (Top1cc). Poly(ADP-ribose) polymerase (PARP) catalyses the addition of ADP-ribose polymers (PAR) onto itself and Top1. PARP inhibitors enhance the cytotoxicity of CPT in the clinical trials. However, the molecular mechanism by which PARylation regulates Top1 nuclear dynamics is not fully understood. Using live-cell imaging of enhanced green fluorescence tagged-human Top1, we show that PARP inhibitors (Veliparib, ABT-888) delocalize Top1 from the nucleolus to the nucleoplasm, which is independent of Top1–PARP1 interaction. Using fluorescence recovery after photobleaching and subsequent fitting of the data employing kinetic modelling we demonstrate that ABT-888 markedly increase CPT-induced bound/immobile fraction of Top1 (Top1cc) across the nuclear genome, suggesting Top1-PARylation counteracts CPT-induced stabilization of Top1cc. We further show Trp205 and Asn722 of Top1 are critical for subnuclear dynamics. Top1 mutant (N722S) was restricted to the nucleolus in the presence of CPT due to its deficiency in the accumulation of CPT-induced Top1-PARylation and Top1cc formation. This work identifies ADP-ribose polymers as key determinant for regulating Top1 subnuclear dynamics.
Collapse
Affiliation(s)
- Subhendu K Das
- Laboratory of Molecular Biology, Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Ishita Rehman
- Laboratory of Molecular Biology, Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Arijit Ghosh
- Laboratory of Molecular Biology, Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Souvik Sengupta
- Laboratory of Molecular Biology, Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Papiya Majumdar
- Laboratory of Molecular Biology, Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Biman Jana
- Physical Chemistry Department, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Benu Brata Das
- Laboratory of Molecular Biology, Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
140
|
Wan JP, Jing Y, Hu C, Sheng S. Metal-Free Synthesis of Fully Substituted Pyridines via Ring Construction Based on the Domino Reactions of Enaminones and Aldehydes. J Org Chem 2016; 81:6826-31. [PMID: 27367181 DOI: 10.1021/acs.joc.6b01149] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An unprecedented domino reaction involving primary enaminones/enaminoesters and aldehydes has been developed for the synthesis of fully substituted pyridines. The construction of the products has been accomplished via the cascade generation of two C-C and one C-N bond by simply using TfOH as a promoter.
Collapse
Affiliation(s)
- Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang 330022, P. R. China
| | - Yanfeng Jing
- College of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang 330022, P. R. China
| | - Changfeng Hu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University , Hangzhou, Zhejiang 310053, P. R. China
| | - Shouri Sheng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang 330022, P. R. China
| |
Collapse
|
141
|
Zhang X, Cao M, Xing J, Zheng M, Liu F, Dong P, Tian X, Xu H, Zhang L, Gu H, Yang L, Li R, Ji M, Gu N. Identification, characterization, and synthesis of process-related impurities in antiproliferative agent TQ-B3203. J LIQ CHROMATOGR R T 2016. [DOI: 10.1080/10826076.2016.1196216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xiquan Zhang
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
- Nanjing Institute of Pharmaceutical Research and Development, Chia-tai Tianqing Pharmaceutical Group Co. Ltd, Nanjing, China
| | - Meng Cao
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
- Suzhou Southeast Pharmaceuticals Co. Ltd, Suzhou, China
| | - Jing Xing
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Ming Zheng
- Nanjing Institute of Pharmaceutical Research and Development, Chia-tai Tianqing Pharmaceutical Group Co. Ltd, Nanjing, China
| | - Fei Liu
- Nanjing Institute of Pharmaceutical Research and Development, Chia-tai Tianqing Pharmaceutical Group Co. Ltd, Nanjing, China
| | - Ping Dong
- Nanjing Institute of Pharmaceutical Research and Development, Chia-tai Tianqing Pharmaceutical Group Co. Ltd, Nanjing, China
| | - Xin Tian
- Nanjing Institute of Pharmaceutical Research and Development, Chia-tai Tianqing Pharmaceutical Group Co. Ltd, Nanjing, China
| | - Hongjiang Xu
- Nanjing Institute of Pharmaceutical Research and Development, Chia-tai Tianqing Pharmaceutical Group Co. Ltd, Nanjing, China
| | - Laifang Zhang
- Nanjing Institute of Pharmaceutical Research and Development, Chia-tai Tianqing Pharmaceutical Group Co. Ltd, Nanjing, China
| | - Hongmei Gu
- Nanjing Institute of Pharmaceutical Research and Development, Chia-tai Tianqing Pharmaceutical Group Co. Ltd, Nanjing, China
| | - Ling Yang
- Nanjing Institute of Pharmaceutical Research and Development, Chia-tai Tianqing Pharmaceutical Group Co. Ltd, Nanjing, China
| | - Rui Li
- Suzhou Southeast Pharmaceuticals Co. Ltd, Suzhou, China
| | - Min Ji
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
- Suzhou Southeast Pharmaceuticals Co. Ltd, Suzhou, China
| | - Ning Gu
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
142
|
van Gijn R, Lendfers RRH, Schellens JHM, Bult A, Beijnen JH. Dual topoisomerase I/II inhibitors. J Oncol Pharm Pract 2016. [DOI: 10.1177/107815520000600303] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Topoisomerase (topo) I and II are nuclear enzymes, which play a major role in the topological rearrangement of DNA during replication and transcription processes. In the course of years, many different agents have been found which can inhibit the topos and thereby exploit cytotoxicity, also against tumour cells. Selective inhibition of the topo I enzyme can, however, induce a reactive increase in topo II levels, and vice versa. This mechanism is associated with the development of drug resistance. Dual inhibition of both topo I and II may, theoretically, overcome this resistance problem. In this review, the most important and promising dual topo I/II inhibitors designed as anticancer agents will be discussed. Thus far, only the indolyl quinoline derivative TAS-103, the 7 H-benzo [ e] pyrido [4,3- b] indole derivative intoplicine, and the acridine derivative PZA have been shown to be dual topo inhibitors with high cytotoxicity.
Collapse
Affiliation(s)
- R van Gijn
- Department of Pharmacy and Pharmacology, Slotervaart Hospital/The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - RRH Lendfers
- Department of Biomedical Analysis, Faculty of Pharmacy, Utrecht University, Utrecht, The Netherlands
| | - JHM Schellens
- Department of Biomedical Analysis, Faculty of Pharmacy, Utrecht University, Utrecht, The Netherlands, Division of Medical Oncology, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - A Bult
- Department of Biomedical Analysis, Faculty of Pharmacy, Utrecht University, Utrecht, The Netherlands
| | - JH Beijnen
- Department of Pharmacy and Pharmacology, Slotervaart Hospital/The Netherlands Cancer Institute, Amsterdam, The Netherlands, Department of Biomedical Analysis, Faculty of Pharmacy, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
143
|
Cho JE, Huang SYN, Burgers PM, Shuman S, Pommier Y, Jinks-Robertson S. Parallel analysis of ribonucleotide-dependent deletions produced by yeast Top1 in vitro and in vivo. Nucleic Acids Res 2016; 44:7714-21. [PMID: 27257064 PMCID: PMC5027487 DOI: 10.1093/nar/gkw495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/23/2016] [Indexed: 12/27/2022] Open
Abstract
Ribonucleotides are the most abundant non-canonical component of yeast genomic DNA and their persistence is associated with a distinctive mutation signature characterized by deletion of a single repeat unit from a short tandem repeat. These deletion events are dependent on DNA topoisomerase I (Top1) and are initiated by Top1 incision at the relevant ribonucleotide 3′-phosphodiester. A requirement for the re-ligation activity of Top1 led us to propose a sequential cleavage model for Top1-dependent mutagenesis at ribonucleotides. Here, we test key features of this model via parallel in vitro and in vivo analyses. We find that the distance between two Top1 cleavage sites determines the deletion size and that this distance is inversely related to the deletion frequency. Following the creation of a gap by two Top1 cleavage events, the tandem repeat provides complementarity that promotes realignment to a nick and subsequent Top1-mediated ligation. Complementarity downstream of the gap promotes deletion formation more effectively than does complementarity upstream of the gap, consistent with constraints to realignment of the strand to which Top1 is covalently bound. Our data fortify sequential Top1 cleavage as the mechanism for ribonucleotide-dependent deletions and provide new insight into the component steps of this process.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shar-Yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
144
|
Beck DE, Reddy PVN, Lv W, Abdelmalak M, Tender GS, Lopez S, Agama K, Marchand C, Pommier Y, Cushman M. Investigation of the Structure-Activity Relationships of Aza-A-Ring Indenoisoquinoline Topoisomerase I Poisons. J Med Chem 2016; 59:3840-53. [PMID: 27070999 DOI: 10.1021/acs.jmedchem.6b00003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Several indenoisoquinolines have shown promise as anticancer agents in clinical trials. Incorporation of a nitrogen atom into the indenoisoquinoline scaffold offers the possibility of favorably modulating ligand-binding site interactions, physicochemical properties, and biological activities. Four series of aza-A-ring indenoisoquinolines were synthesized in which the nitrogen atom was systematically rotated through positions 1, 2, 3, and 4. The resulting compounds were tested to establish the optimal nitrogen position for topoisomerase IB (Top1) enzyme poisoning activity and cytotoxicity to human cancer cells. The 4-aza compounds were the most likely to yield derivatives with high Top1 inhibitory activity. However, the relationship between structure and cytotoxicity was more complicated since the potency was influenced strongly by the side chains on the lactam nitrogen. The most cytotoxic azaindenoisoquinolines 45 and 46 had nitrogen in the 2- or 3-positions and a 3'-dimethylaminopropyl side chain, and they had MGM GI50 values that were slightly better than the corresponding indenoisoquinoline 64.
Collapse
Affiliation(s)
- Daniel E Beck
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - P V Narasimha Reddy
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Wei Lv
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Monica Abdelmalak
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Gabrielle S Tender
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Sophia Lopez
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Christophe Marchand
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
145
|
Buchfellner A, Yurlova L, Nüske S, Scholz AM, Bogner J, Ruf B, Zolghadr K, Drexler SE, Drexler GA, Girst S, Greubel C, Reindl J, Siebenwirth C, Romer T, Friedl AA, Rothbauer U. A New Nanobody-Based Biosensor to Study Endogenous PARP1 In Vitro and in Live Human Cells. PLoS One 2016; 11:e0151041. [PMID: 26950694 PMCID: PMC4780744 DOI: 10.1371/journal.pone.0151041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/23/2016] [Indexed: 11/22/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is a key player in DNA repair, genomic stability and cell survival and it emerges as a highly relevant target for cancer therapies. To deepen our understanding of PARP biology and mechanisms of action of PARP1-targeting anti-cancer compounds, we generated a novel PARP1-affinity reagent, active both in vitro and in live cells. This PARP1-biosensor is based on a PARP1-specific single-domain antibody fragment (~ 15 kDa), termed nanobody, which recognizes the N-terminus of human PARP1 with nanomolar affinity. In proteomic approaches, immobilized PARP1 nanobody facilitates quantitative immunoprecipitation of functional, endogenous PARP1 from cellular lysates. For cellular studies, we engineered an intracellularly functional PARP1 chromobody by combining the nanobody coding sequence with a fluorescent protein sequence. By following the chromobody signal, we were for the first time able to monitor the recruitment of endogenous PARP1 to DNA damage sites in live cells. Moreover, tracing of the sub-nuclear translocation of the chromobody signal upon treatment of human cells with chemical substances enables real-time profiling of active compounds in high content imaging. Due to its ability to perform as a biosensor at the endogenous level of the PARP1 enzyme, the novel PARP1 nanobody is a unique and versatile tool for basic and applied studies of PARP1 biology and DNA repair.
Collapse
Affiliation(s)
| | | | - Stefan Nüske
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilians University, Munich, Germany
| | - Armin M. Scholz
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilians University, Munich, Germany
| | | | - Benjamin Ruf
- ChromoTek GmbH, IZB, Planegg, Martinsried, Germany
| | | | - Sophie E. Drexler
- Department of Radiation Oncology, Ludwig Maximilians University, Munich, Germany
| | - Guido A. Drexler
- Department of Radiation Oncology, Ludwig Maximilians University, Munich, Germany
| | - Stefanie Girst
- Institute for Applied Physics and Metrology, Bundeswehr University Munich, Neubiberg, Germany
| | - Christoph Greubel
- Institute for Applied Physics and Metrology, Bundeswehr University Munich, Neubiberg, Germany
| | - Judith Reindl
- Institute for Applied Physics and Metrology, Bundeswehr University Munich, Neubiberg, Germany
| | - Christian Siebenwirth
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Tina Romer
- ChromoTek GmbH, IZB, Planegg, Martinsried, Germany
- * E-mail:
| | - Anna A. Friedl
- Department of Radiation Oncology, Ludwig Maximilians University, Munich, Germany
- Clinical Cooperation Group ‘Personalized Radiotherapy of Head and Neck Cancer’, Helmholtz Center Munich, Neuherberg, Germany
| | - Ulrich Rothbauer
- Natural and Medical Institute at the University of Tuebingen, Reutlingen, Germany
- Pharmaceutical Biotechnology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
146
|
Patel AG, Flatten KS, Peterson KL, Beito TG, Schneider PA, Perkins AL, Harki DA, Kaufmann SH. Immunodetection of human topoisomerase I-DNA covalent complexes. Nucleic Acids Res 2016; 44:2816-26. [PMID: 26917015 PMCID: PMC4824114 DOI: 10.1093/nar/gkw109] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/15/2016] [Indexed: 12/29/2022] Open
Abstract
A number of established and investigational anticancer drugs slow the religation step of DNA topoisomerase I (topo I). These agents induce cytotoxicity by stabilizing topo I-DNA covalent complexes, which in turn interact with advancing replication forks or transcription complexes to generate lethal lesions. Despite the importance of topo I-DNA covalent complexes, it has been difficult to detect these lesions within intact cells and tumors. Here, we report development of a monoclonal antibody that specifically recognizes covalent topo I-DNA complexes, but not free topo I or DNA, by immunoblotting, immunofluorescence or flow cytometry. Utilizing this antibody, we demonstrate readily detectable topo I-DNA covalent complexes after treatment with camptothecins, indenoisoquinolines and cisplatin but not nucleoside analogues. Topotecan-induced topo I-DNA complexes peak at 15-30 min after drug addition and then decrease, whereas indotecan-induced complexes persist for at least 4 h. Interestingly, simultaneous staining for covalent topo I-DNA complexes, phospho-H2AX and Rad51 suggests that topotecan-induced DNA double-strand breaks occur at sites distinct from stabilized topo I-DNA covalent complexes. These studies not only provide new insight into the action of topo I-directed agents, but also illustrate a strategy that can be applied to study additional topoisomerases and their inhibitors in vitro and in vivo.
Collapse
Affiliation(s)
- Anand G Patel
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Karen S Flatten
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin L Peterson
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas G Beito
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Paula A Schneider
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Angela L Perkins
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
147
|
Wirth-Hamdoune D, Ullrich S, Scheffer U, Radanović T, Dürner G, Göbel MW. A Bis(guanidinium)alcohol Attached to a Hairpin Polyamide: Synthesis, DNA Binding, and Plasmid Cleavage. Chembiochem 2016; 17:506-14. [DOI: 10.1002/cbic.201500566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Daniela Wirth-Hamdoune
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Stefan Ullrich
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Ute Scheffer
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Toni Radanović
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Gerd Dürner
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Michael W. Göbel
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
148
|
Beck DE, Lv W, Abdelmalak M, Plescia CB, Agama K, Marchand C, Pommier Y, Cushman M. Synthesis and biological evaluation of new fluorinated and chlorinated indenoisoquinoline topoisomerase I poisons. Bioorg Med Chem 2016; 24:1469-79. [PMID: 26906474 DOI: 10.1016/j.bmc.2016.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/30/2016] [Accepted: 02/08/2016] [Indexed: 11/29/2022]
Abstract
Fluorine and chlorine are metabolically stable, but generally less active replacements for a nitro group at the 3-position of indenoisoquinoline topoisomerase IB (Top1) poisons. A number of strategies were employed in the present investigation to enhance the Top1 inhibitory potencies and cancer cell growth inhibitory activities of halogenated indenoisoquinolines. In several cases, the new compounds' activities were found to rival or surpass those of similarly substituted 3-nitroindenoisoquinolines, and several unusually potent analogs were discovered through testing in human cancer cell cultures. A hydroxyethylaminopropyl side chain on the lactam nitrogen of two halogenated indenoisoquinoline Top1 inhibitors was found to also impart inhibitory activity against tyrosyl DNA phosphodiesterases 1 and 2 (TDP1 and TDP2), which are enzymes that participate in the repair of DNA damage induced by Top1 poisons.
Collapse
Affiliation(s)
- Daniel E Beck
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Wei Lv
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Monica Abdelmalak
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 21892, United States
| | - Caroline B Plescia
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 21892, United States
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 21892, United States
| | - Christophe Marchand
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 21892, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 21892, United States
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
149
|
Basu S, Zeng M, Yin T, Gao S, Hu M. Development and validation of an UPLC-MS/MS method for the quantification of irinotecan, SN-38 and SN-38 glucuronide in plasma, urine, feces, liver and kidney: Application to a pharmacokinetic study of irinotecan in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1015-1016:34-41. [PMID: 26894853 DOI: 10.1016/j.jchromb.2016.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 12/27/2022]
Abstract
The objective of this research is to develop and validate a sensitive and reproducible UPLC-MS/MS method to quantify irinotecan, its active metabolite SN-38 and SN-38 glucuronide (phase II metabolite of SN-38) simultaneously in different bio-matrices (plasma, urine, feces), tissues (liver and kidney) and to use the method to investigate its pharmacokinetic behavior in rats. Irinotecan, SN-38 and SN-38 glucuronide has been resolved and separated by C18 column using acetonitrile and 0.1% formic acid in water used as the mobile phases. Triple quadruple mass spectrometer using multiple reaction monitoring (MRM) with positive scan mode were employed to perform mass analysis. The results showed that the linear response range of irinotecan and SN-38 in plasma, feces, liver and kidney is 4.88-10000 nM, 39-5000 nM, 48.8-6250 nM and 48.8-6250 nM, respectively (R(2)>0.99). In case of SN-38 glucuronide, the standard curves were linear in the concentration range of 6.25-2000 nM, 4.88-1250 nM, 9.8-1250 nM and 9.8-1250 nM in plasma, feces, liver and kidney homogenates, respectively. The lower limit of detection (LLOD) of irinotecan, SN-38 and SN-38 glucuronide was determined to be less than 25 nM in all bio-matrices as well as tissue homogenates. Recoveries of irinotecan, SN-38 and SN-38 glucuronide at three different concentrations (low, medium and high) were not less than 85% at three different concentrations in plasma and feces. The percentage matrix factors in different bio-matrices and tissues were within 20%. The UPLC-MS/MS method was validated with intra-day and inter-day precision of less than 15% in plasma, feces, liver and kidney. Owing to the high sensitivity of this method, only 20 μl of plasma, urine and homogenates of liver, kidney and feces is needed. The validated method has been successfully employed for pharmacokinetic evaluation of irinotecan in male wistar rats to quantify irinotecan, SN-38 and SN-38 glucuronide in plasma, feces, and urine samples.
Collapse
Affiliation(s)
- Sumit Basu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030, USA; Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL 32827, USA
| | - Min Zeng
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030, USA; Department of Thoracic and Cardiomacrovascular surgery, Shiyan Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030, USA
| | - Song Gao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030, USA.
| |
Collapse
|
150
|
Abstract
Antibody drug conjugates (ADCs) constitute a family of cancer therapeutics designed to preferentially direct a cytotoxic drug to cells expressing a cell-surface antigen recognized by an antibody. The antibody and drug are linked through chemistries that enable release of the cytotoxic drug or drug adduct upon internalization and digestion of the ADC by the cell. Over 40 distinct ADCs, targeting an array of antigens and utilizing a variety of drugs and linkers, are undergoing clinical evaluation. This review primarily covers ADCs that have advanced to clinical investigation with a particular emphasis on how the individual targets, linker chemistries, and appended drugs influence their behavior.
Collapse
Affiliation(s)
- Paul Polakis
- Department of Molecular Oncology, Genentech, South San Francisco, California
| |
Collapse
|